
Lemma 0.1 Let G be a domain in C, whose boundary ∂G consists of countably many pair-
wise disjoint curves γk, each either simple closed or simple and going to infinity in both
directions, and assume that these do not accumulate at finite points in the following sense:
each a ∈ C has ra > 0 such that the open disc B(a, ra) meets at most one γk. Let z1, z2 be
in G, and let η be a simple path from z1 to z2. Then there exists a simple path σ from z1 to
z2 such that σ is contained in G ∪ ∂G and consists of sub-paths of η and arcs of boundary
curves of G.

Note that the hypotheses of the lemma are clearly satisfied if G is a component of the set
{z ∈ C : |f(z)| < R}, where f is a meromorphic function on C and R is such that |f(z)| = R
implies f ′(z) 6= 0.

Proof. Assume that η is defined on I = [0, 1] and that η meets ∂G, since otherwise there is
nothing to prove. By compactness, η is covered by finitely many open discs B(a, ra/2) such
that each B(a, ra) meets at most one γk. Hence there exists ε > 0 (the minimum of finitely
many ra/2) such that if a ∈ η then B(a, ε) meets at most one γk. Moreover, there exists
δ > 0 such that |η(s) − η(t)| < ε for all s, t ∈ I with |s − t| ≤ δ. If γk is bounded, then by
the Jordan curve theorem its complement in C consists of two disjoint domains, Ek and Fk.
On the other hand, if γk is unbounded, adjoin to it the point at infinity, so that this time
the complement of γk on the Riemann sphere consists of two disjoint domains, Ek and Fk.
For each k, whether or not γk is bounded, we may assume that G ⊆ Ek.

Thus G ⊆ E = ∩Ek, and E is a connected subset of C, by the chaining lemma. Moreover,
E is open: to see this, take a ∈ E. Then a ∈ C and there exists r > 0 such that B(a, r) meets
at most one γk. Hence B(a, r) lies in all but at most one Ek, and reducing r if necessary gives
an open disc of centre a lying in E. It follows that E is a domain, with G ⊆ E. Suppose
that G 6= E. Then there exists a path in E joining z1 ∈ G to z3 6∈ G, and this path must
meet ∂G and so meet some γk, a contradiction. Hence G = E.

Because z1 ∈ G and ∂G is closed, t0 = min{t ∈ [0, 1] : η(t) ∈ ∂G} exists and is
positive: choose γk such that η(t0) ∈ γk, and let t1 = max{t ∈ [0, 1] : η(t) ∈ γk}. Since
z1, z2 ∈ G ⊆ Ek, we have η(t) ∈ Ek for 0 ≤ t < t0 and t1 < t ≤ 1. Choose a bounded arc λ
of γk joining η(t0) to η(t1) and replace the part of η for t0 ≤ t ≤ t1 by λ. By the choice of
t0, t1, this does not affect the injectivity of the path.

For t1 < t ≤ t2 = min{t1 + δ, 1} we have η(t) ∈ Ek ∩ B(η(t1), ε) and so η(t) 6∈
⋃
γj, by

the choice of ε and t1. Assume that t3 ∈ (t1, t2] has η(t3) 6∈ G. Then η(t3) 6∈ E, and so there
exists m 6= k with η(t3) 6∈ Em and hence η(t3) ∈ Fm. Since η(t) 6∈ γm for t1 ≤ t ≤ t3, we
must have η(t1) ∈ Fm. But η(t1) ∈ γk ⊆ ∂G, and so G meets Fm, a contradiction.

Hence we have η(t) ∈ G for t1 < t ≤ t2. If η(t) 6∈ G for some t ∈ [t2, 1] then t2 < 1;
hence we may take t4 = min{t ∈ [t2, 1] : η(t) ∈ ∂G} and repeat the process, but the fact
that t4 − t1 ≥ δ means that repetition cannot occur infinitely many times.
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