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Abstract

It is shown that two key results on transcendental singularities for meromorphic functions
of finite lower order have refinements which hold under the weaker hypothesis that the
logarithmic derivative has finite lower order.
MSC 2000: 30D35. Keywords: meromorphic function, direct and indirect transcendental
singularities, logarithmic derivative.

1 Introduction and results

Suppose that f is a transcendental meromorphic function on C such that, as z tends to infinity
along a path γ in the plane, f(z) tends to some α ∈ C. Then, for each t > 0, an unbounded
subpath of γ lies in a component C(t) of the set {z ∈ C : |f(z) − α| < t}. Here C(t) ⊆ C(s)
if 0 < t < s, and the intersection

⋂
t>0C(t) is empty [2]. The path γ then determines a

transcendental singularity of the inverse function f−1 over the asymptotic value α and each C(t)
is called a neighbourhood of the singularity [2, 18]. Two transcendental singularities over α are
distinct if they have disjoint neighbourhoods for some t > 0. Following [2, 18], a transcendental
singularity of f−1 over α ∈ C is said to be direct if C(t), for some t > 0, contains finitely many
points z with f(z) = α, in which case there exists t1 > 0 such that C(t) contains no α-points
of f for 0 < t < t1. A direct singularity over α ∈ C is logarithmic if there exists t > 0 such that
log t/(f(z) − α) maps C(t) conformally onto the right half plane. If, on the other hand, C(t)
contains infinitely many α-points of f , for every t > 0, then the singularity is called indirect:
a well known example is given by f(z) = z−1 sin z, with α = 0 and γ the positive real axis
R+. Transcendental singularities of f−1 over∞ and their corresponding neighbourhoods may be
defined and classified using 1/f , and the asymptotic and critical values of f together comprise
the singular values of f−1.

If f has finite (lower) order of growth, as defined in terms of the Nevanlinna characteristic
function T (r, f) [8, 18], then the number of direct singularities is controlled by the celebrated
Denjoy-Carleman-Ahlfors theorem [9, 18].

Theorem 1.1 (Denjoy-Carleman-Ahlfors theorem) Let f be a transcendental meromorphic
function in the plane of finite lower order µ. Then the number of direct transcendental singularities
of f−1 is at most max{1, 2µ}.
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A key consequence of Theorem 1.1 is that a transcendental entire function of finite lower
order µ has at most 2µ finite asymptotic values [9]. A result of Bergweiler and Eremenko [2]
shows that the critical values of a meromorphic function of finite (lower) order have a decisive
influence on indirect transcendental singularities.

Theorem 1.2 ([2]) Let f be a transcendental meromorphic function in the plane of finite lower
order.
(a) If f−1 has an indirect transcendental singularity over α ∈ Ĉ = C ∪ {∞} then each neigh-
bourhood of the singularity contains infinitely many zeros of f ′ which are not α-points of f ; in
particular, α is a limit point of critical values of f .
(b) If f has finitely many critical values then f−1 has finitely many transcendental singularities,
and all transcendental singularities are logarithmic.

Theorem 1.2 was proved in [2] for f of finite order, and was extended to finite lower order,
using essentially the same method, by Hinchliffe [11]. Part (b) follows from part (a) combined
with Theorem 1.1 and a well known classification theorem from [18, p.287], which shows in
particular that any transcendental singularity of the inverse function over an isolated singular
value is logarithmic. Theorem 1.2 was employed in [2] to prove a long-standing conjecture of
Hayman [7] concerning zeros of ff ′−1, and has found many subsequent applications, including to
zeros of derivatives [12]. The reader is referred to [3, 19] for further striking results on singularities
of the inverse, both restricted to entire functions but independent of the order of growth.

The starting question of the present paper concerns the extent to which Theorems 1.1 and 1.2
hold under the weaker hypothesis that f (k)/f has finite lower order for some k ∈ N = {1, 2, . . .}.
The obvious example f(z) = exp(exp(z)) shows that f ′/f can have finite order despite f having
infinite lower order; here f−1 has infinitely many direct (indeed logarithmic) singularities over 0
and ∞, and one over 1. Furthermore, if k ∈ N and Ak is a transcendental entire function then
the lemma of the logarithmic derivative [8] shows that every non-trivial solution of

w(k) − Ak(z)w = 0 (1.1)

has infinite lower order, even if Ak has finite order. Clearly each of exp(exp(z)) and exp(z−1 sin z)
satisfies an equation of form (1.1) with coefficient of finite order. Note further that if f is a
transcendental meromorphic function in the plane and f ′/f has finite lower order then it is easy to
prove by induction that so has Ak = f (k)/f for every k ≥ 1, using the formula Ak+1 = AkA1+A′k,
whereas the example

f(z) = e−z/2 sin(ez),
f ′(z)

f(z)
= − 1

2
+ ez cot(ez),

f ′′(z)

f(z)
=

1

4
− e2z,

shows that f ′′/f can have finite order despite f ′/f having infinite lower order.

Theorem 1.3 Let f be a transcendental meromorphic function in the plane such that f−1 has
n ≥ 1 distinct direct transcendental singularities over finite non-zero values. Let k ∈ N and let
µ be the lower order of Ak = f (k)/f . Then the following statements hold.
(i) There exists a set F0 ⊆ [1,∞) of finite logarithmic measure such that

lim
r→+∞,r 6∈F0

log (min{|Ak(z)| : |z| = r})
log r

= −∞. (1.2)
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(ii) If n ≥ 2 then n ≤ 2µ.
(iii) If n = 1 and there exist κ > 0 and a path γ tending to infinity in the complement of the
neighbourhood C(κ) of the singularity, then µ ≥ 1/2.

Theorem 1.3 will be deduced from a version of the Wiman-Valiron theory for meromorphic func-
tions with direct tracts developed in [4], and part (ii) is sharp, by Example I in Section 2.
Furthermore, if g is a transcendental entire function of lower order less than 1/2 then the inverse
function of f = 1 − 1/g has a direct singularity over 1; in this case Ak obviously has lower
order less than 1/2 but the cos πλ theorem [9, Ch. 6] implies that every neighbourhood of the
singularity contains circles |z| = r with r arbitrarily large, so that a path γ as in (iii) cannot exist.

Theorem 1.4 Let f be a transcendental meromorphic function in the plane such that f (k)/f
has finite lower order for some k ∈ N. Assume that f−1 has an indirect transcendental singularity
over α ∈ Ĉ. Then each neighbourhood of the singularity contains infinitely many zeros of f ′f (k)

which are not α-points of f .

Theorem 1.4 will be proved using a modification of methods from [2, 11].

Corollary 1.1 Let f be a transcendental meromorphic function in the plane, with finitely many
critical values, such that f ′/f has finite lower order. Then f−1 has finitely many transcendental
singularities over finite non-zero values, and f has finitely many asymptotic values. Moreover, all
transcendental singularities of f−1 are logarithmic.

Corollary 1.1 follows from Theorems 1.3 and 1.4, coupled with [18, p.287].

Corollary 1.2 Let f be a transcendental meromorphic function in the plane such that f ′′/f has
lower order µ < ∞ and f ′/f and f ′′/f ′ have finitely many zeros. Then f ′′/f ′ is a rational
function and f has finite order and finitely many poles.

To prove Corollary 1.2 observe that all but finitely many zeros of f ′f ′′ are zeros of f . Thus f−1

has no indirect singularities, by Theorem 1.4, and hence f has finitely many asymptotic values,
in view of Theorem 1.3. Since f evidently has finitely many critical values, the result follows via
[12, Theorem 2]. The condition µ <∞ holds if f ′/f has finite lower order, and is not redundant,
because of an example in [12]. 2

The last result of this paper is related to the following theorem from [14].

Theorem 1.5 ([14]) Let M be a positive integer and let f be a transcendental meromorphic
function in the plane with transcendental Schwarzian derivative

Sf (z) =
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

, (1.3)

such that: (i) f has finitely many critical values and all multiple points of f have multiplicity at
most M ; (ii) the inverse function of f has finitely many transcendental singularities.

Then the following three conclusions hold: (a) f has infinitely many multiple points; (b) the
inverse function of Sf does not have a direct transcendental singularity over ∞; (c) the value ∞
is not Borel exceptional for Sf .
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Conclusion (a) is a result of Elfving [6] and Rolf Nevanlinna [17, 18], but was proved in [14]
by a completely different method. The following example shows that under the hypotheses of
Theorem 1.5 the inverse of the Schwarzian can have a direct transcendental singularity over a
finite value: write

g(z) = sinh z, Sg(z) = 1− 3 tanh2 z

2
,

so that S−1g has two logarithmic singularities over −1/2. However, assumptions (i) and (ii) of
Theorem 1.5 imply that f belongs to the Speiser class S [1, 2] consisting of all meromorphic
functions in the plane for which the inverse function has finitely many singular values. For f ∈ S,
the following result excludes direct singularities of the inverse of Sf over 0.

Theorem 1.6 Let f be a transcendental meromorphic function in the plane belonging to the
Speiser class S, with transcendental Schwarzian derivative Sf . Then the inverse function of Sf
does not have a direct transcendental singularity over 0.

The example f(z) = tan2
√
z from [5] shows that for f ∈ S it is possible for 0 to be an asymptotic

value of Sf . Here direct computation shows that f ′′(z)/f ′(z) tends to 0 as z → ∞ in the left
half plane, and so does Sf (z).

The author thanks the referees for helpful comments.

2 Examples illustrating Theorems 1.3 and 1.4

Example I. A function extremal for Theorem 1.3(ii), but not for Theorem 1.1, is given by

f(0) = 1,
f ′(z)

f(z)
=

πz

sin πz
.

Here f is meromorphic in the plane, having at each non-zero integer n a zero or pole of multiplicity
|n|, depending on the sign and parity of n. Hence N(r, f) and N(r, 1/f) have order 2. Because

0 < α =

∫ +∞

0

πy

sinhπy
dy =

∫ +∞

0

πy

πy + (πy)3/6 + . . .
dy <

∫ 1

0

1 dy +

∫ ∞
1

6

π2y2
dy < π

and f ′/f is even, f has distinct asymptotic values e±iα, approached as z tends to infinity along
the imaginary axis. As f ′/f has finite order and f has no finite non-zero critical values, both of
these singularities of f−1 are direct by Theorem 1.4. 2

Example II. Define g by

g(0) = 1,
g′(z)

g(z)
= A1(z) =

1

π cos
√
z
.

The zeros of cos
√
z occur where

√
z = bn = (2n + 1)π/2, with n ∈ Z, and the residue of

A1 at b2n is ±(2n + 1). Thus g is meromorphic in C, with zeros and poles in R+ and no finite
non-zero critical values. Integration along the negative real axis shows that g has a non-zero real
asymptotic value α, and g−1 has a logarithmic singularity over α by Corollary 1.1. This gives
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δ > 0 and a simply connected component C of {z ∈ C : |g(z)−α| < δ} with (−∞, R) ⊆ C for
some R < 0. Moreover, C is symmetric with respect to R, since g is real meromorphic, so that
C ∩ R+ is bounded, and g is extremal for Theorem 1.3(iii). 2

Example III. Let F (z) = exp(−z/2− (1/4) sin 2z) cos z, so that F ′′/F is entire of finite order.
Then F (z) tends to 0 along R+ and this singularity of F−1 is evidently indirect. 2

Example IV. Define entire functions A1 and v by

v(0) = 1,
v′(z)

v(z)
= A1(z) =

1− cos z

z2
=

1

2
+ . . . .

Then there exists α ∈ R+ such that v(x)→ exp(±α) as x→ ±∞ on R and, since A1 does not
satisfy (1.2), Theorem 1.3 implies that v−1 has no direct singularities over finite non-zero values.
Because all critical points of v are real, all but finitely many of them belong to neighbourhoods
of the indirect singularities over exp(±α), and so v−1 has no other indirect singularities, by
Theorem 1.4. Thus applying [18, p.287] again, in conjunction with Iversen’s theorem, shows that
v−1 has logarithmic singularities over the omitted values 0 and ∞. 2

Example V. Let h(z) = exp(sin z − z), so that A1 = h′/h is entire of finite order but does
not satisfy (1.2). Since h(z) tends to 0 along R+, and to ∞ on the negative real axis, with
h′(2πn) = 0 for all n ∈ Z, these singularities of h−1 are direct but not logarithmic. 2

3 Preliminaries

The following well known estimate may be found in Theorem 8.9 of [9].

Lemma 3.1 ([9]) Let D1, . . . , Dn be n ≥ 2 pairwise disjoint plane domains. If u1, . . . , un are
non-constant subharmonic functions on C such that uj vanishes outside Dj then

lim inf
r→∞

h(r)

rn/2
> 0, h(r) = max

1≤j≤n
B(r, uj), B(r, uj) = sup{uj(z) : |z| = r}. (3.1)

2

For a ∈ C and R > 0 denote by D(a,R) the open disc of centre a and radius R, and by
S(a,R) its boundary circle.

Lemma 3.2 To each k ∈ N corresponds dk ∈ (0,∞) with the following property. Suppose that
0 < R < ∞ and w = h(z) maps the domain U ⊆ C conformally onto D(a,R), with inverse
function F : D(a,R)→ U . Then there exists an analytic function Vk : D(a,R)→ C with

h(k)(z)F ′(w)k = Vk(w), |Vk(w)| ≤ dk
(R− |w − a|)k−1

as |w − a| → R− . (3.2)

Proof. Assume that a = 0 and initially that R = 1. It is clear that (3.2) holds for k = 1, with
V1(w) = 1. If (3.2) holds for k then it follows that

h(k+1)(z)F ′(w)k+1 = V ′k(w)− kh(k)(z)F ′(w)k−1F ′′(w) = V ′k(w)− kVk(w)
F ′′(w)

F ′(w)
.

5



Since F ′′(w)/F ′(w) = O(1−|w|)−1 as |w| → 1− by [10, p.5, (1.6)], applying Cauchy’s estimate
for derivatives to Vk proves the lemma by induction when R = 1. In the general case write
w = h(z) = RH(z) = Rv and z = F (w) = G(v) so that, as |w| → R−,

|h(k)(z)F ′(w)k| = R1−k|H(k)(z)G′(v)k| ≤ dkR
1−k

(1− |v|)k−1
=

dk
(R− |w|)k−1

.

2

Lemma 3.3 Let M ∈ N and s > 224 and let E1, . . . , EN be N ≥ 24M pairwise disjoint domains
in C, and for t > 0 let φj(t) be the angular measure of S(0, t)∩Ej. Then at least N − 12M of
the Ej satisfy ∫

[4s1/2,s/4]

π dt

tφj(t)
> M log s and

∫
[4s,s2/4]

π dt

tφj(t)
> M log s. (3.3)

Proof. This is a standard application as in [9, Ch. 8] or [2] of the Cauchy-Schwarz inequality,
which gives

L2

t
≤ 1

t

(
L∑
j=1

φj(t)

)(
L∑
j=1

1

φj(t)

)
≤ 2

L∑
j=1

π

tφj(t)
(3.4)

for M ≤ L ≤ N and t > 0. If s > 224 and either inequality of (3.3) fails for L ≥ 6M of the Ej,
without loss of generality for j = 1, . . . , L, then integrating (3.4) yields a contradiction via

2LM log s < 6LM log

√
s

16
≤ L2 log

√
s

16
≤ 2LM log s.

2

Lemma 3.4 ([1]) Let h be a transcendental meromorphic function in the plane belonging to
the Speiser class S. Then there exist positive constants C, R and M such that∣∣∣∣zh′(z)

h(z)

∣∣∣∣ ≥ C log+

∣∣∣∣h(z)

M

∣∣∣∣ for |z| ≥ R. (3.5)

4 Proof of Theorem 1.3

Let f be a transcendental meromorphic function in the plane such that f−1 has n ≥ 1 direct
singularities over (not necessarily distinct) finite non-zero values a1, . . . , an. Let k ∈ N; then
Ak = f (k)/f does not vanish identically. There exist a small positive δ and non-empty components
Dj of {z ∈ C : |f(z) − aj| < δ}, for j = 1, . . . n, such that f(z) 6= aj on Dj, so that Dj

immediately qualifies as a direct tract for gj = δ/(f − aj) in the sense of [4, Section 2]. Here δ
may be chosen so small that if n ≥ 2 then these Dj are pairwise disjoint. For each j, define a
non-constant subharmonic function uj on C by

uj(z) = log |gj(z)| = log

∣∣∣∣ δ

f(z)− aj

∣∣∣∣ (z ∈ Dj), uj(z) = 0 (z 6∈ Dj).
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Then [4, Theorem 2.1] implies that, with B(r, uj) as in (3.1),

lim
r→+∞

B(r, uj)

log r
= +∞, lim

r→+∞
a(r, uj) = +∞, a(r, uj) = rB′(r, uj). (4.1)

Lemma 4.1 There exists a set F0 ⊆ [1,∞), of finite logarithmic measure, such that for each
s ∈ [1,∞) \ F0 and each j there exists zj with

|zj| = s, Ak(zj) =
f (k)(zj)

f(zj)
= O (exp(−B(s, uj)/2)) . (4.2)

Proof. Fix τ with 1/2 < τ < 1 and apply the version of Wiman-Valiron theory developed in [4]
for meromorphic functions with direct tracts. By [4, Theorem 2.2 and Lemma 6.10] there exists
a set F0 ⊆ [1,∞) of finite logarithmic measure such that every s ∈ [1,∞) \F0 has the following
two properties: first, a(s, uj) is large, by (4.1), but satisfies

a(s, uj) ≤ B(s, uj)
2; (4.3)

second, for each j there exists zj with |zj| = s and u(zj) = B(s, uj) such that

f(z)− aj
f(zj)− aj

∼
(
z

zj

)−a(s,uj)
for |z − zj| <

s

a(s, uj)τ
. (4.4)

A standard application of Cauchy’s estimate for derivatives in (4.4) now gives(
f ′

f − aj

)(p)

(z) = O

(
a(s, uj)

s

)p+1

for p = 0, . . . , k − 1 and |z − zj| <
s

2a(s, uj)τ
.

It follows via [8, Lemma 3.5] that

f (k)(zj)

f(zj)
=

f (k)(zj)

f(zj)− aj
· f(zj)− aj

f(zj)
= O

(
a(s, uj)

k exp(−B(s, uj))

sk

)
,

which, by (4.3), yields (4.2) for large enough s 6∈ F0. 2

Combining (4.1) with (4.2) for j = 1 leads to (1.2). To prove the remaining assertions it
may be assumed that Ak has finite lower order µ. Choose a positive sequence (rm) tending to
infinity such that

T (8rm, Ak) < rµ+o(1)m . (4.5)

Let m be large and let w1, . . . , wqm be the zeros and poles of Ak in rm/4 ≤ |z| ≤ 4rm, repeated
according to multiplicity: then (4.5) and standard estimates yield

qm ≤ n(4rm, Ak) + n(4rm, 1/Ak) ≤
2

log 2
T (8rm, Ak) +O(1) ≤ rµ+o(1)m . (4.6)

Let Um be the union of the discs D(wj, r
−µ
m ). Since the sum of the radii of the discs of Um

is o(rm) by (4.6), there exists a set Em ⊆ [rm/2, 2rm], of linear measure at least rm, and so
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logarithmic measure lm ≥ 1/2, such that for r ∈ Em the circle |z| = r does not meet Um. A
standard application of the Poisson-Jensen formula [8] on the disc |ζ| ≤ 4rm then yields

|log |Ak(z)|| ≤ rµ+o(1)m for |z| ∈ Em. (4.7)

Since m is large and lm ≥ 1/2, there exists sm ∈ Em \ F0.
Suppose now that n = 1 and there exist κ > 0 and a path γ tending to infinity in the

complement of the neighbourhood C(κ) of the singularity, or that n ≥ 2. Then (3.1) holds, by
[9, Theorem 6.4] when n = 1, and by Lemma 3.1 when n ≥ 2. Combining (3.1) and (4.2), with
s = sm ≥ rm/2, yields points zj with |zj| = sm and, for at least one j,

Ak(zj) = O (exp(−B(sm, uj)/2)) = O
(
exp

(
−sn/2−o(1)m

))
.

On combination with (4.7) this forces 2µ ≥ n. 2

5 Indirect singularities

Proposition 5.1 Let f be a transcendental meromorphic function in the plane such that f (k)/f
has finite lower order µ for some k ∈ N. Assume that f−1 has an indirect transcendental
singularity over α ∈ C \ {0}. Then for each δ > 0 the neighbourhood C(δ) of the singularity
contains infinitely many zeros of f ′f (k).

The proof of Proposition 5.1 will take up the whole of this section. The method is adapted
from those in [2, 11], but some complications arise, in particular when k ≥ 2. Assume throughout
that f and α are as in the hypotheses but C(ε), for some small ε > 0, contains finitely many
zeros of f ′f (k). It may be assumed that α = 1, and that C(ε) contains no zeros of f ′f (k).
Choose positive integers N1, N2, . . . , N9 with 5µ+ 12 < N1 and Nj+1/Nj large for each j.

Lemma 5.1 For each j ∈ {1, . . . , N9} there exist zj ∈ C(ε) and aj ∈ C with 0 < rj =
|1− aj| < ε/2, as well as a simply connected domain Dj ⊆ C(ε), with the following properties.
The aj are pairwise distinct and the Dj pairwise disjoint. Furthermore, the function f maps Dj

univalently onto D(1, rj), with zj ∈ Dj and f(zj) = 1. Moreover, 0 6∈ Dj but Dj contains a
path σj tending to infinity, which is mapped by f onto the half-open line segment [1, aj), with
f(z)→ aj as z →∞ on σj.

This is proved exactly as in [2]. If 0 < Tj < ε/2 and zj ∈ C(Tj) is such that f(zj) = 1, let
rj be the supremum of t > 0 such that the branch of f−1 mapping 1 to zj admits unrestricted
analytic continuation in D(1, t). Then rj < Tj because f is not univalent on C(Tj), and there is
a singularity aj of f−1 with |1− aj| = rj; moreover, aj must be an asymptotic value of f . The
zj and Tj are then chosen inductively: for the details see [2] (or [13, Lemma 10.3]). 2

Lemma 5.2 Let the zj, aj, σj and Dj be as in Lemma 5.1. For t > 0, let tθj(t) be the length
of the longest open arc of S(0, t) which lies in Dj. Then f satisfies, as z tends to infinity on σj,

log
rj

|f(z)− aj|
≥
∫ |z|
|zj |

dt

4tθj(t)
. (5.1)
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Proof. Let z = H(w) be the branch of f−1 mapping D(1, rj) onto Dj. For z ∈ σj the distance
from z to ∂Dj is at most |z|θj(|z|). Thus Koebe’s quarter theorem [10, Ch. 1] implies that

|(w − aj)H ′(w)| ≤ 4|z|θj(|z|) for z = H(w), w ∈ [1, aj).

Hence, for large z ∈ σj and w = f(z), writing u = H(v) for v ∈ [1, w] gives (5.1) via

log
rj

|f(z)− aj|
=

∫
[1,w]

|dv|
|aj − v|

=

∫
H([1,w])

|du|
|(aj − v)H ′(v)|

≥
∫
H([1,w])

|du|
4|u|θj(|u|)

.

2

Since N1 > 5µ there exists a positive sequence (sn) tending to infinity such that

T (s5n, f
(k)/f) + T (s5n, f/f

(k)) ≤ sN1
n . (5.2)

Set

G(z) = zN
f (k)(z)

f(z)
, N = N5. (5.3)

Applying [15, Lemma 4.1] to 1/G (with ψ(t) = t in the notation of [15]) gives a small positive
η such that G has no critical values w with |w| = η and such that the length L(r, η,G) of the
level curves |G(z)| = η lying in D(0, r) satisfies

L(s4n, η, G) = O(s6nT (e8s4n, G)1/2) = O(s6+N1/2
n ) ≤ sN1

n as n→∞, (5.4)

using (5.2) and the fact that N1 > 12. Assume henceforth that n is large.

Lemma 5.3 At least N8 of the domain Dj and paths σj, without loss of generality D1, . . . , DN8

and σ1, . . . , σN8 , are such that

|f(z)− aj| ≤ s−N7
n for z ∈ σj with |z| ≥ sn/4. (5.5)

Proof. By Lemma 3.3 it may be assumed that, for j = 1, . . . , N8,∫
[4s

1/2
n ,sn/4]

π dt

tθj(t)
> N8 log sn,

which, on combination with Lemma 5.2, leads to (5.5). 2

Lemma 5.4 Let w1, . . . , wqn be the zeros and poles of G in s
1/4
n ≤ |z| ≤ s4n, repeated according

to multiplicity. Then
qn ≤ n(s4n, 1/G) + n(s4n, G) = o

(
sN1
n

)
(5.6)

and there exist tn, Tn satisfying

s1/2n − 1 ≤ tn ≤ s1/2n , s2n ≤ Tn ≤ s2n + 1, (5.7)

such that
max{| log |G(z)|| : z ∈ S(0, tn) ∪ S(0, Tn)} ≤ sN1+1

n . (5.8)
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Proof. (5.6) follows from (5.2). Let Un be the union of the discs D(wq, s
−N1−1
n ): these discs

have sum of radii at most s−1n and so since n is large there exist tn, Tn satisfying (5.7) such that
the circles S(0, tn), S(0, Tn) do not meet Un. Hence the Poisson-Jensen formula gives (5.8). 2

Lemma 5.5 Define sets E, Kn and Ln by E = {z ∈ C : |G(z)| < η} and

Kn = {z ∈ C : tn < |z| < Tn}, Ln = {z ∈ C : sn/4 < |z| < 4sn}.

Then the number of components Eq of E ∩Kn which meet Ln is at most sN1
n .

Proof. If the closure Fq of Eq lies in Kn then Eq must contain a zero of G, whereas if Fq 6⊆ Kn

then ∂Eq ∩Kn has arc length at least sn/8. Thus the lemma follows from (5.4) and (5.6). 2

Lemma 5.6 Let u lie on σj with sn/4 ≤ |u| ≤ 4sn. Then, with dk as in Lemma 3.2, there
exists v on σj such that:

|u| ≤ |v| ≤ |u|+ s−N3
n ; |f(v)− aj| ≤ |f(u)− aj|; |f (k)(v)| ≤ kkdks

kN3
n |f(u)− aj|. (5.9)

Proof. Starting at u, follow σj in the direction in which |f(z)−aj| decreases. Then σj describes
an arc γ joining the circles S(0, |u|) and S(0, |u|+ s−N3

n ), such that the first two inequalities of
(5.9) hold for all v ∈ γ. Since f maps Dj univalently onto D(1, rj), the inverse function H of f
maps a proper sub-segment I of the half-open line segment J = [f(u), aj) onto γ. Assume that
the last inequality of (5.9) fails for all v ∈ γ. Then Lemma 3.2 yields, on I,

|H ′(w)| ≤ k−1s−N3
n |f(u)− aj|−1/k(rj − |w − 1|)1/k−1.

Since 1, f(u) and aj are collinear, a contradiction arises via

s−N3
n ≤

∣∣∣∣∫
I

H ′(w)dw

∣∣∣∣ ≤ ∫
I

k−1s−N3
n |f(u)− aj|−1/k(rj − |w − 1|)1/k−1 |dw|

<

∫
J

k−1s−N3
n |f(u)− aj|−1/k(rj − |w − 1|)1/k−1 |dw|

=

∫ rj

|f(u)−1|
k−1s−N3

n |f(u)− aj|−1/k(rj − t)1/k−1 dt

= s−N3
n |f(u)− aj|−1/k(rj − |f(u)− 1|)1/k = s−N3

n .

2

Lemma 5.7 Let Ep be a component of E ∩Kn which meets Ln, and suppose that there exists
j = j(p) such that Ep contains k points ζ1, . . . , ζk ∈ Dj each with |f(ζq)− aj| ≤ s−N7

n . Assume
further that |ζq−ζq′ | ≥ s−N3

n for q 6= q′. Then |f(z)−aj| ≤ s−N2
n for all z ∈ Ep, and Ep ⊆ C(ε).

Proof. Let M0 = sup{|f(z)| : z ∈ Ep}; then M0 < +∞ since poles of f in C \ {0} are poles of
G, by (5.3), and |G(z)| ≤ η on the closure of Ep. Choose u0 ∈ Ep with |f(u0)| ≥M0/2. There
exists a polynomial P , of degree at most k − 1, such that

f(z) = P (z) +

∫ z

u0

(z − t)k−1

(k − 1)!
f (k)(t) dt on Ep.
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The length of the boundary of Ep is at most 2sN1
n by (5.4). Hence each z ∈ Ep can be joined to

u0 by a path in the closure of Ep, of length at most 4sN1
n , and so

|f(z)− P (z)| ≤M0ηt
−N5
n (2Tn)k−14sN1

n ≤M0s
−N4
n , (5.10)

by (5.3) and (5.7). In particular this gives |P (ζq)− aj| ≤ (1 +M0)s
−N4
n for each q. For z in Ep,

Lagrange’s interpolation formula leads to

|P (z)− aj| =

∣∣∣∣∣
k∑
q=1

(P (ζq)− aj)
∏
ν 6=q

z − ζν
ζq − ζν

∣∣∣∣∣
≤ k(1 +M0)s

−N4
n (2Tn)k−1s(k−1)N3

n ≤ (1 +M0)s
−N3
n . (5.11)

Setting z = u0 in (5.11) then delivers M0 ≤ 2|P (u0)| ≤ 2|aj|+ o(1 +M0) and so M0 ≤ 5. Now
combining (5.10) with (5.11) yields |f(z)− aj| ≤ s−N2

n and hence |f(z)− 1| < ε on Ep. Since
Ep meets Dj ⊆ C(ε), this gives Ep ⊆ C(ε). 2

For each j ∈ {1, . . . , N8} choose λ = sN2
n points uj,1, . . . , uj,λ on σj, each with sn/2 ≤

|uj,κ| ≤ sn and such that |uj,κ+1| ≥ |uj,κ| + 2s−N3
n . Applying Lemma 5.6 with u = uj,κ gives

points vj,κ ∈ σj with sn/2 ≤ |uj,κ| ≤ |vj,κ| ≤ |uj,κ| + s−N3
n ≤ 2sn and, using (5.3), (5.5) and

(5.9),
|f(vj,κ)− aj| ≤ s−N7

n , |G(vj,κ)| ≤ 2|vj,κ|N5|f (k)(vj,κ)| ≤ s−N6
n < η. (5.12)

These points vj,κ satisfy |vj,κ+1| ≥ |vj,κ|+ s−N3
n , and each lies in a component of E ∩Kn which

meets Ln. Since there are sN2
n of these vj,κ for each j, but at most sN1

n available components Ep
by Lemma 5.5, it must be the case that for each j there are at least k points vj,κ lying in the
same component Ep. Lemma 5.7 then implies that Ep ⊆ C(ε) and f(z) = aj + o(1) on Ep.

Thus for j = 1, . . . , N8 the following exist: a component Cj = Epj ⊆ C(ε) of E ∩Kn which
meets Ln and on which f(z) = aj + o(1); a point vj ∈ Cj such that, by (5.12),

sn/2 ≤ |vj| ≤ 2sn, |G(vj)| ≤ s−N6
n . (5.13)

Since Cj ⊆ C(ε), the function log |1/G(z)| is subharmonic on Cj. Moreover, because j′ 6= j
gives f(z)→ aj′ 6= aj as z →∞ on σj′ , the Cj are pairwise disjoint and none of them contains
a circle S(0, t) with t ∈ [tn, Tn]. For t > 0 let φj(t) be the angular measure of Cj ∩ S(0, t).
Then (5.7) and [20, p.116] give a harmonic measure estimate

ω(vj, Cj, S(0, Tn) ∪ S(0, tn)) ≤ c1 exp

(
−π
∫ Tn/2

2|vj |

dt

tφj(t)

)
+ c1 exp

(
−π
∫ |vj |/2
2tn

dt

tφj(t)

)
,

for j = 1, . . . , N8, in which c1 is a positive absolute constant. By Lemma 3.3 and (5.7), there
exists at least one j for which ω(vj, Cj, S(0, Tn) ∪ S(0, tn)) ≤ 2c1s

−N7
n . For this choice of j

the two constants theorem [18] delivers, using (5.8), (5.13) and the fact that |G(z)| = η on
∂Cj ∩Kn,

N6 log sn ≤ log
1

|G(vj)|
≤ log

1

η
+ 2c1s

−N7+N1+1
n ,

a contradiction since n is large. 2
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6 Proof of Theorem 1.4

This is almost identical to the corresponding proof in [2], but with Theorem 1.3 standing in for
the Denjoy-Carleman-Ahlfors theorem. Suppose that f , k and α are as in the hypotheses but
there exists ε > 0 such that in the neighbourhood C(ε) of the singularity the function f ′f (k) has
finitely many zeros which are not α-points of f : it may be assumed that there are no such zeros.
On the other hand, because the singularity is indirect, f must have infinitely many α-points in
C(ε). Since f (k)/f has finite lower order, f−1 cannot have infinitely many direct transcendental
singularities over finite non-zero values, by Theorem 1.3. Set A(ε) = {w ∈ C : 0 < |w−α| < ε}
if α ∈ C, with A(ε) = {w ∈ C : |w| > 1/ε} if α =∞. In either case it may be assumed that ε is
so small that A(ε) ⊆ C\{0} and there is no w in A(ε) such that f−1 has a direct transcendental
singularity over w.

Take z0 ∈ C(ε), with f(z0) = w0 6= α, and let g be that branch of f−1 mapping w0 to z0. If g
admits unrestricted analytic continuation in A(ε) then, exactly as in [2], the classification theorem
from [18, p.287] shows that z0 lies in a component C0 of the set {z ∈ C : f(z) ∈ A(ε) ∪ {α}}
which contains at most one point z with f(z) = α, so that C(ε) 6⊆ C0. But any z1 ∈ C(ε)
can be joined to z0 by a path λ on which f(z) ∈ A(ε) ∪ {α}, which gives λ ⊆ C0 and hence
C(ε) ⊆ C0, a contradiction.

Hence there exists a path γ : [0, 1] → A(ε), starting at w0, such that analytic continuation
of g along γ is not possible. This gives rise to S ∈ [0, 1] such that, as t → S−, the image
z = g(γ(t)) either tends to infinity or to a zero z2 ∈ C(ε) of f ′ with f(z2) = γ(S) ∈ A(ε),
the latter impossible by assumption. It follows that setting z = σ(t) = g(γ(t)), for 0 ≤ t < S,
defines a path σ tending to infinity in C(ε), on which f(z) → w1 ∈ A(ε) as z → ∞. But
then there exists δ > 0 such that an unbounded subpath of σ lies in a component C ′ ⊆ C(ε)
of the set {z ∈ C : |f(z) − w1| < δ}, with δ so small that f ′f (k) has no zeros on C ′. Further,
the singularity over w1 must be indirect, since direct singularities over values in A(ε) have been
excluded, and this contradicts Proposition 5.1.

2

7 A result needed for Theorem 1.6

Theorem 7.1 ( [16], Theorem 1) Let u be a subharmonic function in the plane such that
B(r) = sup{u(z) : |z| = r} satisfies limr→∞(log r)−1B(r) = +∞. Then there exist δ0 > 0 and
a simple path γ : [0,∞)→ C with γ(t)→∞ as t→ +∞ and the following properties:

(i) lim
z→∞,z∈γ

u(z)

log |z|
= +∞; (ii) if λ > 0 then

∫
γ

exp(−λu(z)) |dz| <∞; (7.1)

(iii) if z = γ(t) then u(γ(s)) ≥ δ0u(z) for all s ≥ t.

Conclusion (iii) and the fact that γ may be chosen to be simple are not stated in [16, Theorem 1],
but both are implicit in the proof. Here γ = γ1 ∪ γ2 ∪ . . . is constructed in [16, Section 3] so
that, for some fixed δ1 ∈ (0, 1), each γk : [k − 1, k] → C is a simple path from ak ∈ Dk to
ak+1 ∈ ∂Dk, where Dk is the component of {z ∈ C : u(z) < (1 − δ1)

−1u(ak)} containing
a1. By [16, (3.2) and (3.3)], the γk are such that 0 < δ1u(ak) ≤ u(z) < (1 − δ1)

−1u(ak)
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on λk = γk \ {ak+1} and u(ak+1) ≥ (1 − δ1)−1u(ak) > u(ak). Hence if z = γ(t) ∈ λk then
u(γ(s)) ≥ δ1u(ak) ≥ δ1(1− δ1)u(γ(t)) for all s ≥ t. If the whole path γ is not simple, take the
least k ≥ 2 such that Γk = γ1∪ . . .∪γk is not simple. Then there exists a maximal t ∈ [k− 1, k]
such that uk = γk(t) lies in the compact set Γk−1, and t < k since γk(k) = ak+1 ∈ ∂Dk.
Replacing Γk by the part of Γk−1 from a1 to uk, followed by the part of γk from uk to ak+1, does
not affect conclusions (i), (ii) and (iii), and the argument may then be repeated.

2

Theorem 7.1 leads to the following result.

Proposition 7.1 Let N ∈ N and let A be a transcendental meromorphic function in the plane
such that the inverse function of A has a direct transcendental singularity over 0. Then there
exist a path γ tending to infinity in C and linearly independent solutions U , V of

w′′ + A(z)w = 0 (7.2)

on a simply connected domain containing γ, such that U and V satisfy, as z →∞ on γ,

U(z) = z +
O(1)

zN
, U ′(z) = 1 +

O(1)

zN
, V (z) = 1 +

O(1)

zN
, V ′(z) =

O(1)

zN
. (7.3)

To prove Proposition 7.1, observe first that, as in the proof of Theorem 1.3, there exist a small
positive δ and a non-empty component D of {z ∈ C : |A(z)| < δ} such that A(z) 6= 0 on D, as
well as a non-constant subharmonic function u on C given by

u(z) = log

∣∣∣∣ δ

A(z)

∣∣∣∣ (z ∈ D), u(z) = 0 (z 6∈ D).

Then u satisfies the hypotheses of Theorem 7.1, by [4, Theorem 2.1], and so there exists a path
γ : [0,∞)→ D as in conclusions (i), (ii) and (iii). In particular, (iii) implies that

if z = γ(t) then |A(γ(s))| ≤ δ1−δ0 |A(z)|δ0 for all s ≥ t. (7.4)

Choose a simply connected domain Ω on which A has no poles, such that γ ⊆ Ω. By (7.1) it
may be assumed that |A(t)|−1/4 ≥ |t|2 ≥ 4 on γ, and that∫

γ

|t|2|A(t)| |dt| ≤
∫
γ

|t|2|A(t)|1/2 |dt| ≤
∫
γ

|A(t)|1/4 |dt| < 1

4
. (7.5)

Lemma 7.1 Let v be a solution of (7.2) on Ω. Then v(z) = O(|z|) as z →∞ on γ.

Proof. This is a standard argument along the lines of Gronwall’s lemma. Let y0 be the starting
point of γ. Differentiating twice shows that there exist constants a1, b1 such that, on Ω,

v(z) = a1z + b1 −
∫ z

y0

(z − t)A(t)v(t) dt.

If φ(z) = v(z)/z is unbounded on γ there exist ζn → ∞ on γ such that φ(ζn) → ∞ and
|φ(t)| ≤ |φ(ζn)| on the part of γ joining y0 to ζn. If n is large then (7.5) delivers a contradiction
via

|φ(ζn)| ≤ |a1|+ |b1|+ |φ(ζn)|
∫ z

y0

(1 + |t|)|tA(t)| |dt| ≤ |a1|+ |b1|+
|φ(ζn)|

2
.

2
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Lemma 7.2 (a) Let N ∈ N. Then on γ every solution vj of (7.2) has

vj(z) = αjz + βj +

∫ ∞
z

(z − t)A(t)vj(t) dt, αj, βj ∈ C, (7.6)

the integration being from z to infinity along γ. Moreover, vj satisfies, as z →∞ on γ,

vj(z)− αjz − βj =
O(1)

zN
, v′j(z)− αj =

O(1)

zN
. (7.7)

(b) If v1, v2 are linearly independent solutions of (7.2) on Ω then |α1|+ |α2| > 0 in (7.6), and if
α2 = 0 then β2 6= 0.

Proof. First, (7.6) follows from (7.5) and Lemma 7.1. Next, (7.1), (7.4), (7.5), (7.6) and
Lemma 7.1 imply that, as z →∞ on γ,

|vj(z)− αjz − βj| ≤ |z|
∫ ∞
z

(1 + |t|)|A(t)|O(|t|) |dt|

≤ |z| δ(1−δ0)/2|A(z)|δ0/2
∫ ∞
z

(1 + |t|)|A(t)|1/2O(|t|) |dt| = O(1)

zN
,

|v′j(z)− αj| =

∣∣∣∣∫ ∞
z

A(t)vj(t) dt

∣∣∣∣
≤ δ(1−δ0)/2|A(z)|δ0/2

∫ ∞
z

|A(t)|1/2O(|t|) |dt| = O(1)

zN
.

Finally, suppose that v1, v2 are linearly independent solutions of (7.2) on Ω but the conclusion of
(b) fails. Then v1(z)v′2(z) − v′1(z)v2(z) → 0 as z → ∞ on γ, by (7.7), contradicting the fact
that W (v1, v2) is a non-zero constant by Abel’s identity. 2

Now fix linearly independent solutions v1, v2 of (7.2) on Ω. Then α1, α2 cannot both vanish in
(7.6). On the other hand, it is possible to ensure that one of α1, α2 is 0, by otherwise considering
α2v1 − α1v2. Hence it may be assumed that α1 = 1, while α2 = 0 and β2 = 1. Now write
U = v1 and V = v2, so that Lemma 7.2 gives (7.3). 2

8 Proof of Theorem 1.6

Assume that f and Sf are as in the hypotheses but that the inverse function of Sf has a direct
transcendental singularity over 0. Then evidently so has that of A = Sf/2, and it is well known
that (1.3) implies that f is locally the quotient of linearly independent solutions of (7.2). Now
Proposition 7.1 gives linearly independent solutions U , V of (7.2) satisfying (7.3) on a path γ
tending to infinity. Moreover, h = U/V has the form h = T ◦f , for some Möbius transformation
T , and so h ∈ S, whereas h(z) ∼ z and zh′(z)/h(z) = O(1) on γ, contradicting (3.5). 2
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