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Abstract

Let f be a function transcendental and meromorphic in the plane. Results are proved
concerning the existence of zeros of the n’th forward difference ∆nf and the divided
difference ∆nf/f . MSC 2000: 30D35.

1 Introduction

Let the function f be transcendental and meromorphic in the plane. The forward differences
∆nf are defined by [25, p.52]

∆f(z) = f(z + 1)− f(z), ∆n+1f(z) = ∆nf(z + 1)−∆nf(z), n = 1, 2, . . . . (1.1)

This paper continues the investigations of [4] into the zeros of the forward differences ∆nf
as defined in (1.1) and the divided differences ∆nf/f . The work in [4] reflects in part the
considerable attention given recently to meromorphic solutions in the plane of difference and
functional equations [1, 5, 8, 9, 13, 17], but the results from [4] may also be viewed as discrete
analogues of the following sharp theorem [6, 16], which uses notation from [10].

Theorem 1.1 ([6, 16]) Let f be transcendental and meromorphic in the plane with

lim inf
r→∞

T (r, f)

r
= 0.

Then f ′ has infinitely many zeros.

The following result was proved in [4] using Wiman-Valiron theory [11].

Theorem 1.2 ([4]) Let n ∈ N and let f be a transcendental entire function of order ρ < 1
2
,

and set

Gn(z) =
∆nf(z)

f(z)
. (1.2)

If Gn is transcendental then Gn has infinitely many zeros. In particular if f has order less than
min

{
1
n
, 1

2

}
then Gn is transcendental and has infinitely many zeros.
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Note that if f is an entire function of order less than 1/2 for which Gn fails to be transcendental
for some n ≥ 2 then f satisfies a homogeneous linear difference equation with rational coefficients
and the growth of such solutions was determined in [17]. For the first divided difference Theorem
1.2 was extended slightly beyond ρ = 1/2 in [4].

Theorem 1.3 ([4]) There exists δ0 ∈ (0, 1/2) with the following property. Let f be a transcen-
dental entire function with order ρ(f) < 1/2 + δ0. Then

G(z) = G1(z) =
∆f(z)

f(z)
=

f(z + 1)− f(z)

f(z)
(1.3)

has infinitely many zeros.

The constant δ0 in Theorem 1.3 is extremely small, but it was conjectured in [4] that the con-
clusion of Theorem 1.3 holds for all entire f with ρ(f) < 1. The first result of the present
paper extends Theorem 1.3 beyond order 1/2 for higher divided differences, and broadens the
applicability of Theorem 1.2 to meromorphic functions with few poles, even for order 1/2.

Theorem 1.4 Let n ∈ N. Let f be transcendental and meromorphic of order ρ < 1 in the plane
and assume that Gn as defined by (1.2) is transcendental.
(i) If Gn has lower order µ < α < 1/2, which holds in particular if ρ < 1/2, then

δ(0, Gn) ≤ 1− cos πα or δ(∞, f) ≤ µ

α
.

(ii) If ρ = 1/2 then either Gn has infinitely many zeros or δ(∞, f) < 1.
(iii) If f is entire and ρ < 1/2 + δ0, then Gn has infinitely many zeros: here δ0 is a small positive
absolute constant.

For meromorphic functions in general the following theorem was proved in [4], and addressed
a question which represents a natural discrete analogue of Theorem 1.1: if f is transcendental
with ρ(f) < 1 must ∆f has infinitely many zeros?

Theorem 1.5 ([4]) Let f be a function transcendental and meromorphic in the plane of lower
order λ(f) < 1. Let c ∈ C \ {0} be such that at most finitely many poles zj, zk of f satisfy
zj − zk = c. Then g(z) = f(z + c)− f(z) has infinitely many zeros.

Clearly all but countably many c ∈ C satisfy the hypotheses of Theorem 1.5, but the following
construction from [4] showed that Theorem 1.5 fails without the hypothesis on c, even for lower
order 0, and that if the answer to the above question for meromorphic functions is affirmative,
then in contrast to Theorem 1.1 it depends on order and not lower order.

Theorem 1.6 ([4]) Let φ(r) be a positive non-decreasing function defined on [1,∞) which
satisfies limr→∞ φ(r) = ∞. Then there exists a function f transcendental and meromorphic in
the plane such that g(z) = ∆f(z) has only one zero and

lim sup
r→∞

T (r, f)

r
< ∞, lim inf

r→∞

T (r, f)

φ(r) log r
< ∞, lim sup

r→∞

T (r, g)

φ(r) log r
< ∞.
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The final theorem from [4] showed that for transcendental meromorphic functions satisfying
the very strong growth restriction T (r, f) = O(log r)2 as r →∞, either the first difference or the
first divided difference has infinitely many zeros. The proof of this result depended on asymptotic
properties of such functions with deficient poles [2], but this reliance is dispensed with in the
following substantial improvement.

Theorem 1.7 Let f be a transcendental meromorphic function in the plane, of order less than
1/6, and define G by (1.3). Then at least one of G and ∆f has infinitely many zeros.

This research was carried out during a visit to the University of Joensuu in September 2007.
The author thanks the Department of Mathematics for its hospitality, and Ilpo Laine and Risto
Korhonen for very interesting discussions.

2 Preliminaries for Theorem 1.4

A key role for Theorem 1.4(iii) will be played by the following result of Miles and Rossi [23].

Lemma 2.1 ([23]) Let f be a transcendental entire function of order ρ(f) ≤ ρ < ∞. Let
0 < γ < 1, and for r > 0 let

Ur =

{
θ ∈ [0, 2π] :

∣∣∣∣reiθf ′(reiθ)

f(reiθ)

∣∣∣∣ ≥ γn(r, 1/f)

}
. (2.1)

Let M > 3. Then there exists a set QM ⊆ [1,∞) of lower logarithmic density

logdens QM = lim inf
r→∞

(
1

log r

∫
[1,r]∩QM

dt

t

)
≥ 1− 3

M
, (2.2)

such that

m(Ur) >

(
1− γ

7M(ρ + 1)

)2

for r ∈ QM , (2.3)

in which m(Ur) denotes the Lebesgue measure of Ur .

2

The next lemma is a version of the celebrated cos πλ theorem [12, Chapter 6].

Lemma 2.2 ([7]) Suppose that g is transcendental and meromorphic in the plane, of lower
order µ < α < 1, and define L(r, g) = min{|g(z)| : |z| = r} and

Y1 = {r > 1 : log L(r, g) > γ(cos πα + δ(∞, g)− 1)T (r, g)}, γ =
πα

sin πα
.

Then Y1 has upper logarithmic density at least 1− µ/α.

2
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Lemma 2.3 ([4]) Let H be a transcendental entire function of order ρ1 < ∞. For large r > 0
define rθ(r) to be the length of the longest arc of the circle S(0, r) of centre 0 and radius r on
which |H(z)| > 1, with θ(r) = 2π if |H(z)| > 1 on all of S(0, r), that is, L(r, H) > 1. Then at
least one of the following is true:
(a) there exists a set F ⊆ [1,∞) of positive upper logarithmic density such that L(r, H) > 1 for
r ∈ F ;
(b) for each τ ∈ (0, 1) the set

Fτ = {r ≥ 1 : θ(r) > 2π(1− τ)} (2.4)

satisfies

logdens Fτ ≥
1− 2ρ1(1− τ)

τ
. (2.5)

If H has lower order less than 1/2, which of course is true if ρ1 < 1/2, then case (a) always
holds [3]. Moreover if ρ1 = 1/2 then θ(r) → 2π on a set of positive upper logarithmic density.
We outline the standard argument for this assertion, which is obvious if case (a) applies, so
assume that H satisfies case (b). Then the right-hand side of (2.5) is 1, and so for each n ∈ N
the set

Pn = {r ≥ 1 : 2π − θ(r) ≥ 1/n}
has logarithmic density 0 using (2.4). Hence we may choose a sequence (sn) increasing to infinity
such that ∫

[1,r]∩Pn

dt

t
≤ log r

n

for r ≥ sn. Let P be the union of the sets Pn∩ [sn, sn+1). Then θ(r) → 2π as r tends to infinity
outside P . For large r choose n with sn ≤ r < sn+1. Then∫

[1,r]∩P

dt

t
≤

∫
[1,r]∩Pn

dt

t
≤ log r

n

and so P has logarithmic density 0. 2

Lemma 2.4 ([4]) Let n ∈ N. Let f be transcendental and meromorphic of order less than 1 in
the plane. Then there exists a set X0 ⊆ [1,∞) of finite logarithmic measure such that

Gn(z) =
∆nf(z)

f(z)
∼ f (n)(z)

f(z)
= o(1) as z →∞ with |z| 6∈ X0. (2.6)

2

The proof of the following lemma is related to that of Theorem 4 in [18], but the present
approach is somewhat simpler.

Lemma 2.5 Let f be transcendental and meromorphic in the plane and let n ∈ N. Let c > 0
and let E be an unbounded subset of [1,∞) with the following property. For each r ∈ E there
exists a compact arc Ωr of the circle S(0, r), of angular measure at least c, such that

lim
r→∞,r∈E

r2nM(Ωr, f
(n)/f) = 0, where M(Ωr, g) = max{|g(z)| : z ∈ Ωr}. (2.7)

4



Let φ(r) be a positive function tending to infinity with φ(r) = o(log r) as r tends to infinity.
Then for all sufficiently large r ∈ E we have∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ ≤ nφ(r) (2.8)

for all z ∈ Ωr outside a set of discs having sum of radii at most (n− 1)r/φ(r).

Proof. There is nothing to prove if n = 1 so assume that n ≥ 2. Let r ∈ E be large and choose
zr ∈ Ωr with

|f(zr)| = Mr = M(Ωr, f). (2.9)

Now Taylor’s formula gives a polynomial P depending on r and of degree at most n − 1 such
that, for z ∈ Ωr,

f(z) = P (z) +

∫ z

zr

(z − t)n−1

(n− 1)!
f (n)(t) dt, f ′(z) = P ′(z) +

∫ z

zr

(z − t)n−2

(n− 2)!
f (n)(t) dt.

It follows from (2.7) and (2.9) that

|P (zr)| = Mr and |f(z)− P (z)|+ |f ′(z)− P ′(z)| ≤ r−nMr for z ∈ Ωr. (2.10)

We can write P (z) = P1(z)P2(z) where P1 is the product of the terms z − cj over all zeros cj

of P with |cj| < 2r, and is 1 if there are no such cj. Correspondingly, P2 is a polynomial with all
its zeros, if any, lying in |z| ≥ 2r. Denoting by C positive constants which are independent of r
this gives

M(Ωr, P
′
2/P2) ≤ C/r, M∗ = M(Ωr, P2) ≤ C min{|P2(z)| : z ∈ Ωr}. (2.11)

Also (2.10) yields
Mr ≤ M(Ωr, P ) ≤ M∗ ·M(Ωr, P1) ≤ M∗(3r)d, (2.12)

where d ≥ 0 is the degree of P1.
Let z ∈ Ωr lie outside the union of the discs of centre cj and radius r/φ(r). Then (2.11) and

(2.12) give

|P1(z)| ≥ rd

φ(r)d
, |P (z)| = |P1(z)P2(z)| ≥ M∗rd

Cφ(r)d
≥ Mr

Cφ(r)d
,

which on combination with (2.10) and (2.11) leads to∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ =

∣∣∣∣zP ′(z) + o(|P (z)|)
P (z)(1 + o(1))

∣∣∣∣ =

∣∣∣∣zP ′(z)

P (z)
(1 + o(1)) + o(1)

∣∣∣∣
≤ (1 + o(1)

∣∣∣∣zP ′
1(z)

P1(z)

∣∣∣∣ + (1 + o(1))

∣∣∣∣zP ′
2(z)

P2(z)

∣∣∣∣ + o(1) ≤ ((n− 1) + o(1))φ(r).

2
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3 Deficiencies and the logarithmic derivative

We need the following lemma, which is a combination of [15, Lemma 4] (see also [14]) and
Lemma 9 from [18].

Lemma 3.1 Let f be transcendental and meromorphic of finite order in the plane, and set

h(r) = r
d

dr
(T (r, f)) =

1

2π

∫ 2π

0

n(r, eiφ, f) dφ. (3.1)

For each large r let Lr be any measurable subset of [0, 2π) such that the Lebesgue measure of
Lr tends to 0 as r →∞. Then there exists a subset E0 of [1, +∞) of logarithmic density 1 such
that, as r →∞ in E0, ∫

Lr

∣∣∣∣Re

(
reiθf ′(reiθ)

f(reiθ)

)∣∣∣∣ dθ = o(h(r)). (3.2)

Suppose next that

δ(∞, f) > 1− σ, 0 < σ < 1, K > 1, σK < 1. (3.3)

Then there exists a subset E1 of (1, +∞), having lower logarithmic density 1− 1/K, such that
for r in E1 we have

(1−Kσ)h(r) ≤ I(r) =
1

2π

∫ 2π

0

∣∣∣∣Re

(
reiθf ′(reiθ)

f(reiθ)

)∣∣∣∣ dθ. (3.4)

Note that (3.1) is of course the classical Cartan formula [10, p.8] and that h(r) tends to infinity
since f is transcendental. 2

4 Proof of Theorem 1.4

Let f be a transcendental meromorphic function in the plane of order ρ < 1, let n ∈ N and let Gn

be defined by (1.2), and assume that Gn is transcendental. Lemma 2.4 gives a set X0 ⊆ [1,∞)
of finite logarithmic measure such that (2.6) holds. Let the positive function φ(r) tend to infinity
on [1,∞), and satisfy

φ(r) = o(log r), φ(r) = o(h(r)), φ(r) = o(n(r, f) + n(r, 1/f)), (4.1)

where h(r) is defined by (3.1). This is certainly possible since f is transcendental of order less
than 1. For each large r, set

Vr =

{
θ ∈ [0, 2π] :

∣∣∣∣reiθf ′(reiθ)

f(reiθ)

∣∣∣∣ > nφ(r)

}
. (4.2)

Let N be a large positive integer. For large r > 0 let rβ(r) be the length of the longest arc of the
circle S(0, r) of centre 0 and radius r on which |zNGn(z)| < 1, with β(r) = 2π if |zNGn(z)| < 1
on all of S(0, r). We begin with the following lemma.
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Lemma 4.1 Suppose that β(r) → 2π on a set Y1 of upper logarithmic density λ ∈ (0, 1). Then
δ(∞, f) ≤ 1− λ.

Proof. It may be assumed that the intersection of Y1 with the exceptional set X0 of (2.6) is
empty, since this does not reduce the upper logarithmic density. Then by (2.6), (4.2), Lemma
2.5 and the fact that N is large, the Lebesgue measure of Vr satisfies m(Vr) = o(1) on Y1. Let

Lr = Vr if r ∈ Y1, Lr = ∅ if r 6∈ Y1.

It may be assumed further that Y1 ⊆ E0, where E0 is as in Lemma 3.1, again since this does not
reduce the upper logarithmic density. Thus Lemma 3.1 gives, using (4.1) and (4.2),∫ 2π

0

∣∣∣∣Re

(
reiθf ′(reiθ)

f(reiθ)

)∣∣∣∣ dθ ≤ O(φ(r)) + o(h(r)) = o(h(r)) (4.3)

for large r ∈ Y1.
Now assume that δ(∞, f) > 1 − σ > 1 − λ. Then σ > 0 and we may choose K > 1 with

σ < 1/K < λ. Hence (3.3) is satisfied and Lemma 3.1 implies that (3.4) holds on a set E1 of
lower logarithmic density at least 1 − 1/K > 1 − λ, so that there must exist arbitrarily large
r ∈ Y1∩E1. But for these r the inequalities (3.4) and (4.3) give (1−Kσ)h(r) ≤ o(h(r)), which
is a contradiction. This proves Lemma 4.1. 2

We first prove part (i) of Theorem 1.4, and to this end we assume that Gn has lower order
µ < α < 1/2. This certainly holds if ρ < 1/2, because in this case f may be written as a
quotient of entire functions of order less than 1/2 and a simple argument shows that the same
is true of Gn. Assume further that δ(0, Gn) > 1 − cos πα. Then by Lemma 2.2 there exists a
subset Y1 of [1,∞) having upper logarithmic density at least 1− µ/α such that

lim
r→∞,r∈Y1

rNM(r, Gn) = 0,

which of course gives β(r) = 2π for large r in Y1. Thus Lemma 4.1 implies at once that
δ(∞, f) ≤ µ/α, which completes the proof of part (i).

Parts (ii) and (iii) will now be proved together, so assume either that ρ = 1/2 and δ(∞, f) =
1, or that f is entire of order ρ with ρ− 1/2 small and positive, and in both cases that Gn has
finitely many zeros. Then there exists a rational function R0 with at most a pole of order N − 1
at infinity such that

H(z) =
1

2zN

(
1

Gn(z)
−R0(z)

)
(4.4)

is entire and transcendental, of order ρ1 ≤ ρ, and there exists r1 > 0 such that

|zNGn(z)| < 1 for |z| ≥ r1, |H(z)| > 1. (4.5)

Let θ(r) be defined as in Lemma 2.3.
Suppose first that θ(r) → 2π on a set Y1 of upper logarithmic density λ ∈ (0, 1). This

certainly holds under the hypotheses of part (ii), by the remarks following Lemma 2.3, and also
applies for part (iii) if H satisfies case (a) of Lemma 2.3. Then by (4.5) the hypotheses of Lemma
4.1 are satisfied, and so we have δ(∞, f) ≤ 1− λ < 1, which is a contradiction.
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It therefore remains only to prove part (iii) in the case where the entire function H satisfies
conclusion (b) of Lemma 2.3. Let M > 3 and choose positive γ and τ such that γ is small and

η =

(
1− γ

7M(ρ + 1)

)2

− 2πτ > 0 (4.6)

but η is small. Since f is entire in this case we may apply Lemma 2.1. This gives a subset QM of
[1,∞) satisfying (2.2) and (2.3), and there is no loss of generality in assuming that QM∩X0 = ∅,
where X0 is as in (2.6), as this assumption does not reduce the lower logarithmic density.

Let Fτ be as in Lemma 2.3. Then for large r ∈ Fτ \ X0 we have θ(r) > 2π(1 − τ) and
m(Vr) ≤ 2πτ + o(1), using (2.6), (4.2), (4.5), Lemma 2.5 and the fact that N is large. By (2.1)
and (4.1) we also have m(Ur) ≤ 2πτ + o(1) for these r. Hence (2.3) and (4.6) show that the
intersection QM ∩ Fτ is bounded, which by (2.2) and (2.5) forces

1− 2ρ1(1− τ) ≤ 3τ

M
and 2ρ− 1 ≥ 2ρ1 − 1 ≥ τ

1− τ

(
1− 3

M

)
≥ τ

(
1− 3

M

)
.

Since ρ < 1 and γ is small, while η is small in (4.6), it follows that ρ must satisfy

2ρ− 1 ≥ 1

2π

(
1

14M

)2 (
1− 3

M

)
= q(M).

As noted in [4] the right hand side q(M) in the last inequality has a maximum relative to the
interval (3,∞) at M = 9/2, with q(9/2) = 1/23814π. This proves Theorem 1.4. 2

5 Lemmas needed for Theorem 1.7

We need the following lemma from [20]. The result is closely related to [19, Lemma 2.4] and the
method of proof is essentially the same.

Lemma 5.1 ([20]) Let h be transcendental and meromorphic in the plane, of order less than
ρ < ∞, and with finitely many poles. Let (zj) be a sequence in {z ∈ C : |z| > 2} such that
zj →∞ without repetition, and with exponent of convergence less than ρ. Let M1, M2 ∈ R be
such that

ρ + M1 < 1, M2 ≤ M1 − 4ρ. (5.1)

For m = 1, 2, let Hm be the union of the closures of the discs B(zj, |zj|Mm).
Next, let R1 be large and positive, such that

h−1({∞}) ⊆ B(0, R1/2), M(R1, h) = max{|h(z)| : |z| = R1} > e4, (5.2)

and

log |h(z)| ≤
∣∣∣z
2

∣∣∣ρ for |z| ≥ 1

2
R1, (5.3)

as well as (
1

2
R1

)M1−M2

> 4,
∑

|zj |> 1
2
R1

26|zj|ρ+ 1
2
(M2−M1) < 1. (5.4)
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Let w0 lie outside H1, with

|w0| > R1, |h(w0)| > T 2
1 , T1 > M(R1, h)2, (5.5)

and let C0 be the component of the set {z ∈ C \H2 : |h(z)| > T1} in which w0 lies. Then C0

is unbounded.

Note that (5.2), (5.3) and (5.4) hold for all sufficiently large R1. Moreover, it follows from
(5.1) and the fact that the sequence (zj) has exponent of convergence less than ρ that the set
of r ≥ 1 for which the circle S(0, r) meets H1 has finite logarithmic measure. Hence there exist
arbitrarily large w0 6∈ H1 satisfying (5.5).

2

Lemma 5.2 Let f be a transcendental meromorphic function in the plane, of order less than
1/6. Assume that G as defined by (1.3) has finitely many zeros. Then there exist a non-zero
complex number b and a set E0 ⊆ [1,∞) of lower logarithmic density greater than 2/3, such
that f(z) ∼ b for all large z with |z| ∈ E0.

Proof. Let N be a large positive integer and choose ρ with ρ(f) < ρ < 1/6. Since G is
transcendental [4, Lemma 2.1] and has finitely many zeros and order less than ρ, it follows from
the cos πρ theorem [12, Chapter 6] that there exists E0 ⊆ [1,∞), with lower logarithmic density
greater than 2/3, such that

lim
r→∞,r∈E0

rNM(r, G) = 0. (5.6)

Now define h by

h(z) =
1

zNG(z)
. (5.7)

By Lemma 2 of [22] (see also [21, Lemma 4.1]) there exist arbitrarily large T1 such that the
length L(r, T1, h) of the level curves |h(z)| = T1 lying in B(0, r) satisfies

L(r, T1, h) = O(r2) as r →∞. (5.8)

Here T1 may be chosen so that, for additional convenience, the level curves |h(z)| = T1 do not
pass through the origin and have no multiple points. Hence these level curves may be parametrised
locally in terms of arg h, and for any given w ∈ C the stationary points of arg z and log |z − w|
on these level curves form a discrete set. If this is not the case then either |h(z)| ≡ T1 on a
ray passing through the origin, which contradicts the choice of T1, or |h(z)| ≡ T1 on a circle of
centre w, which is impossible since h is transcendental.

Next, let (zj) be the set of all distinct zeros and poles of f ′ with rj = |zj| > 2, and choose
σ and M1, M2 satisfying

ρ < σ <
1

6
, M1 = σ +

2

3
, M2 = σ. (5.9)

This choice may be made so that no circle S(zj, r
σ
j ) is tangent to a level curve |h(z)| = T1. For

m = 1, 2, let Hm be the union of the closures of the discs B(zj, |zj|Mm). We assert that

f ′′(u)

f ′(u)
= o(1) for |u− z| ≤ 1 (5.10)
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and for large z 6∈ H2. To prove (5.10) let R0 be large and positive and let z ∈ C \ H2 with
|z| > 2R0 + 1. Then the series expansion for f ′′/f ′ gives, for |u− z| ≤ 1,∣∣∣∣f ′′(u)

f ′(u)

∣∣∣∣ ≤ n(R0, f
′) + n(R0, 1/f

′)

|u| −R0

+
∑

|vj |>R0

1

|u− vj|
,

where the vj are simply the zj but with repetition according to multiplicity. Since z lies outside
H2 this yields

|u− vj| ≥ |z − vj| − 1 ≥ |vj|σ

2

for |vj| > R0 and so∣∣∣∣f ′′(u)

f ′(u)

∣∣∣∣ ≤ n(R0, f
′) + n(R0, 1/f

′)

R0

+ 2
∑

|vj |>R0

1

|vj|σ
→ 0

as R0 →∞, using (5.9). This proves (5.10), from which it follows that

f(z + 1)− f(z) =

∫ z+1

z

f ′(v) dv =

∫ z+1

z

f ′(z)(1 + o(1)) dv ∼ f ′(z)

and
f ′(z)

f(z)
∼ G(z) (5.11)

for large z 6∈ H2. Next, (5.9) implies that there exists a set X1 of finite logarithmic measure with
S(0, r) ∩ H1 = ∅ for r 6∈ X1. In particular, (5.11) holds for large z with |z| 6∈ X1. It may be
assumed that X1 ∩ E0 = ∅, and it follows at once from (5.6) and (5.11) that

lim
r→∞,r∈E0

∫
S(0,r)

∣∣∣∣f ′(z)

f(z)

∣∣∣∣ |dz| = 0. (5.12)

The function h is transcendental of order less than ρ with finitely many poles, and the sequence
(zj) has exponent of convergence less than ρ. Thus Lemma 5.1 may be applied to h, with M1, M2

given by (5.9) and hence satisfying (5.1). Let R1 be large and positive, so large that (5.2), (5.3)
and (5.4) hold, which is possible by (5.9). Choose T1 and w0 6∈ H1 as in (5.5), and such that
(5.8) also holds. Let C0 be the component determined in Lemma 5.1: then C0 is unbounded.

Now choose a sequence (sm) such that

2sm ≤ sm+1 ≤ s3
m, sm ∈ E0, (5.13)

this being possible since E0 has lower logarithmic density greater than 2/3, and since S(0, sm)
does not meet H2 we may assume using (5.6) and (5.7) that S(0, sm) ⊆ C0 for all m. Now the
part Ym of ∂C0 lying in sm ≤ |z| ≤ sm+1 is contained in the union of the level set |h(z)| = T1

and the circles S(zj, r
σ
j ). The number of such circles which meet Ym is O(sm+1)

ρ and their radii
have sum O(sm+1)

ρ+σ = o(sm+1). Hence the arc length of Ym is O(sm+1)
2 using (5.8).

We form a path γm in the closure of C0 joining S(0, sm) to S(0, sm+1) as follows. First take
a radial segment λ given by arg z = θ, sm ≤ |z| ≤ sm+1, with θ chosen so that this segment is
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never tangent to any level curve |h(z]| = T1, which may be done by the remark following (5.8),
nor to any of the circles S(zj, r

σ
j ). By construction Ym consists of a union of closed curves lying

in sm < |z| < sm+1. Hence any arc of λ which lies outside the closure of C0 may be replaced by
an arc of Ym. Using (5.7), (5.11), (5.13) and the fact that N is large we obtain∫

γm∪S(0,sm)

∣∣∣∣f ′(z)

f(z)

∣∣∣∣ |dz| ≤
∫

γm∪S(0,sm)

2

|z|NT1

|dz| = O(s2
m+1s

−N
m ) = O(s−1

m ).

Hence from the union of the curves γm and circles S(0, sm) a simple curve γ may be constructed
which tends to infinity and satisfies, by (5.13) again,∫

γ

∣∣∣∣f ′(z)

f(z)

∣∣∣∣ |dz| < ∞.

Thus there exists a non-zero complex number b such that f(z) → b as z → ∞ on γ, which on
combination with (5.12) gives the conclusion of the lemma. 2

It is perhaps worth remarking that the condition ρ(f) < 1/6 seems unlikely to be sharp in
Theorem 1.7, but is required in our method in order to deduce Lemma 5.2 from Lemma 5.1. We
need M2 > ρ(f) in order to achieve (5.10) for large z outside H2, so that in (5.1) the second
inequality forces 5ρ(f) < M1 and the first inequality then requires 6ρ(f) < 1.

6 Proof of Theorem 1.7

Let f and G be as in the statement of the theorem, and assume that G has finitely many
zeros. Then it follows from Lemma 5.2 that there exist a non-zero complex number b and a set
E0 ⊆ [1,∞) of lower logarithmic density greater than 2/3, such that f(z) ∼ b for all large z
with |z| ∈ E0. Let

F =
∆f

f − b
.

Then F must have infinitely many zeros, because otherwise Lemma 5.2 may also be applied to
f − b to give a non-zero constant b1 and a set E1 ⊆ [1,∞), again of lower logarithmic density
greater than 2/3, such that f(z) − b ∼ b1 for all large z with |z| ∈ E1, which is evidently
impossible.

Let z be large and a zero of F . Then z is not a pole of f because otherwise writing

G = F · f − b

f

shows that z is also a zero of G, contrary to the assumption that G has finitely many zeros. But
∆f = F · (f − b) and hence z is a zero of ∆f . This proves Theorem 1.7. 2
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