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Abstract

Let f be a real meromorphic function of infinite order in the plane such that f has
finitely many poles. Then for each k ≥ 3, at least one of f and f (k) has infinitely many
non-real zeros. Together with a result of Edwards and Hellerstein this establishes the
analogue for higher derivatives of a conjecture going back to Wiman around 1911.
MSC 2000: 30D20, 30D35.

1 Introduction

The starting point of this paper is the following theorem, in which the term real entire function
denotes an entire function mapping R into R.

Theorem A. Let f be a real entire function such that f and f ′′ have only real zeros. Then f
belongs to the Laguerre-Pólya class LP .

Here the class LP [4, 16, 17, 20, 23] consists of those entire functions g such that g is a
locally uniform limit of real polynomials with real zeros, from which it follows that g and all its
derivatives have only real zeros.

Following partial results in [16, 17, 20] and elsewhere, Theorem A was proved by Sheil-Small
[23] when f has finite order, and for infinite order in [4], and confirmed a conjecture going back
to Wiman around 1911 [1, 2, 20].

The present paper is concerned with the analogous problem in which the second derivative
f ′′ is replaced by a higher derivative f (k), k ≥ 3. The following theorem will be proved: here a
meromorphic function is called real if it maps R into R ∪ {∞}.

Theorem 1.1 Let k ≥ 3 be an integer, and let f be a real meromorphic function of infinite order
in the plane such that f has finitely many poles. Then at least one of f and f (k) has infinitely
many non-real zeros.

∗Research partly carried out during a visit to the Christian-Albrechts-Universität Kiel, supported by a
grant from the Alexander von Humboldt Stiftung. The author thanks the Mathematisches Seminar and in
particular Walter Bergweiler for their hospitality.

1



Theorem 1.1 is also true for k = 2 [4, Theorems 1.2 and 1.3]. On combination with a result
of Edwards and Hellerstein [7, Corollary 5.2], Theorem 1.1 establishes the following analogue of
Theorem A.

Theorem 1.2 Let f be a real entire function such that f and f (k) have only real zeros, for some
k ≥ 3. Then f ∈ LP .

2 Preliminaries

Definitions 2.1 For a ∈ C and r > 0 set

D(a, r) = {z ∈ C : |z − a| < r}, S(a, r) = {z ∈ C : |z − a| = r},

and
A(r,∞) = {z ∈ C ∪ {∞} : r < |z| ≤ ∞}.

Further, set

H+ = {z ∈ C : Im z > 0}, D+(0, r) = D(0, r) ∩H+, A+(r,∞) = A(r,∞) ∩H+. (1)

The following lemma is standard.

Lemma 2.1 ([26]) Let u be a non-constant continuous subharmonic function in the plane. For
r > 0 let θ∗(r) be the angular measure of that subset of S(0, r) on which u(z) > 0, except that
θ∗(r) = ∞ if u(z) > 0 on the whole circle S(0, r). Then for r > 0,

B(r, u) = max{u(z) : |z| = r} ≤ 3

2π

∫ 2π

0

max{u(2reit), 0}dt (2)

and, if r ≤ R/4 and r is sufficiently large,

B(r, u) ≤ 9
√

2B(R, u) exp

(
−π
∫ R/2

2r

ds

sθ∗(s)

)
. (3)

The inequality (2) follows from Poisson’s formula, and (3) from a standard application of a well
known estimate for harmonic measure [26, pp.116-7]. 2

It will be convenient to use the following standard estimate for harmonic measure.

Lemma 2.2 ([27]) Let z0 6= 0 lie in the simply connected domain D, and let r be positive with
r 6= |z0|. For s > 0 let θ(s) denote the angular measure of D ∩ S(0, s), and let Dr be the
component of D\S(0, r) which contains z0. Then the harmonic measure of S(0, r) with respect
to the domain Dr, evaluated at z0, satisfies

ω(z0, S(0, r), Dr) ≤ exp

(
− 1

π

∣∣∣∣∫ r

|z0|

ds

s tan(θ(s)/4)

∣∣∣∣) .
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The next lemma requires the characteristic function in a half-plane as developed by Tsuji [25]
and Levin and Ostrovskii [20] (see also [10]). Let g be meromorphic in a domain containing the
closed upper half-plane H = {z ∈ C : Im z ≥ 0}. For t ≥ 1 let n(t, g) be the number of poles
of g, counting multiplicity, in {z : |z − it/2| ≤ t/2, |z| ≥ 1}, and for r ≥ 1 set

N(r, g) =

∫ r

1

n(t, g)

t2
dt.

The Tsuji characteristic T(r, g) is given by

T(r, g) = m(r, g) + N(r, g), m(r, g) =
1

2π

∫ π−sin−1(1/r)

sin−1(1/r)

log+ |g(r sin θeiθ)|
r sin2 θ

dθ. (4)

Lemma 2.3 ([20]) Let g be meromorphic in H such that

m(r, g) = O(log r) as r →∞, (5)

where m(r, g) is given by (4). Then∫ ∞

R

m0π(r, g)

r3
dr = O(R−1 logR) as R→∞, (6)

in which

m0π(r, g) =
1

2π

∫ π

0

log+ |g(reiθ)|dθ. (7)

Proof. A result of Levin-Ostrovskii [20, p. 332] leads to∫ ∞

R

m0π(r, g)

r3
dr ≤

∫ ∞

R

m(r, g)

r2
dr = O(R−1 logR) as R→∞,

which gives (6). 2

The following theorem was proved for families of analytic functions by Schwick [22] and in
the meromorphic case in [5], using in both cases but in different ways the rescaling method [28].

Theorem 2.1 ([5, 22]) Let k ≥ 2 and let F be a family of functions meromorphic on a plane
domain D such that ff (k) has no zeros in D, for each f ∈ F . Then the family {f ′/f : f ∈ F}
is normal on D.

Lemma 2.4 Let k ≥ 2 and η > 0 and let g be analytic in D(0, 2η) with g(z)g(k)(z) 6= 0 there,
and let G = g′/g. Then

logM(η,G) ≤ c0(1 + log+ |G(0)|),

in which c0 = c0(η) > 0 depends only on η.

Proof. Let

h(z) = g(2ηz), H(z) =
h′(z)

h(z)
= 2ηG(2ηz)
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for |z| < 1, and use Cj to denote positive absolute constants. Since h(z)h(k)(z) 6= 0, Theorem
2.1 implies that

|H ′(z)|
1 + |H(z)|2

≤ C1 for |z| ≤ 3

4
.

This in turn implies that the Ahlfors-Shimizu characteristic T0(r,H) satisfies

T0

(
3

4
, H

)
≤ C2.

But [12, p.13] now leads to

logM

(
1

2
, H

)
≤ C3T

(
3

4
, H

)
≤ C3

(
T0

(
3

4
, H

)
+ C4 + log+ |H(0)|

)
,

and this gives the result for G. 2

Lemma 2.5 Let 0 < σ < π/2. Let S ≥ 1 and let g be analytic in S/64 < |z| < 64S, Im z > 0,
with g(z)g(k)(z) 6= 0 there. Set G = g′/g. Then

M1 = max{|G(z)| : S/32 ≤ |z| ≤ 32S, σ ≤ arg z ≤ π − σ}

and
M2 = min{|G(z)| : S/32 ≤ |z| ≤ 32S, σ ≤ arg z ≤ π − σ}

satisfy
log+M1 ≤ c1(1 + logS + log+M2),

in which c1 > 0 depends only on σ.

Proof. When S = 1 Lemma 2.5 is proved by applying Lemma 2.4 repeatedly. Suppose now that
S > 1, and set

gS(z) = g(Sz), GS(z) =
g′S(z)

gS(z)
= SG(Sz).

Then
|G(Sz)| ≤ |GS(z)| ≤ S|G(Sz)|

and so Lemma 2.5 is proved. 2

Lemma 2.6 Let D = D+(0, 1) be as defined in (1) and let w = g(z) be a conformal map of D
onto the unit disc D(0, 1) sending i/2 to 0. Then there exists c > 0 such that

|g(z)− g(z′)| ≥ c|z − z′|2 for z, z′ ∈ ∂D. (8)

The following elementary proof is included for completeness. The function g is the composition
of the map h(z) = z + 1/z with a Möbius transformation of the lower half-plane onto the unit
disc. Assuming (8) false there exist sequences (zn), (Zn) in ∂D with

g(zn)− g(Zn) = o(|zn − Zn|2) as n→∞.
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Without loss of generality (zn) and (Zn) converge to z∗ ∈ ∂D, and z∗ must be ±1, since
otherwise g−1 is analytic at g(z∗). Assume that z∗ = 1 and |zn − 1| ≤ |Zn − 1|. Then

1− 1

znZn

= o(|zn − Zn|) = o(|Zn − 1|), Zn(zn − 1)

Zn − 1
= −1 + o(1), arg

zn − 1

Zn − 1
= π + o(1),

which is impossible. 2

The proof of Theorem 1.1 will require Fuchs’ small arcs lemma [9] in the form given in [15,
p.721]. The term log+ |1/g(0)| arises in (9) since [15, p.721] assumes the condition g(0) = 1.

Lemma 2.7 ([15]) Let R > 0 and let g be meromorphic in |z| ≤ R, with g(0) 6= 0,∞. Let
η1, η2 be positive with η1 + η2 < 1. Then there exists a subset ER of [0, R(1 − η1)], having
measure greater than R(1−η1−η2), with the following property. If r ∈ ER and Fr is a subinterval
of [0, 2π] of length m then∫

Fr

∣∣∣∣rg′(reiθ)

g(reiθ)

∣∣∣∣ dθ ≤ 400η−2
1 η−1

2

(
T (R, g) + log+ 1

|g(0)|

)
m log

2πe

m
. (9)

Lemma 2.8 ([6]) Let 1 < r < R < ∞ and let g be meromorphic in |z| ≤ R. Let I(r) be a
subset of [0, 2π] of Lebesgue measure µ(r). Then

1

2π

∫
I(r)

log+ |g(reiθ)|dθ ≤ 11Rµ(r)

R− r

(
1 + log+ 1

µ(r)

)
T (R, g).

Lemma 2.9 ([13]) Let S(r) be an unbounded positive non-decreasing function on [r0,∞),
continuous from the right, of order ρ. Let A > 1, B > 1. Then

logdensG ≤ ρ

(
logA

logB

)
, G = {r ≥ r0 : S(Ar) ≥ BS(r)}.

3 Proof of Theorem 1.1: first part

Let k ≥ 3 be an integer, and let f be a real meromorphic function of infinite order such that f
has finitely many poles and f and f (k) have finitely many non-real zeros. Assume without loss
of generality that f (m)(0) 6= 0,∞ for all non-negative integers m.

Definitions 3.1 For m = 0, . . . , k − 2 set

Lm =
f (m+1)

f (m)
, L = Lk−2, F (z) = z − 1

L(z)
= z − f (k−2)(z)

f (k−1)(z)
. (10)

The Lm are related by

Lm+1 = Lm +
L′m
Lm

. (11)

Lemma 3.1 ([18]) For m = 0, . . . , k − 2 the Tsuji characteristic of Lm satisfies

m(r, Lm) ≤ T(r, Lm) = O(log r) as r →∞. (12)
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Proof. (12) is proved for m = 0 in [18, Lemma 1] by coupling the method of [12, pp.67-77] with
the Tsuji characteristic. This can also be done using a method of G. Frank (see, for example,
[8, Theorem 3]), again with the Nevanlinna characteristic replaced by that of Tsuji. The result
for 1 ≤ m ≤ k − 2 then follows from (11) and the analogue for the Tsuji characteristic of the
lemma of the logarithmic derivative [4, 10, 20]. 2

4 The Levin-Ostrovskii representation for Lm

For m = 0, . . . , k − 2 set
Lm = φmψm, (13)

in which Lm is as in (10) and ψm is defined as follows. If f (m) has finitely many real zeros, set
ψm = 1. Assuming next that f (m) has infinitely many real zeros ap, the ap are then simple poles
of Lm satisfying, without loss of generality,

. . . < ap−1 < ap < ap+1 < . . . .

For |p| ≥ p0, where p0 is large, ap and ap+1 are of the same sign, and there is a zero bp of f (m+1),
and hence of Lm, in the interval (ap, ap+1). Then the product

ψm(z) =
∏
|p|≥p0

1− z/bp
1− z/ap

converges by the alternating series test, and satisfies

0 <
∑
|p|≥p0

arg
1− z/bp
1− z/ap

=
∑
|p|≥p0

arg
bp − z

ap − z
< π for z ∈ H+.

Lemma 4.1 For m = 0, . . . , k − 2 the functions φm and ψm in (13) are real meromorphic and
satisfy the following:
(i) ψm and φm have only simple poles, all of which are simple poles of Lm and zeros or poles of
f (m);
(ii) ψm has only real zeros and poles, all of which are simple;
(iii) all but finitely many real zeros of f (m) are poles of ψm, and all non-real zeros of f (m) are
poles of φm;
(iv) all but finitely many poles of φm are non-real zeros of f (m) and, in particular, φ0 has finitely
many poles;
(v) either ψm(H+) ⊆ H+, or ψm ≡ 1.
Further, for m = 0, . . . , k − 2,

n(r, φm) ≤
∑

0≤j<m

n(r, 1/φj) +O(1) as r →∞. (14)

Proof. When m = 0 the inequality (14) follows from part (iv), the sum on the right-hand-side
being interpreted as empty in this case. Now suppose that 1 ≤ m ≤ k− 2, and that z0 is a pole
of φm with |z0| large. Then z0 is a simple pole of φm and a non-real zero of f (m), by part (iv).
Let p be the least integer with 0 ≤ p ≤ m such that f (p)(z0) = 0. Then p ≥ 1, since f has
finitely many non-real zeros, and so φp−1(z0) = 0. This completes the proof of (14). 2
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5 Estimates for ψm

Condition (v) of Lemma 4.1 implies the Carathéodory inequality [19, Ch. I.6, Thm 8′]

1

5
|ψm(i)|sin θ

r
< |ψm(reiθ)| < 5|ψm(i)| r

sin θ
for r ≥ 1, θ ∈ (0, π). (15)

Since the image of H+ under logψm(z) contains no disc of radius greater than π/2, by part (v)
of Lemma 4.1, applying Bloch’s (or Landau’s) theorem yields∣∣∣∣ψ′m(reiθ)

ψm(reiθ)

∣∣∣∣ ≤ c

r sin θ
for r ≥ 1, θ ∈ (0, π), (16)

where c is a positive absolute constant. In particular, (15) and (16) imply that

m(r, ψm) +m(r, 1/ψm) +m(r, ψ′m/ψm) = O(log r) as r →∞. (17)

6 Estimates for T (r, φm)

Define m0π(r, φ0) by (7). Since (12), (13) and (15) give

m(r, φ0) = O(log r) as r →∞,

in which m(r, φ0) is defined as in (4), Lemma 2.3 implies that∫ ∞

R

m0π(r, φ0)

r3
dr = O(R−1 logR) as R→∞. (18)

But φ0 is a real meromorphic function with finitely many poles, using part (iv) of Lemma 4.1,
and so

T (r, φ0) = 2m0π(r, φ0) +O(log r) as r →∞.

Combining this relation with (18) yields∫ ∞

R

T (r, φ0)

r3
dr = O(R−1 logR) as R→∞,

and hence, since T (r, φ0) is non-decreasing,

T (r, φ0) = m(r, φ0) +O(log r) = O(r log r) as r →∞. (19)

Let ρ = ρ(φ0) be the order of growth of φ0. Then (19) gives

ρ = ρ(φ0) ≤ 1. (20)

Lemma 6.1 For m = 0, . . . , k − 2, as r →∞,

T (r, φ0)−O(log r) ≤ m(r, φm) ≤ T (r, φm) ≤ 2mT (r, φ0) +O(log r) = O(r log r). (21)
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Proof The estimate (21) is proved by induction on m, and is evidently true for m = 0, by (19).
Assume that 0 ≤ p ≤ k − 3 and that (21) holds for 0 ≤ m ≤ p. The relations (11) and (13)
yield

Lm+1 = φm+1ψm+1 = Lm +
φ′m
φm

+
ψ′m
ψm

= φmψm +
φ′m
φm

+
ψ′m
ψm

. (22)

Now repeated application of (17), (21) and (22) gives, as r →∞,

m(r, φp+1) = m(r, φp) +O(log r) = m(r, φ0) +O(log r) = T (r, φ0) +O(log r). (23)

Next, (14) and (21) lead to

N(r, φp+1) ≤
p∑

m=0

N(r, 1/φm) +O(log r) ≤ (2p+1 − 1)T (r, φ0) +O(log r)

as r →∞, which on combination with (23) completes the induction. 2

7 An upper bound for T (r, f) in terms of T (r, φ0)

Lemma 7.1 For all large r, and for m = 0, . . . , k − 2,

T (r, f (m)) ≤ 2T (2r, f) ≤ exp(20T (16r, φ0)). (24)

Proof. The following argument from [4] is based on the Wiman-Valiron theory [14]. Since f
has finitely many poles there exists a polynomial P1 such that f1 = P1f is an entire function of
infinite order. Let f1(z) =

∑∞
q=0 λqz

q be the Maclaurin series of f1. For r > 0 define

µ(r) = max{|λq|rq : q = 0, 1, 2, . . .}, ν(r) = max{q : |λq|rq = µ(r)},

to be respectively the maximum term and central index of f1. By [14, Theorems 10 and 12],
there exists a set E0 of finite logarithmic measure with the following property. Let r be large,
not in E0, and let z0 be such that |z0| = r and |f1(z0)| = M(r, f1). Then

f ′1(z)

f1(z)
=
ν(r)

z
(1 + o(1)) for z = z0e

it, t ∈ [−ν(r)−2/3, ν(r)−2/3].

Since
f ′(z)

f(z)
=
f ′1(z)

f1(z)
+
O(1)

z
as z →∞,

this leads at once to∫ 2π

0

∣∣∣∣f ′(reit)

f(reit)

∣∣∣∣5/6

dt ≥ ν(r)1/6r−5/6 as r →∞ with r 6∈ E0.

But (10), (13) and (15) give, for some positive absolute constant c,∫ 2π

0

∣∣∣∣f ′(reit)

f(reit)

∣∣∣∣5/6

dt ≤ cM(r, φ0)
5/6|ψ0(i)|5/6r5/6 as r →∞.
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It follows that
ν(r) ≤M(r, φ0)

5r11 as r →∞ with r 6∈ E0.

In particular, φ0 must be transcendental, since f1 has infinite order. If s is large and 2s 6∈ E0,
then

logM(s, f1) ≤ log µ(2s) + log 2 ≤ ν(2s) log 2s+O(1) ≤M(2s, φ0)
6 ≤ exp(19T (4s, φ0)),

using the fact that φ0 has finitely many poles. For r large choose R ∈ [r, 2r] such that 4R 6∈ E0,
so that

T (r, f (m)) ≤ 2T (2r, f) ≤ 2 logM(2R, f1) +O(log r) ≤ exp(20T (8R, φ0)),

which gives (24). 2

8 Pointwise estimates for logarithmic derivatives

Choose a ∈ C such that φ0(0) 6= a and

m(r, 1/(φ0 − a)) = o(T (r, φ0)) as r →∞; (25)

such values a always exist [21, p.281]. Set

n(r) = n(r, 1/(φ0 − a)), N(r) = N(r, 1/(φ0 − a)). (26)

The following estimates are consequences of (10), (21), (24) and results of Gundersen [11,
Theorem 2 and Theorem 3].

Lemma 8.1 There exists a set E1 ⊆ [1,∞), of finite logarithmic measure, such that, for m =
0, . . . , k − 2,

|Lm(z)| ≤ T (2s, f (m))2 ≤ exp(40T (32s, φ0)) for |z| = s ∈ [1,∞) \ E1, (27)

and ∣∣∣∣φ′m(z)

φm(z)

∣∣∣∣+ ∣∣∣∣ φ′0(z)

φ0(z)− a

∣∣∣∣ ≤ s−1+ρ+o(1) for |z| = s ∈ [1,∞) \ E1, (28)

where ρ = ρ(φ0) is as in (20). Further, there exist

t1 ∈ (3π/16, 5π/16), t2 ∈ (7π/16, 9π/16), t3 ∈ (11π/16, 13π/16), (29)

and R0 > 0 such that, for s ≥ R0, m = 0, . . . , k − 2, and n = 1, 2, 3,

|Lm(seitn)| ≤ T (2s, f (m))2 ≤ exp(40T (32s, φ0)) and

∣∣∣∣φ′m(seitn)

φm(seitn)

∣∣∣∣ ≤ s−1+ρ+o(1). (30)
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9 Application of Lemma 2.5

The estimates of Lemma 2.5, which followed from the normal families result Theorem 2.1, will
now be used to show that the functions Lm defined in (13) are large in a substantial part of the
upper half-plane H+.

Lemma 9.1 Let δ > 0 and C > 1. Let r be large, with

T (64r, φ0) ≤ CT (2r, φ0). (31)

Then for m = 0, . . . , k − 2, and for s ∈ [r/4, 4r] \ E1,

log |Lm(z)| ≥ C1T (2r, φ0) for |z| = s, δ ≤ arg z ≤ π − δ. (32)

Further, for m = 0, . . . , k − 2 and n = 1, 2, 3,

log |Lm(seitn))| ≥ C1T (2r, φ0) for r/4 ≤ s ≤ 4r. (33)

Here t1, t2, t3 and the exceptional set E1 are as in Lemma 8.1, and the positive constant C1

depends only on δ and C.

Proof. Let S be a member of the set [2r, 4r] \ E1, which is non-empty since r is large and E1

has finite logarithmic measure. Then (31) gives

T (16S, φ0) ≤ CT (S, φ0).

Since φ0 is transcendental with finitely many poles Lemma 2.8 now shows that the set

IS =

{
θ ∈ [0, 2π] : log |φ0(Se

iθ)| > 1

2
T (S, φ0)

}
has measure at least 8η, where η > 0 depends only on C.

Let σ = min{η, δ}. Then since φ0 is real there exists z satisfying

|z| = S, σ ≤ arg z ≤ π − σ, log |φ0(z)| >
1

2
T (S, φ0),

and hence

log |L0(z)| = log

∣∣∣∣f ′(z)f(z)

∣∣∣∣ > 1

4
T (S, φ0),

using (13), (15) and the fact that S is large. Applying Lemma 2.5 now gives (32) and (33) for
m = 0. The result for m = 1, . . . , k − 2 then follows by repeated application of (16), (22), (28)
and (30). 2

Lemma 9.2 Let δ,N > 0. There exists a set F0 ⊆ [1,∞) of logarithmic density 1 such that,
for r ∈ F0 and m = 0, . . . , k − 2,

|Lm(z)| > |z|N and |F (z)− z| < |z|−N for |z| = r, δ ≤ arg z ≤ π − δ. (34)
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Proof. By (10) it suffices to prove the result for the Lm. Let η > 0. Then by Lemma 2.9 there
exist C2 > 1 and a set E2 of upper logarithmic density at most η such that

T (64r, φ0) ≤ C2T (2r, φ0)

for large r not in E2. Assume without loss of generality that E1, which has finite logarithmic
measure, is a subset of E2. Then Lemma 9.1 gives a constant C3 > 0 such that

log |Lm(z)| ≥ C3T (2r, φ0) for m = 0, . . . , k − 2, |z| = r, δ ≤ arg z ≤ π − δ,

if r is large but not in E2. Evidently C3T (2r, φ0) > N log r for large r, since φ0 is transcendental.
Hence the set of r such that (34) holds has lower logarithmic density at least 1− η, and η may
be chosen arbitrarily small. 2

10 Singularities of the inverse function of F

Lemma 10.1 All but finitely many multiple points z0 of F in C \ R satisfy the following:
(i) z0 is a simple zero of F ′;
(ii) z0 is a simple zero of f (k−2), and a simple pole of L and φk−2;
(iii) z0 is a superattracting fixpoint of F .

Proof. By (10) poles of F in C \R must be zeros of f (k−1) and all but finitely many of these are
simple, since f (k) has finitely many non-real zeros. Hence all but finitely many multiple points of
F in C \ R are zeros of F ′. Next, (10) gives

F ′ =
f (k−2)f (k)

(f (k−1))2
. (35)

Again since f (k) has finitely many non-real zeros, it follows that all but finitely many zeros of
F ′ in C \ R are zeros of f (k−2), and hence fixpoints of F , and simple poles of L and φk−2,
using (10) again. Finally, if z0 is a zero of f (k−2) of multiplicity m0 ≥ 2 then (35) gives
F ′(z0) = (m0 − 1)/m0 6= 0. 2

Proposition 10.1 F has no finite non-real asymptotic value.

To prove Proposition 10.1 will require a number of intermediate lemmas and the following clas-
sification of asymptotic values [3, 21]. Suppose that the function g is transcendental and mero-
morphic in the plane and g(z) tends to the finite complex number a∗ as z tends to infinity
along a path γ. Then the inverse function g−1 is said to have a transcendental singularity over
a∗. For each positive t, a domain C(t) is uniquely determined as that component of the set
{z ∈ C : |g(z) − a∗| < t} which contains an unbounded subpath of γ. Here C(t) ⊆ C(s) if
0 < t < s, and the intersection of all the C(t), t > 0, is empty. The singularity of g−1 over a∗

corresponding to γ is then said to be direct if C(t), for some positive t, contains finitely many
zeros of g(z) − a∗, and indirect otherwise. If the singularity is direct then C(t), for sufficiently
small t, contains no zeros of g(z)− a∗.
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Lemma 10.2 Let α ∈ C \ R. Then the inverse function F−1 has no direct transcendental
singularity over α.

Proof. Assume that F−1 has a direct transcendental singularity over α ∈ C \ R. This gives a
small positive constant η and a component C0 of the set {z ∈ C : |F (z) − α| < η}, such that
F (z) 6= α on C0 but C0 contains a path tending to infinity on which F (z) → α. If η is chosen
small enough then C0 ⊆ C \ R and without loss of generality C0 ⊆ H+. The function

u(z) = log

∣∣∣∣ η

F (z)− α

∣∣∣∣ (z ∈ C0), u(z) = 0 (z ∈ C \ C0),

is then non-negative, non-constant and subharmonic in the plane, and vanishes outside H+. For
large t let σ(t) be the angular measure of that subset of S(0, t) on which u(z) > 0. Then
σ(t) ≤ π for all large t and, if δ > 0, then Lemma 9.2 gives σ(t) ≤ 2δ for all large t ∈ F0, where
F0 has logarithmic density 1. Hence Lemma 2.1 gives for some large r0, as r tends to infinity,

log

(
1

2π

∫ π

0

u(4reit)dt

)
≥ logB(2r, u)−O(1)

≥
∫ r

r0

πds

sσ(s)
−O(1)

≥
∫

[r0,r]∩F0

πds

2δs
−O(1)

≥ π

2δ
(1− o(1)) log r.

Since δ may be chosen arbitrarily small and

u(z) ≤ log+ |1/(F (z)− α)|+O(1),

it follows that

lim
r→∞

logm0π(r, 1/(F − α))

log r
= ∞. (36)

But (10) and (12) give, with the notation (4),

m(r, 1/(F − α)) ≤ T(r, 1/(F − α)) = O(log r) as r →∞,

which using Lemma 2.3 leads to∫ ∞

R

m0π(r, 1/(F − α))

r3
dr = O(R−1 logR) as R→∞,

contradicting (36). 2

Assume for the remainder of this section that F−1 has an indirect transcendental singularity
over some value in C \ R. Then the argument of [3, p.364] gives the following.

Lemma 10.3 There exist α ∈ C \ R and pairwise distinct values βj, j = 0, 1, 2, . . . , with
|βj − α| = ηj small and positive, and pairwise disjoint simply connected domains Uj ⊆ H+ such
that:
(i) F maps Uj univalently onto D(α, ηj);
(ii) there exists a simple path Γj ⊆ Uj tending to infinity, mapped by F onto the half-open line
segment [α, βj), with F (z) → βj as z →∞ on Γj.

12



Proof. Following [3] take α ∈ C \ R such that F−1 has an indirect singularity over α and a
corresponding path γ → ∞ on which F (z) → α. For each t > 0 let C(t) be that component
of the set {z ∈ C : |F (z) − α| < t} which contains an unbounded subpath of γ. Since the
singularity is indirect each C(t) contains infinitely many zeros of F (z)− α. Let T be small and
positive. Then it may be assumed without loss of generality that C(T ) ⊆ H+, and that C(T )
contains no zeros of F ′, since by Lemma 10.1 the function F has finitely many critical points
with F (z) ∈ D(α, |Imα|).

Let 0 < Tj < T . Let zj ∈ C(Tj) with F (zj) = α, and let ηj be the supremum of positive
s such that the branch of F−1 mapping α to zj admits unrestricted analytic continuation in
D(α, s). Then ηj < Tj since F is not univalent on C(Tj), and F maps a subdomain Uj

of C(Tj) univalently onto D(α, ηj). By a compactness argument there must be a singularity
βj ∈ ∂D(α, ηj) of F−1 and, as w → βj along [α, βj), the preimage z = F−1(w) must tend to
infinity along a path Γj in Uj.

The Uj are then constructed inductively as follows. Set T0 = T/2 and assume that βj, ηj,Γj

and Uj have been determined for j = 0, . . . , n. Let 0 < Tn+1 < min{η0, . . . , ηn}. Then for
0 ≤ j ≤ n the component C(Tn+1) satisfies C(Tn+1) 6⊆ Uj and hence C(Tn+1) ∩ Uj = ∅, from
which it follows that Un+1 ∩ Uj = ∅. 2

Choose j ∈ Z with j ≥ 0, and for convenience drop the subscripts on βj, ηj,Γj, Uj.

Lemma 10.4 Let N > 0. Then |F (z)− β| < |z|−N as z →∞ on Γ.

Proof. Let δ be small and positive. For large s let θ∗(s) denote the angular measure of the
intersection of U with the circle S(0, s). Since U ⊆ H+ and F is bounded on U , Lemma 9.2
gives θ∗(s) ≤ 2δ for all s in a set of logarithmic density 1, and so if r0 is large it follows that∫ r

r0

θ∗(s)ds

s
≤ (2δ + o(1)) log r

as r →∞. Hence applying the Cauchy-Schwarz inequality gives(
log

r

r0

)2

≤ (2δ + o(1)) log r

∫ r

r0

ds

sθ∗(s)
and

∫ r

r0

ds

4sθ∗(s)
> 2N log r (37)

as r → ∞, provided δ was chosen small enough. Let z = G(w) be the branch of the inverse
function F−1 mapping D(α, η) onto U . For z ∈ Γ the distance from z to ∂U is at most |z|θ∗(|z|)
and so Koebe’s theorem implies that

|(w − β)G′(w)| ≤ 4|z|θ∗(|z|) for z = G(w), w ∈ [α, β).

Hence, for large z ∈ Γ and w = F (z), writing u = G(v) for v ∈ [α,w] gives, using (37),

log

∣∣∣∣ β − α

β − F (z)

∣∣∣∣ =

∫ w

α

|dv|
|β − v|

=

∫ z

G(α)

|du|
|(β − v)G′(v)|

≥
∫ z

G(α)

|du|
4|u|θ∗(|u|)

≥
∫ |z|

r0

ds

4sθ∗(s)
> 2N log |z|.

2
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For z ∈ Γ let Γz denote the part of Γ joining z to infinity, so that

F (Γz) = γw = [w, β), w = F (z), z = G(w) = F−1(w). (38)

(10) gives, as z →∞ on Γ,

f (k−2)(z)

f (k−1)(z)
= z−β+β−F (z),

f (k−1)(z)

f (k−2)(z)
=

1

z − β
+µ(z), µ(z) = O(|z|−2|F (z)−β|). (39)

Denote positive constants by c, not necessarily the same at each occurrence.

Lemma 10.5 The function µ(z) in (39) satisfies∫
Γz

|µ(u)||du| ≤ c|F (z)− β|

as z →∞ on Γ.

Proof. Using (38) and (39), write

v = F (u), u = G(v), u ∈ Γz,

∫
Γz

|µ(u)||du| ≤ c

∫
[w,β)

|u|−2|v − β||G′(v)||dv|. (40)

Since U ⊆ H+ the function logG is defined on D(α, η) and maps D(α, η) univalently onto a
domain containing no disc of radius greater than π/2, and so Koebe’s theorem gives∣∣∣∣G′(v)

G(v)

∣∣∣∣ ≤ c
1

|v − β|
for v ∈ [w, β). (41)

Using (39), (40) and (41) gives, as z →∞ on Γ,∫
Γz

|µ(u)||du| ≤ c

∫
[w,β)

|u|−2|G(v)||dv| = c

∫
[w,β)

|G(v)|−1|dv| ≤ c

∫
[w,β)

|dv| ≤ c|w − β|.

2

Integrating (39) and using Lemma 10.5 leads to, for some constant A ∈ C \ {0},

f (k−2)(z) = A(z−β)(1+O(|F (z)−β|)) = A(z−β)+ τ(z), τ(z) = O(|z(F (z)−β)|), (42)

as z →∞ on Γ.

Lemma 10.6 Let 0 < σ < 1 and M ∈ N. Then the function τ(z) in (42) satisfies∫
Γz

|uMτ(u)||du| ≤ c|F (z)− β|1−σ

as z →∞ on Γ. In particular, the integral converges.
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Proof. Using (40), (41), (42) and Lemma 10.4 leads to, provided N is chosen large enough in
Lemma 10.4, ∫

Γz

|uMτ(u)||du| ≤ c

∫
[w,β)

|u|M+1|v − β||G′(v)||dv|

≤ c

∫
[w,β)

|u|M+1|G(v)||dv|

= c

∫
[w,β)

|u|M+2|dv|

≤ c

∫
[w,β)

|v − β|−σ|dv|

= c|w − β|1−σ.

2

Lemma 10.7 As z →∞ on Γ,

f(z) =
A(z − β)k−1

(k − 1)!
+O(|z|k−3) (43)

and

f ′(z) =
A(z − β)k−2

(k − 2)!
+O(|z|k−4), (44)

where A is as in (42).

Proof. Set

g(z) = f(z)− A(z − β)k−1

(k − 1)!
, h(z) = f ′(z)− A(z − β)k−2

(k − 2)!
. (45)

Then (42) gives
g(k−2)(z) = h(k−3)(z) = τ(z). (46)

Fix z0 ∈ Γ with |z0| large. Then Taylor’s formula and (45) and (46) give a polynomial Pk−3 of
degree at most k − 3 such that

f(z)− A(z − β)k−1

(k − 1)!
= g(z) = Pk−3(z) +

∫ z

z0

(z − u)k−3

(k − 3)!
τ(u)du = O(|z|k−3)

as z →∞ on Γ, using Lemma 10.6, from which (43) follows at once.
Next, if k = 3 then (44) is an immediate consequence of (42) and Lemma 10.4, while if

k ≥ 4 then (45) and (46) give a polynomial Qk−4 of degree at most k − 4 such that

f ′(z)− A(z − β)k−2

(k − 2)!
= h(z) = Qk−4(z) +

∫ z

z0

(z − u)k−4

(k − 4)!
τ(u)du = O(|z|k−4)

as z →∞ on Γ, using Lemma 10.6 again. 2
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Lemma 10.8 As z →∞ on Γ,

L0(z) =
f ′(z)

f(z)
= Rβ(z)(1 +O(|z|−2)) = Rβ(z) +O(|z|−3), Rβ(z) =

k − 1

z − β
. (47)

Proof. (47) follows at once from (43) and (44). 2

To complete the proof of Proposition 10.1, take a large positive integer n and r1 > 0 such
that the region A+(r1,∞), defined as in (1), contains no zeros nor poles of f , and none of the βj,
for 0 ≤ j ≤ n. Then by Lemma 10.8 there exist paths Γ∗j in A+(r1,∞), each tending to infinity,
and pairwise disjoint apart from a common starting point z1, such that, for j = 0, 1, . . . , n,

L0(z)−Rβj
(z) = O(|z|−3) as z →∞ with z ∈ Γ∗j . (48)

Re-labelling if necessary gives n pairwise disjoint simply connected domains D1, . . . , Dn lying in
A+(r1,∞), with Dj bounded by Γ∗j−1 and Γ∗j . For j = 1, . . . , n set

Hj(z) =
L0(z)−Rβj

(z)

Rβj−1
(z)−Rβj

(z)
= 1 +

L0(z)−Rβj−1
(z)

Rβj−1
(z)−Rβj

(z)
, (49)

and for s > 0 let θj(s) be the angular measure of the intersection of Dj with the circle S(0, s).
Since

Rβj−1
(z)−Rβj

(z) =
(k − 1)(βj−1 − βj)

(z − βj−1)(z − βj)
∼ (k − 1)(βj−1 − βj)

z2
as z →∞,

(47), (48), (49) and the construction of the domains Dj show that Hj(z) is analytic on the
closure of Dj, tends to 0 as z tends to infinity on Γj, and tends to 1 as z tends to infinity on
Γj−1.

Let c∗ be large and positive, and for j = 1, . . . , n define

uj(z) = log+

∣∣∣∣Hj(z)

c∗

∣∣∣∣ (z ∈ Dj), uj(z) = 0 (z ∈ C \Dj).

Then each uj is continuous, non-negative and subharmonic in the plane, and unbounded on Dj.
Lemma 2.1 gives, for some large r2 and for 1 ≤ j ≤ n, using (49),∫ r

r2

πds

sθj(s)
≤ logB(2r, uj) +O(1)

≤ log

(
1

2π

∫ π

0

uj(4re
it)dt

)
+O(1)

≤ log (m0π(4r,Hj)) +O(1)

≤ log (m0π(4r, L0) +O(log r)) +O(1)

as r →∞. Hence, for 1 ≤ j ≤ n,∫ r

r2

πds

sθj(s)
≤ log+ (m0π(4r, L0)) + o(log r) as r →∞. (50)
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However, the Cauchy-Schwarz inequality gives

n2 ≤
n∑

j=1

θj(s)
n∑

j=1

1

θj(s)
≤

n∑
j=1

π

θj(s)

for s ≥ r2, which on combination with (50) leads to

n2 log r ≤ n log+(m0π(4r, L0)) + o(log r), m0π(r, L0) ≥ rn−o(1) as r →∞. (51)

Since n may be chosen arbitrarily large, (51) contradicts (12) and Lemma 2.3. This completes
the proof of Proposition 10.1. 2

Proposition 10.1 now permits the following classification of non-real poles of L.

Lemma 10.9 All but finitely many poles z0 of L in C \ R satisfy conditions (i), (ii) and (iii) of
Lemma 10.1.

Proof. Let z∗ ∈ C\R be large and a pole of L. Then f (k−2)(z∗) = 0 by (10), since f has finitely
many poles. Suppose that z∗ is a zero of f (k−2) of multiplicity at least 2. Then as in the proof
of Lemma 10.1, (10) and (35) show that z∗ is an attracting fixpoint of F but not a critical point
of F , and z∗ lies in a component C∗ of the Fatou set of F , such that the iterates Fn of F tend
to z∗ locally uniformly in C∗, so that C∗ ⊆ C \ R since F is real. Further, the component C∗

must contain a non-real singular value of F−1, and using Lemma 10.1 and Proposition 10.1 all
but finitely many such singular values are themselves fixpoints of F . Hence all but finitely many
zeros of f (k−2) in C \ R are simple and by (35) are zeros of F ′. 2

11 Components of F−1(D+(0, R))

The following lemma is an immediate consequence of Lemma 10.1 and Proposition 10.1.

Lemma 11.1 There exists a simple path Γ+ : [0,∞) → H+ with the following properties:
(i) All critical values of F in H+ lie on Γ+;
(ii) Γ+ consists of countably many radial segments and arcs of circles S(0, ρj), 0 < ρj →∞;
(iii) |Γ+(t)| is non-decreasing, with limt→∞ |Γ+(t)| = ∞;
(iv) if D ⊆ H+ \ Γ+ is a simply connected domain, then all components of F−1(D) are mapped
univalently onto D by F .

2

Lemma 11.2 Let 0 < R < ∞ and let WR = {z ∈ H+ : F (z) ∈ D+(0, R)}, where D+(0, R)
is defined as in (1). Let C be a component of WR. Then there exists an integer kC such that
each value w ∈ D+(0, R) is taken kC times in C, counting multiplicity, and the number of zeros
of F ′ in C, counting multiplicity, is at least kC − 1.
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In the terminology of [24, p.4], F : C → D+(0, R) is a proper map of topological degree kC .
Proof. By the construction of the path Γ+ in Lemma 11.1, the region DR = D+(0, R) \ Γ+ is
simply connected and all components of F−1(DR) are mapped univalently onto DR by F .

Claim 1. There are finitely many components B of F−1(DR) with B ⊆ C.
If B is any component of F−1(DR) with B ⊆ C and if ∂B ∩ C contains no critical point of F ,
then using Proposition 10.1 the branch F−1

B of the inverse function of F which maps DR onto B
may be analytically continued into D+(0, R), and F maps C univalently onto D+(0, R). Since a
critical point of F belongs to the boundary of at most finitely many components B of F−1(DR),
and since F has finitely many critical points over D+(0, R), by part (iii) of Lemma 10.1, Claim
1 follows.

Let kC be the number of components B ⊆ C as in Claim 1. Clearly every value w ∈ DR

is taken kC times in C, each simply, and it follows from the open mapping theorem that no value
w ∈ D+(0, R) is taken more than kC times in C, counting multiplicity.

Claim 2. Let (zn) be a sequence in C such that limn→∞ zn = z∗ ∈ ∂∞C, where ∂∞C
denotes the boundary of C in C ∪ {∞}. Then every limit point w of the sequence (F (zn))
satisfies w ∈ ∂D+(0, R).
To prove Claim 2, assume without loss of generality that F (zn) → w0 ∈ D+(0, R) as n → ∞.
Then clearly z∗ = ∞. Take R∗ large and positive such that all w0 points of F in C and all critical
points of F over D+(0, R) lie in D(0, R∗), and such that |F (z) − w0| > δ > 0 on S(0, R∗),
where D(w0, δ) ⊆ D+(0, R). Let n be large. Then |zn| > R∗ and F ′(zn) 6= 0 and the branch
of F−1 mapping F (zn) to zn may be analytically continued throughout D(w0, δ). But this gives
z′n ∈ C with |z′n| > R∗ and F (z′n) = w0, a contradiction.

The argument of [24, Theorem 1, p.5] now shows that every value w ∈ D+(0, R) is taken
kC times in C, counting multiplicity, and the Riemann-Hurwitz formula [24, p.7] implies that F
has at least kC − 1 critical points in C, all of which must be zeros of F ′. 2

12 A growth lemma

The next lemma determines certain annuli, corresponding roughly to Pólya peaks [12, p.101], in
which the subsequent analysis will take place.

Lemma 12.1 Let N be a large positive integer and let the positive constants K and ε satisfy

K33 = 1 + 2−k−4, 0 < ε <
1

512
. (52)

Then there exist arbitrarily large r ∈ [1,∞) with the following properties:
(i)

n(K22r) ≤ (1 + 2−k−4)n(r), (53)

in which n(r) = n(r, 1/(φ0 − a)) and a are as in (25) and (26);
(ii)

T (64r, φ0) ≤ d1T (2r, φ0), (54)
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in which the positive constant d1 depends only on the order ρ of φ0;
(iii) for m = 0, . . . , k − 2, the Lm satisfy

|Lm(z)| ≤ exp(40T (64r, φ0)) (55)

for |z| = s ∈ [r, 2r] \ E1 and for

z = seitn , r ≤ s ≤ 2r, n = 1, 2, 3, (56)

where the exceptional set E1 and t1, t2, t3 are as in Lemma 8.1;
(iv) for m = 0, . . . , k − 2, the estimates

|Lm(z)| > |z|N , |F (z)− z| < |z|−N , (57)

hold for
|z| = s ∈ [r, 2r] \ E1, t1 ≤ arg z ≤ t3, (58)

and for z satisfying (56);
(v) there exist a set Jr ⊆ [r,K22r] \ E1, and a function θ(s) : Jr → (0, π/4) such that the
estimates

|φ0(z)| > |z|N+3, |Lm(z)| > |z|N ,
∣∣∣∣L′m(z)

Lm(z)

∣∣∣∣ < |z|, |F (z)− z| < |z|−N , (59)

hold for m = 0, . . . , k − 2 and

|z| = s ∈ Jr, θ(s) ≤ arg z ≤ π − θ(s); (60)

(vi) the function θ(s) satisfies, for q = 1, . . . , 22,

ε2n(r)

∫
[Kq−1r,Kqr]∩Jr

ds

sθ(s)
> T (64r, φ0); (61)

(vii) for q = 1, . . . , 22 there exists sq ∈ (Kq−1r,Kqr) ∩ Jr such that, for m = 0, . . . , k − 2,(∫ θ(sq)

−θ(sq)

+

∫ π+θ(sq)

π−θ(sq)

)
sq

∣∣∣∣φ′m(sqe
iτ )

φm(sqeiτ )

∣∣∣∣+ sq

∣∣∣∣ φ′0(sqe
iτ )

φ0(sqeiτ )− a

∣∣∣∣ dτ < 2−k−4n(r). (62)

Proof. First, part (iii) follows at once from (27) and (30).
Next, let ρ ≤ 1 be the order of growth of φ0 as in (20). Then (25) and (26) imply immediately

that n(r) also has order ρ. Denote by dj positive constants depending at most on k and ρ.
For a given d1 > 0, if r satisfies (54) and is large enough then the conclusions of part (iv)

are automatically satisfied, using (10), Lemma 9.1 and the fact that φ0 is transcendental.
It remains to show that r can be chosen to satisfy (i), (ii), (v), (vi) and (vii), and to this end

the proof of Lemma 12.1 will now be divided into two subcases, depending on ρ.

Case 1: suppose that ρ > 0.
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Then the standard existence result for Pólya peaks [12, p.101] shows that there exist r0 > 0 and
arbitrarily large r such that

n(t) ≤
(
t

r

)ρ/2

n(r) (r0 ≤ t < r), n(t) ≤
(
t

r

)3ρ/2

n(r) (r ≤ t <∞). (63)

But ρ ≤ 1 by (20), and so (53) follows using (52). Next, (25) and (63) give, for R ≥ r,

T (R, φ0) ∼ N(R) ≤ N(r0) + 2n(r)

(
1

ρ
+

(R/r)3ρ/2

3ρ

)
,

which on combination with (21) yields, for m = 0, . . . , k − 2 and large such r,

T (64r, φm) ≤ d2T (64r, φ0), T (64r, φ0) ≤ d3n(r) ≤ d3

log 2
N(2r) ∼ d3

log 2
T (2r, φ0), (64)

where d3 depends only on ρ. In particular (54) follows from (64).
To complete the proof in this case, set Jr = [r,K22r] \E1, and for each s ∈ Jr set θ(s) = δ,

with δ a small positive constant independent of r. If z satisfies (60) and r is large enough then
(59) follows from (13), (15), (16), (20), (28), (54) and Lemma 9.1. Further, provided δ is chosen
small enough, (61) holds using (64) and the fact that E1 has finite logarithmic measure. Finally,
again provided δ is small enough, the existence of sq as in (62) follows from (64) and Lemma
2.7.

Case 2: suppose that ρ = 0.
Choose a rational function R0 with R0(z) = O(|z|N+3) as z →∞ and such that

φ∗(z) = z−N−4(φ0(z)−R0(z)) (65)

is entire. Let A be a large positive constant. Since φ0 and φ∗ have order 0, there exist by Lemma
2.9 arbitrarily large positive r1 such that

n(2Ar1) ≤ (1 + 2−k−4)n(r1),

T (2Ar1, φ0) ≤ 2T (r1, φ0),

logM(4Ar1, φ
∗) ≤ 2 logM(r1, φ

∗). (66)

For 2r1 ≤ s ≤ 2Ar1 set
Us = {t ∈ [0, 2π) : |φ∗(seit)| > 1}. (67)

If Us = [0, 2π) set θ0(s) = ∞, and otherwise let θ0(s) be the Lebesgue measure of Us. Then
Lemma 2.1 gives

logM(r1, φ
∗) ≤ 9

√
2 exp

(
−π
∫ 2Ar1

2r1

ds

sθ0(s)

)
logM(4Ar1, φ

∗)

and hence, using (66),

exp

(
π

∫ 2Ar1

2r1

ds

sθ0(s)

)
≤ 18

√
2. (68)
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Let
J = {s ∈ [2r1, 2Ar1] \ E1 : Us = [0, 2π)}. (69)

Then for s ∈ [2r1, 2Ar1] \ J either s ∈ E1 or θ0(s) ≤ 2π and so provided r1 is large enough (68)
gives ∫

[2r1,2Ar1]\J

ds

s
≤ o(1) + 2π

∫ 2Ar1

2r1

ds

sθ0(s)
≤ 4 log(18

√
2),

using the fact that E1 has finite logarithmic measure. Since A may be chosen arbitrarily large
it is then evidently possible using (52) to choose r such that [r,K22r] ⊆ [r,K33r] ⊆ [r, 64r] ⊆
[2r1, 2Ar1] and such that ∫

[r,2r]\J

ds

s
≤ 1

2
logK. (70)

For this choice of r, (53) and (54) follow from (66).
Set

Jr = [r,K22r] ∩ J, θ(s) = s−1/2 (s ∈ Jr). (71)

Then (52), (66) and (70) give, for q = 1, . . . , 22,

ε2n(r)

∫
[Kq−1r,Kqr]∩Jr

ds

sθ(s)
≥ ε2n(r)

√
r

∫
[Kq−1r,Kqr]∩Jr

ds

s
≥ 1

2
ε2n(r)

√
r logK > T (64r, φ0),

provided r1 is large enough, since r1 ≤ r < 64r ≤ 2Ar1 and

T (64r, φ0) ≤ 2T (r, φ0) ∼ 2N(r) ≤ 2n(r) log r +O(1) = o(n(r)
√
r),

using (25) and (26). This proves (61).
Next, for q = 1, . . . , 22 let sq be any element of (Kq−1r,Kqr) ∩ Jr, which is non-empty by

(70) and (71). Then sq 6∈ E1, by (69) and (71), and so (28) and (71) give, since ρ = 0,(∫ θ(sq)

−θ(sq)

+

∫ π+θ(sq)

π−θ(sq)

)
sq

∣∣∣∣φ′m(sqe
iτ )

φm(sqeiτ )

∣∣∣∣+ sq

∣∣∣∣ φ′0(sqe
iτ )

φ0(sqeiτ )− a

∣∣∣∣ dτ ≤ so(1)−1/2
q < 2−k−4n(r),

again provided r1 is large enough, which proves (62).
It remains only to establish part (v). Assume r1 is large and that z satisfies (60). Then

|φ∗(z)| > 1, by (67), (69) and (71), and so

|φ0(z)| > sN+3, (72)

using (65). Also (15), (16), (28), (69), (71) and the fact that ρ = 0 give

|ψ0(z)| > s−2,

∣∣∣∣φ′m(z)

φm(z)

∣∣∣∣+ ∣∣∣∣ψ′m(z)

ψm(z)

∣∣∣∣ ≤ 1,

for m = 0, . . . , k − 2, which on combination with (72) and repeated use of (22) yields

|L0(z)| > sN+1, |Lm(z)| > sN+1 − (k − 2) > sN ,

for m = 1, . . . , k − 2. Hence (59) follows using (10). 2
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13 The number of zeros and poles of the φm

Retain the notation of Lemma 12.1, including the constants ε,K,N . In what follows all O(1)
terms should be understood as being uniformly bounded for large r as in Lemma 12.1. The aim
of this section is essentially to show that for such r and for certain s close to r the function φk−2

has more zeros than poles in |z| ≤ s.

Lemma 13.1 Let r as in Lemma 12.1 be large. Then for m = 0, . . . , k − 2 and q = 1, . . . , 22,

n(sq, 1/φm)− n(sq, φm) = n(r) + σq, |σq| < 2−k−2n(r). (73)

Proof. On the two arcs

|z| = sq, θ(sq) ≤ ± arg z ≤ π − θ(sq), (74)

the functions φ0, ψm and Lm satisfy

φ0(z) ∼ φ0(z)− a, Lm(z) ∼ L0(z), | argψm(z)| ≤ π,

by (11), (59) and part (v) of Lemma 4.1. Hence the net changes in arg φ0(z), arg(φ0(z)−a) and
arg φm(z) as z describes the two circular arcs in (74) differ by at most O(1). On combination
with (62) this gives

n(sq, 1/φm)− n(sq, φm) = n(sq, 1/(φ0 − a))− n(sq, φ0) + σ∗q , |σ∗q | < 2−k−4n(r) +O(1).

Now (73) follows since φ0 has finitely many poles and, using (26) and (53),

0 ≤ n(sq, 1/(φ0 − a))− n(r, 1/(φ0 − a)) = n(sq)− n(r) ≤ 2−k−4n(r).

2

Lemma 13.2 Let r as in Lemma 12.1 be large. For m = 0, . . . , k− 2 and for q = 1, . . . , 22 the
following inequality holds:

n(sq, φm) ≤ (2m − 1)(1 + 2−k−2)n(r) +O(1). (75)

Further, for m = 0, . . . , k − 2,

n(s22, φm)− n(s1, φm) ≤ (2m − 1)2−k−1n(r). (76)

Finally,

n(s1, 1/φk−2) ≥ n(s22, φk−2) +
n(r)

2
. (77)

Proof. The proof of (75) is by induction on m, the result for m = 0 being obvious since φ0 has
finitely many poles. Now suppose that 1 ≤ p ≤ k − 2 and that (75) holds for 0 ≤ m < p. Then
(14) and (73) give

n(sq, φp) ≤
∑

0≤m<p

n(sq, 1/φm) +O(1)

≤
∑

0≤m<p

(n(sq, φm) + (1 + 2−k−2)n(r)) +O(1)

≤
∑

0≤m<p

2m(1 + 2−k−2)n(r) +O(1)

= (2p − 1)(1 + 2−k−2)n(r) +O(1),
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so that (75) is proved in full.
Further, (76) is true for m = 0, using the fact that φ0 has finitely many poles. Assume that

1 ≤ p ≤ k− 2 and that (76) is true for 0 ≤ m < p. Then (73) and the same argument as in the
proof of (14) give

n(s22, φp)− n(s1, φp) ≤
∑

0≤m<p

(n(s22, 1/φm)− n(s1, 1/φm))

≤
∑

0≤m<p

(n(s22, φm)− n(s1, φm) + 2−k−1n(r))

≤
∑

0≤m<p

2m2−k−1n(r) = (2p − 1)2−k−1n(r).

Thus (76) is also proved by induction.
Next, (73) and (76) lead to

n(s1, 1/φk−2) ≥ n(s1, φk−2) + n(r)− 2−k−2n(r) ≥ n(s22, φk−2) + n(r)− 2−k−2n(r)− 2−3n(r),

which gives (77). 2

14 The behaviour of L and F near zeros of φk−2

Assume henceforth that r as in Lemma 12.1 is large.

Lemma 14.1 There exist positive real numbers λ and Λ depending on r, with λ small and Λ
large, and

N0 ≥
1

2
n(s1, 1/φk−2)−

n(r)

32

pairs {Aj, Bj} such that with the notation of Definitions 2.1:
(i) Aj is a component of the set L−1(D+(0, λ)), mapped univalently onto D+(0, λ) by L;
(ii) Bj is a component of the set F−1(A+(Λ,∞)), mapped univalently onto A+(Λ,∞) by F ;
(iii) Aj ⊆ Bj ⊆ D+(0, Kr);
(iv) Bj ∩Bj′ = ∅ for j 6= j′;
(v) ∂Aj ∩ ∂Bj contains one zero of L.

Proof. Since

L = Lk−2 =
f (k−1)

f (k−2)
= φk−2ψk−2,

by (10) and (13), and since every pole of ψk−2 is simple and a simple pole of L, all zeros of φk−2

are zeros of L and poles of F .
Let ζν be the distinct zeros of L in D(0, Kr). Choose λ so small and Λ so large that each ζν

lies in a component Cν ⊆ D(0, Kr) of the set L−1(D(0, λ)), and in a component C∗
ν ⊆ D(0, Kr)

of the set F−1(A(Λ,∞)). It may be assumed that Cν ⊆ C∗
ν , since (10) gives

|F (z)| ≥ λ−1 −Kr for z ∈ Cν .
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It may be assumed further that Λ is so large that each C∗
ν contains exactly one pole of F , possibly

multiple, and C∗
ν ⊆ C \ R if ζν is non-real.

Choose βν ∈ C \ {0} and mν ∈ N such that

L(z) = βν(z − ζν)
mν (1 + o(1)) as z → ζν .

Then L(z) and F (z) have positive imaginary part as z tends to ζν with

arg(z − ζν) = τq =
1

mν

(π
2
− arg βν + 2πq

)
, q = 0, . . . ,mν − 1,

and negative imaginary part as z tends to ζν with

arg(z − ζν) = τ ′q =
1

mν

(
−π

2
− arg βν + 2πq

)
, q = 0, . . . ,mν − 1.

Provided λ and 1/Λ are small enough this gives mν components A′ ⊆ Cν ⊆ C∗
ν of the set

L−1(D+(0, λ)), such that:
(a) the A′ are separated by the rays arg(z − ζν) = τ ′q;
(b) if δ1 is positive but small enough then each A′ contains precisely one of the radial segments
0 < |z − ζν | < δ1, arg(z − ζν) = τq.
Moreover, there are mν components B′ ⊆ C∗

ν of the set F−1(A+(Λ,∞)), again satisfying
conditions (a) and (b). Further, if A′ ⊆ H+ then A′ is contained in one of the components B′,
by (10), and if A′, A′′ are distinct such components in H+ then the corresponding components
B′, B′′ are distinct, by (b).

Let n1 be the number of zeros of φk−2 in D(0, Kr) \ R, and n2 the number of zeros of
φk−2 in the interval (−Kr,Kr), in both cases counting multiplicities. If a zero ζν of L lies in
D+(0, Kr) and |ζν | is large then ζν is a simple zero of L and a simple pole of F , since f (k) has
finitely many non-real zeros. Hence there exist components Aj ⊆ Cν and Bj ⊆ C∗

ν ⊆ D+(0, R)
as in the statement of the lemma, with ζν ∈ ∂Aj ∩ ∂Bj. The number of distinct pairs {Aj, Bj}
arising from zeros of φk−2 in D+(0, Kr) is thus

n3 ≥
1

2
n1 −O(1) =

1

2
(n0 − n2)−O(1), where n0 = n1 + n2 ≥ n(s1, 1/φk−2), (78)

using the fact that s1 < Kr.
Partition the interval [−Kr,Kr] as

−Kr = x0 < . . . < xQ = Kr,

such that L has no poles on each interval (xp−1, xp) and such that if 1 ≤ p < Q then xp is a
pole of L. Then by the construction of ψk−2 in §4, all but Q−O(1) of the xp are poles of ψk−2,
and ψk−2 has Q−O(1) zeros in the interval (−Kr,Kr). Let M,M ′ be the number of zeros of
L and ψk−2 respectively in the interval (−Kr,Kr), and for p = 1, . . . , Q let Mp be the number
of zeros of L in the interval (xp−1, xp), in each case counting multiplicity. Since zeros of φk−2

are not poles of ψk−2 and zeros of ψk−2 are not poles of φk−2, this gives

n2 +M ′ = M =

Q∑
p=1

Mp, M ′ ≥ Q−O(1). (79)
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Consider a real zero ζν of L in the interval (−Kr,Kr), of multiplicity mν . If mν is even
then there are mν/2 pairs of components {Aj, Bj} as in the statement of the lemma, with
ζν ∈ ∂Aj ∩ ∂Bj. In this case as x passes through ζν from left to right the sign of L(x) does not
change. Next, if mν is odd and L(mν)(ζν) > 0, then there are (mν + 1)/2 pairs of components
{Aj, Bj} as in the statement of the lemma with ζν ∈ ∂Aj ∩ ∂Bj, and L(x) has a positive sign
change at ζν (i.e. L(x) goes from negative to positive as x passes through ζν from left to right).
Finally, if mν is odd and L(mν)(ζν) < 0, then there are (mν−1)/2 pairs of components {Aj, Bj}
as in the statement of the lemma with ζν ∈ ∂Aj ∩ ∂Bj, and L(x) has a negative sign change at
ζν . For p = 1, . . . , Q, let Hp be the number of pairs of components {Aj, Bj} as in the statement
of the lemma, attached to zeros of L in the interval (xp−1, xp). Since the number of negative
sign changes of L in the interval (xp−1, xp) exceeds the number of positive sign changes in the
same interval by at most 1, it follows that

Hp ≥
1

2
(Mp − 1). (80)

Summing over p and using (79) and (80) it follows that there are

n4 ≥
1

2

Q∑
p=1

(Mp − 1) =
1

2
(M −Q) ≥ 1

2
n2 −O(1)

pairs of components {Aj, Bj} as in the statement of the lemma, attached to zeros of L in the
interval (−Kr,Kr), and using (78) the total number of pairs is at least

n3 + n4 ≥
1

2
(n1 + n2)−O(1) =

1

2
n0 −O(1) ≥ 1

2
n(s1, 1/φk−2)−O(1),

thus completing the proof of the lemma. 2

15 Analytic continuation of F−1

Proposition 15.1 For each componentBj ⊆ D+(0, Kr) as in Lemma 14.1 let Sj be the infimum
of S > 0 such that the branch of the inverse function F−1 mapping A+(Λ,∞) onto Bj admits
unrestricted analytic continuation in A+(S,∞). Let Rj = max{Sj, K

19r}. Then:
(i) Bj lies in a component Cj ⊆ H+ of the set F−1(A+(Rj,∞)) which is mapped univalently
onto A+(Rj,∞) by F ;
(ii) at least

N1 ≥
1

2
n(s1, 1/φk−2)−

n(r)

16

of the Cj are such that Cj ⊆ D+(0, K18r);
(iii) of the N1 components Cj in (ii) at least

N2 ≥
1

2
n(s1, 1/φk−2)−

n(r)

8

have Sj ≤ K19r = Rj.
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The proof of Proposition 15.1 will require a number of intermediate lemmas. The existence
of a component Cj as in part (i) of the lemma follows from the definition of Sj and Rj. Further,
if Sj > K19r then Rj = Sj and by Proposition 10.1 there must be a critical point z∗ of F with
z∗ ∈ ∂Cj ∩ H+ and F (z∗) ∈ S(0, Sj) ∩ H+ (note that F has finitely many critical values in
1
2
Sj < |w| < 2Sj, Imw > 0, by Lemma 10.1). But all but finitely many critical points z∗ of F

in H+ are fixpoints of F , by Lemma 10.1, in which case |z∗| = |F (z∗)| = Sj > K19r and hence
Cj 6⊆ D+(0, K18r). If the zero of F (z) − F (z∗) at z∗ has multiplicity m∗, then z∗ belongs to
the boundary of at most m∗ components Cj′ , and so (iii) follows from (ii).

To prove (ii), it suffices therefore to show that among the N0 components Cj arising from
Lemma 14.1 there are less than n(r)/32 components with Cj 6⊆ D+(0, K18r). Suppose then
that M is an integer with

M ≥ n(r)

256
(81)

and that 4M of the Cj, without loss of generality C1, . . . , C4M , are such that Cj 6⊆ D+(0, K18r),
so that Cj meets D+(0, Kr) and A+(K17r,∞).

Lemma 15.1 For Kr ≤ s ≤ K17r let θj(s) be the angular measure of Cj ∩S(0, s). Then there
exists j ∈ {1, . . . , 4M} such that

ε

∫
[Kq−1r,Kqr]∩Jr

ds

sθj(s)
≥ T (64r, φ0) (82)

for q = 8 and q = 11, where ε and Jr are as in Lemma 12.1.

Proof. Suppose first that at least M of the Cj, without loss of generality C1, . . . , CM , are such
that (82) fails for some fixed q ∈ {8, 11}.

Let s ∈ [Kq−1r,Kqr]∩Jr. For z in the closure of Cj it follows from the definition of Cj that
F (z) satisfies |F (z)| ≥ Rj ≥ K19r > Ks. Hence part (v) of Lemma 12.1 shows that the arc
|z| = s, θ(s) ≤ arg z ≤ π − θ(s), meets none of the Cj, since r is large. Thus an application of
the Cauchy-Schwarz inequality leads to

M2 ≤

(
M∑

j=1

θj(s)

)(
M∑

j=1

1

θj(s)

)
≤ 2θ(s)

M∑
j=1

1

θj(s)
.

Integrating over [Kq−1r,Kqr] ∩ Jr then gives, using (61) and the assumption that (82) fails,

T (64r, φ0) < ε2n(r)

∫
[Kq−1r,Kqr]∩Jr

ds

sθ(s)

≤ 2ε2n(r)

M2

M∑
j=1

∫
[Kq−1r,Kqr]∩Jr

ds

sθj(s)

<
2εn(r)

M
T (64r, φ0),

so that M < 2εn(r), which contradicts (52) and (81). 2
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Lemma 15.2 Assume without loss of generality that (82) is satisfied for j = 1 and for q = 8
and q = 11. Let u1 ∈ C1 be such that F (u1) = 2iR1. Choose integers p, q according to

(p, q) = (6, 8) if |u1| ≥ K9r, (p, q) = (17, 11) if |u1| < K9r,

and choose
T1 ∈ (Kp−5r,Kp−4r) \ E1, T2 ∈ (Kp−1r,Kpr) \ E1, (83)

where E1 is the exceptional set of Lemma 8.1. Choose an arc E of ∂C1 such that E joins S(0, T1)
to S(0, T2) and, apart from its endpoints, lies in T1 < |z| < T2. Then

ω(u1, E, C1) ≤ exp

(
−T (64r, φ0)

πε

)
. (84)

Proof. T1 and T2 certainly exist, since E1 has finite logarithmic measure and r is large. There
exists a rational function R∗ mapping A+(R1,∞) univalently onto D(0, 1) (see Lemma 2.6).
Thus ∂C1 consists of level curves |R∗(F (z))| = 1, and T1, T2 can be chosen so that ∂C1 meets
the circles S(0, T1), S(0, T2) only finitely often, and never tangentially. Since R∗ ◦ F maps C1

univalently onto D(0, 1) each component of ∂C1 is either a simple curve going to infinity in both
directions or a simple closed curve (in which case there is only one component). Hence the arc
E exists since Kr < T1 < T2 < K17r and C1 meets D+(0, R) and A+(K17r,∞). Using (82)
and the inequality

1

θ
≤ 1

2 tan(θ/4)
+

1

π
for 0 < θ < 2π,

gives

ε

∫
[Kq−1r,Kqr]∩Jr

ds

s tan(θ1(s)/4)
≥ T (64r, φ0).

By the choice of p and q the arc E and the point u1 are separated by the annulus Kq−1r ≤ |z| ≤
Kqr and so (84) follows from Lemma 2.2. 2

Lemma 15.3 There exists w0 ∈ F (E) with |w0| ≥ R1 ≥ K19r such that∣∣∣∣ 1

F (z)
− 1

w0

∣∣∣∣ ≤ exp

(
−T (64r, φ0)

3πε

)
for z ∈ E. (85)

Proof. The function F (z) maps C1 univalently onto A+(R1,∞) and so

F1(z) = − R1

F (z)

maps C1 univalently onto D+(0, 1), with F1(u1) = i/2. Choose z0 ∈ E and set

w0 = F (z0), v0 = F1(z0) = −R1

w0

.

Since R1 > 1 and E is mapped by F1 onto an arc of ∂D+(0, 1), Lemma 2.6 gives a positive
absolute constant c such that∣∣∣∣ 1

F (z)
− 1

w0

∣∣∣∣ < |F1(z)− v0| ≤ cω(u1, E, C1)
1/2.
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Using (84) and the fact that r is large gives (85). 2

In the remainder of this section d will denote a positive constant, not necessarily the same at
each occurrence, but independent of r and the constant ε in (85). By (52) the constant K does
not depend on r or ε.

Lemma 15.4 The arc E of ∂C1 satisfies

E ∩ F1 = ∅ where F1 = {z : T1 ≤ |z| ≤ T2, t1 ≤ arg z ≤ t3}, (86)

in which t1, t3 are as in (29). Form a domain D ⊆ H+ such that ∂D is the union of the arc E,
the radial segment

E∗ = {seit2 : T1 ≤ s ≤ T2},
and arcs T ∗1 , T

∗
2 of the circles S(0, T1), S(0, T2) respectively. Let γ1, . . . , γµ be the poles of L in

D, repeated according to multiplicity, and set

g(z) =

µ∏
ν=1

(1− z/γν).

Then
µ ≤ 2k−1n(r) ≤ dT (64r, φ0) and logM(Kpr, g) ≤ dµ, (87)

and there exists s∗ ∈ (Kp−3r,Kp−2r) \ E1 such that

log |g(z)| ≥ −dT (64r, φ0) for |z| = s∗. (88)

Finally, there exists t4 ∈ {3π/8, 5π/8} such that

s∗eit4 ∈ D and ω(s∗eit4 , E,D) ≥ d. (89)

Proof. Part (iv) of Lemma 12.1 and (83) show that |F (z)| ≤ |z| + o(1) ≤ K17r + o(1) for
z ∈ ∂F1. Thus ∂F1 does not meet the closure of C1, on which |F (z)| ≥ R1 ≥ K19r, and so
(86) follows, since E meets S(0, T1) and S(0, T2).

Since D ⊆ H+, poles of L in D must be poles of φk−2, by (10) and Lemma 4.1, and so the
estimate for µ in (87) follows from (26) and (75). The estimate for logM(Kpr, g) is elementary,
since (83) gives |γν | ≥ T1 ≥ Kp−5r ≥ K−5|z| for |z| ≤ Kpr.

Next, Cartan’s lemma [15, p.366] gives a family Y0 of discs, having sum of diameters at most

12h =
1

2
(Kp−2r −Kp−3r),

outside which, using (83) and (87),

log |g(z)| ≥
µ∑

ν=1

(log |z − γν | − log |γν |)

≥ µ(log h− log T2)

≥ µ(log h− log(Kpr))

≥ −dµ
≥ −dT (64r, φ0).
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Thus to obtain s∗ satisfying (88) it suffices to choose s∗ ∈ (Kp−3r,Kp−2r) \ E1 such that the
circle S(0, s∗) meets none of the discs of Y0, which is possible since E1 is a subset of [1,∞) of
finite logarithmic measure and r is large.

Finally, it is clear from (29) and the construction of D that s∗eit4 ∈ D, for some t4 ∈
{3π/8, 5π/8}. Suppose without loss of generality that t4 = 3π/8, so that by (86) and the
construction of D the arc E lies in 0 ≤ arg z < t1. Since t2 ≥ 7π/16 by (29), and since (83)
gives

T1 < Kp−4r < K−1s∗ < Ks∗ < Kp−1r < T2,

it follows from an elementary comparison that

ω(s∗ei3π/8, E,D) ≥ ω(s∗ei3π/8, [K−1s∗, Ks∗], D′),

where D′ is the domain given by

D′ = {z ∈ C : K−1s∗ < |z| < Ks∗, 0 < arg z < 7π/16}.

This proves (89). 2

The remainder of the proof of Proposition 15.1 will now be divided into two subcases, de-
pending on the modulus of w0 in (85).

Case 1. Suppose that ∣∣∣∣ 1

w0

∣∣∣∣ ≤ exp

(
−T (64r, φ0)

24πε

)
.

Then (85) gives ∣∣∣∣ 1

F (z)

∣∣∣∣ ≤ 2 exp

(
−T (64r, φ0)

24πε

)
for z ∈ E,

and so, using (10) and the fact that φ0 is transcendental,

|L(z)| ≤ 4 exp

(
−T (64r, φ0)

24πε

)
≤ exp

(
−T (64r, φ0)

48πε

)
for z ∈ E. (90)

The function
u(z) = log |L(z)g(z)|

is subharmonic in D by Lemma 15.4, and by (87), (90), part (iii) of Lemma 12.1 and the
construction of D satisfies

u(z) ≤
(
d− 1

48πε

)
T (64r, φ0) for z ∈ E, (91)

and
u(z) ≤ dT (64r, φ0) for z ∈ ∂D \ E. (92)

Since ε may be chosen arbitrarily small in Lemma 12.1, whereas the constants d do not depend
on ε, (89), (91), (92) and the two-constants theorem [21, p.42] lead to

u(s∗eit4) ≤ −d
ε
T (64r, φ0) (93)
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and so, recalling (88), to L(s∗eit4) = o(1). Since t1 ≤ t4 ≤ t3 and s∗ 6∈ E1, this contradicts part
(iv) of Lemma 12.1.

Case 2. Suppose that ∣∣∣∣ 1

w0

∣∣∣∣ > exp

(
−T (64r, φ0)

24πε

)
.

This time (85) implies that∣∣∣∣ 1

F (z)

∣∣∣∣ > 1

2
exp

(
−T (64r, φ0)

24πε

)
and |F (z)w0| < 2 exp

(
T (64r, φ0)

12πε

)
for z ∈ E.

Using (85) again gives∣∣∣∣z − 1

L(z)
− w0

∣∣∣∣ = |F (z)− w0| ≤ exp

(
−T (64r, φ0)

24πε

)
for z ∈ E. (94)

Since D ⊆ D(0, T2) ⊆ D(0, K17r) by (83), it follows using Lemma 15.3 that

|z − w0| ≥ R1 −K17r ≥ K19r −K17r > 2 for z ∈ D ∪ ∂D. (95)

Combining this with (94) gives |L(z)| ≤ 1 for z ∈ E and so multiplying (94) by L leads to

|(z − w0)L(z)− 1| ≤ exp

(
−T (64r, φ0)

24πε

)
for z ∈ E.

This time set
u(z) = log |((z − w0)L(z)− 1)g(z)|,

so that u is again subharmonic on D and satisfies (91) and (92). Applying the two-constants
theorem again gives (93), and so

(s∗eit4 − w0)L(s∗eit4)− 1 = o(1),

in view of (88). Using (95) once more leads to |L(s∗eit4)| ≤ 1, which again contradicts part (iv)
of Lemma 12.1.

A contradiction having been obtained in both cases, the proof of Proposition 15.1 is complete.

16 Completion of the proof of Theorem 1.1

By Proposition 15.1 there are, re-labelling if necessary,

N2 ≥
1

2
n(s1, 1/φk−2)−

n(r)

8
(96)

pairwise disjoint components D1, . . . , DN2 of the set F−1(A+(K19r,∞)) lying in D+(0, K18r),
each mapped univalently onto A+(K19r,∞) by F .

Choose R ∈ (K20r,K21r) such that F has no poles on S(0, R). For j = 1, . . . , N2 choose
vj ∈ Dj with F (vj) = K20ri. Then there exists a component Ωj ⊆ H+ of the set F−1(D+(0, R))
with vj ∈ Ωj. Here it is possible that Ωj = Ωj′ for j 6= j′. However, by Lemma 11.2, F is a
proper map of Ωj onto D+(0, R), of finite topological degree kj, and the number of zeros of F ′

in Ωj is at least kj − 1, counting multiplicity.
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Lemma 16.1 Let

W = {z ∈ H+ : F (z) ∈ H+}, Y = {z ∈ H+ : L(z) ∈ H+}. (97)

Then:
(i) Y ⊆ W ;
(ii) if x0 is a real pole of L but not a pole of f then x0 does not lie in the closure of Y ;
(iii) if z0 is a pole of f and z0 belongs to the closure of Ωj and of Ωj′ then Ωj = Ωj′ .

Proof. Assertion (i) follows directly from (10). To prove (ii) suppose that x0 is a real pole of L.
Then x0 is a simple pole of L and L is univalent on a disc D(x0, δ0) of small radius δ0. If x0 is
not a pole of f then L has positive residue at x0 which gives

lim
y→0+

ImL(x0 + iy) = −∞,

so that ImL(z) < 0 on D(x0, δ0) ∩H+ and D(x0, δ0) ∩ Y = ∅. To prove (iii) let z0 be a pole
of f in the closure of Ωj. Then F (z0) = z0 and |F (z0)| < R by the choice of R, so that if z0 is
non-real it follows that z0 ∈ Ωj. On the other hand if z0 is real then F ′(z0) > 0 by (10) and (35)
so that, provided δ0 is small enough, ImF (z) > 0 on D(z0, δ0)∩H+ and D(z0, δ0)∩H+ ⊆ Ωj,
using again the fact that |F (z0)| < R. 2

The next lemma gives an upper bound for the number of distinct vj in a given ΩJ .

Lemma 16.2 For each ΩJ let:
lJ be the number of vj in ΩJ ;
mJ be the number of simple zeros of F ′ in ΩJ which are poles of φk−2;
nJ be the number of zeros of F ′ in ΩJ , counting multiplicity, which either are multiple zeros of
F ′ or are not poles of φk−2;
pJ be the number of poles of φk−2 in ΩJ which are not simple zeros of F ′;
qJ be the number of distinct poles of f in the closure of ΩJ .
Then

lJ ≤ mJ + nJ + pJ + qJ . (98)

Proof. Assume that (98) is false for some J . The topological degree kJ of the map F : ΩJ →
D+(0, R) is at least lJ , and the number of zeros of F ′ in ΩJ is at least kJ − 1. Hence

lJ ≤ kJ ≤ mJ + nJ + 1 ≤ lJ .

Thus ΩJ must contain M = lJ = kJ distinct vj, without loss of generality v1, . . . , vM , and
precisely kJ − 1 zeros of F ′, counting multiplicity. Let

Ω = ΩJ ∪
M⋃

j=1

Dj.

Then Ω is a domain, since vj ∈ ΩJ ∩Dj, and F (Ω) ⊆ H+, so that Ω ⊆ W , where W is defined

in (97). Clearly ∂Ω ⊆ ∂ΩJ ∪
⋃M

j=1 ∂Dj. Further,

{z ∈ Ω : |F (z)| < R} = ΩJ , {z ∈ Ω : K19r < |F (z)| < R} =
M⋃

j=1

(ΩJ ∩Dj), (99)
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because each value w ∈ H+ with K19r < |w| < R is taken M times in ΩJ and precisely once in
each ΩJ ∩Dj.

Claim 1. Let z∗ ∈ ∂Ω. Then F (z∗) ∈ R ∪ {∞}.
To see this, assume that F (z∗) 6∈ R ∪ {∞}. If z∗ ∈ ∂Dj then |F (z∗)| = K19r < R, so that z∗

is the limit of a sequence in Dj ∩ ΩJ and so is in the closure of ΩJ , and hence an interior point
of ΩJ . This is impossible, and so z∗ must belong to ∂ΩJ and |F (z∗)| = R. But then (99) shows
that z∗ is the limit of a sequence in some ΩJ ∩ Dj, so that z∗ is in the closure of Dj and is
therefore an interior point of Dj, since |F (z∗)| = R and F (z∗) 6∈ R ∪ {∞}. This contradiction
completes the proof of Claim 1.

Let XJ be the component of W which contains ΩJ . Then Ω ⊆ XJ . Indeed, Ω = XJ by
Claim 1, since otherwise there exists a path γ ⊆ XJ ⊆ W joining a point in Ω to a point in
XJ \ Ω, and γ must meet the boundary of Ω.

Claim 2. If Ω is unbounded then L(z) → 0 as z →∞ in Ω.
Since F is bounded on ΩJ and each Dj is bounded, it follows that F (z) is bounded as z →∞
in Ω, which implies using (10) that L(z) → 0. This proves Claim 2.

Choose t0 ∈ (0, π) such that L has no critical values w with 0 < |w| <∞, argw = t0. Each Dj

contains by Lemma 14.1 a component Aj of the set L−1(D+(0, λ)), where λ is small and positive.
This gives M distinct points Vj ∈ Ω such that L(Vj) = 1

2
λeit0 . Take the branch of L−1 mapping

1
2
λeit0 to Vj and analytically continue L−1 along the half-open ray w = Seit0 , λ/2 ≤ S < ∞.

The image z = L−1(w) under this continuation cannot exit Ω, because Y ⊆ W , and is bounded
because of Claim 2. Thus the continuation is possible along the whole half-open ray, and as
S →∞ the image z = L−1(w) must tend to a pole z0 of L, which lies in the closure of Ω and
of Y .

Since each Dj′ is a component of the set F−1(A+(K19r,∞)) lying in D+(0, K18r), the
closure of Dj′ contains no fixpoint of F , and so z0 is in the closure of ΩJ . Further, if z0 is
real then since z0 is in the closure of Y it follows from Lemma 16.1 that z0 is a pole of f .
Suppose, on the other hand, that z0 is non-real. Then z0 is a pole of φk−2 by Lemma 4.1, and
F (z0) = z0 ∈ H+ so that z0 ∈ Ω, and again since the Dj′ contain no fixpoints of F it follows
that z0 ∈ ΩJ .

Moreover, the continuations from distinct Vj cannot coalesce, because of the choice of t0,
and cannot tend to the same pole of L, because all these poles are simple. This gives at least
kJ distinct poles of L, all of which must be poles of φk−2 in ΩJ or poles of f in the closure of
ΩJ . Hence

lJ = kJ ≤ mJ + pJ + qJ ,

contradicting the assumption that (98) is false. 2

Recall next from Lemma 10.1 that all but finitely many zeros of F ′ in H+ are simple and are
poles of φk−2, and by Lemmas 4.1 and 10.9 all but finitely many poles of φk−2 in H+ are simple
zeros of F ′. Furthermore, if z0 ∈ ΩJ is a pole of φk−2 then z0 is a pole of L and so

z0 = F (z0) ∈ D+(0, R) ⊆ D+(0, K21r) ⊆ D+(0, s22),
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where s22 is as defined in Lemma 12.1. Summing over all the distinct ΩJ and using (77), (96),
(98) and Lemma 16.1 now leads to

1

2
n(s1, 1/φk−2)−

n(r)

8
≤ N2 ≤

∑
ΩJ

lJ

≤
∑
ΩJ

(mJ + nJ + pJ + qJ)

≤ O(1) +
∑
ΩJ

mJ

≤ O(1) +
1

2
n(s22, φk−2)

≤ O(1) +
1

2
n(s1, 1/φk−2)−

n(r)

4
.

If r is large enough this gives a contradiction, and the proof of Theorem 1.1 is complete.
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