The following example shows that the finite order case of Theorem 1.4 of $[1]$ is sharp.
Lemma 0.1 There exist negative real numbers a_{1}, a_{3}, \ldots with the following property. Let $p \geq 0$ be an integer. Then the polynomial

$$
L_{p}(z)=a_{2 p+1} z^{2 p+1}+\ldots+a_{1} z=\sum_{k=0}^{p} a_{2 k+1} z^{2 k+1}
$$

is such that

$$
Q_{p}(z)=L_{p}^{\prime}(z)+L_{p}(z)^{2}+1=\sum_{k=p+1}^{2 p+1} b_{p, k} z^{2 k}, \quad b_{p, k} \in(0,+\infty),
$$

is an even polynomial, of degree $4 p+2$, with a zero of multiplicity $2 p+2$ at 0 .
Proof. Let $a_{1}=-1$ and for $p=0$ set $L_{0}(z)=-z$, so that $Q_{0}(z)=L_{0}^{\prime}(z)+L_{0}(z)^{2}+1=z^{2}$ and $b_{0,1}=1$. Now suppose that $0 \leq p \in \mathbb{Z}$ and that $a_{1}, \ldots, a_{2 p+1}$ have been determined so that L_{p} and Q_{p} have the asserted properties. Let $a \in \mathbb{R}$ and set

$$
\begin{aligned}
L_{p+1}(z) & =a z^{2 p+3}+L_{p}(z), \\
Q_{p+1}(z) & =L_{p+1}^{\prime}(z)+L_{p+1}(z)^{2}+1 \\
& =(2 p+3) a z^{2 p+2}+L_{p}^{\prime}(z)+a^{2} z^{4 p+6}+2 a z^{2 p+3} L_{p}(z)+L_{p}(z)^{2}+1 \\
& =(2 p+3) a z^{2 p+2}+a^{2} z^{4 p+6}+2 a z^{2 p+3} L_{p}(z)+Q_{p}(z) .
\end{aligned}
$$

Choose $a_{2 p+3}=a$ to satisfy $(2 p+3) a+b_{p, p+1}=0$. This forces $a<0$, so that $2 a z^{2 p+3} L_{p}(z)$ is an even polynomial of degree $4 p+4$, with non-negative real coefficients and a zero of multiplicity $2 p+4$ at the origin. Moreover, Q_{p+1} is also even, of degree $4 p+6=4(p+1)+2$, and the coefficients $b_{p+1, k}$ of $z^{2 k}$ in Q_{p+1} satisfy the following. First, if $k \leq p+1$ then $b_{p+1, k}=0$, while if $p+2 \leq k \leq 2 p+1$ then $b_{p+1, k} \geq b_{p, k}>0$, so that Q_{p+1} has a zero of multiplicity $2 p+4=2(p+1)+2$ at the origin. Second, $b_{p+1,2 p+2}=2 a a_{2 p+1}>0$ and $b_{p+1,2 p+3}=a^{2}>0$, and the lemma is proved by induction.

Since $a_{2 p+1}<0$, the function f_{p} defined by $f_{p}(0)=1$ and $f_{p}^{\prime} / f_{p}=L_{p}$ belongs to $U_{2 p}$, and $f_{p}^{\prime \prime}+f_{p}=\left(L_{p}^{\prime}+L_{p}^{2}+1\right) f_{p}$ has at most $4 p+2-(2 p+2)=2 p$ non-real zeros, and hence exactly $2 p$, by [1, Theorem 1.4].

References

[1] J.K. Langley, Non-real zeros of linear differential polynomials, J. Analyse Math. 107 (2009), 107-140.

