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Abstract

Let A be a transcendental entire function of finite order, and let E be the product of linearly
independent solutions of w′′ + A(z)w = 0. We prove the existence of sequences of annuli Ωm

such that if E has relatively few zeros in the union of the Ωm, then E has relatively few zeros
in the whole plane.

A.M.S. classification 30D35.

1 Introduction

Let A be an entire function, and let f1, f2 be linearly independent solutions of the equation

w′′ + A(z)w = 0, (1)

normalized so that the Wronskian W = W (f1, f2) = f1f
′

2 − f ′

1f2 satisfies W = 1. The Bank-Laine
product function E = f1f2 satisfies E′(z) = ±1 at every zero z of E, as well as the relation

4A = (E′/E)2 − 2E′′/E − 1/E2. (2)

Conversely, if E is any entire function with the property that E′(z) = ±1 at every zero z of E, then
[2] the function A defined by (2) is entire, and E is the product of linearly independent normalized
solutions of (1).

Extensive work in recent years has concerned the exponent of convergence λ(fj) of the zeros of
solutions fj, in connection with the order of growth ρ(A) of the coefficient A, these defined by

λ(fj) = lim sup
r→∞

log+ N(r, 1/fj)

log r
, ρ(A) = lim sup

r→∞

log+ T (r,A)

log r
.

Note that
ρ(E) ≥ λ(E) = max{λ(f1), λ(f2)}.

It has been conjectured that the condition

A transcendental, ρ(A) < ∞, λ(E) < ∞ (3)

implies that ρ(A) is a positive integer, and it has been shown [14, 15] that (3) implies that ρ(A) >
1/2 and that E has finite order [1]. Further results may be found in [3, 4, 10, 13] and elsewhere.

The present paper is concerned with a problem first considered in [11], that of the existence of
sets D which are removable in the following sense: if A has finite order and the zeros of E outside
D have finite exponent of convergence then ρ(E) is finite, and hence so is λ(E).

Theorem A [11]. Let η,K and S be constants with 0 < η < π and 1 < K < S. Let Rm be a

positive sequence tending to infinity with Rm+1 > SRm for each positive integer m, and let φm be

a real sequence. Let D be the union of the

Dm = {z = reiθ : Rm < r < KRm, φm − η < θ < φm + η}.
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Suppose that A is a transcendental entire function of finite order and that E = f1f2 is the product

of linearly independent normalized solutions fj of (1), and suppose finally that the zeros of E in

the complement of D have finite exponent of convergence. Then E has finite order.

Thus if E has relatively few zeros outside D then E has relatively few in the whole plane. A
drawback of Theorem A is that the complement of the removable set D needs to be connected in
order for the proof in [11], which is based in part on the methods of [18], to work. A further result
[11, Theorem 3] eliminated this restriction, but subject to the strong additional hypothesis that
there exists at least one ray arg z = θ along which A(z) has polynomial growth, i.e. log+ |A(reiθ)| =
O(log r). We show here that the logarithmic rectangles occurring in Theorem A may be replaced
by annuli, with no hypothesis on the coefficient function A other than that A is transcendental of
finite order, the resulting removable set having disconnected complement. Our approach is more
direct than that of [11], using in part a simplified version of the method of [12].

Theorem 1. Suppose that K and M are positive constants with K > 1, that A is a transcendental

entire function of finite order and that E = f1f2 is the product of linearly independent normalized

solutions of (1). Suppose that there exists a positive sequence rm tending to infinity such that for

each large positive integer m the number of zeros of E in the annulus

Ω(rm,K) = {z : K−1rm < |z| < Krm}

is at most (rm)M . Then

log T (K−1rm, E) = O(log rm), m → ∞. (4)

Theorem 2. Suppose that K,M,A,E, rm are as in the hypotheses of Theorem 1, and assume in

addition that

lim sup
m→∞

log rm+1

log rm
< ∞. (5)

Then E has finite order.

Thus with the hypotheses of Theorem 2, the complement of the union of the Ω(rm,K) is a
removable set in the sense described above. The hypothesis in Theorems 1 and 2 that A has finite
order is not redundant. Let H be an entire function, having exp(2m) simple zeros on the circle
|z| = 2m, for each positive integer m, and no other zeros. As in [16] choose, using Mittag-Leffler
interpolation, an entire function g such that E = Heg satisfies E′(z) = ±1 at each of these zeros.
Then E is the product of linearly independent normalized solutions of (1), and λ(E) = ∞, although
E has no zeros in the annuli 2m < |z| < 2m+1.

2 Lemmas needed for the proof of Theorem 1

Lemma 1. Suppose that K,M,A,E, rm are as in the hypotheses of Theorem 1. Then there exist

positive constants M1,M2 with the following properties.

If m is a sufficiently large positive integer there exists vm in Ω(rm,K1/4) such that

| log |E(vm)|| ≤ (rm)M1 , (6)

and such that E has no zeros in the disc B(vm, (rm)−M2).
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Proof. We use c to denote a positive constant not depending on m, not necessarily the same at
each occurrence. We note first that, by [12, p.508], or using Herold’s comparison theorem [7], the
normalized solutions fj of (1) satisfy, for large r,

|fj(z)| + |f ′

j(z)| ≤ exp(3rM(r,A)1/2), |z| ≤ r. (7)

We may choose s with K−1/8rm < s < K1/8rm, such that s is normal for A with respect to the
Wiman-Valiron theory [6, 17]. This means that if |z0| = s and |A(z0)| = M(s,A), then we have

A(z) = (z/z0)
NA(z0)(1 + o(1)), (8)

and
A′(z)/A(z) = (1 + o(1))N/z, A′′(z)/A(z) = (1 + o(1))N2/z2 (9)

for z in D(z0, 2), in which

D(z0, L) = {z = z0e
τ : |Re(τ)| ≤ LN−5/8, |Im(τ)| ≤ LN−5/8}. (10)

Here N = ν(s,A) is the central index of A and, provided s lies outside a set of finite logarithmic
measure, may be assumed to satisfy

N ≤ (log M(s,A))5/4. (11)

Define

z1 = z0 exp(−N−5/8), Z = 2A(z1)
1/2z1/(N + 2) +

∫ z

z1

A(t)1/2dt. (12)

We may write (8) in the form

A(z) = (z/z1)
NA(z1)(1 + µ(z))2, µ(z) = o(1),

for z in D(z0, 2), so that µ′(z) = o(N5/8s−1) for z in D(z0, 1). Thus for z in D(z0, 1), integration
by parts from z1 to z along part of the ray arg t = arg z1 and part of the circle |t| = |z|, this path
having length O(sN−5/8), gives

∫ z

z1

tN/2µ(t)dt = o((N + 2)−1|z|(N+2)/2) −

∫ z

z1

2(N + 2)−1t(N+2)/2o(N5/8s−1)dt =

= o((N + 2)−1|z|(N+2)/2).

Hence

Z = (1 + o(1))A(z1)
1/22z(N+2)/2(z1)

−N/2(N + 2)−1 = (1 + o(1))A(z)1/22z(N + 2)−1, (13)

for z in D(z0, 1). Further,

Z(z)/Z(z0) = (1 + o(1))(z/z0)
(N+2)/2

for z in D(z0, 1) and, since Z is locally univalent, by (12), the function Z has, in D(z0, 1/2), at
least one simple island H0 mapped univalently onto the closed region H1 given by

| log |Z/Z0|| ≤ N1/3, | arg Z| ≤ π/4, Z0 = |A(z0)
1/22z0(N + 2)−1| = (1 + o(1))|Z(z0)|. (14)

By (11), Z0 exp(−N1/3) is large, when s is large enough.
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As the next step in the proof of Lemma 1 we apply a local analogue of Hille’s asymptotic method
[8, 9] developed in [12]. We write

W (Z) = A(z)1/4w(z), (15)

for z in H0 and Z in H1, in which w is a solution of (1). The equation (1) transforms to

d2W

dZ2
+ (1 − F0(Z))W = 0, F0(Z) = A′′(z)/4A(z)2 − 5A′(z)2/16A(z)3. (16)

By (9), we have |F0(Z)| ≤ 3|Z|−2 in H1. By [12, Lemma 1] there exist solutions U1(Z), U2(Z) of
(16) satisfying

Uj(Z) = (1+o(1)) exp((−1)j iZ), U ′

j(Z) = (1+o(1))(−1)j i exp((−1)jiZ), W (U1, U2) = 2i+o(1)
(17)

in H1. We write, in H0, for q = 1, 2,

fq(z) = Cqu1(z) + Dqu2(z), uj(z) = A(z)−1/4Uj(Z), (18)

with C1,D1, C2,D2 constants. Choose z∗ in H0 so that Z∗ = Z(z∗) satisfies

|Z∗| ≤ (1/2)Z0, |U2(Z
∗)| ≤ 2, |U ′

2(Z
∗)| ≤ 2.

Then using (9), (11), (14), (17) and (18) we have

|z∗| ≤ s, u2(z
∗) = o(1), |u′

2(z
∗)/u2(z

∗)| ≤ N + 2M(s,A)1/2 ≤ 3M(s,A)1/2. (19)

Further, (17) and standard properties of Wronskians give

W (u1, u2) = 2i + o(1)

in H0. Thus the equation
C1 = W (f1, u2)/W (u1, u2)

and (7) and (19) give

|C1| ≤ cM(s,A)1/2 exp(3sM(s,A)1/2) ≤ M = exp(4NZ0), (20)

using (14), and the same estimate holds for C2,D1,D2.
We require further estimates for the coefficients C1, C2,D1,D2 and for convenience we state and

prove these as Lemma 2, following which the proof of Lemma 1 will be completed.

Lemma 2. In each pair {C1,D1}, {C2,D2}, at least one term has modulus at most M−2.

Proof. Suppose that C1 and D1 each have modulus at least M−2. Set F1(Z) = A(z)1/4f1(z),
for z in H0, and Z in H1. Then we may write, using (18) and (20),

F1(Z) = −C1U1(Z)(e2iY − 1), Y = Z + S + o(1), |S| ≤ 32NZ0. (21)

It follows from (14), (20) and (21) that the image of H1 under Y covers the region

(1/4)N1/3 ≤ log |Y/Z0| ≤ (1/2)N1/3, | arg Y | ≤ π/8,

so that the number of zeros of f1 in H0 is at least exp(cN1/3Z0). Since every zero of f1 is a zero of
E and, since H0 is contained in Ω(rm,K), this contradicts the hypotheses of Theorem 1. Lemma
2 is proved.
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We return to the proof of Lemma 1. Since F1F2 has at most (rm)M zeros in H1, we may choose
Z1 in H1 with

(1/4)eN1/3

Z0 ≤ |Z1| ≤ (3/4)eN1/3

Z0

and with
|U1(Z1)| = 1 + o(1), |U2(Z1)| = 1 + o(1), (22)

and such that F1F2 has no zeros in the region

{Z : | log(Z/Z1)| ≤ N1/3(rm)−2M}.

Let vm be the pre-image of Z1 in H0. Since, by (12) and (13),

Z−1dZ/dz = (1 + o(1))(N + 2)/2z

on D(z0, 1), it follows that E = f1f2 has no zeros ζ with

| log(ζ/vm)| ≤ λ, λ = N1/3(rm)−2M (N + 2)−1 ≥ (rm)−c.

In the last inequality we have used (11).
It remains only to estimate E(vm). Since

1 = W (f1, f2) = (C1D2 − C2D1)W (u1, u2) = (C1D2 − C2D1)(2i + o(1))

in H0, it follows from (20) and Lemma 2 that either C1 and D2 each have modulus at most M−2,
or C2 and D1 each have modulus at most M−2. We assume without loss of generality that the
latter is the case. We therefore have

C1C2 = o(1),D1C2 = o(1), D1D2 = o(1), C1D2 = (1/2i)(1 + o(1)).

Further,

E = (C1u1 + D1u2)(C2u1 + D2u2) = (C1D2 + D1C2)u1u2 + C1C2u
2
1 + D1D2u

2
2

so that using (22) we have

E(vm) = (1 + o(1))(1/2i)u1(vm)u2(vm) = (1 + o(1))(1/2i)A(vm)−1/2

and Lemma 1 is proved.

3 Proof of Theorems 1 and 2

Suppose that K,M,A,E, rm are as in the statement of Theorem 1, and that vm and M1,M2 are as
in Lemma 1. Let φ(z) map the unit disc ∆ = B(0, 1) conformally onto the logarithmic rectangle
U = {w : | log |w|| < (1/4) log K, | arg w| < π}, with φ(0) = 1, and let

h(z) = hm(z) = vmφ(z)2. (23)

Defining
B(z) = A(h(z)), F (z) = E(h(z)), (24)

we have, by (2),

(h′)2F−2 = (F ′/F )2 − 2F ′′/F + 2(h′′/h′)(F ′/F ) − 4(h′)2B (25)
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for z in ∆. Since A has finite order we have, by (7),

log+ |B(z)| + log+ log+ |F (z)| ≤ (rm)d (26)

for z in ∆, using d to denote a positive constant not depending on m, not necessarily the same at
each occurrence. Using (6) and (26), we have

log+ T (r, 1/F ) ≤ log+ T (r, F ) + (rm)d ≤ (rm)d, 0 < r < 1. (27)

Since E has no zeros in the disc B(vm, (rm)−M2), and at most (rm)M zeros in the annulus Ω(rm,K),
we have

N(r, 1/F ) ≤ (rm)d, 0 < r < 1. (28)

Choose s1 in (0, 1) such that the image of the disc B(0, s1) under φ contains the arc |u| = 1, | arg u| ≤
π/2, and define sj for 2 ≤ j ≤ 4 by sj = (1 + sj−1)/2. Again since F has at most 2(rm)M zeros in
∆, we may choose r with s2 ≤ r ≤ s3 such that F has no zeros ζ with ||ζ|− r| < rm

−2M . Choose R
with s4 < R < 1 such that F has no zeros on |ζ| = R, and apply the differentiated Poisson-Jensen
formula [5, p.22] to F in B(0, R) in order to estimate F ′(z)/F (z) and (F ′/F )′(z), with |z| = r.
This gives

|F ′(z)/F (z)| + |(F ′/F )′(z)| ≤ (rm)d + (rm)d(m(R,F ) + m(R, 1/F )), |z| = r,

and so, using (27),
m(r, F ′/F ) + m(r, F ′′/F ) ≤ (rm)d.

Using (23), (24), (25), (26), and (28) we now have

T (r, 1/F ) ≤ (rm)d

and hence, using (6) again,
T (r, F ) ≤ (rm)d

from which it follows that
log |F (z)| ≤ (rm)d, |z| ≤ s1,

and, by the choice of s1,
log |E(w)| ≤ (rm)d, |w| = |vm|.

Since the sequence |vm| satisfies K−1/4rm < |vm| < K1/4rm, we obtain (4) and Theorem 1. If, in
addition, we have (5), it follows at once that E has finite order, and Theorem 2 is proved.
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