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Abstract

Let f be transcendental and meromorphic in the plane and let the nonho-

mogeneous linear differential polynomials F and G be defined by

F = f (k) +
k−1∑
j=0

ajf
(j) + a, G = f (n) +

n−1∑
j=0

bjf
(j) + b,

where k, n ∈ N and a, b and the aj , bj are rational functions. Under the as-

sumption that F and G have few zeros it is shown that either F and G reduce

to homogeneous linear differential polynomials in f + c, where c is a rational

function which may be computed explicitly, or f has a representation as a ra-

tional function in solutions of certain associated linear differential equations,

which again may be determined explicitly from the aj , bj and a and b.
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1 Introduction

This paper will use the standard notation of Nevanlinna theory [12], including T (r, g)

for the Nevanlinna characteristic of a function g meromorphic in the plane and S(r, g)

for any quantity with

S(r, g) = o(T (r, g)) (n.e.),

where (n.e.) (“nearly everywhere”) means as r →∞ outside a set of finite measure.

One of the many successes of the Nevanlinna theory has been its applicability to

questions involving the value distribution of meromorphic functions and their deriva-

tives. Hayman [11, 12] (see also [1]) proved that if f is meromorphic in the plane and

f omits some finite value a while the k’th derivative f (k) omits some finite non-zero

value b, for some k ≥ 1, then f is constant. The example f(z) = ez, a = b = 0,

shows that Hayman’s result does not hold for b = 0, but the following theorem,

proved in [3, 6, 15], deals with this exceptional case.

THEOREM 1.1 ([3, 6, 15]) Suppose that f is meromorphic in the plane and that

f and f (k) have finitely many zeros, for some k ≥ 2. Then f(z) = R(z)eP (z), with R

a rational function and P a polynomial. In particular, f has finite order and finitely

many poles.

A number of papers [2, 5, 13, 15, 16, 18] treat a more general problem in which

f (k) is replaced by a linear differential polynomial F = f (k) +
∑k−1

j=0 Ajf
(j), with the

coefficients Aj rational functions. This generalization was taken a step further in

[7, 8], replacing both f and f (k) in Theorem 1.1 by linear differential polynomials.

Let k, n be positive integers, and define linear differential operators L, M by

L = Dk +
k−1∑
j=0

ajD
j, M = Dn +

n−1∑
j=0

bjD
j, D =

d

dz
. (1.1)

The following was proved in [8].
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THEOREM 1.2 ([8]) Let g be meromorphic and non-constant in the plane and let

F1 = L(g) and G1 = M(g), with L, M as in (1.1) and with the aj and bj rational

functions. Assume that

N(r, 1/F1) + N(r, 1/G1) = O(log+ T (r, g′/g) + log r) (n.e.), (1.2)

and that the equations

L(w) = 0, M(w) = 0, (1.3)

have no non-trivial common (local) solution.

Then g has finite order and finitely many zeros and g′/g has a representation

g′(z)

g(z)
= V (z) +

P1(Q1(z) + log R1(z))(Q′
1(z) + R′

1(z)/R1(z))

R1(z)eQ1(z) − 1
(1.4)

in which V and R1 are rational functions and P1 and Q1 are polynomials, and at

least one of P1 and R1 is constant.

There is no real loss of generality in assuming that the equations (1.3) have no

common local solution other than the trivial solution w = 0, for otherwise a standard

reduction procedure [14] (see also [8, Lemma D]) gives linear differential operators

L∗, M∗, N , with coefficients which are rational functions, such that L = L∗◦N, M =

M∗ ◦N , in which case F1 and G1 may be regarded as linear differential polynomials

in the meromorphic function N(g).

The assumption (1.2) is stronger than the standard S(r, g) condition, but it should

be noted that T (r, g′/g), rather than T (r, g), is the right comparison function in

(1.2). This is because it is easy to construct meromorphic functions g with no zeros

and with poles of large multiplicity so that T (r, g′/g) is small compared to T (r, g).

For such functions g any zero of L(g) will be a zero of L(g)/g, and the growth of

L(g)/g is controlled by that of g′/g and the coefficients aj.

The aim of the present paper is to prove a nonhomogeneous version of Theorem 1.2.

In order to state the result it is necessary to collect some standard facts concerning

linear differential operators, which are summarised in the next lemma. Proofs may

be found in [8, Lemma D and Lemma 1].
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LEMMA 1.1 ([8, 14]) Let k and n be positive integers and let the linear differen-

tial operators L and M be as in (1.1), with the coefficients aj and bj meromorphic on

some plane domain Ω. Assume that the equations (1.3) have no non-trivial common

(local) solution. Then there exist linear differential operators P, Q,U, V and Y , with

coefficients which are rational functions in the aj, bj and their derivatives, such that

P ◦ L + Q ◦M = 1 and Y = U ◦ L = V ◦M, (1.5)

in which 1 denotes the identity operator. The operators P, Q,U, V, Y may be cal-

culated explicitly from L and M , and U, V, Y have orders n, k, n + k and leading

terms Dn, Dk, Dn+k respectively, where D = d/dz. Finally, the (local) solution

space of the equation Y (w) = 0 is the direct sum of the (local) solution spaces of

the equations L(w) = 0 and M(w) = 0.

The following theorem will be proved.

THEOREM 1.3 Let f be transcendental and meromorphic in the plane. Let k

and n be positive integers, and let a0, . . . , ak−1 and b0, . . . , bn−1 and a and b be

rational functions. Assume that the equations (1.3), with L, M as in (1.1), have no

non-trivial common (local) solution, and that

F = L(f) + a and G = M(f) + b (1.6)

do not vanish identically, and finally that

N

(
r,

1

F

)
+ N

(
r,

1

G

)
= S(r, f). (1.7)

Define functions c and g by

c = P (a) + Q(b), g = f + c, (1.8)

where the linear differential operators P and Q are as in Lemma 1.1. Let Ω be a

non-empty simply connected domain on which a and b and the coefficients aj, bj are

all analytic, and define on Ω linearly independent solutions u1, . . . , uk of L(w) = 0,
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linearly independent solutions v1, . . . , vn of M(w) = 0, and solutions u, v of L(w) =

a, M(w) = b respectively.

Then c is a rational function and

P (F ) + Q(G) = f + c = g, (1.9)

and at least one of the following holds:

(a) F and G satisfy

F = L(g), G = M(g); (1.10)

(b) f has a representation f = R(u1, . . . , uk, v1, . . . , vn, u, v), where R is a rational

function in k + n + 2 variables.

Some additional comments concerning Theorem 1.3 are in order. The significance

of the conclusion (a) is that in this case (1.10) shows that F and G reduce to

homogeneous linear differential polynomials in g: in particular, if F and G have

sufficiently few zeros, then f may be determined by applying Theorem 1.2 to g. An

example satisfying both cases (a) and (b) is given by f(z) = ez + e2z + 1 and

F (z) = f ′(z)− f(z) + 1 = e2z, G(z) = f ′(z)− 2f(z) + 2 = −ez.

On the other hand the example

f(z) = ez+z, F (z) = f ′(z)+f(z)−(z+1) = 2ez, G(z) = f ′(z)−f(z) = 1−z,

satisfies (b) but not (a), and shows that f is not determined solely by the operators

L and M . Finally, f(z) = 1/(1 + ez) has

F (z) = f ′(z) + f(z) =
1

(1 + ez)2
6= 0, G(z) = f ′(z)− f(z) + 1 =

e2z

(1 + ez)2
6= 0.

It would be interesting to know whether Theorem 1.3 holds with N(r, 1/F ) and

N(r, 1/G) replaced in (1.7) by N(r, 1/F ) and N(r, 1/G), but the present method

does not appear to give this. It is reasonable also to ask whether the result holds

with a weaker assumption on the aj, bj and a and b, but it is pointed out in the proof

that at least two steps would be in doubt if the coefficients were only small functions

in the sense of Nevanlinna theory.
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2 A lemma required for Theorem 1.3

The proof of Theorem 1.3 will require the following consequence of a lemma from

[4, 9, 10, 17, 19]. The version in [19] suffices for the present application, but the

proof in [4] is somewhat simpler.

LEMMA 2.1 Let δ be a positive real number, and let h be transcendental and

meromorphic in the plane. Let p be a positive integer and let c0, . . . cp−1 and A be

rational functions. Set

H = Qp(h) + A where Qp = Dp +

p−1∑
j=0

cjD
j and D =

d

dz
.

Then either (i)

pN(r, h) ≤ N

(
r,

1

H

)
+ (1 + δ)N(r, h) + S(r, h), (2.1)

or (ii) h has a representation

h = R(h1, . . . , hp+1), (2.2)

where R is a rational function in p + 1 variables and each hj is a (local) solution of

Qp(w) = djA, (2.3)

with dj a constant.

Proof. Define a linear differential operator Q∗ of order at most p + 1 and a function

H1 by

Q∗ = Qp (if A ≡ 0), Q∗ = (D − A′/A) ◦Qp (if A 6≡ 0), H1 = Q∗(h).

Then

H1 = Qp(h) = H (if A ≡ 0),

H1 = (Qp(h))′ − (A′/A)Qp(h) = H ′ − (A′/A)H (if A 6≡ 0). (2.4)
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In particular, H1 is a homogeneous linear differential polynomial in h and by the result

from [4, 19] there are two possibilities, the first of which is that h has a representation

a a rational function in (local) solutions of the equation Q∗(w) = 0. Since every

such local solution solves (2.3) for some constant dj this gives (2.2) and conclusion

(ii) of Lemma 2.1.

By the result from [4, 19] the second possibility is that

m

(
r,

1

H1

)
≤ m(r, H1) + (2 + δ)N(r, h) + S(r, h).

Since

m(r, H1) ≤ m(r, H) + S(r, h), m

(
r,

1

H

)
≤ m

(
r,

1

H1

)
+ S(r, h),

using (2.4) and the lemma of the logarithmic derivative if A 6≡ 0, this gives

m

(
r,

1

H

)
≤ m(r, H) + (2 + δ)N(r, h) + S(r, h). (2.5)

Add N(r, H) + N(r, 1/H) to both sides of (2.5). Since A and the coefficients of

Qp are rational functions,

N(r, H) = N(r, Qp(h) + A) = N(r, h) + pN(r, h) + S(r, f), (2.6)

and applying Nevanlinna’s first fundamental theorem to H leads at once to (2.1). 2

REMARK 2.1

The result in [4] shows that if A ≡ 0 then either (2.5) holds or h is a rational function

in local solutions of Qp(w) = 0, and this is proved under the weaker hypothesis

that the coefficients cj of the linear differential operator satisfy T (r, cj) = S(r, h).

However Lemma 2.1 requires the relation (2.6), which may fail if the coefficients are

only assumed to be small functions in the sense of Nevanlinna theory. For example,

let q be a transcendental entire function such that q′(z) = 0 implies q(z) 6= 0 and

T (r, q′′/q′) = S(r, q), T (r, q) = O(N(r, 1/q′)) (n.e.), (2.7)
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and define f by f = q/q′. Then N(r, f) = N(r, 1/q′) 6= S(r, f) and T (r, q′′/q′) =

S(r, f) but

f ′ + (q′′/q′)f = 1

has no poles. Such an entire function q may be constructed, for example, by writing

G′(z)

G(z)
=

2πiz2

e2πiz − 1
, q(z) = c +

∫ z

0

G(t)dt,

for some suitable constant c.

3 Proof of Theorem 1.3

Assume that f , F and G and the coefficients are as in the statement of Theorem

1.3. Let c, g and the linear differential operators P, Q,U, V, Y be defined as in (1.5)

and (1.8). Then (1.9) follows at once from (1.5) and (1.6). Also (1.6) and (1.8)

give

F = L(f) + a = L(g) + a− L(c), G = M(f) + b = M(g) + b−M(c). (3.1)

By (1.5) and (1.6),

U(F ) = V (G) + d, where d = U(a)− V (b) (3.2)

is a rational function.

LEMMA 3.1 If either U(F ) or V (G) is a rational function then f satisfies conclu-

sion (b) of Theorem 1.3.

Proof. Assume without loss of generality that U(F ) is a rational function. Then so

is V (G), by (3.2). If neither U(F ) nor V (G) vanishes identically then each of F and

G solves a nonhomogeneous linear differential equation with rational coefficients, so

that (1.7) and the lemma of the logarithmic derivative give

T (r, F ) + T (r, G) ≤ m(r, 1/F ) + m(r, 1/G) + S(r, f) = S(r, f),
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which on combination with (1.8) and (1.9) leads to

T (r, f) ≤ T (r, g) + S(r, f) = S(r, f),

an obvious contradiction.

Assume without loss of generality that U(F ) ≡ 0. Then 0 = U(F ) = Y (f) + U(a)

by (1.5) and (1.6), so that with the uj, vj and u as defined in Theorem 1.3, the

function f + u solves Y (w) = 0 and is a linear combination of u1, . . . , uk, v1, . . . , vn

on Ω. Thus f satisfies conclusion (b) of Theorem 1.3. 2

Assume from now on that

U(F ) and V (G) are transcendental. (3.3)

It is obvious from (3.1) that if a − L(c), b − M(c) both vanish identically, then

(1.10) and conclusion (a) of Theorem 1.3 hold. Assume henceforth without loss of

generality that

B = a− L(c) 6≡ 0. (3.4)

LEMMA 3.2 The function f satisfies

T (r, f) ≤ N

(
r,

1

g

)
+ N(r, f) + S(r, f). (3.5)

Proof. Write

g = Bg∗ where B = a− L(c) 6≡ 0,

using (3.4). Then B is a rational function and (1.1), (3.1) and (3.4) give

F = L(g) + B = L(Bg∗) + B = B(L∗(g∗) + 1), (3.6)

where L∗ is a linear differential operator of order k with rational functions as co-

efficients. If L∗(g∗) is constant, then F is a rational function, by (3.6), and so is

U(F ), which contradicts (3.3). Hence L∗(g∗) is non-constant and applying Milloux’s

inequality [12, p.57] to g∗ and L∗(g∗) in conjunction with (1.7) leads to (3.5). 2
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The proof of Theorem 1.3 will now be divided into two cases.

Case 1: suppose that d 6≡ 0 in (3.2).

Define linear differential operators U1, V1 by

U1 = (D − d′/d) ◦ U, V1 = (D − d′/d) ◦ V, D = d/dz. (3.7)

Set

H = U1(F ) = V1(G), (3.8)

using (3.2) and (3.7). If H ≡ 0 then by (3.2), (3.7) and (3.8) there exist constants

α, β such that U(F ) = αd and V (G) = βd, which contradicts (3.3) since d is a

rational function. Thus H 6≡ 0. Set

φ =
gH

FG
=

P (F )V1(G)

FG
+

Q(G)U1(F )

GF
, (3.9)

using (1.9) and (3.8). Since P, Q,U1, V1 are linear differential operators with rational

functions as coefficients, this gives

m(r, φ) = S(r, f).

Consider next N(r, φ). Suppose that f has a pole of multiplicity m at z0, with z0

large. Then g,H, F and G have poles at z0 of multiplicities m,m+n+k +1, m+k

and m + n respectively, so that φ has a simple pole at z0. But (3.9) shows that φ

is a polynomial with rational functions as coefficients in the logarithmic derivatives

F (j)/F and G(j)/G of F and G, each of which has poles of bounded multiplicity.

Thus it follows using (1.7) that

T (r, φ) ≤ N(r, φ) + S(r, f) ≤ N(r, f) + S(r, f). (3.10)

Writing 1/gH = 1/φFG and using (1.7) and (3.10) now leads to

N

(
r,

1

g

)
+ N

(
r,

1

H

)
≤ N

(
r,

1

gH

)
+ O(log r) ≤ N(r, f) + S(r, f). (3.11)

Combining (3.5) and (3.11) gives

T (r, f) ≤ 2N(r, f) + S(r, f). (3.12)
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Let ε and δ be small and positive, with δ small compared to ε. By (1.5), (1.6), (3.7)

and (3.8) the function H has a representation

H = ((D − d′/d) ◦ U)(F ) = ((D − d′/d) ◦ Y )(f) + ((D − d′/d) ◦ U)(a) (3.13)

as a (possibly nonhomogeneous) linear differential polynomial in f , of order k+n+1,

and with rational functions as coefficients. Lemma 2.1 now implies that there are

two possibilities, the first of which is that

(k + n + 1)N(r, f) ≤ N

(
r,

1

H

)
+ (1 + δ)N(r, f) + S(r, f), (3.14)

which gives

(k + n + 1)N(r, f) ≤ N

(
r,

1

H

)
+ (2 + 2δ)N(r, f) + S(r, f),

using (3.12). Since k + n + 1 ≥ 3, it follows that

N(r, f) ≤ (1 + ε)N

(
r,

1

H

)
+ S(r, f),

which, using (3.11) twice, leads to

N

(
r,

1

g

)
≤ εN

(
r,

1

H

)
+ S(r, f) ≤ εN(r, f) + S(r, f).

But combining this estimate with (3.5) gives

N(r, f) ≤ T (r, f) ≤ (1 + ε)N(r, f) + S(r, f), (3.15)

so that applying (3.11) and (3.14) again leads this time to

(k + n + 1)N(r, f) ≤ N

(
r,

1

H

)
+ (1 + δ)N(r, f) + S(r, f)

≤ (1 + (1 + δ)(1 + ε))N(r, f) + S(r, f).

Since k + n + 1 ≥ 3 and ε and δ are small, it follows that N(r, f) = S(r, f),

contradicting (3.15).

This leaves as the only possibility flowing from Lemma 2.1 that f has a representation

f = R(y1, . . . , yk+n+2),
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where R is a rational function in k + n + 2 variables and by (3.13) each yj is, for

some constant dj, a solution on Ω of

((D − d′/d) ◦ Y )(w) = dj((D − d′/d) ◦ U)(a).

But this gives, for some constant ej, using (3.2),

Y (yj) = djU(a) + ejd = (dj + ej)U(a)− ejV (b).

Hence, with uj, vj, u and v as defined in Theorem 1.3, the function yj−(dj+ej)u+ejv

solves Y (w) = 0 on Ω and is a linear combination of u1, . . . , uk, v1, . . . , vn, so that

f satisfies conclusion (b). This completes the proof in Case 1. It remains to consider:

Case 2: suppose that d ≡ 0 in (3.2).

The proof in this case is somewhat simpler. This time H and φ are defined using

(1.9) and (3.2) by

H = U(F ) = V (G), φ =
gH

FG
=

P (F )V (G)

FG
+

Q(G)U(F )

GF
, (3.16)

and H 6≡ 0 by (3.3). The same analysis as in the proof of Case 1 gives T (r, φ) =

S(r, f), so that (3.11) becomes

N

(
r,

1

g

)
+ N

(
r,

1

H

)
= S(r, f). (3.17)

Hence (3.12) is replaced using (3.5) by

T (r, f) ≤ N(r, f) + S(r, f). (3.18)

Again let δ be small and positive. By (1.5), (1.6) and (3.16) the function H has this

time a representation

H = U(F ) = Y (f) + U(a) (3.19)

as a (possibly nonhomogeneous) linear differential polynomial in f , of order k + n,

and with rational functions as coefficients. Lemma 2.1 again gives two possibilities,
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the first being that

(k + n)N(r, f) ≤ N

(
r,

1

H

)
+ (1 + δ)N(r, f) + S(r, f)

≤ (1 + δ)N(r, f) + S(r, f),

using (3.17) and (3.18). Since k + n ≥ 2, it follows that

N(r, f) = S(r, f),

which obviously contradicts (3.18).

By Lemma 2.1 this forces a representation

f = R(y1, . . . , yk+n+1),

where R is a rational function in k+n+1 variables and each yj is, for some constant

dj, a local solution of Y (w) = djU(a), so that yj − dju solves Y (w) = 0. Hence

f again satisfies conclusion (b) of Theorem 1.3. This completes the proof of the

theorem.

REMARK 3.1

The first inequality of (3.11) uses in an essential way the assumption that a, b and

the coefficients aj, bj are rational functions. Were they only assumed to be small

functions compared to f , then in principle H might have multiple zeros at multiple

poles of g. Indeed, let g = q2/q′, where q is an entire function as in (2.7), and set

H = (g′ + (q′′/q′)g)′. Then T (r, q′′/q′) = S(r, g) but H = 2q′ and gH = 2q2, so

that H has zeros which are not zeros of gH.

References

[1] W. Bergweiler and J.K. Langley, Multiplicities in Hayman’s alternative, J. Austr. Math. Soc.

78 (2005), 37-57.

13
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