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Abstract

We prove the existence of unbounded open subsets S of the complex plane with the following
property. If f is a function transcendental and meromorphic in the plane, the poles of which
have positive Nevanlinna deficiency, then f takes every finite value, with at most one exception,
infinitely often in the complement of S.

A.M.S. Classification: 30D35.

1 Introduction

Let F be a family of functions meromorphic in the plane. A subset S of the plane is called a Picard
set for F' if every transcendental function f in F' takes every element of the extended complex
plane, with at most two exceptions, infinitely often in the complement of S.

For the class M () of functions f meromorphic in the plane and with Nevanlinna deficiency

d(c0, f) 2 6> 0, (1)
the following was proved by Anderson and Clunie [1].

Theorem 1.1 ([1]) Let ¢ > 1 and 0 < § < 1. Then there exists a positive constant K, depending
only on q and 0, such that if the complex sequence (an,) and the positive sequence (dy,) satisfy

|am+1/am| > q (2)
and
log 1/d,, > K (log |a,,|)? (3)
for all m, then the set
o x
S = U B(ap,dp,) = U{z:\z—am|<dm} (4)
m=1 m=1

is a Picard set for M(9).

Theorem 1.1 marks a strong departure from the situation for the class M of all functions mero-
morphic in the plane, for which there are no unbounded open Picard sets [5]. It was subsequently
proved by Toppila [6] that Theorem 1.1 holds with a constant K depending only on ¢ and not on é.
The condition (3) is essentially sharp, in that Toppila [6, Theorem 2] refined an example of Baker



and Liverpool [2] by showing that for each ¢ > 1 there exists a transcendental entire function f
having all but finitely many of its zeros and 1-points in the union (4), with

(log |am|)®

am = (_1)m—|—1qm’ log 1/d = 210gq

Further results on Picard sets for functions with deficient poles may be found in [7].

In the present paper we return to a theme considered in [4], the question of whether there exist
unions S of discs as in (2), (3) and (4), with the property that every function f transcendental
and meromorphic in the plane and satisfying (1) must take every finite value, with at most one
exception, infinitely often in the complement of S. The existence of such sets S is suggested by the
fact that such an f can have at most one finite Picard value, and a result on these lines was proved
in [4] for functions having 6 > 2/3 in (1). We prove here the following theorem.

Theorem 1.2 Let 0 < € < 1/2. Then there exists a positive constant K, depending only on e,
with the following property. Let (a,,) be a complex sequence converging to infinity, with

|am — apy| > €lam| (5)

form £ m', and let d,,, satisfy (3). If f is a function transcendental and meromorphic in the plane
and satisfying (1), then f takes every finite complex value, with at most one exception, infinitely
often in the complement of the set (4).

The condition (5) seems slightly more natural than (2), and does not introduce major difficulties.
The key difference, however, between Theorem 1.2 and the results of [1, 6, 7] is that just one finite
exceptional value is allowed rather than two. This means, in particular, that the Schottky-type
normal families methods used in [1, 6] cannot be applied to prove Theorem 1.2. Further, in contrast
to [4], the deficiency in (1) is only required to be positive.

2 A lemma needed for Theorem 1.2

The following application of the maximum principle for subharmonic functions is a modification of
the argument of [6, pp.181-2].

Lemma 2.1 Let 0 <t < s <r and assume that

Sj>0, t < |bj|—8j<|bj‘+8j<8 (6)
forj=1,...,M. Set
M
Q={z:t<|z| <r}\ J B, (7)
j=1

in which Ej is the closed disk {z : |z —bj| < s;}. Let u be subharmonic and non-positive on Q, and
continuous on the closure of 2, and let v(z) be the Poisson integral

. 2,2
v(z) = % /0 (e (ﬁ) do (8)

of —u in B(0,7). Then for z in Q we have

2| =
|z| + 7

u(z) < —v(2) + C(2)mol(r, —u) < (( ) + C(z)) mo(r, —u), 9)

[N



in which

1 2 .
mo(r, —u) = —/ —u(re'®)do > 0
27 Jo
and u
1+t/r\ logr/|z| (1+8/T‘> log 2r/|z — bj|
C(z) = —_—. 10
(2) (1 —t/r) logr/t iz s/r ; log 2r/s; (10)
Proof. Since —u > 0, Harnack’s inequality gives
r—|z|> <T+|Z|)
—u) < < — 11
() motrw < 0@ < (2 ) motr ) (11)
on B(0,r). Let
logr/|#| log 2r/|z — bj|
_ () — l082r/|z = bj| 12
9(2) logr/t’ 9i(2) log2r/s; (12)
so that g and g; are harmonic and non-negative on €. The inequalities (6) and (11) give
1+s/r 1+ 5/1")
< —u) < —u)g; 1
() < (227 ) motr. =) < (T2 ) o~y (2 (13)
for |z — bj| = s;, and
1+t/r 1 +t/r>
) < 14
@ < (157 ) motr =) < (F50) mo(r a2 (14)

for |z| =t. Thus (13) and (14) and the fact that u < 0 give

u(2) +0(2) < mofr, —u) ((1 L) e+ (12507) ]Ew?gm)

Jj=1

for z on the boundary of Q2 and hence for all z in €2, by the maximum principle. Combining this
estimate with the left-hand inequality of (11) gives (9) and (10).

3 Proof of Theorem 1.2

Suppose that f is transcendental and meromorphic in the plane and satisfies (1), and that all but
finitely many zeros and 1l-points of f lie in the set (4), in which the sequence (a,,) converges to
infinity such that (5) holds for some € with 0 < ¢ < 1/2, while d,, satisfies (3) for some K > 0.
Denote by €1, Bj, C; positive constants depending only on ¢, with €; small. Set
—1
so that all but finitely many zeros and poles of g lie in the set (4).
Choose a positive sequence r, such that, for each n,

o
ern < Tny1 < €81, {z:e P, <z < B k0 U B(am,dy) = 0. (16)
m=1

For large n, take S, with

ePir, < 8, < e*Prr, (a7



and such that
T(S},g) < BoT(Sn,9), Sk = Spe/TEm9) m(S,,¢'/g(g — 1)) < B3 log(SpT(Sn,g)).  (18)

Such S, exist, by [3, p.38] applied to the function ¢(s) = T'(e®, g).
We fix a large positive integer L, and assume that n is large compared to L. By (16),

(S, 9) +1(Sy,1/9) = n(rn,g) + n(rn,1/9) < BsT(Sy, 9).
Thus a standard application of the differentiated Poisson-Jensen formula [3, p.22] in B(0, S},) gives
19'(2)/9(2)| <T(Sn,9)" (19)
provided Bg < |z| < Sy, and |z — app| > 1 for all m. Since

1 4 g

g—1 glg—-1)¢g

bl

(15) and (18) give
m(Sn,9/9') > (8/2)T(Sn, g)- (20)

We apply Lemma 2.1 to the function

u(z) = loglg'(z)/9(2)| — Bslog T(Sn,9),

with 7 = S, and t = r,_r, and with the B(b;, s;) those discs B(am,1) for which ¢ < |a,,| < r. For
z satisfying

o0
1< 2| <y 2 ¢ U B(am, e1laml), (21)

m=1

Lemma 2.1 and (5), (16), (17), (19) and (20) lead to

:z: ;: +C(z) < —Br + % + 105821?9,1
and
log|g'(2)/9(2)| < —BydT(Sy, g)- (22)
Recalling (15), this gives:
Lemma 3.1 We have
|log g(2)| < exp(=C16T (rn,9)), loglg(z) — 1| < =CoT(rn,9) (23)
for large n and for z satisfying (21).
From (15) and (23) we get
T(rp,g9) < C36 ‘m(ry_1,1/(g — 1)) < C46 T (rn_1,g), (24)

and using (16), (23) and (24) we deduce at once:

Lemma 3.2 There exists a positive real number p such that T(r,g) < r? for all large r. Further,
if m is large then g has the same number of zeros as poles, counting multiplicity, in B(apm,dm).



We need next:
Lemma 3.3 We have g(z) =1+ 0o(1) as z = oo outside the union of the discs B(am,Vdm)-
Proof. Let m be large. By Lemma 3.1 it suffices to prove that g(z) =1+ o(1) for

Vidm < |z —am| <eilam|. (25)

By Lemma 3.2 we may pair off the zeros and poles of g in B(a.,,d,) as a,, and 8, with 1 <v < N.
We write

N —
U) =g(0)P@). Pe) =TT (22, (20

v=1 z — ay

so that U is analytic and non-zero in |z — a,,| < e1]an,|. For z satisfying (25) we have

< 8NVdpy < O(|am|?)Vdm < dL/*, (27)

N
|log P(2)| <2
v=1

051/_131/
z—

using (3) and Lemma 3.2. Combining (23) with (27) gives logU(z) = o(1) for |z — a;m| = €1]am],
so that the lemma follows from the maximum principle and (27). Lemma 3.3 is proved.

Since Lemma 3.3 shows that f(z) is large for large z outside the union of the discs B(am, vVdm),
we may now essentially follow Toppila’s proof in [6, pp.182-3].

Lemma 3.4 Provided K > Ky(¢) in (3), in which Ky depends only on ¢, we have
T(r, f) = o(logr)?, 7 — oo. (28)

Proof. Let n be large, and apply Lemma 2.1 with r = r,, and t = 7, satisfying
pl/100 < 4 < 71/50. (29)

and with the B(bj, s;) those B(am,v/dp,) for which ¢ < |a,,| < 7, the number of these being at most
Cslogr. Choose u(z) = —log|f(#)| and let v be the Poisson integral of —u as defined in Lemma
2.1. For |z| = rp_1 we have, using (16),

(1 —|—t/r> logr/|z| <
1—t/r) logr/t — 4logr

y logZT/‘Z—bﬂ SCG

and so (3) and Lemma 2.1 give

u(z) < —v(z) +m(r, f) ( 5 Crlogr ) .

4logr = K(logt)?

But v is harmonic in B(0,7) and so

mo(r v) =v(0) =m(r, f), —m(r f)<mlrp, f) | -1+ 5 + 10°C
0\"n—1, - - ’ ) n—1, = ny 4.10ng Klong )

using (29) and (30). If the constant K is large enough, we thus have, using (16) again,

m(rnaf)
—— <14
m('rnflaf) o 210g'rn

7 15 15
<1+~ logm(rs, f) < O(1) + o logn < O(1) + - loglog 7y

for all large n, from which Lemma 3.4 follows, using (1).
We assume henceforth that K in (3) is sufficiently large that (28) holds.



Lemma 3.5 Let 0 < 0 < €1 and let m be large. Then f has at least as many poles as zeros,
counting multiplicity, in B(ap,ol|am]).

Proof. Let z1,...,2p be the zeros of f in B(ay,0|an]|), and let wy,...,w, be the poles, in both
cases repeated according to multiplicity. Set
D q
h(z) = f(2) [1(z = 207" T] (2 = wy), (31)
N:l v=1

so that h is analytic and non-zero in B(am,olan|). Using Lemma 3.4 we have
T(Alam|, k) < T(laml, f) + O(n(2lam|, f) + n(2lam|,1/f))og lam| = o(log |an|)*

and a standard application of the Poisson-Jensen formula gives log |h(z)| = o(log |a;,|?) for z in
B(am,1). Choose ¢ with v/d,, < | — am| < 4v/dy, and lying outside the union of the discs
B(wy,Vdp/q). Then (28) and (31) give

0 <log|f(¢)| < o(log |am|)2 + plog 8V dm + q(log g — log V/dm) < (p — q) log v/dp, + o(log |am|)2,

which on combination with (3) forces p < ¢. This proves Lemma 3.5.

Lemma 3.6 For large n we have
N(rn,1/f) < (14 0(1))N(rn, f)- (32)

Proof. By Lemma 3.3, f has infinitely many zeros. Applying Lemma 3.5 we see that if m is
large and |a,,| < ry, then to each zero z, of f in B(ay,,dy) corresponds a pole w, of f with

wy = z,(1 4+ 0(1)), logry/|zu| <logry,/|w,|+ o(1).
This gives, using (16),
N(rn,1/f) < N(rn, f) + O(logry) + O(n(eillBlrna 1/£))

and (32) follows at once. Lemma 3.6 is proved.

We may now complete the proof of Theorem 1.2. Since f(z) is large on |z| = r,,, by Lemma
3.3, we now have, using (1),

T(rn, f) = N(rn, 1/f) + O(1) < (1 + 0o(1))N(rn, f) < (1 =0/2)T(rn, f)

for large n, which is plainly impossible. This contradiction proves the theorem.
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