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Abstract

A Bank-Laine function is an entire function E such that E(z) = 0 implies that
E′(z) = ±1. Such functions arise as the product of linearly independent solutions of a
second order linear differential equation w′′ + A(z)w = 0 with A entire. Suppose that

E(z) = R(z)eg(z)
m∏

j=1

qj∏
k=1

(eαjz − βj,k) ,

where R is a rational function, g is a polynomial, and the αj and βj,k are non-zero
complex numbers, and that E′(z) = ±1 at all but finally many zeros z of E. Then the
quotients αj/αj′ are all rational numbers and E is a Bank-Laine function and reduces
to the form E(z) = P0 (eαz) eQ0(z) with α a non-zero complex number and P0 and Q0

polynomials.
Keywords: Bank-Laine functions, zeros, complex oscillation.
MSC 2000: 30D35, 34A20.

1 Introduction

A Bank-Laine function is an entire function E such that E ′(z) = ±1 whenever E(z) = 0.
These arise in connection with second order linear differential equations in the following way
[1]. Let A be an entire function, and let f1, f2 be linearly independent solutions of

w′′ + A(z)w = 0, (1)

normalised so that the Wronskian satisfies W (f1, f2) = 1. Then the product E = f1f2 is a
Bank-Laine function. Conversely, every Bank-Laine function has a representation as such a
product, for a suitable entire function A [3].

The use of the product E = f1f2 to study the zeros of solutions of equation (1) was
introduced in the landmark paper [1], which reinvigorated activity in this area of complex
oscillation theory (see, for example, [2, 3, 4, 9, 10, 11, 13, 16]). There is a conjecture that when
the exponent of convergence λ(E) of the zeros of the product E is finite and the coefficient
A is a transcendental entire function, then the order of growth ρ(A) is either infinite or a
positive integer. In this direction it is known that if ρ(A) and λ(E) are both finite then so
is ρ(E), and that if A is transcendental with ρ(A) ≤ 1

2
then λ(E) = ∞ [1, 17, 18] (see also

[15] for an analogous result for higher order equations).
It was observed by Shen in [19] that if (ak) is any complex sequence tending to infinity

without repetition then there exists a Bank-Laine function E with zero-sequence (ak). In the



light of the conjecture and results cited above it is then natural to ask whether there exists
a Bank-Laine function of finite order with zero-sequence (ak), in which case (ak) is called a
Bank-Laine sequence in the terminology of [5, 6]. Obviously every Bank-Laine sequence has
finite exponent of convergence, but the converse was shown to be strongly false in [5, 6, 14].
For example, if (ak) is an infinite sequence of non-zero real numbers and

∑
|ak|−1 converges

then (ak) is not a Bank-Laine sequence [14].
Simple examples such as

e3z(ez − 1)(ez − i)

1− i
,

e2πiz2
sin πz

π
,

show that the zero-sequence of a Bank-Laine function of finite order can be a union of finitely
many periodic sequences. Bank-Laine functions of form E(z) = P (eaz)ebz, for suitable
constants a and b and an appropriate choice of polynomial P , arise from certain equations
(1) with a periodic entire function A as coefficient [2, 4], and for such functions the zero-
sequence is again a union of periodic sequences. It then seems reasonable to ask whether
it is possible for the zero-sequence of a Bank-Laine function of finite order to be a union of
periodic sequences in which the periods are independent in the sense that the ratios are not
all rational numbers. However, the following result shows in a strong sense that this is not
the case.

Theorem 1.1 Let m, q1, . . . , qm be positive integers and let

E(z) = R(z)eg(z)

m∏
j=1

qj∏
k=1

(eαjz − βj,k) , (2)

where R 6≡ 0 is a rational function, g is a polynomial, the αj are pairwise distinct non-zero
complex numbers, and βj,k ∈ C \ {0} for j = 1, . . . ,m, k = 1, . . . , qj. Assume that

E ′(z) = ±1 at all but finitely many zeros z of E. (3)

Then αj/αj′ ∈ Q for 1 ≤ j ≤ j′ ≤ m and R is constant, and E is a Bank-Laine function
and satisfies E(z) = P0 (eαz) eQ0(z), with α ∈ C \ {0} and P0 and Q0 polynomials.

Note that in (2) the βj,k must be pairwise distinct for a given j, since all but finitely many
zeros of E are simple. The proof of Theorem 1.1 is based on two key facts from analytic
number theory (see Lemmas 2.4 and 2.5) and a number of intermediate lemmas which may
be of some independent interest.

2 Lemmas required for Theorem 1.1

The first lemma is obvious.

Lemma 2.1 Let E be a meromorphic function satisfying condition (3). Let a, b ∈ C with
a 6= 0, and set F (z) = a−1E(az + b). Then F ′(z) = ±1 at all but finitely many zeros of F .
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Lemma 2.2 Let S 6≡ 0 be a rational function and let

T (z) =
S(z + 1)

S(z)
. (4)

Suppose that arg T (x) is constant as x → +∞ with x ∈ R. Then arg S(x) is constant as
x → +∞ with x ∈ R.

Proof. Since T (∞) = 1 it must be the case that arg T (x) = 0 as x → +∞ with x ∈ R. Let

U(z) =
S̄(z̄)

S(z)
, V (z) =

U(z + 1)

U(z)
. (5)

Then, as x → +∞ with x ∈ R,

V (x) =
S̄(x + 1)

S(x + 1)

S(x)

S̄(x)
=

T̄ (x)

T (x)
= 1.

Hence V ≡ 1 and since a non-constant rational function cannot be periodic it follows from
(5) and the fact that U(∞) has modulus 1 that there exists α ∈ R such that U ≡ e2iα. Let
W (z) = eiαS(z). Then

W̄ (z̄)

W (z)
= e−2iαU(z) ≡ 1,

using (5), and so W (x) is real as x → +∞ with x ∈ R. This proves the lemma. 2

Lemma 2.3 Let S 6≡ 0 be a rational function and let Q be a polynomial. Suppose that
S(n)eQ(n) has constant argument as n → +∞ with n ∈ N. Then arg S(x) is constant as
x → +∞ with x ∈ R.

Proof. The lemma will be established by induction on the degree m of the polynomial Q.
Suppose first that m = 0. Then there is no loss of generality in assuming that Q ≡ 0 and
that arg S(n) = 0 for large n ∈ N. Let U be defined by (5). Then U(n) = 1 for large n ∈ N
and so U ≡ 1, from which it follows that S(x) has constant argument for large positive x.

Assume now that M is a non-negative integer and that the lemma has been proved for
0 ≤ m ≤ M , and that S and Q are as in the hypotheses, such that the polynomial Q has
degree M + 1. Set

Y (z) =
S(z + 1)eQ(z+1)

S(z)eQ(z)
= T (z)eP (z),

where T is defined as in (4) and P (z) = Q(z + 1) − Q(z) has degree at most M . Then
arg Y (n) is constant as n → +∞ with n ∈ N, and so it follows from the induction hypothesis
that arg T (x) is constant as x → +∞ with x ∈ R. Thus Lemma 2.2 shows that arg S(x) is
constant as x → +∞ with x ∈ R, and the induction is complete. 2

The proof of Theorem 1.1 will require some standard facts from analytic number theory,
including simultaneous approximation by rational numbers [7, p.170, Theorem 201].

Lemma 2.4 ([7]) Let x1, . . . , xk and ε be real numbers, with ε > 0. Then there exist integers
q, p1, . . . , pk with q > 0 such that |qxj − pj| < ε for j = 1, . . . , k.



The next lemma involves the uniform distribution modulo 1 of the sequence (nx) when
x is irrational [7, p.390, Theorem 445]. Here [y], for y ∈ R, denotes the greatest integer not
exceeding y.

Lemma 2.5 ([7]) Let x ∈ R \Q. Let I ⊆ (0, 1) be an interval of length |I|. Then the set

FI = {n ∈ N : nx− [nx] ∈ I}

has linear density dens FI equal to |I|, where

dens FI = lim
m→∞

card (FI ∩ {1, . . . ,m})
m

. (6)

The following lemma is then an immediate consequence of Lemma 2.5.

Lemma 2.6 Let α ∈ C with γ = α/2πi 6∈ Q. Let β ∈ C \ {0} and let ε > 0. Then there
exists δ > 0 such that the set

Gδ = {n ∈ N : |eαn − β| < δ}

has upper linear density dens Gδ less than ε.

Here the upper linear density dens Gδ is defined as in (6) but with lim replaced by lim sup.

Proof. If γ is non-real then α has non-zero real part and so |eαn| tends to either 0 or +∞ as
n →∞ with n ∈ N. Thus the lemma is trivial in this case. Suppose now that γ is real but
irrational, and that n ∈ N. For eαn − β to be small it is necessary that γn = (1/2π)Im αn is
close to some determination of (1/2π) arg β. Hence Lemma 2.6 follows from Lemma 2.5. 2

3 The quotients αj/αj′ are real

Suppose that E is as in the statement of Theorem 1.1. If 1 ≤ j < j′ ≤ m and αj/αj′ ∈ Q then
clearly there exist integers n1, n2 and a complex number a such that αj = n1a, αj′ = n2a.
The identities

epaz − bp =

p−1∏
µ=0

(
eaz − be2πiµ/p

)
, e−az − b = −be−az(eaz − 1/b), (7)

are obviously valid for p ∈ N and a, b ∈ C \ {0}. Thus (7) shows that there is no loss of
generality in assuming throughout the rest of the paper that

if m ≥ 2 then
αj

αj′
∈ C \Q for 1 ≤ j < j′ ≤ m. (8)

The following lemma is the first step in the proof of Theorem 1.1.

Lemma 3.1 Let E satisfy the hypotheses of Theorem 1.1. Then the αj satisfy

αj

αj′
∈ R for 1 ≤ j, j′ ≤ m. (9)



Proof. Assume that the conclusion of the lemma is false. Then clearly m ≥ 2 in (2). Since
the αj may be interchanged at will, there is no loss of generality in assuming that α2/α1 has
negative imaginary part. By Lemma 2.1 it may be assumed further that

α1 = 2πi, β1,1 = 1, (10)

so that Re α2 > 0. Write

g(z) = P (z) + iQ(z), P, Q ∈ R[z], (11)

where R[z] denotes the set of polynomials with real coefficients. Using (2), (3), (10) and (11)
there exists a non-zero constant d1 such that

E(n) = 0, E ′(n) = ±1, U(n) = ±d1 as |n| → +∞ with n ∈ Z, (12)

where

U(n) = R(n)eP (n)+iQ(n)

m∏
j=2

qj∏
k=1

(eαjn − βj,k) . (13)

Denote positive constants by cj. Since αj/2πi ∈ C \Q for j ≥ 2, by (8) and (10), it follows
from Lemma 2.6 that there exists a sequence (nν) in N such that nν → +∞ as ν → +∞ and∣∣∣∣∣

qj∏
k=1

(eαjnν − βj,k)

∣∣∣∣∣ ≥ c1 > 0 (14)

for each j ≥ 2. Since α2 has positive real part this gives∣∣∣∣∣R(nν)
m∏

j=2

qj∏
k=1

(eαjnν − βj,k)

∣∣∣∣∣→ +∞ (15)

as ν →∞, so that (12), (13) and (15) force

lim
n→+∞,n∈N

P (n) = −∞. (16)

On the other hand simple order considerations in (13) show that P must have degree 1, since
otherwise U(nν) → 0 by (16), contradicting (12). Hence

lim
n→−∞,n∈Z

P (n) = +∞. (17)

But then Lemma 2.6 applied to the constants −αj shows that there exists a sequence (nν)
in Z with nν → −∞ as ν →∞ such that (14) again holds for all j ≥ 2, which together with
(13) and (17) gives U(nν) →∞, contradicting (12). 2



4 Further lemmas

In this section a number of lemmas will be proved for functions satisfying the hypotheses of
Theorem 1.1, which apply even if m = 1 in (2).

Let E be as in the statement of Theorem 1.1. Then (9) holds. In view of (8) and Lemmas
2.1 and 3.1 it may be assumed throughout this section that

β1,1 = 1,
αj

2πi
∈ R and

αj

αj′
∈ R \Q for 1 ≤ j, j′ ≤ m, j 6= j′. (18)

Lemma 4.1 Let E satisfy the hypotheses of Theorem 1.1 and (18). Define P and Q by (11).
Then P is constant.

Proof. Suppose that P is non-constant. By Lemma 2.1 with a real and b = 0 it may be
assumed that α1 = 2πi in addition to (18). Thus (12) again holds, where U is as in (13).
Now Lemma 2.6 and (18) give a sequence of positive integers (nν) tending to infinity with

0 < c2 <

∣∣∣∣∣
qj∏

k=1

(eαjnν − βj,k)

∣∣∣∣∣ < c3 < ∞ (19)

for each j ≥ 2, where the cj again denote positive constants. If P is non-constant then (13)
and (19) show that |U(nν)| tends to one of 0 and +∞ as ν → +∞, which contradicts (12).
2

Lemma 4.2 Let E satisfy the hypotheses of Theorem 1.1 and (18). Define P and Q by
(11). Then at least one of the following is true: (a) all βj,k in (2) have modulus 1; (b) the
polynomial Q in (11) has degree at most 1.

Proof. Assume that (a) and (b) are both false, so that |βp,k| 6= 1 for some p ∈ {1, . . . ,m}
and k ∈ {1, . . . , qp}. Using Lemma 2.1 with a real and b = 0, as well as Lemma 4.1 and
(18), there is no loss of generality in assuming that αp = 2πi and P ≡ 0. Hence there exists
a non-real complex number d such that

eαp(n+d) = βp,k, E(n + d) = 0, E ′(n + d) = ±1 as |n| → +∞ with n ∈ Z. (20)

Thus (20) gives a non-zero complex number d2 such that

V (n) = ±d2 as |n| → +∞ with n ∈ Z, (21)

where

V (n) = R(n + d)eiQ(n+d)
∏

1≤j≤m, j 6=p

qj∏
k=1

(
eαj(n+d) − βj,k

)
. (22)

By Lemma 2.6 and (18) there exists a sequence (nν) of positive integers tending to infinity
such that

0 < c4 <
∏

1≤j≤m, j 6=p

∣∣∣∣∣
qj∏

j=1

(
eαj(nν+d) − βj,k

)∣∣∣∣∣ < c5 < ∞. (23)



Since (b) is assumed false and Q is a real polynomial and d is non-real,

lim
|n|→+∞,n∈Z

|Im Q(n + d)| = +∞. (24)

Combining (22), (23) and (24) shows that |V (nν)| tends to either 0 or +∞ as ν → +∞,
contradicting (21). 2

Lemma 4.3 Let E satisfy the hypotheses of Theorem 1.1 and (18). Define P and Q by (11),
and assume that Q has degree at most 1. Then it may be assumed without loss of generality
that

g(z) = P (z) + iQ(z) ≡ αm+1z, (25)

where αm+1/2πi is real. Moreover, αj/α1 ∈ Q for 2 ≤ j ≤ m + 1.

Proof. By Lemma 4.1 and the assumption that Q has degree at most 1 it is clearly possible
to incorporate a multiplicative constant into R in (2) and thus write the polynomial g in
the form (25). Further, in view of Lemma 2.1 and (18) it may be assumed again that (10)
holds. Assume that αj/α1 6∈ Q for at least one j ≥ 2. Note that if m ≥ 2 then αj/α1 6∈ Q
for 2 ≤ j ≤ m by (18). Let ε be small and positive. Then Lemma 2.4 and (18) give integers
q and pj with q > 0 such that

αj

2πi
=

pj + εj

q
where |εj| < ε for j = 2, . . . ,m + 1. (26)

By Lemma 2.1 and (10) the function F (z) = q−1E(qz) satisfies

F (n) = 0, F ′(n) = ±1 as |n| → +∞ with n ∈ Z. (27)

By (2), (10), (11), (18), (25) and (26), the function F has a representation

F (z) =
1

q
R(qz)e2πi(pm+1+εm+1)z

(
q1∏

k=1

(
e2πiqz − β1,k

)) ∏
2≤j≤m

qj∏
k=1

(
e2πi(pj+εj)z − βj,k

)
. (28)

By (10), (27) and (28) there exists a non-zero constant d3 such that

W (n) = ±d3 as |n| → +∞ with n ∈ Z, (29)

where

W (z) =
1

q
R(qz)e2πiεm+1z

m∏
j=2

qj∏
k=1

(
e2πiεjz − βj,k

)
(if m ≥ 2),

W (z) =
1

q
R(qz)e2πiε2z (if m = 1). (30)

Since εj 6= 0 for at least one j ≥ 2, the function W is non-constant, indeed with infinitely
many zeros if m ≥ 2. But (26) and elementary estimates [8, p.7] give

T (r, W ) ≤ (1 + q2 + . . . + qm)2εr + O(log r),

which contradicts (29) since ε is by assumption small. 2



5 Proof of Theorem 1.1

Let E be as in the hypotheses of Theorem 1.1. Then by (8) and Lemmas 2.1 and 3.1, there is
no loss of generality in assuming that (18) holds. Thus it is possible to write the polynomial
g in the form (11), and to assume by Lemma 4.1 that P ≡ 0.

Lemma 5.1 The integer m in (2) satisfies m = 1.

Proof. By Lemmas 4.2 and 4.3 this is certainly true if any βj,k in (2) has modulus not equal
to 1. Assume henceforth that m ≥ 2, and that all βj,k in (2) have modulus 1. For s, t real,

e2isz − e2it = 2iei(sz+t) sin(sz − t). (31)

Since the polynomial P in (11) is by assumption identically zero it follows from (2), (18)
and (31) that E may be written in the form

E(z) = S(z)eiM(z)

m∏
j=1

qj∏
k=1

sin(sjz − tj,k), (32)

where S is a rational function, M is a real polynomial, and the sj and tj,k are real constants
satisfying sj = αj/2i. By Lemma 2.1 it may be assumed without loss of generality that
s1 = π and t1,1 = 0. Hence

E ′(n) = ±1, S(n)2ei2M(n) ∈ (0, +∞) as |n| → +∞ with n ∈ Z.

Now Lemma 2.3 shows that arg S(x)2 = 2 arg S(x) is constant as x → +∞ with x real. By
adding a real constant to M it may thus be assumed without loss of generality that S is a
real rational function. Since M is a real polynomial and all but finitely many zeros of E
are real, by (32), it now follows from (3) that eiM(z) = ±1 for all but finitely many zeros of
E. Thus G(z) = E(z)e−iM(z) is such that G′(z) = ±1 at all but finitely many zeros of G.
On reversing the transformation (31) and using (2), (11) and (32), it follows that G has the
form

G(z) = T (z)eiN(z)

m∏
j=1

qj∏
k=1

(eαjz − βj,k) ,

in which T is a rational function, N is a real polynomial of degree at most 1 and the αj

still satisfy (18). Thus Lemma 4.3 may be applied to G, which gives a contradiction, since
m ≥ 2 and (18) holds. 2

In the light of Lemma 5.1 the function E may now be written in the form

E(z) = R(z)eg(z)

q∏
k=1

(eαz − βk) ,

and it remains to prove that the rational function R is constant and that E is a Bank-Laine
function. Let 1 ≤ k ≤ q. Using Lemma 2.1 again it may be assumed that α = 2πi and
βk = 1. Thus there exists a non-zero constant d4 such that

E ′(n) = ±1, R(n)eg(n) = ±d4 and Y (n) ∈ Z (33)



as n → +∞ with n ∈ N, where

Y (z) =
2 log R(z) + 2g(z)− 2 log d4

2πi

is analytic of polynomial growth in a half-plane Re z > c6 > 0. By [12, Lemma 5] and (33),
the function Y is a polynomial. Hence R is constant, since otherwise continuing analytically
once around a zero or pole of R adds a non-zero integer multiple of 2πi to log R(z). Let N
be a large positive integer. Then the forward differences [20, p.52]

∆Y (N) = Y (N + 1)− Y (N), ∆p+1Y (N) = ∆pY (N + 1)−∆pY (N),

are all integers, by (33) again. Thus Y (Z) ⊆ Z, and (33) holds for all integers n. Hence
E(z) = 0 and E ′(z) = ±1 at all zeros of eαz − βk and since this holds for each βk it follows
that E is a Bank-Laine function. This completes the proof of Theorem 1.1.
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