NONVANISHING DERIVATIVES AND NORMAL FAMILIES
WALTER BERGWEILER AND J.K. LANGLEY

ABSTRACT. We consider the differential operators ¥y, defined by ¥4 (y) = y and
Ury1(y) = yPi(y)+ 2L (Vg (y)) for k € N. We show that if F' is meromorphic in C
and Uy (F) has no zeros for some k > 3, and if the residues at the simple poles of
F are not positive integers, then F has the form F(z) = ((k—1)z+a)/(2%+8z+7)
or F(2) = 1/(az + B) where a, 3,7 € C. If the residues at the simple poles of
F' are bounded away from zero, then this also holds for £ = 2. We further show
that under suitable additional conditions a family of meromorphic functions F is
normal if each ¥y (F) has no zeros. These conditions are satisfied, in particular,
if there exists 6 > 0 such that Re(Res(F,a)) < —d for all poles a of each F' in
the family. Using the fact that ¥, (f'/f) = f*)/f we deduce in particular that
if f and f®) have no zeros for all f in some family F of meromorphic functions,
where k > 2, then {f'/f : f € F} is normal.

1. INTRODUCTION AND RESULTS

The following result was conjectured by Hayman [8, p. 23] in 1959 and proved
by Frank [4] in 1976 for £ > 3 and by the second author [12] in 1993 for k = 2.

Theorem A. Let f be meromorphic in C and let k > 2. Suppose that f and f*)
have no zeros. Then f has the form f(z) = e¥** or f(z) = (az + b)™", where
a,beC, a#0, andn € N.

In the case where f is entire the result was proved by Hayman [8, Theorem 5]
himself for £ = 2 and by Clunie [2] in the general case: see also [9, p. 67]. In this
case f'/f is constant under the hypotheses of Theorem A.

A heuristic principle attributed to Bloch says that the family of all functions
meromorphic and possessing a given property in some domain is likely to be normal,
if every function meromorphic in the plane with the same property is constant;
see [16, 20] for a thorough discussion of Bloch’s principle. The following result of
Schwick [17, Theorem 5.1] can be considered as the normal families analogue arising
according to Bloch’s principle from Theorem A restricted to entire functions.

Theorem B. Let k > 2 and let F be a family of functions holomorphic in a
domain Q. Suppose that f and f*) have no zeros in Q, for all f € F. Then
{f'/f:f€F} is normal

It was shown by the first author [1, Theorem 3] that the conclusion of Theorem
B remains valid for families of meromorphic functions if £ = 2.

One of the questions that motivated this paper was whether Schwick’s Theorem B
can also be extended to families of meromorphic functions if £ > 3. It turns out that
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this is in fact the case: see Corollary 1.1. The method used has led to considerable
generalizations of Theorems A and B.

In order to state these generalizations, we define differential operators ¥, for
k € N by

(1) W)=y Vo) = v0l) + (W),

The connection to Theorems A and B is given by the following lemma, which is
easily proved by induction.

Lemma 1.1. Let f be meromorphic on a domain Q and let F = f'/f. Then for
each k € N we have U (F) = f®/f.

Thus Theorem A is equivalent to the statement that if F' is a function of the
form F' = f'/f, where f is meromorphic in C and has no zeros, and if ¥, (F') has
no zeros, then F is constant or of the form F(z) = —n/(z + ¢) with n € N and
c € C. We note that a meromorphic function F is of the form F' = f'/f for some
meromorphic function f with no zeros if and only if all poles of F' are simple, with
negative integers as residues.

Theorem 1.1. Let k > 3 be an integer, and let F' be meromorphic and non-

constant in the plane and satisfy both of the following conditions:

(1) U (F) has no zeros;
(1) if a is a simple pole of F' then Res(F,a) & {1,...  k —1}.

Then F' has the form

(k=12 +a
(12) PO = oy
1
(1.3) Pe) = 5

Here a, 3,7 € C, with a # 0 in (1.3).
Conversely, if F' has the form (1.2) or (1.3), and if (ii) holds, then Vi (F') has
no zeros. If F' has the form (1.2) or (1.3), but (i7) does not hold, then ¥ (F') = 0.

The conclusion of Theorem 1.1 does not hold for £ = 2, as shown by the example
F =1/g where g is a transcendental entire function such that ¢’ — 1 has no zeros.
Then
! 2 1- gl
Thus F satisfies (i) and (ii).

The conclusion of Theorem 1.1 can be obtained in the case & = 2, however, with
an additional hypothesis.

Theorem 1.2. Let F' be meromorphic and non-constant in the plane, such that:

(i) Wo(F) = F' + F? has no zeros;
(1) if a is a simple pole of F then Res(F,a) # 1;
(10) there exists 6 > 0 such that if a is a simple pole of F then |Res(F,a)| > 6.

Then F has the form (1.2) with k = 2 or the form (1.3).
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Again we find that if F' has the form (1.2) with £ = 2 or the form (1.3), then
U, (F') has no zeros if Res(F, a) # 1 for each simple pole a of F, while ¥ (F) =0
otherwise.

We turn next to normal family analogues of Theorems 1.1 and 1.2, thereby
generalizing Theorem B: that is, we consider to what extent the condition Wy(f) #
0 for all functions f in some family implies normality. First we note that the family
of all functions F' of the form (1.2) or (1.3) is not normal. On the other hand, the
family of all functions F' of the form (1.3) satisfying condition (iii) with the same §
is normal. In order to introduce a condition to deal with functions of the form (1.2)
we observe that if F' has this form, then

(1.4) > Res(Fa)=k-1

acF~1({oo})

by the residue theorem.
We use the notation D(c, R) ={z€ C: |z —¢| < R} for c€ C and R > 0.

Theorem 1.3. Let k > 2 and let F be a family of functions meromorphic in a
domain ). Suppose that there exists 6 € (0,1] such that the following conditions
hold for all F € F:

(1) U (F) has no zeros;
(1) if a is a simple pole of F then |Res(F,a) — j| > 6 for j € {0,1,...  k—1};
(7i) if c € Q and R > 0 with D(c, R) C , if D(¢,0R) contains two poles of F,
counting multiplicities, and if D(c, R) \ D(c,0R) contains no poles of F', then

(1.5) > Res(Fa)— (k—1)| > 4.

a€D(c,0R)
Then F is normal.

If F has two distinct poles a,b € D(c,dR) in (iii), then (1.5) takes the form
|Res(F,a) + Res(F,b) — (k —1)| > 6. If F has a double pole a € D(¢,dR) in (iii),
then (1.5) takes the form |Res(F,a) — (k — 1)| > ¢. This means that the inequality
in (ii) is also required for double poles a if j = k — 1.

We note that conditions (ii) and (iii) in Theorem 1.3 are satisfied if we have
Re(Res(F,a)) < —¢ for all poles a of F. In particular, this is the case if F' = f'/f
for some meromorphic function f without zeros.

Combining this observation with Lemma 1.1 we obtain the following corollary
to Theorem 1.3, which extends Theorem B to families of meromorphic functions.

Corollary 1.1. Let k > 2 and let F be a family of functions meromorphic in a
domain Q). Suppose that f and f*) have no zeros in S, for all f € F. Then
{f'/f:f€F} is normal.

We will prove Theorems 1.1-1.3 in §§2-4 and make some additional remarks
in §5.

2. PROOF OF THEOREM 1.1

Our proof is based on a method of Frank [4, 5, 6, 7]. We start with the following
lemma.
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Lemma 2.1. Let k > 2 be an integer. Let y be meromorphic on a domain §2, such
that if a is a simple pole of y then Res(y,a) & {1,... ,k—1}. Letn € N withn < k.
If y has a pole at a of multiplicity m then V,(y) has a pole at a of multiplicity nm.

Proof. The lemma is trivially true for n = 1. Suppose first that m > 2, that
k > n > 1, and that y and ¥, (y) have poles at a of multiplicity m and nm
respectively. Then yW, (y) has a pole of multiplicity (n + 1)m, while (¥, (y))" has
a pole of multiplicity nm + 1 < (n + 1)m. Using (1.1), ¥,41(y) has a pole of
multiplicity (n 4+ 1)m as required.
Suppose next that a is a simple pole of y with residue b. We assert that
bb—1)...(b—n+1)

(2.1) U, (y) = = ar +0(lz—al'™), z—a,

for n =1,... k. This is obviously true for n = 1, and we assume that (2.1) holds
for some n with 1 <n < k. Then as z — a we obtain, using (1.1),

Fy) = (ROt DY (D ) o —al ),

z—a z-—a
which gives (2.1) with n replaced by n+ 1. Since b ¢ {0,1,...,k—1}, (2.1) shows
that each ¥, (y), for 1 <n <k, has a pole at a of multiplicity n. O

Assume now that £ > 3 and that F' is meromorphic and non-constant in the
plane, such that (i) and (ii) hold. Define M = Wy (F).

Lemma 2.2. There exist entire functions g, h with
(2.2) M=g* h=-Fg.

Proof. The existence of an entire g as in (2.2) follows at once from (i) of Theorem 1.1
and Lemma 2.1. Moreover, g has a zero of multiplicity m whenever F' has a pole
of multiplicity m, and so h is also entire. O

Frank’s method requires auxiliary functions as defined in the next lemma: the
notation used here is in accordance with [5, 7].

Lemma 2.3. Define functions f;,w; for j=1,... ,k by
(2.3) fi(z) =271 wi(2) = £ (2)9(2) + fi(2)h(2).

Then the w; are entire functions and form a fundamental solution set of a linear
differential equation

k—2
(2.4) w® +3 " Aw@ =0,
q=0

in which the coefficients A, are entire functions with
(2.5) T(r,A,) = O(logr + max{log™ T'(r,w;)}) = O(logrT(r, F)) (n.e.).

Proof. We follow Frank’s Wronskian method. In a simply connected domain 2
avoiding poles of F' we define f by f'/f = F. Then Lemmas 1.1 and 2.2 give
M = f®/f and

(26) W(fla' .. 7fkaf) = W(fla afk)f(k) = ckf(k) = Cchf = ck:fgik;
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with ¢, a non-zero constant. Standard properties of Wronskians [11, Chapter 1]
give

(2.7) cx(fo) = W(h/fooo s fol 1) = COMWA/ ), (Fel )
and, because w; = fg(f;/f),

(2.8) W (wy,...,wg) = (—1)%c.
Thus the wj;, which are plainly entire, are linearly independent solutions of an
equation (2.4), and (2.5) is a standard estimate [11, Lemma 7.7]. O

The following is a special case of a lemma which is fundamental to Frank’s
method, and which in its present form may be found in [5, Lemma 6].

Lemma 2.4. Let k € Z,k > 3 and let f; be as in (2.3). Let G,H, Ao, ..., Ax—o
be meromorphic on a domain Q. Then the functions fiH + fiG, ..., fyH + fiG
are solutions in Q0 of the equation (2.4) if and only if, setting A, =1 and Ay 1 =
A1 =a_1=0and, for0 < pu <k,

k
m!
M =) ———Aw™ M My, 4 (w) =0
k(W) mz_p#/!(m_’u)! w™H, - My, (w) =0,
we have, for 0 < p<k—1,

Using Lemma 2.4, we prove next:
Lemma 2.5. F' is a rational function.

Proof. We follow Frank’s method, in the form used in [5] and, in particular, in [7].
Apply Lemma 2.4 to the w;. It follows that g and h solve a system of equations

k—p
(2.10) Tu(9) = Su(h) =) cuh?, 0<pu<k-—1,
j=0

in which 7, and S, are linear differential operators with coefficients A, which are
rational functions in the A; and their derivatives and by (2.5) satisfy

(2.11) T(r,\,) =O(ogrT(r,F)) (n.e.).
In particular, p = k — 1 gives
(2.12) h'=U(g9) =—(k—1)g"/2 — Ax_29/k.

We distinguish two cases.

Case 1. Here we assume that the coefficient of & in at least one S, in (2.10) is not
identically zero.

Let v be the largest integer with 0 < v < k — 1 such that ¢y, # 0. Then (2.2),
(2.10) and (2.12) give

» k—v dj_l
(2.13) h=—Fg=(co,) " | T(g) - Z;cj,uW(U(g)) =V(9)-
]:
It follows from (2.10), (2.12) and (2.13) that g solves the system of equations

(014)  Ul)= SV, SV@)=Tuls) 0<u<h-2

We distinguish here two sub-cases.
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Case 1A. Here we assume that the dimension of the solution space of (2.14) is 1,
that is, every common solution of the equations (2.14) is a constant multiple of g.
Then (2.11) and a standard reduction procedure [10, p.126] give a first order
equation
Py +pg=0, pi#0,
with the p; rational functions in the A, and their derivatives, and it follows that

T(r,g'/g) = O(logrT(r, F)) (n.e.).
But then, since F' = —h/g, (2.13) gives
T(r,F)=0(logrT(r,F)) (n.e.)

and F' is a rational function, as asserted.

Case 1B. Here we assume that the system (2.14) has a solution G with G/g
non-constant. (In particular this will be the case if the system (2.14) is trivial.)
Defining H by H = V(G), we thus have, by (2.14),

H =U(G), SJ.H)=T,G), 0<u<k-—2.
In particular the equations (2.10) hold with g and A replaced by G and H respec-

tively, and so by Lemma 2.4 the functions f;H + f}G are solutions of (2.4). Hence
there are polynomials g; of degree at most k¥ — 1 such that

(2.15) fiH + f;G — gih — g;g =0

for1 <j<k.

We proceed almost verbatim as in [7] and regard the equations (2.15) as a system
of k equations in H, G, h, g with rational coefficients f;, f}, g;, g, and observe that
the rank of the coefficient matrix is at most 3, since the system has a non-trivial
solution. We assert that the rank is precisely 3. Assuming this not to be the case,
there are rational functions ¢,, for 1 < m < 3, not all identically zero, as well as
rational functions v,,, 1 < m < 3, again not all identically zero, such that we have

S+ bofi = $ags,  U1f}+ Yo f; = tag]

for 1 < j < k. Since W(fi,..., fx) is not identically zero, neither ¢3 nor )3 can
be identically zero, and we may therefore assume that ¢3 = ¥3 = 1. Thus

Of + Fi(D + d2 — 1) + f5(65 — 2) =0

for 1 < j < k whence, in view again of the fact that W (fi,..., fx) Z 0, we must
have

$r = @)+ do — b1 = ¢ — 1y =0,
which gives g; = ¢of;. But then W(gi,..., k) = (¢2)*W(f1,..., fx) so that ¢

must be constant, since fi,..., fr and g¢i,... , gy are solutions of w*) = 0. Now,
by (2.15), for 1 < j < k,

fi(H — ¢2h) + fi(G — dag) =0

and again, since W(fi,..., fx) is not identically zero, we must have H = ¢oh and
G = ¢og, contradicting the assumption that G/g is non-constant.

Thus the rank of the system (2.15) is 3, and we may solve for —F = h/g as a
quotient of determinants in the f;, g; and their derivatives of first order. Hence F
is a rational function.
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Case 2. Here we assume that ¢y, =0 for 0 < 4 <k — 1 in (2.10).

In this case the equations (2.10) are obviously satisfied with g and h replaced
by 0 and 1 respectively, and consequently so are the equations (2.9), so that by
Lemma 2.4 the f; are solutions of (2.4). Hence each A, in (2.4) is identically zero,
and we may write, for 1 < j <k,

(2.16) fik+ fig = g;,
in which each g; is a polynomial. Since f; f; — fifo # 0 we have

F=-h/g=(fig92— f3591)/(f192 — fo01),

so that again F' is a rational function. O

Since F' is a rational function, g is a polynomial, and by (2.5) so are the A,.
Moreover the w; are polynomials and, since the w; form a fundamental solution
set of (2.4), the A, must all vanish identically. Thus (2.12) gives

(2.17) h=—k-14"/2, h=-(k-1)4"/2—c,
with ¢ a constant, so that
(k—1)g ¢
2.18 F=—"4 -
(2.18) % P

holds, using (2.2). Since F' is non-constant, so is g.

We assert that g has degree at most 2. To see this, recall that the w; defined by
(2.3) solve (2.4), with the A, all identically zero. If g has degree greater than 2, it
follows from (2.17) that wy has degree at least k£ + 1, and this is a contradiction.
Thus ¢ has degree at most 2, and it follows from (2.18) that F' has the form (1.2)
or (1.3).

Finally, suppose in the converse direction that F is given by (1.2) or (1.3). Then
F has the form (2.18) with g a polynomial of degree at most 2. In this case we
define f locally and h by

! !
f =F h= _(k=1g'
f 2

Define the f; and w; by (2.3). Then the w; are polynomials, of degree at most k£ —1
since g is at most quadratic. Thus the w; all solve w®) = 0 and we have (2.8), for
some constant ¢, possibly 0. We then apply the same properties of Wronskians
used in Lemma 2.3, but in reverse, to obtain locally (2.7) and

W(fla"' afkaf) = Ck:fgik'

If ¢, = 0 then fi,..., fi, f are linearly dependent and U,(F) = f®/f = 0. If
cx 7 0 then W, (F) = f%/f is a constant multiple of g~* and so is meromorphic
without zeros.

Lemma 2.1 implies that if (ii) is satisfied, then W, (F') has a pole and is thus
nonconstant. On the other hand, if (ii) is not satisfied, then F' has the form F(z) =
j/(z—a) if degg =1 and, by (1.4), the form F(z) = j/(z—a)+ (k—1—35)/(z =)
if degg =2, where a,b € C, a # b, and j € {1,... ,k—1}. Thus f is a polynomial
of degree k — 1 at most so that ¥, (F) = f®/f =0.

—c=—gF.
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3. PROOF OF THEOREM 1.2

Let F' be as in the statement of the theorem, and set h(z) = z — 1/F(z). Since
all zeros of I are simple by (i), we conclude that h has only simple poles. By (ii)
we have h'(a) # 0 if @ is a pole of F', and so A’ has no zeros using (i).

If h is a rational function then h is M&bius, and this implies that F' has the form
stated. Suppose now that h is transcendental. Then by [18] (see also [3]) the order
p of h is positive. Let 0 < 0 < p. By [13, Theorem 2] there are fixpoints z of h,
with |z| arbitrarily large, and with |h'(z)| > |2|?. These fixpoints must be simple
poles of F', with

1

Res(F, z)’

which contradicts (iii) and proves the theorem.

h(z) =1

4. PROOF OF THEOREM 1.3

The main tool is the following lemma of Pang and Zalcman; see [14, Lemma 2]
and [15, Lemma 2].

Lemma 4.1. Let F be a family of functions meromorphic on the unit disc, all of
whose zeros have multiplicity at least k, and suppose that there exists A > 1 such
that | f®)(2)| < A whenever f(z) =0, f € F. Then if F is not normal there exist,
for each 0 < a < k, a number r € (0,1), points z, € D(0,r), functions F,, € F
and positive numbers p, tending to zero such that

Fn n n
Falent o) | oy
P
locally uniformly, where F' is a nonconstant meromorphic function on C such that
the spherical derivative F* of F satisfies F#(z) < F#(0) = kA + 1 for all z € C.

Lemmas of this type have proved to be very useful in recent years; for a discussion
we refer to a survey by Zalcman [20].

We shall need only the case « = k = 1. Applying the lemma to the family of all
functions 1/f with f € F we obtain the following lemma.

Lemma 4.2. Let F be a family of functions meromorphic on the unit disc. Sup-
pose that there exists § > 0 such that if f € F has a simple pole a, then |Res(f,a)| >
d. Then if F is not normal, there exist a number r € (0,1), points z, € D(0,r),
functions F,, € F and positive numbers p, tending to zero such that

pnFu(2n + pnz) = F(2)
locally uniformly, where F' is a nonconstant meromorphic function on C such that
F#(2) < F#(0)=1+1/§ for all z € C.

Proof of Theorem 1.3. Without loss of generality we may assume that €2 is the unit
disk. Suppose that F is not normal. Because of condition (ii) with j = 0 we can
apply Lemma 4.2. Let r, z,,, F},, p, and F' be as there so that

9n(2) = puFiu(zn + pnz) — F(2)
as n — oQ.
Let a be a simple pole of F. Then, by Hurwitz’s theorem, if n is sufficiently
large, g, has a simple pole a, with a, — a. Since z, + p,a, is a simple pole
of F,, with Res(F,, z, + pnan) = Res(gn,an) we deduce from condition (ii) that



NONVANISHING DERIVATIVES AND NORMAL FAMILIES 9

|Res(gn, a,) —j| > d for j € {0,1,...,k—1}. This implies that |Res(F,a) —j| > d
for j € {0,1,...,k — 1}. In particular, every pole of F is a pole of W, (F), by
Lemma 2.1.

Induction shows that Uy(g,(2)) = pFUi(F,(2n + pnz)). Thus W¥.(g,) has no
zeros. If A is the set of poles of F' then W (g,) — ¥ (F) locally uniformly on C\ A4,
and either ¥ (F) = 0 or U, (F) has no zeros on C\A by Hurwitz’ theorem. In the
latter case we deduce using the previous paragraph that W, (F') has no zeros at all,
and that Ux(g,) — Vx(F) on the whole plane, by the maximum principle applied
to 1/¥(gn) and 1/ 9 (F).

Case 1. U, (F) has no zeros.

It follows from Theorem 1.1 if £ > 3 and from Theorem 1.2 if £k = 2 that F' has
the form (1.2) or (1.3).

Suppose first that F' has the form (1.3). Then 1/|a| = |Res(F, —3/a)| > § so
that |a| < 1/6. On the other hand, |a| > |a|/(1+ |B]?) = F#(0) = 1+ 1/4. This
is a contradiction.

Suppose next that F' has the form (1.2) but is not of the form (1.3). Then
F has two poles, counting multiplicities. Choose R > 0 such that these poles
are contained in D(0,dR). Since F has no other poles we deduce from Hurwitz’s
theorem that if n is sufficiently large, then g, has two poles in D(0,JR), but no
poles in D(0, R) \ D(0,0R). Thus F;, has two poles in D(z,, p,R), but no poles in
D(zy, pnR) \ D(2y,dpnR). From condition (iii) we deduce that

> Res(gn,a)—(k=1)|=| Y  Res(F,a)—(k—1)] >4

a€D(0,0R) a€D(2n,0pn R)

Thus

" Res(F,a)— (k—1)| >,

a€eD(0,0R)

contradicting (1.4).

Case 2. U, (F) =0.

Since |Res(F,a) —j| > ¢ for j € {0,1,... ,k — 1} if a is a simple pole of F', we
deduce from Lemma 2.1 that F' has no poles. Thus F'is entire, and so is the function
f defined by f(2) = exp(f; F(t)dt). Then F = f'/f and thus f*)/f = ¥\ (F) =0
by Lemma 1.1. Hence f is a polynomial. This implies that f is constant. Hence
F =0, a contradiction. O

5. REMARKS

5.1.  While the statement of Theorem A makes no distinction between the cases
k = 2 and k > 3, the proofs in [4] and [12] are quite different. The difference
between Theorem 1.1 and Theorem 1.2 suggests that it may be difficult to treat
the cases k = 2 and k > 3 with a uniform method.

5.2.  For functions F' of finite order the conclusion of Theorem 1.2 can also be
obtained with the methods of [1]. In fact, Theorem 1.2 can be slightly strengthened
for functions of finite order.
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Theorem 5.1. Let F' be meromorphic, non-constant and of finite order in the
plane, such that:

(¢) all zeros of Wo(F) = F' + F? are zeros or poles of F;
(1) if a is a simple pole of F' then Res(F,a) # 1;
(7i) there exists 6 > 0 such that if a is a simple pole of F' then |Res(F,a)| > 4.
Then F' has the form

(z + ¢)*

(z4+a)(z+c)f+b
with a,b,c € C, b #0, £ € N or the form (1.3).

If, in addition, all zeros of F' are simple, then F has the form (1.2) with k = 2
or the form (1.3).

Proof. Define ¢ = 1/F so that ¢/ = —F'/F?. By (ii) we have ¢'(z) # 1 if z is
a pole of F', and we have ¢'(z) = co # 1 if 2z is a zero of F. Using (i) we see that

g'(2) # 1 for all z € C. From (iii) we deduce that if g(z) = 0, then |¢'(2)| < 1/6.
Hence we can deduce from [1, Lemma 5] that ¢ has the form

(5.1) F(z) =

9(z) =z4+a+ G+ ol
with a,b,c € C, b # 0, £ € N or the form ¢g(z) = az+  with o, 3 € C, a« # 1. In
the first case, F' has the form (5.1) while in the second case, F' has the form (1.3).

If all zeros of F' are simple, then the form (5.1) is possible only for £ = 1, in
which case it reduces to (1.2) with k& = 2. O

As our proof of Theorem 1.3 in the case k& = 2 requires the conclusion of The-
orem 1.2 only for functions of finite order, this approach suffices to obtain Theo-
rem 1.3 in the case k = 2.

5.3. The hypothesis (ii) in Theorems 1.1 and 1.2 is satisfied not only when F' =
f'/f where f is meromorphic without zeros, but also when the zeros of f have
multiplicity at least k. This leads to the following corollary to these results.

Corollary 5.1. Let f be meromorphic in C and k > 2. Suppose that all zeros of
ff® are zeros of f of multiplicity at least k. Then f has the form f(z) = e®*1?,

f(z) = (az+b)™ or
_ a(z _ b)n-l—lc—l
(52) 1o =i

where a,b,c € C, a#0,b#candn €N, me Z\{0,...,k—1}.

This result is probably known to researchers in the field, although for £ > 3 it
does not seem to have been stated explicitly before. For the case k£ = 2 it was
stated in [13, Theorem 1, (ii)] that the only transcendental functions satisfying the
hypothesis of Corollary 5.1 are those of the form f(z) = e**?.

Note that
=Y e koD
dzk< G-or ) (b—c)'n(n+1)...(n+k 1)(2—0)"+k’

which can be proved directly by induction, or using Lemma 1.1.
We also remark that if f has the form (5.2), then

f'z) _ (k=1)z+mb—(n+k—1c

flz) (z—b)(z —¢)
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Let F be the family of all functions f’/f where f has the form (5.2). Fixing ¢ =0
and letting b — 0 we see that F fails to be normal. This shows that in Corollary 1.1
the condition that f and f*) have no zeros cannot be replaced by the condition
made in Corollary 5.1, namely that all zeros of ff*) are zeros of f of multiplicity
at least k.

5.4. We have already mentioned that Theorem A and Corollary 1.1 can be con-
sidered as analogous results according to Bloch’s heuristic principle. To explain
this in more detail, we fix £ > 2 and say that a meromorphic function f has the
property P if it is of the form f = ¢'/g for some meromorphic function g such
that g and ¢g*) have no zeros. By Lemma 1.1 this is equivalent to saying that f
has the property P if all poles of f are simple, with negative integers as residues,
and W, (f) has no zeros. As pointed out in the introduction, Theorem A can be
restated by saying that every function F' meromorphic in the plane with property P
is constant or of the form F'(z) = —n/(z+ ¢). Similarly, Corollary 1.1 is equivalent
to the statement that the family F of all functions meromorphic in some domain
and having property P is normal.

Zalcman [19] originally introduced (a simplified version of) Lemma 4.1 in order
to give a rigorous version of Bloch’s heuristic principle. We note, however, that
it does not seem possible to deduce Corollary 1.1 from Theorem A using only
Lemma 4.2. In fact, assuming that F is not normal, we can can proceed as in the
proof of Theorem 1.3 and use Lemma 4.2 to obtain functions F;,, with property
P and py,, z, such that p,F, (2, + ppz) — F(z) for some nonconstant function F
meromorphic in the plane. As in the proof of Theorem 1.3 we find that W, (F') has
no zeros, that the residues at the poles of F' are negative integers, and that F' is
not of the form F(z) = —n/(z + ¢). However, F' might have multiple poles and
thus fail to have property P. Hence the above restatement of Theorem A is not
applicable.
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