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Abstract

An inequality proved by Frank, Steinmetz and Weissenborn relates the frequency of poles
of a function meromorphic in the plane to the frequency of zeros of a linear differential
polynomial in that function with small coefficients. A version of this inequality is established
in terms of the frequency of distinct zeros of the linear differential polynomial.

1 Introduction

The starting point is the following theorem due to Frank, Steinmetz and Weissenborn [1, 2, 10].

Theorem 1.1 ([1, 2, 10]) Let the function f be transcendental and meromorphic in the plane
and let

F = L(f), L = Dp + ap−1D
p−1 + . . . + a0, D =

d

dz
, (1)

where p ≥ 2 and the aj are meromorphic in the plane with T (r, aj) = S(r, f). Let ε > 0. Then
either (i) f is a rational function in (local) solutions of the equation L(w) = 0, or (ii)

N(r, F ) ≤ N(r, 1/F ) + (2 + ε)N(r, f) + S(r, f). (2)

Here S(r, f) denotes as usual any quantity which is o(T (r, f)) as r tends to infinity outside a
set of finite measure [4]. Theorem 1.1 was first proved by Frank and Weissenborn [2] (see also
[3]) for the case where all the aj are identically zero, in which case conclusion (i) is impossible.
The result was then established by Steinmetz [10] when the aj are rational functions, and the
general case was completed by Frank [1]. The methods of [1, 2, 10] are related to Steinmetz’
proof of the second fundamental theorem for small functions [9]. It is reasonable to ask whether
some version of Theorem 1.1 holds with N(r, 1/F ) replaced by N(r, 1/F ), and the aim of this
note is to show that such a result does indeed follow from the approach of [1, 10]. However, the
constants which arise are not so easy to control, and it is necessary to keep track of the orders
of the differential operators which appear in the proof. The following theorem will be proved.

Theorem 1.2 Let 1 < A ≤ 2 and 2 ≤ p ∈ N and let f be a transcendental meromorphic
function in the plane. Let L and F be given by (1), where a0, . . . , ap−1 are functions meromorphic
in the plane, and write

T ∗(r) = log r +

p−1
∑

j=0

T (r, aj). (3)
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Then at least one of the following two conclusions holds:
(i) the function f is a rational function in (local) solutions of the equation L(w) = 0;
(ii) the functions f and F satisfy

N(r, F ) ≤ CN(r, 1/F ) + (1 + A)N(r, f) + S∗(r, F ). (4)

Here S∗(r, F ) denotes any quantity which is O(T ∗(r)+log+ T (r, F )) as r tends to infinity outside
a set of finite measure, and C is a positive constant which may be chosen so that

C ≤ (1 + A) exp

(

4(p − 1)

log A

)

. (5)

Corollary 1.1 Let p ≥ 2 and let the function f be transcendental and meromorphic in the plane.
Assume that N(r, 1/f (p)) = S(r, f) and that all but finitely many poles of f have multiplicity at
most p − 1. Then N(r, f) = S(r, f).

Corollary 1.1 follows by taking F = f (p) and A close to 1 in (4) and observing that in this
case N(r, F ) − N(r, f) = pN(r, f) and AN(r, f) ≤ A(p − 1)N(r, f) + O(log r).

2 Preliminaries

As in [1, 10] a key role is played by a result of Spigler [8] and a Wronskian identity [7].

Theorem 2.1 ([8]) Let a0, . . . , am−1, b0, . . . , bn−1 be functions analytic on a simply connected
plane domain U , and let u1, . . . , um and v1, . . . , vn be fundamental solution sets in U of the
equations

u(m)(z) +

m−1
∑

j=0

aj(z)u(j)(z) = 0 and v(n)(z) +

n−1
∑

j=0

bj(z)v(j)(z) = 0

respectively. Let H be the vector space over C generated by all the products usvt (1 ≤ s ≤ m,
1 ≤ t ≤ n), and let q ≤ mn be the dimension of H . Then there exist meromorphic functions
c0, . . . , cq−1 on U , each of which is a rational function over C in the aj, bj and their derivatives,
such that H is the solution space of

w(q)(z) +

q−1
∑

j=0

cj(z)w(j)(z) = 0.

Lemma 2.1 ([7]) Let f1, . . . , fk and g1, . . . , gn be functions meromorphic on a plane domain
U . Then the following identity holds on U :

W (f1, . . . , fk, g1, . . . , gn)W (f1, . . . , fk)
n−1 = W (h1, . . . , hn), hj = W (f1, . . . , fk, gj).
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3 Proof of Theorem 1.2

The proof mainly follows [1, 10], but requires additional detail in places. Let A, p, L and the aj

be as in the statement of the theorem, and let Λ denote the field consisting of those meromorphic
functions which are rational functions, with coefficients in C, in the aj and their derivatives. Then
T (r, b) = O(T ∗(r)) as r tends to infinity outside a set of finite measure, for every b ∈ Λ, by (3).
Write Λ[D] for the set of homogeneous linear differential operators with coefficients in Λ. Let
U ⊆ C be a simply connected domain on which all the aj are analytic, and let w1, . . . , wp be
linearly independent solutions of L(w) = 0 on U . For s ∈ N let Ms denote the vector space over
C generated by all elements of the form

wα1

1 . . . wαp

p , 0 ≤ αj ∈ Z, α1 + . . . + αp = s. (6)

Choose s ∈ N, let n = dim (Ms) and k = dim (Ms+1) and let u1, . . . , un be a basis for Ms, and
U1, . . . , Uk be a basis for Ms+1. It is clear that p ≤ n ≤ k. For the time being let f be any
function meromorphic on U , and set

Ω = Ω(f) =
W (U1, . . . , Uk, u1f, . . . , unf)

W (U1, . . . , Uk)W (u1, . . . , un)
. (7)

Then Lemma 2.1 and standard properties of Wronskians [6] give

Ω =
W (W (U1, . . . , Uk, u1f), . . . , W (U1, . . . , Uk, unf))

W (U1, . . . , Uk)nW (u1, . . . , un)

and so

Ω =
W (K(u1f), . . . , K(unf))

W (u1, . . . , un)
, where K(w) =

W (U1, . . . , Uk, w)

W (U1, . . . , Uk)
. (8)

Now U1, . . . , Uk are linearly independent solutions of K(w) = 0, but by Theorem 2.1 they also
solve a kth order equation with coefficients in Λ, from which it follows that K ∈ Λ[D] in (8).

Lemma 3.1 There exist operators Nq,µ ∈ Λ[D], for 0 ≤ q ≤ n − 1, 0 ≤ µ ≤ n − 1, each of
order at most k + n, such that

Ω = Ω(f) = det(Nq,µ(F )), F = L(f). (9)

Proof. It is shown in [1, 10] that Ω(f) is a homogeneous differential polynomial in F , of degree
n, with coefficients in Λ, but (4) requires a bound for the orders of the Nq,µ, and so the argument
will be sketched. The uj solve a homogeneous nth order linear differential equation Q(w) = 0
over Λ, by Theorem 2.1. Hence Leibniz’ rule and the division algorithm [5, p.126] give operators
Lµ, Mµ, Pµ in Λ[D], of orders at most k, k − p and p − 1 respectively, such that

K(ujf) =

n−1
∑

µ=0

u
(µ)
j Lµ(f) =

n−1
∑

µ=0

u
(µ)
j (Mµ(F ) + Pµ(f)), F = L(f), (10)

for j = 1, . . . n. But ujwν ∈ Ms+1 and L(wν) = 0 and so 0 =
∑n−1

µ=0 u
(µ)
j Pµ(wν) for j =

1, . . . n and ν = 1, . . . , p. Since the uj are linearly independent it follows that Pµ(wν) = 0 for
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µ = 0, . . . , n − 1 and ν = 1, . . . , p. But the Pµ have order at most p − 1 and the wν are
linearly independent, and so each Pµ is the zero operator. Now differentiating (10) and using the
equation for the uj gives

(K(ujf))(q) = ujNq,0(F ) + . . . + u
(n−1)
j Nq,n−1(F )) for 0 ≤ q ≤ n − 1, 1 ≤ j ≤ n,

with Nq,µ ∈ Λ[D], of order at most k + q ≤ k + n. But then (K(ujf))(q) is the dot product of
the vector (Nq,0(F ), . . . , Nq,n−1(F )) with the jth column of the Wronskian matrix of u1, . . . , un.
Thus (8) leads to (9). 2

Henceforth let f be transcendental and meromorphic in the plane, and let F = L(f).

Lemma 3.2 The functions f , Ω and F satisfy

N(r, Ω(f)) ≤ (n + k)N(r, f) + S∗(r, F ). (11)

Proof. The uj solve a homogeneous linear differential equation Q(w) = 0 in U , while the Uj

solve K(w) = 0, where Q and K are elements of Λ[D]. As in [1], writing (7) in the form

Ω(f) =
fn+kW (U1/f, . . . , Uk/f, u1, . . . , un)

W (U1, . . . , Uk)W (u1, . . . , un)

takes care of poles of Ω arising from poles of f at which all coefficients of L, Q, K and the Nq,µ

are analytic. On the other hand if at least one coefficient from L, Q, K or some Nq,µ has a pole
at z1, let σ be the largest multiplicity among these poles at z1. Then Nq,µ(F ) has at most a
pole of multiplicity γ + τ + 2σ at z1, where γ ≥ 0 is the multiplicity of the pole of f at z1 and
τ depends only on p, k and n. 2

Lemma 3.3 If Ω(f) 6≡ 0 then F and Ω(f) satisfy

N(r, 1/F ) − 1

n
N(r, 1/Ω(f)) ≤ (k + n)N(r, 1/F ) + S∗(r, F ). (12)

Proof. Write (9) in the form

Ω(f) = F nG,
1

F n
=

G

Ω(f)
, where G = det

(

Nq,µ(F )

F

)

.

The operators Nq,µ all have order at most k + n, by Lemma 3.1, and F (j)/F has a pole of
multiplicity at most j at a zero of F . This proves (12) and Lemma 3.3. 2

If Ω(f) ≡ 0 then (7) implies that U1, . . . , Uk, u1f, . . . unf are linearly dependent on U and
so f is a rational function of the Uj and uj and hence of the wj, which gives conclusion (i) of
the theorem. Assume henceforth that Ω(f) does not vanish identically. Then (9) gives

nm(r, 1/F ) = m(r, 1/F n) ≤ m(r, 1/Ω) + m(r, Ω/F n) ≤ m(r, 1/Ω) + S∗(r, F ). (13)
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But (9), (13) and the first fundamental theorem now lead to

nm(r, 1/F ) + N(r, 1/Ω(f)) ≤ m(r, Ω(f)) + N(r, Ω(f)) + S∗(r, F )

≤ nm(r, F ) + N(r, Ω(f)) + S∗(r, F )

≤ nm(r, F ) + (n + k)N(r, f) + S∗(r, F ),

using Lemma 3.2. Dividing through by n and adding N(r, F ) + N(r, 1/F ) to both sides gives

N(r, F ) +
1

n
N(r, 1/Ω(f)) ≤ N(r, 1/F ) +

(

1 +
k

n

)

N(r, f) + S∗(r, F ). (14)

This inequality, but without the term involving zeros of Ω, is used in [1, 10] to prove Theorem
1.1, based on the fact that inf{k/n} = 1 [9]. The presence of N(r, 1/Ω(f)) in (14) yields, using
Lemma 3.3,

N(r, F ) ≤ (k + n)N(r, 1/F ) +

(

1 +
k

n

)

N(r, f) + S∗(r, F ). (15)

It remains only to determine s in order to ensure that k/n ≤ A, while keeping a reasonable bound
on k + n. As in [9] the dimension l(s) = dim (Ms) is at most the number of distinct products
(6). This yields, since log(1 + s/x) is decreasing and log(1 + x) ≤ √

x for x > 0,

log l(s) ≤ log

(

(s + p − 1)!

s!(p − 1)!

)

=

p−1
∑

j=1

log

(

1 +
s

j

)

≤
∫ p−1

0

log
(

1 +
s

x

)

dx ≤
∫ p−1

0

√

s

x
dx = 2

√

s(p − 1). (16)

With [x] the greatest integer not exceeding x ∈ R, set

t =

[

4(p − 1)

(log A)2

]

+ 1 ≥ 2, (17)

and assume that
l(s + 1)

l(s)
> A for s = 1, . . . , t − 1. (18)

Since l(1) = p ≥ 2 and A ≤ 2 this gives l(t) ≥ pAt−1 ≥ At and, using (16),

t log A ≤ log l(t) ≤ 2
√

t(p − 1), t ≤ 4(p − 1)

(log A)2
,

which contradicts (17). Hence the assumption (18) must be false, and so by (16) and (17) there
exists s with 1 ≤ s ≤ t − 1 such that

k

n
=

ks

ns
=

l(s + 1)

l(s)
≤ A (19)

and

k + n ≤ (1 + A)l(s), log l(s) ≤ 2
√

s(p − 1) ≤ 2
√

(t − 1)(p − 1) ≤ 4(p − 1)

log A
,
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which on combination with (15) gives (4) and (5). This completes the proof of Theorem 1.2. 2

Remark. When ε = A − 1 is small and positive a better bound for C is obtained as follows. For
fixed p ≥ 2 define µ and t by

ε ∼ log A =

∫

∞

µ

log(1 + u)

u2
du ∼ log µ

µ
, t = [µ(p − 1)] + 1,

as ε → 0+. Then t/(p − 1) > µ and (16) gives

log l(t) ≤
∫ p−1

0

log

(

1 +
t

x

)

dx = t

∫

∞

t/(p−1)

log(1 + u)

u2
du

< t log A ∼ µ(p − 1) logA ∼ µ(p − 1)ε ∼ (p − 1) log(1/ε).

Hence the argument following (18) shows that there exists s with 1 ≤ s ≤ t − 1 such that (19)
holds, as well as

C ≤ k + n ≤ 2l(s + 1) ≤ 2l(t) ≤ 2ε−p.
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