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Abstract

Two results are proved for real meromorphic functions in the plane. First, a lower
bound is given for the distance between distinct non-real poles when the function and
its second derivative have finitely many non-real zeros and the logarithmic derivative has
finite lower order. Second, if the function has finitely many non-real zeros, and one of its
higher derivatives has finitely many zeros in the plane, and if the multiplicities of non-real
poles grow sufficiently slowly, then the function is a rational function multiplied by the
exponential of a polynomial.
MSC 2000: 30D35. Keywords: real meromorphic function, derivatives, zeros.

1 Introduction

There is a long history of research into the zeros of entire functions which are real on the real axis,
and the effect of differentiation on their location. This work includes the resolution of conjectures
of Pólya and Wiman in a series of papers by several authors [2, 3, 5, 6, 20, 21, 28, 29, 32, 40, 45].
In particular, it is now known that for a real entire function f the absence of non-real zeros of f
and f (k) for some k ≥ 2 implies that f belongs to the Laguerre-Pólya class, and that the number
of non-real zeros of the kth derivative of any real entire function either is zero for all sufficiently
large k or tends to infinity with k.

The picture is less complete for real meromorphic functions, that is, functions meromorphic
in the plane mapping R into R ∪ {∞}, but results proved over recent decades may be found in
[22, 23, 24, 25, 26, 33, 34, 35, 36, 37, 43], including the following.

Theorem 1.1 ([36, 37]) Let f be a real meromorphic function in the plane, such that f has
finitely many zeros and non-real poles, and assume that f ′′ has finitely many non-real zeros.
Then f satisfies

f = SeP with S a rational function and P a polynomial. (1)

Theorem 1.2 ([33, 34]) Let f be a real meromorphic function in the plane, not of the form (1).
Let µ and k be integers with 1 ≤ µ < k. Assume that all but finitely many zeros of f and f (k)

are real, and that f (µ) has finitely many zeros. Then µ = 1 and k = 2 and f satisfies

f(z) =
R(z)eicz − 1

AR(z)eicz − A
, where c ∈ (0,∞), A ∈ C \ R, (2)
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and
R is a rational function with |R(x)| = 1 for all x ∈ R. (3)

Moreover, all but finitely many poles of f are real.
Conversely, if f is given by (2) and (3) then f satisfies the hypotheses with µ = 1 and k = 2.

Theorem 1.1 was proved in [22, 43] under the additional assumption that all zeros of f ′ are
real. Furthermore, Theorem 1.2 was established in [23], but only for µ = 1 and k = 2 and subject
to the additional hypothesis that poles of f are real, which in Theorem 1.2 appears instead as a
conclusion. It seems likely that if k ≥ 2 and f is a real meromorphic function in the plane, such
that f and f (k) have finitely many non-real zeros, then f has in some sense relatively few distinct
non-real poles. This is true if in addition the non-real poles of f have bounded multiplicities,
in the sense that there then exists B > 0 such that if z0 and z1 are non-real poles of f then
|z1 − z0| > B| Im z0| (see Lemma 4.3 below). The first result of the present paper shows that,
at least if k = 2 and f ′/f has finite lower order, this additional hypothesis on the multiplicities
of non-real poles may be dispensed with.

Theorem 1.3 Let f be a real meromorphic function in the plane such that f ′/f has finite lower
order and f and f ′′ have finitely many non-real zeros. If z0 is a non-real pole of f and |z0| is
sufficiently large then f has no poles in the set{

z ∈ C : 0 < |z − z0| <
|Im z0|

16

}
.

It follows easily from Theorem 1.3 that if 0 < β < π/2 then the number of distinct non-real poles
of f with |z| ≤ r, β ≤ | arg z| ≤ π − β is O(log r) as r → ∞. The second main result of this
paper deals with real meromorphic functions having real zeros, such that some higher derivative
f (k) has finitely many zeros, rather than f as in Theorem 1.1 or an intermediate derivative f (µ)

as in Theorem 1.2.

Theorem 1.4 Let k ≥ 2 and let f be a real meromorphic function in the plane satisfying the
following conditions:
(i) the function f has finitely many non-real zeros;
(ii) the function f (k) has finitely many zeros in the plane;
(iii) there exists a positive real number M such that if z0 is a non-real pole of f of multiplicity
m0 then

m0 ≤M + |z0|M ; (4)

(iv) if k = 2 then f ′/f has finite lower order or the non-real poles of f have bounded multiplicities.
Then f satisfies (1).

It seems plausible that Theorem 1.4 might hold with no need for conditions (iii) and (iv), but
they are required for the present method, which depends on showing that f has finite order, so
that f has finitely many poles by (ii) and the main result of [31]. On the other hand for each
k ≥ 2 an example is given in [31] of a real meromorphic function, with infinitely many poles, all
real and simple, such that f (k) has no zeros in the plane. Thus hypothesis (i) is not redundant.
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2 Proof of Theorem 1.3

Let f be as in the hypotheses of Theorem 1.3, and write

L =
f ′

f
, F (z) = z − 1

L(z)
, F ′ =

ff ′′

(f ′)2
. (5)

There is no loss of generality in assuming that L and F are transcendental, since otherwise f
has finitely many poles in the plane. If M > 0 is sufficiently large then F ′ has no zeros and F
has no multiple poles in

H+
M = {z ∈ C : |z| > M, Im z > 0}.

Lemma 2.1 There exist at most finitely many α ∈ C such that F (z) tends to α as z tends to
infinity along a path in C \ R.

Proof. Assume that this is not the case. Then since f and F are real there exist pairwise distinct
α1, . . . , αn in C such that F (z) tends to αj as z tends to infinity on a path γj tending to infinity
in the open upper half-plane H+

0 , and here n may be chosen arbitrarily large. Assume without
loss of generality that |F (z)−αj| < ε for all z on γj, and that |αj −αj′ | > 2ε for j 6= j′, where
ε is small and positive. Next take δ ∈ (0, ε) and a large N > M such that |F (z)− αj| > 2δ for
j = 1, . . . , n and for all z on the circle S(0, N). Here and subsequently S(a, r) denotes the circle
of centre a and radius r, and D(a, r) the corresponding open disc. It may now be assumed that
each γj starts on S(0, N)∩H+

0 , but otherwise lies in H+
N , and that γj+1 separates γj from γj+2

in H+
N , for j = 1, . . . , n − 2. It then follows that for j = 2, . . . , n − 1 an unbounded subpath

of γj lies in a component Cj of the set {z ∈ C : |F (z) − αj| < δ} with the property that the
closure Ej of Cj lies in H+

N . Since N > M it follows that F ′ has no zeros in Ej and, since F
has finite lower order, [27, Theorem 2] (see also [1, Theorem 1]) implies that F−1 has a direct
transcendental singularity over αj, for j = 2, . . . , n − 1. But n may be chosen arbitrarily large,
and this contradicts the Denjoy-Carleman-Ahlfors theorem. 2

Proposition 2.1 Let R > 0 be large and let C be a component of the set

WR = {z ∈ H+
0 : F (z) ∈ H+

R}.

Then C contains at most finitely many poles of f .

The proof of Proposition 2.1 is lengthy and will be deferred to the next section. Assuming
Proposition 2.1, the proof of Theorem 1.3 is completed as follows. Let S > R. Then

F−1(R ∪ {∞}) ∩ S(0, S), F−1(S(0, R)) ∩ S(0, S)

are both finite since F is transcendental. Thus S(0, S) ∩ ∂WR is finite, where ∂V denotes the
boundary of a set V ⊆ C with respect to the finite plane, and so only finitely many components
of WR meet S(0, S). It follows using Proposition 2.1 that all but finitely many poles of f in
H+

0 lie in components D of WR with D ⊆ H+
S . Let z0 with |z0| > 2S be such a pole, with

multiplicity m0. Then z0 ∈ D0 ⊆ H+
S , where D0 is a component of WR. Since R is large it
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follows using Lemma 2.1 and analytic continuation of F−1 that F : D0 → H+
R is a conformal

bijection. Thus
G = F−1 : H+

R → D0 ⊆ H+
S ⊆ H+

R

is conformal and z0 is an attracting fixpoint of G. By Schwarz’ lemma G has no other fixpoints
in H+

R and so f has no other poles in D0. Now

D

(
z0,

Im z0

2

)
⊆ D

(
z0,
|z0|
2

)
∩H+

0 ⊆ H+
0 \D(0, S) ⊆ H+

R

and

G(z0) = z0, G′(z0) =
m0

m0 + 1
≥ 1

2
.

Hence Koebe’s one-quarter theorem implies that

D

(
z0,

Im z0

16

)
⊆ G

(
D

(
z0,

Im z0

2

))
⊆ G(H+

R ) ⊆ D0.

This completes the proof of Theorem 1.3, subject to Proposition 2.1, which will be proved in the
next section.

3 Proof of Proposition 2.1

With the notation of §2, let D be a component of WR which contains infinitely many poles of f .
Since R is large it follows from Lemma 2.1 and analytic continuation of F−1 that F : D → H+

R

is a conformal bijection, but here it need not be the case that D ⊆ H+
R .

Lemma 3.1 There exist at most finitely many components Γ of ∂D with Γ ⊆ H+
0 .

Proof. Let Γ be such a component. Then Γ does not contain any Jordan curve Γ1. To see this
observe that as z describes such a Γ1 the image F (z) must describe the whole extended boundary
∂∞H

+
R = ∂H+

R ∪ {∞}, since F is univalent on D and hence on ∂D; this gives ∂D = Γ1, which
contradicts the fact that D is simply connected by conformal equivalence. Thus Γ is a simple
curve going to infinity in both directions. As z tends to infinity in some direction along Γ, the
image F (z) travels monotonely along ∂∞H

+
R and must tend to an asymptotic value α of F .

Since Γ lies in H+
0 and F is univalent on ∂D, it follows from Lemma 2.1 that there are only

finitely many possible α and finitely many such components Γ. 2

Lemma 3.2 There exist at most finitely many α ∈ C such that L(z) tends to α as z to infinity
along a path in D.

Proof. Assume that this is not the case. Then there exist pairwise distinct α1, . . . , αn ∈ C \ {0}
such that L(z) → αj as z tends to infinity along a path γj in D. Here it may be assumed that
the γj are simple and pairwise disjoint apart from a common starting point in D, and n may
be chosen arbitrarily large. Let N0 be the number of components Γ of ∂D with Γ ⊆ H+

0 ; then
N0 is finite by Lemma 3.1. This gives, without loss of generality, at least n − 1 − N0 domains
Dj bounded by γj and γj+1, the closures of which lie in D. Since L(z) 6= 0 on D, this gives in
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turn at least n− 1−N0 direct transcendental singularities of L−1 over 0, which contradicts the
Denjoy-Carleman-Ahlfors theorem since L has finite lower order. 2

Now use Lemma 3.2 to choose θ ∈ (0, π) with the following property. If α ∈ C \ {0} and
argα = ±θ then α is not a critical value of L and there is no path tending to infinity in D on
which L(z) tends to α. Next choose positive constants T , X with

T −X > R, X sin θ > R. (6)

By assumption there exist infinitely many pairwise distinct poles z1, z2, . . . of f in D. Now
continue L−1 along the ray argw = θ, starting at infinity, so that the image L−1(w) starts at
zj, and let tj be the infimum of positive t such that this continuation extends to {w : argw =
θ, t < |w| < ∞}. Since L is transcendental there are only finitely many points z on S(0, T ) at
which argL(z) = θ, and so it may be assumed that for each j the image z = L−1(w) under this
continuation stays in H+

T . If |w| < 1/X then (5) and (6) give

|F (z)| ≥ ImF (z) ≥ Im

(
− 1

L(z)

)
> X sin θ > R.

On the other hand if |w| ≥ 1/X then (5) and (6) yield

|F (z)| ≥ |z| −X > T −X > R.

Further, as L−1(w) is continued with argw = θ and |w| decreasing, ImF (z) is at least
(1/|w|) sin θ and cannot tend to 0. It follows that the image z = L−1(w) stays in D; thus
tj = 0 and the continuation is possible along the whole ray argw = θ, |w| > 0, by the choice
of θ. Moreover as w → 0 with argw = θ the image z = L−1(w) tends either to infinity or to
a zero of L, and so a pole of F , on ∂D. But F is univalent on D and so has at most one pole
on ∂D.

Hence there exist arbitrarily many pairwise disjoint simple paths σj tending to infinity and
lying in D, such that σj starts at zj and is mapped univalently by L onto the set {w = teiθ :
0 < t ≤ ∞}, with L(z)→ 0 as z tends to infinity on σj. These paths σj can then be extended
to simple paths τj in D which are pairwise disjoint except that they all have the same starting
point z∗ ∈ D. Now applying Lemma 3.1 shows that there exist arbitrarily many pairwise disjoint
domains Ωk ⊆ D, each bounded by two of the τj, and so by two of the σj and a bounded simple
path λk ⊆ D. Since F has no poles in D there exists rk > 0 such that |L(z)| ≥ rk on λk.

For each Ωk use Lemma 3.2 to choose Pk ∈ (0, rk) such that the circle S(0, Pk) contains
no critical values of L and no α ∈ C such that L(z) tends to α as z to infinity along a path in
D. Choose uk ∈ ∂Ωk with L(uk) = Pke

iθ, and continue z = L−1(w) along S(0, Pk) so that the
continuation takes z into Ωk. By the choice of Pk and the fact that Ωk ⊆ D this continuation
leads to vk ∈ Ωk with L(vk) = Pke

−iθ. The choice of θ then implies that it is possible to continue
L−1(w) along the half-ray w = te−iθ, in the direction of decreasing t, so that the resulting image
z = L−1(w) starts at vk and remains in Ωk ⊆ D. Since L(z) 6= 0 on D this gives a path
tending to infinity in Ωk on which L(z) tends to 0 with argL(z) = −θ, and hence an unbounded
component Vk of the set {z ∈ C : Im (1/L(z)) > 2/Pk}, such that Vk ∪ ∂Vk ⊆ Ωk ⊆ D. Each
function

uk(z) = Im
1

L(z)
(z ∈ Vk), uk(z) =

2

Pk
(z 6∈ Vk),
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is then non-constant and subharmonic in the plane, again since L(z) 6= 0 on D. Since there
are arbitrarily many of these components Vk, with disjoint closures, a standard application of the
Phragmén-Lindelöf principle [19] gives a large z in one of the Vk, and so in D, with

Im
1

L(z)
> |z|2,

and hence ImF (z) < 0 by (5), which is evidently a contradiction. This completes the proof of
Proposition 2.1 and hence of Theorem 1.3.

Remark: the reader will observe that the hypothesis that L has finite order is only used twice in
the proof of Proposition 2.1 and Theorem 1.3, namely in Lemmas 2.1 and 3.2.

4 Lemmas required for Theorem 1.4

The following theorem was proved for analytic functions by Schwick [44] and in the meromorphic
case in [4], using the rescaling method [47].

Theorem 4.1 ([4, 44]) Let k ≥ 2 and let F be a family of functions meromorphic on a plane
domain D such that ff (k) has no zeros in D, for each f ∈ F . Then the family {f ′/f : f ∈ F}
is normal on D.

Lemma 4.1 Let k ≥ 2 and ρ, σ, τ ∈ (0, π/2) and let K0 ∈ (0,∞). Then there exists K1 ∈
(0,∞), depending only on k, ρ, σ, τ and K0, with the following property. If g is a meromorphic
function on the domain D = {z ∈ C : 1/2 < |z| < 2, 0 < arg z < π} such that g and g(k) have
no zeros in D, and if

min{|g′(eiθ)/g(eiθ)| : ρ ≤ θ ≤ π − ρ} ≤ K0, (7)

then |g′(eiθ)/g(eiθ)| ≤ K1 for all θ ∈ [σ, π − σ] outside a set of Lebesgue measure at most τ .

Proof. Suppose that no such K1 exists. Then there exist sequences pn and gn such that pn is
positive and tends to infinity, while gn is meromorphic with gng

(k)
n 6= 0 on D, and such that (7)

holds with g = gn, but

{θ : σ ≤ θ ≤ π − σ, |g′n(eiθ)/gn(eiθ)| > pn}

has measure greater than τ . By Theorem 4.1 it may be assumed that the functions Gn = g′n/gn
converge locally uniformly on D, and the limit function G is not identically infinite by (7). Thus
G has finitely many poles on the arc I = {eiθ : σ ≤ θ ≤ π − σ}, and G is bounded on I \ U ,
where U is a union of finitely many open arcs of total angular measure at most τ/2. Since Gn

converges uniformly to G on I \ U , this is a contradiction. 2

The next two lemmas, the first of which is due to Nicks [42, Lemma 6.3] (see also [41, Lemma
6.33]), involve the Tsuji characteristic T(r, v) = m(r, v) + N(r, v) of a meromorphic function v
on the closed upper half-plane [3, 14, 46].
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Lemma 4.2 ([41, 42]) Let b > 0 and let the function u be meromorphic on the closed upper
half-plane such that any pair {z1, z2} of distinct zeros of u in the open upper half-plane satisfies
|z1−z2| ≥ b Im z1. If the zeros of u have bounded multiplicities then the Tsuji counting function
of the zeros of u satisfies N(r, 1/u) = O(log r) as r →∞.

Lemma 4.3 Let m1 be a positive integer and let f be a real meromorphic function in the plane
such that f and f (k) have finitely many non-real zeros, for some k ≥ 2.
(a) If all but finitely many non-real poles of f have multiplicity at most m1, and if w1 and w2 are
distinct non-real poles of f with |w1| large, then |w1 − w2| ≥ b1 |Imw1|, where b1 > 0 depends
only on k and m1.
(b) If k ≥ 3, then f satisfies

N(r, f) ≤ T(r, f ′/f) = O(log r) as r →∞. (8)

Furthermore, the inequality (8) also holds for k = 2 if f ′/f has finite lower order or the non-real
poles of f have bounded multiplicities.

Proof. The proof of part (a) uses ideas from [8, 41, 42]. Let z0 be a non-real pole of f of
multiplicity m0 ≤ m1 with |z0| large. Set

R0 =
|Im z0|

2
, g(z) = f(z0 +R0z), G(z) =

g(z)

g′(z)
.

Then G(0) = 0 and g and g(k) have no zeros in D(0, 1). By Theorem 4.1 there exists δ ∈ (0, 1/4],
independent of z0 and f , such that

|G(w)| ≤ 1 for |w| ≤ 2δ. (9)

Now suppose that z1 6= z0 is a pole of f in D(z0, δR0), and set w1 = (z1 − z0)/R0 ∈ D(0, δ).
Then

h(w) =
G(w)

w(w − w1)

is analytic on |w| ≤ 2δ and (9) gives |h(w)| ≤ 1/2δ2 for |w| = 2δ. Thus the maximum principle
implies that

1

m0

= |G′(0)| = |w1h(0)| ≤ |w1|
2δ2

and hence |z1 − z0| ≥
2δ2R0

m0

≥ δ2 |Im z0|
m1

.

This proves part (a), with b1 = δ2/m1 < δ/2.
Next, if k ≥ 3 then (8) is proved using Frank’s Wronskian method exactly as in [9, 11] (see

also [4, 10, 12]), but with Tsuji functionals replacing the corresponding Nevanlinna functionals.
This method is not available when k = 2, but in this case if f is as in part (a) then u = f/f ′

satisfies the hypotheses of Lemma 4.2, and the same is true by Theorem 1.3 if f ′/f has finite
lower order. Since u′ = 1− (ff ′′)/(f ′)2 this yields

N(r, 1/u) + N(r, 1/(u′ − 1)) ≤ 2N(r, 1/f) + N(r, f) + N(r, 1/f ′′) = O(log r)

as r → ∞. Applying Hayman’s alternative [16, Ch. 3], using Tsuji rather than Nevanlinna
functionals, then gives (8). 2

The proof of Theorem 1.4 will require Fuchs’ small arcs lemma [13] as given in [19, p.721].
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Lemma 4.4 ([19]) Let R > 0 and let the function g be meromorphic in |z| ≤ R, with g(0) = 1.
Let η1, η2 be positive with η1 + η2 < 1. Then there exists a subset ER of [0, R(1− η1)], having
measure greater than R(1−η1−η2), with the following property. If r ∈ ER and Fr is a subinterval
of [0, 2π] of length m then∫

Fr

∣∣∣∣∂ log |g(reiθ)|
∂θ

∣∣∣∣ dθ ≤ 400m

η2
1η2

(
log

2πe

m

)
T (R, g).

The next lemma is [7, Lemma III, p.322].

Lemma 4.5 ([7]) Let 1 < r < R <∞ and let the function g be meromorphic in |z| ≤ R. Let
I(r) be a subset of [0, 2π] of Lebesgue measure µ(r). Then

1

2π

∫
I(r)

log+ |g(reiθ)| dθ ≤ 11Rµ(r)

R− r

(
1 + log+ 1

µ(r)

)
T (R, g).

Lemma 4.6 ([17]) Let S(r) be an unbounded positive non-decreasing function on [r0,∞),
continuous from the right, of order ρ. Let A > 1, B > 1. Then

logdens ({r ≥ r0 : S(Ar) ≥ BS(r)}) ≤ ρ

(
logA

logB

)
.

Lemma 4.6 is from [17, Lemma 4, p.103] and, although it is stated in [17] only for a characteristic
function, the lemma holds for S(r), with the order given by [16, p.16]

ρ = lim sup
r→∞

logS(r)

log r
.

The following is a refinement of lemmas from [30, 38].

Lemma 4.7 Let the function f be transcendental and meromorphic in the plane and let k ∈ N.
Let E be an unbounded subset of [1,∞) with the following property. For each r ∈ E there exist
real θ1(r) < θ2(r) ≤ θ1(r) + 2π and an arc Ωr = {reiθ : θ1(r) ≤ θ ≤ θ2(r)} such that

lim
r→∞,r∈E

r2kM(Ωr, f
(k)/f) = 0, where M(Ωr, g) = max{|g(z)| : z ∈ Ωr}. (10)

Let N = N(r) satisfy 0 ≤ logN(r) ≤ o(log r) as r → ∞ in E. Then f satisfies, for all
sufficiently large r ∈ E, ∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ ≤ kN(r)

for all z ∈ Ωr outside a union U(r) of open discs having sum of radii at most r(k − 1)/N(r).

Proof. The result is trivial if k = 1 so assume that k ≥ 2. Let r ∈ E be large and take zr ∈ Ωr

with
|f(zr)| = Mr = M(Ωr, f). (11)
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There exists a polynomial P = Pr of degree at most k − 1 such that, for z ∈ Ωr,

f(z) = P (z) +

∫ z

zr

(z − t)k−1

(k − 1)!
f (k)(t) dt, f ′(z) = P ′(z) +

∫ z

zr

(z − t)k−2

(k − 2)!
f (k)(t) dt.

It then follows from (10) and (11) that

|P (zr)| = Mr and |f(z)− P (z)|+ |f ′(z)− P ′(z)| ≤ r−kMr for z ∈ Ωr. (12)

Write P (z) = P1(z)P2(z) where P1 is the product of the terms z− cj over all zeros cj of P with
|cj| < 2r, and is 1 if there are no such cj, while P2 is a polynomial with all its zeros, if any, lying
in |z| ≥ 2r. Let s ≥ 0 be the degree of P1, and assume that z ∈ Ωr lies outside the union U(r)
of the open discs of centre cj and radius r/N(r). Then M(Ωr, P

′
2/P2) ≤ (k − 1− s)/r and

Mr ≤ (3r)sM(Ωr, P2) ≤ (3N)s|P1(z)| exp(2π(k − 1))|P2(z)| = (3N)s exp(2π(k − 1))|P (z)|.

On combination with (12) and the fact that logN(r) = o(log r) this yields∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ =

∣∣∣∣zP ′(z) + o(|P (z)|)
P (z)(1 + o(1))

∣∣∣∣ ≤ ((k − 1) + o(1))N(r).

2

5 Proof of Theorem 1.4

Let the function f be as in the hypotheses, and assume that L = f ′/f is transcendental, since
otherwise there is nothing to prove. Since f (k) has finitely many zeros the function

G =
f

f (k)
(13)

has finitely many poles.

Lemma 5.1 Suppose that G is a rational function. Then f satisfies (1).

Proof. Poles of f are zeros of G, as are all but finitely many zeros of f , and it follows that f
has finitely many zeros and poles. Now a standard application of the Wiman-Valiron theory [18,
Theorem 12, p.341] to (13) shows that f has finite order. 2

Assume henceforth that G is transcendental. Lemma 4.3 gives (8), and (13) and standard
properties of the Tsuji characteristic yield T(r,G) = O(log r) as r →∞.

Lemma 5.2 The function G has order at most 1.

Proof. Let R→∞. Then a result of Levin and Ostrovskii [40, p. 332] (see also [3] and [14, Ch.
6]) implies that∫ ∞

R

1

r3 2π

∫ π

0

log+ |G(reiθ)| dθ dr ≤
∫ ∞
R

m(r,G)

r2
dr ≤

∫ ∞
R

T(r,G)

r2
dr = O

(
logR

R

)
.
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Since G is real and has finitely many poles this yields∫ ∞
R

m(r,G)

r3
dr = O

(
logR

R

)
,

T (R,G)

2R2
≤
∫ ∞
R

T (r,G)

r3
dr = O

(
logR

R

)
.

2

By Lemma 5.2 and (4) the zeros and non-real poles of f have finite exponent of convergence,
and f has a representation

f =
W

g
, (14)

in which W is a real meromorphic function of finite order and g is a real entire function with real
zeros. The logarithmic derivative g′/g then has a Levin-Ostrovskii factorisation [40] (see also [3])

g′

g
= φψ, (15)

in which φ is a real entire function and ψ is real meromorphic, such that either ψ ≡ 1 or ψ maps
the upper half-plane into itself. In either case ψ satisfies [39, Ch. I.6, Thm 8′]

1

5
|ψ(i)|sin θ

r
< |ψ(reiθ)| < 5|ψ(i)| r

sin θ
for r ≥ 1, θ ∈ (0, π). (16)

Lemma 5.3 The function φ in (15) has order at most 1.

Proof. It follows from (14), (15) and (16) that

T (r, φ) = m(r, φ) ≤ m(r, g′/g) +O(log r) ≤ m(r, f ′/f) +O(log r). (17)

Using (8) and (17) in the same inequality of Levin and Ostrovskii as in the proof of Lemma 5.2
then yields, as R→∞,

T (R, φ)

2R2
≤
∫ ∞
R

T (r, φ)

r3
dr ≤

∫ ∞
R

1

r3 π

∫ π

0

log+ |L(reiθ)| dθ dr +O

(
logR

R2

)
≤ 2

∫ ∞
R

m(r, L)

r2
dr +O

(
logR

R2

)
= O

(
logR

R

)
.

2

Lemma 5.4 The function φ in (15) is a polynomial.

Proof. Let σ be small and positive and denote by C positive constants, not necessarily the same
at each occurrence, but always independent of σ and r ∈ [1,∞). Since G and φ have finite order
there exists by Lemma 4.6 a a set E1 ⊆ [1,∞), of positive lower logarithmic density, such that

T (4r, φ) ≤ CT (r, φ) and T (4r,G) ≤ CT (r,G) (18)

for r ∈ E1. The fact that W has finite order gives the estimate [15]∣∣∣∣W ′(z)

W (z)

∣∣∣∣ ≤ |z|C (19)
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for |z| outside a set E2 of finite logarithmic measure. Now let r ∈ E1 be large and apply Lemma
4.4 to G1 = GR1, with R1 a rational function chosen so that G1(0) = 1. With η1 = 1/2 and
η2 = 1/8 and R = 4r this yields s ∈ [r, 2r] \ E2 such that if Fs is an interval of length 3σ then∫

Fs

∣∣∣∣∂ log |G(seiθ)|
∂θ

∣∣∣∣ dθ ≤ C T (4r,G)σ log
2πe

3σ
≤ CT (s,G)σ log

2πe

3σ
,

using (18). Since G is transcendental and σ is small this gives an arc of the circle S(0, s), of
angular measure 6σ, centred at a point zs with 2 log |G(zs)| ≥ T (s,G), on which |G(z)| ≥ s3k.
The fact that G is real then implies that |G(z)| ≥ s3k on a subarc Is of {z ∈ S(0, s) : σ ≤
arg z ≤ π−σ} of angular measure at least σ. Next, applying Lemma 4.7 shows that there exists
z ∈ Is with |zL(z)| ≤ C. Now Lemma 4.1, applied to the function f(sz), gives |zL(z)| ≤ C for
all z ∈ S(0, s) with σ ≤ arg z ≤ π − σ, apart from a set of angular measure at most σ. Since
s 6∈ E2, this yields, on combination with (14), (15), (16) and (19), the estimate |φ(z)| ≤ sC for
all z ∈ S(0, s) apart from a set of angular measure at most 6σ, so that (18) and Lemma 4.5 give

T (s, φ) ≤ C log s+ Cσ

(
1 + log+ 1

6σ

)
T (2s, φ) ≤ C log s+ Cσ

(
1 + log+ 1

6σ

)
T (s, φ).

Provided σ was chosen small enough, it follows that φ is a polynomial as asserted. 2

Lemma 5.5 The function g in (14) has finite order, and so has f .

Proof. The fact that g has finite order is a standard consequence of (15) and Lemma 5.4: see
[3, Lemma 5.1] or [32, Lemma 7.1]. Once g has finite order it follows from (14) that so has f .
2

Since f has finite order and f (k) has finitely many zeros the main result of [31] shows that f
has finitely many poles, and f (k) = TeQ, with T a rational function and Q a non-constant real
polynomial. The proof now follows an argument from [34]. Suppose first that Q has degree 1. In
this case integrating k times shows that f(z) = T1(z) + T2(z)ea1z with T1 a polynomial, T2 6≡ 0
a rational function, and a1 ∈ R \ {0}. The fact that L is transcendental forces T1 6≡ 0 and
elementary considerations show that f has infinitely many non-real zeros, which is a contradiction.

Assume henceforth that Q has degree at least 2. Since G = f/f (k) has order at most 1, by
Lemma 5.2, it follows that f = Gf (k) = ΠeQ, where Π = GT is meromorphic with finitely many
poles and with order at most 1, and that L has order at most 1. Let ε ∈ (0, 1) be small. Then
Gundersen’s estimates for logarithmic derivatives [15] yield∣∣∣∣L(j)(z)

L(z)

∣∣∣∣+

∣∣∣∣Π′(z)

Π(z)

∣∣∣∣ ≤ |z|ε, L(z) ∼ Q′(z) and
1

G(z)
=
f (k)(z)

f(z)
∼ L(z)k ∼ Q′(z)k

for j = 1, . . . , k and |z| = r ∈ [1,∞) lying outside a set of finite logarithmic measure. Hence G,
which has finitely many poles, must be a rational function, and consequently so must Π, which
contradicts the assumption that f is not of form (1). This completes the proof of Theorem 1.4.

The author thanks the referee for a very thorough reading of the manuscript and for some
very helpful suggestions.
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