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Abstract

An estimate is proved for the growth of a meromorphic function near to a logarithmic singularity
of the derivative. This estimate is applied to show that if f is meromorphic of finite lower order in
the plane, such that the second derivative f ′′ has finitely many zeros and the multiplicities of the
poles z of f grow at most polynomially in |z|, then f has finitely many poles. Subsequent results
then consider the zeros of linear differential polynomials F = f (k) +ak−1f

(k−1) + . . .+a0f , where f
is transcendental and meromorphic of finite order in the plane, and the coefficients aj are constants.
A.M.S. MSC 2000 Classification: 30D35.

1 Introduction

By a classical theorem of Pólya [18] (see also [8, Theorem 3.6, p.63]), if f is a meromorphic function
in the plane with at least two distinct poles then for each sufficiently large k the kth derivative f (k)

has at least one zero. Gol’dberg conjectured that the frequency of distinct poles of f is controlled by
the frequency of zeros of the derivative f (k), as soon as k ≥ 2. This is known to be true if all but
finitely many poles of f have multiplicity at most k − 1 [7] (see also [4, 20]); the general case remains
open, although it follows from the results of [3, 6, 11] that if two derivatives f (m) and f (n) have finitely
many zeros, where 0 ≤ m ≤ n− 2, then f has finitely many poles. The next result [14] is also strongly
supportive of the Gol’dberg conjecture.

Theorem 1.1 ([14]) Suppose that the function f is meromorphic of finite order in the plane and that
f (k) has finitely many zeros, for some k ≥ 2. Then f has finitely many poles.

Simple examples show that Theorem 1.1 fails for k = 1. The hypothesis that f has finite order is
not redundant in Theorem 1.1: indeed there exist meromorphic functions f with infinitely many poles
and with f ′′ zero-free, of arbitrarily slow growth subject to infinite lower order [14].

The proof of Theorem 1.1 in [14] has a number of key steps. Suppose that the function f is
meromorphic of finite order in the plane and that f ′′ has finitely many zeros. Then f ′ has finitely
many critical values and hence finitely many asymptotic values, by a result of Bergweiler and Eremenko
[1]. The finite asymptotic values of f ′ then give rise to logarithmic singularities of the inverse function
of f ′, and [14, Lemma 3.1] gives an estimate for the growth of f(z) for z near to these logarithmic
singularities. Here the proof presented in [14] relies on the fact that f has finite order.

The first result of the present paper shows that no growth assumption on f is required for this
estimate. To state this result requires the following standard facts from [17, p.287], which are discussed in
detail in [14]. Suppose that F is a transcendental meromorphic function in the plane with no asymptotic
or critical values in 0 < |w| < d1 <∞. Then every component C0 of the set {z ∈ C : |F (z)| < d1} is
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simply connected, and there are two possibilities. Either (i) C0 contains a single zero of F of multiplicity

k, in which case F 1/k maps C0 univalently onto the disc B(0, d1/k
1 ), or (ii) C0 contains no zero of F , but

instead a path tending to infinity on which F (z) tends to zero. The proposition to be proved concerns
components of the second type when F is a derivative.

Proposition 1.1 Suppose that G is a transcendental meromorphic function in the plane and that G′

has no asymptotic or critical values w with 0 < |w| < d1 < ∞. Let D be a component of the set
{z ∈ C : |G′(z)| < d1} on which G′ has no zeros, but such that D contains a path tending to infinity
on which G′(z) → 0 as z → ∞. Then there exists a positive constant S depending on G and D with
the property that if z1 is in D and |G′(z1)| ≤ e−1d1 then

|G(z1)| ≤ S +
C|z1G′(z1)|

log |d1/G′(z1)|
, (1)

where C is a positive absolute constant, in particular not depending on d1, G or D.

Proposition 1.1 leads to the following substantial improvement of Theorem 1.1.

Theorem 1.2 Assume that the function f is meromorphic of finite lower order in the plane and that
f (k) has finitely many zeros, for some k ≥ 2. Assume further that there exists M ∈ (0,∞) such that if
ζ is a pole of f of multiplicity mζ then

mζ ≤M + |ζ|M . (2)

Then f has finite order and finitely many poles.

It obviously suffices to establish Theorem 1.2 for k = 2. The strategy for proving Theorem 1.2 will
be to show that the integrated counting function N(r, f) of the poles of f has finite order and that so
has f itself, from which the result then follows using Theorem 1.1. The hypothesis (2) may not really
be needed but on the other hand seems difficult to dispense with. If it is assumed merely that f has
finite lower order and that f ′′ has finitely many zeros then the present methods give rise to annuli in
which f has few distinct poles, but this is not sufficient in order to establish the global estimates for
the growth and minimum modulus of f ′′′/f ′′ which were the key to Theorem 1.1 in [14].

Proposition 1.1 will be proved in §2. Once this is established the proof of Theorem 1.2 requires only
minor modifications of arguments from [14], and these will be outlined in §4, following some background
material in §3.

The remainder of this paper will be concerned with the case where the kth derivative f (k) is replaced
by a linear differential polynomial

L(f) = f (k) + ak−1f
(k−1) + . . .+ a0f, (3)

in which k ≥ 2 and the coefficients aj are constants. The determination of those meromorphic functions
f in the plane for which f and F have no zeros, where F is defined by (3) with k ≥ 2, was accomplished
for k ≥ 3 and polynomial aj in [2] (see also [5]), and for k = 2 and rational functions aj in [12]. This
suggests the possibility of an analogue of Theorem 1.1 with f (k) replaced by F . Indeed, it seems natural
to conjecture that if f is meromorphic of finite order in the plane and F has finitely many zeros, where
k ≥ 2 and the aj are constants in (3), then the counting function n(r, f) of the distinct poles satisfies
n(r, f) = O(r) as r →∞. Such a result would be sharp, as shown by the simple example

f(z) =
1

1− ez
, f ′′(z)− f ′(z) =

2e2z

(1− ez)3
.

In this direction the following theorem will be proved in §6.
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Theorem 1.3 Let the function f be meromorphic of finite order in the plane, let L(f) be defined by
(3) with the aj constants, and assume that L(f) has finitely many zeros.
(i) Suppose that the auxiliary equation

xk + ak−1x
k−1 + . . .+ a0 = 0 (4)

has a repeated root. Then f has finitely many poles.
(ii) Suppose that (4) has at least two distinct roots α, β. For r ≥ 1 and S > 0 let

mS(r) = the number of distinct poles of f in {z ∈ C : 1 ≤ |z| ≤ r, | Re ((β − α)z)| ≥ S}. (5)

Then there exists S > 0 such that mS(r) = O(r3) as r →∞.
(iii) Suppose that (4) has at least three roots which are not collinear. Then n(r, f) = O(r3) as r →∞.
In this case, if in addition there exists M ∈ (0,∞) such that each pole ζ of f has multiplicity mζ

satisfying (2), then f either has order at most M + 3 or has finitely many poles.

Part (ii) states in effect that if (4) has distinct roots α and β, and n(r, f) 6= O(r3), then most of
the distinct poles z of f satisfy arg (β − α)z ∼ ±π/2. When k ≥ 3 parts (i) and (iii) together give
n(r, f) = O(r3) as r →∞, unless the roots of (4) are collinear and distinct.

2 Proof of Proposition 1.1

Assume the hypotheses of Proposition 1.1. It may be assumed further that 0 is not in D and that
d1 = 1, since otherwise G(z) may be replaced by G(z + b)/d1 for some constant b. Now fix z0 ∈ D.
Let g = G′ and let ψ = g−1 be that branch of the inverse function mapping w0 = g(z0) to z0. Choose
v0 such that e−v0 = w0 and set φ(v) = ψ(e−v) = g−1(e−v). Since g = G′ has no zeros in D and
d1 = 1 the function φ extends to be analytic and univalent on H = {v ∈ C : Re (v) > 0} [17, p.287].
Furthermore, φ(H) = D, and D is simply connected. Since 0 6∈ D, an analytic and univalent branch
of ζ = h(v) = log φ(v) may be defined on H. For v ∈ H applying the Koebe one-quarter theorem [19,
p.9] to the function

h(v + u · Re (v))− h(v)
Re (v) · h′(v)

gives ∣∣∣∣dζdv
∣∣∣∣ = ∣∣∣∣φ′(v)φ(v)

∣∣∣∣ ≤ 8π
Re (v)

<
32

Re (v)
for v in H. (6)

Now define a piecewise-linear path L1 tending to infinity in H as follows. The path L1 starts at 1
and is parametrized by s = Re (v) for s ≥ 1. Moreover, the slope of L1 is (−1)n for rn < s < rn+1,
n = 0, 1, 2, . . ., where (rn) is a sequence increasing rapidly to infinity with r0 = 1. It follows that L1

meets every horizontal line infinitely often.
For v on L1 let s = Re (v) and let Mv be the subpath of L1 joining 1 to v. Then (6) gives

|φ(v)| ≤ |φ(1)| exp
(∫

Mv

32
Re (u)

|du|
)
≤ |φ(1)| exp

(∫ s

1

32
√

2dt
t

)
≤ |φ(1)|s50.

Using (6) again yields |φ′(v)| ≤ 32|φ(1)|s49, which in turn gives∫
φ(L1)

|G′(z)| |dz| =
∫

L1

exp(− Re (v))|φ′(v)| |dv| ≤ 32|φ(1)|
∫ ∞

1
e−ss49

√
2 ds <∞.
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This implies that
G(z) = O(1) as z →∞ on φ(L1). (7)

The rest of the proof follows [14]. Let v1 be in H with

z1 = φ(v1), v1 = Q+ iy, Q = log |1/G′(z1)| ≥ 1, (8)

and let L be the line given by v = s+ iy, s ≥ Q. Integrating (6) leads to, for s ≥ Q,

|φ(s+ iy)| ≤ |φ(Q+ iy)| exp
(∫ s

Q

32
t
dt

)
= |φ(Q+ iy)|s32Q−32 = |z1|s32Q−32. (9)

Using (6), (8) and (9) gives∫
φ(L)

|G′(z)| |dz| =
∫

L
exp(− Re (v))|φ′(v)| |dv| =

∫ ∞

Q
e−s|φ′(s+ iy)|ds

≤ |z1|
∫ ∞

Q
e−s32s31Q−32ds ≤ C|z1|e−QQ−1 =

C|z1G′(z1)|
log |1/G′(z1)|

(10)

after repeated integration by parts, where C is a positive absolute constant. But φ(L) meets φ(L1),
and so combining (7) with (10) completes the proof of (1).

2

3 Critical points and asymptotic values

Suppose that the function F is meromorphic of finite lower order in the plane, and that F has infinitely
many poles, but F ′ has finitely many zeros. By Hinchliffe’s extension [9] to finite lower order of a theorem
of Bergweiler and Eremenko [1], all asymptotic values of F give rise to direct transcendental singularities
of the inverse function F−1 (see [1, 14, 17] for the classification of transcendental singularities as direct or
indirect), and by the Denjoy-Carleman-Ahlfors theorem [1, 17] there are finitely many such singularities.
Let the finite asymptotic values of F be an, repeated according to how often they occur as direct
transcendental singularities of F−1. Let δ0 be small and positive. Then to each an corresponds a
component Un of the set {z ∈ C : |F (z) − an| < δ0} which contains no zeros of F − an but does
contain a path tending to infinity on which F (z) tends to an.

The following facts are established in detail in [14, Section 4] (see also [13]). Let J be a simple
closed polygonal path such that every finite critical or asymptotic value of F lies on J , but is not a
vertex of J . Then the complement of J in C ∪ {∞} consists of two simply connected domains B1 and
B2, such that B1 is bounded and ∞ ∈ B2. Fix conformal mappings

hm : Bm → ∆ = B(0, 1) = {w ∈ C : |w| < 1}, m = 1, 2, h2(∞) = 0. (11)

By the Schwarz reflection principle, if I is a line segment contained in J and not meeting any vertex of
J then h1 and h2 extend analytically and univalently to a neighbourhood of I and for m = 1, 2 there
are positive constants bm, possibly depending on I, such that

bm ≤ |h′m(w)| ≤ 1/bm for w ∈ I. (12)

Let J ′ be the set of vertices of J and singularities of F−1, and let J ′′ = J\J ′. For each component
J∗ of J ′′ choose a line segment Iq contained in J∗ and not meeting J ′: to each of these Iq correspond
constants b1, b2 as in (12).
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Let T be a component of the set F−1(B2). Then there are two possibilities. The first is that T
contains just one pole of F of multiplicity p ≥ 1 and v(z) = (h2(F (z)))1/p maps T conformally onto
the unit disc. The second possibility is that T contains no pole of F , but instead a path tending to
infinity on which F (z) tends to infinity; there are only finitely many components T of this second type.
The components of the set F−1(B1) are simply connected and conformally equivalent under h1 ◦ F to
the unit disc.

All but finitely many components of both the sets F−1(B1) and F−1(B2) are unbounded. Let S be
an unbounded component of F−1(B1) with no zeros of F ′ on its boundary. The boundary ∂S consists
of finitely many simple curves, each going to infinity in both directions and mapped by F onto an arc
of J . As z tends to infinity in one direction along an arc of ∂S, the image F (z) tends to an asymptotic
value ap of F , and z eventually lies in Up. Moreover,

if z ∈ S and |F (z)− ap| < δ0 then z ∈ Up, (13)

since F is univalent on S. The component S is called type I if there is only one such asymptotic value
of F approached along a boundary arc of S, and type II if there are at least two distinct such values. A
type I component S cannot separate the plane.

Consider now a pole z0 of F , of multiplicity p, with |z0| large, lying in a component T of F−1(B2).
Because F is univalent on each component of F−1(B1), at least two components of ∂T are of the
following form: a piecewise smooth simple curve T ∗ on which arg h2(F (z)) is monotone, mapped by F
onto an open arc of J whose closure joins two distinct finite asymptotic values of F . Each such curve
T ∗ must form a boundary curve of a type II component of F−1(B1). In particular there are infinitely
many type II components.

The following lemma plays a key role in the proof of Theorem 1.3; it is closely related to [13, Proof
of Theorem 1.3] and [14, Lemma 5.4].

Lemma 3.1 With the assumptions of this section on the function F , let d, τ and ν be positive real
numbers. Let r be large, let ζ0 and s be such that r ≤ |ζ0| ≤ r2 and 0 < s < |ζ0|/2 and suppose
that the open disc B(ζ0, s) of centre z0 and radius s contains at least N1 distinct poles of F , each of
multiplicity at most rν , where rτ = o(N1). Then there exist distinct finite asymptotic values am and
an of F and a simple path γ of length o(s) with the following properties. The path γ lies in B(ζ0, 65s),
and F (z) ∈ B1 for all z on γ. Moreover, the endpoints vm and vn of γ satisfy, for p = m,n,

|F (vp)− ap| < C1 exp(−drτ ) and |F ′(vp)| < C2s
−1N

1/2
1 r−τ/2 exp(−drτ ). (14)

Here the positive constants Cj are independent of r and N1.

Lemma 3.1 depends on the following estimate of Keogh [10] for the length of the image of a radial
segment.

Lemma 3.2 ([10]) Suppose that 0 < r < s < 1 and that h(z) =
∑∞

j=1 ajz
j maps the disc B(0, s)

conformally onto a simply connected domain D of finite area A = A(s). Then for each real θ the length
L(r, θ) of the image under h of the line segment z = teiθ, 0 ≤ t ≤ r, satisfies

L(r, θ)2 ≤
(
A

π

)
log

1
1− (r/s)2

, L(r, θ) = O

(
A(s) log

1
s− r

)1/2

as r → 1.

2

Proof of Lemma 3.1. In this proof, c will denote positive constants, not necessarily the same at each
occurrence, but independent of r and N1. Choose 4N distinct poles z1, . . . , z4N lying in B(ζ0, s), with

N > cN1, rτ = o(N), (15)
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and with the following property. Each pole zj lies in an unbounded component Dj of the set F−1(B2),
associated with a type II component Ej of the set F−1(B1) in the sense that the boundary of Dj shares
a component Kj with the boundary of Ej . Here each Kj is a simple piecewise smooth curve going to
infinity in both directions and mapped by F onto a fixed sub-arc J1 of the polygonal path J , the closure
of J1 joining distinct finite asymptotic values am and an of F . Thus Kj meets both Um and Un. Fix a
sub-arc J0 of J1, one of the line segments Iq chosen following (12).

For t > 0 denote by θj(t) the angular measure of the intersection of Dj with the circle S(ζ0, t) of
centre ζ0 and radius t. Since the Dj are all unbounded but meet B(ζ0, s), it follows that θj(t) < 2π
for s ≤ t ≤ 64s. Moreover, at least 2N of these Dj , say D1, . . . , D2N , are such that∫ 4s

2s

dt

tθj(t)
> cN. (16)

To see this, suppose that D1, . . . , DM are such that (16) fails.Then

M2 ≤

 M∑
j=1

θj(t)

 M∑
j=1

1
θj(t)

 , cNM ≥
M∑

j=1

∫ 4s

2s

dt

tθj(t)
≥ M2 log 2

2π
,

and this proves the assertion. Define vj = (h2 ◦ F )1/pj , with pj the multiplicity of the pole of F at zj ,
so that vj maps Dj conformally onto ∆ = B(0, 1) with vj(zj) = 0, and pj ≤ rν . The boundary of Dj

contains a sub-path λj mapped onto J0 by F , such that λj also forms part of the boundary of Ej . As
z describes the arc λj , the image (h2 ◦ F )(z) describes an arc of the unit circle of length at least c,
using (12), so that vj(z) describes an arc of the unit circle of length at least c/pj . This delivers a lower
bound for the harmonic measure of λj given by

ω(zj , λj , Dj) ≥ c/pj ≥ cr−ν for j = 1, . . . , 2N. (17)

Set σj = λj\B(ζ0, 8s). Since zj lies in B(ζ0, s), a standard estimate for harmonic measure [21,
p.116] and (16) together imply that

ω(zj , σj , Dj) ≤ c exp
(
−π
∫ 4s

2s

dt

tθj(t)

)
≤ exp(−cN). (18)

Using (15) then gives

ω(zj , λ∗j , Dj) ≥ c/pj ≥ cr−ν , where λ∗j = λj ∩B(ζ0, 8s). (19)

Now, λ∗j is mapped by vj into a finite union of sub-arcs of the unit circle of total length at least
c/pj and so is mapped by F into a union of sub-arcs of J0 of total length at least c, using (12) again.
For t > 0 let φj(t) be the angular measure of the intersection of Ej with the circle S(ζ0, t). Reasoning
as above, there must be at least N of the Ej , without loss of generality E1, . . . , EN , each with the
property that ∫ 32s

16s

dt

tφj(t)
> cN. (20)

Set V1 = h1 ◦ F . Then V1 maps each Ej univalently onto ∆, with λ∗j mapped onto a union µj of
sub-arcs of the unit circle of total length at least c. Hence

ω(w, µj ,∆) ≥ c(1− |w|) (21)
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for |w| < 1. Suppose that z lies in Ej\B(ζ0, 64s). Then, because λ∗j lies in B(ζ0, 8s), the same
harmonic measure estimate [21, p.116] combined with (15) and (20) yields

ω(V1(z), µj ,∆) = ω(z, λ∗j , Ej) ≤ c exp
(
−π
∫ 32s

16s

dt

tφj(t)

)
≤ exp(−cN) ≤ exp(−3drτ ). (22)

Now (21) and (22) together imply that B(ζ0, 64s) contains the pre-image Hj under V1 of the disc
B(0, 1 − exp(−2drτ )), and this is true for 1 ≤ j ≤ N . These regions Hj are disjoint, and so there
must be at least one j such that Hj has area at most cs2/N . Without loss of generality this is true for
j = 1.

For p = m,n choose µp ∈ [0, 2π) such that µp = arg h1(ap), and let Γp ⊆ E1 be the pre-image
under V1 of the segment w = teiµp , 0 ≤ t < 1. Then Γp\Up is bounded by (13). Let Γ∗p be the sub-path
of Γp on which |V1(z)| ≤ 1 − exp(−drτ ). Then Γ∗p ⊆ H1 and, by Lemma 3.2 and (15), this path Γ∗p
has arc length at most Tp = csN−1/2rτ/2 = o(s). Since Γp tends to infinity, Γ∗p may be extended to a
sub-path Γ∗∗p of Γp of length 2Tp. The fact that V1 maps Γp onto a radial segment then implies that∫

Γ∗∗
p \Γ∗

p

|V ′
1(t)| |dt| ≤ exp(−drτ )

and so there exists vp ∈ Γ∗∗p \ Γ∗p with

|V1(vp)− h1(ap)| ≤ exp(−drτ ), |V ′
1(vp)| ≤ T−1

p exp(−drτ ).

Since V1 = h1 ◦ F and h1 extends univalently to a neighbourhood of ap by the reflection principle, the
estimates (14) follow. To define γ let ζ1 = V −1

1 (0) ∈ B(ζ0, 64s)∩E1 be the common starting point of
Γm and Γn, and let γp be the sub-path of Γp joining ζ1 to vp. Next, let γ be the simple path formed
from γm and γn. Thus γ has length at most 4Tp = o(s) and lies in B(ζ0, 64s + 2Tp) ∩ E1, which
completes the proof of the lemma.

2

4 Proof of Theorem 1.2

The method rests upon elements of the proof of Theorem 1.1 in [14], modified appropriately, and the
parts where changes are required will be highlighted. Assume that f satisfies the hypotheses of Theorem
1.2, with k = 2, but that f has infinitely many poles. Apply the reasoning of Section 3, with F = f ′,
and retain the notation there, including the finite asymptotic values ap and components Up of the set
{z ∈ C : |f ′(z)− ap| < δ0}. If the positive constant δ1 is small enough then Proposition 1.1 gives

|f(z)− apz| ≤ δ0|z| for all z ∈ Up with |f ′(z)− ap| < δ1. (23)

It may be assumed further that 0 ∈ B1 and h1(0) = 0, since otherwise f may be replaced by f(z)−λz,
for some λ ∈ C. A key step is to show that the type II components of (f ′)−1(B1) are not too “thin”.

Lemma 4.1 There exists a positive constant C1 with the following property: if D is a type II component
of the set (f ′)−1(B1) and z0 ∈ D, f ′(z0) = 0 then, provided |z0| is large enough,

B(z0, C1|z0|) ⊆
{
z ∈ D : |h1(f ′(z))| <

1
2

}
. (24)
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Proof. This proof is almost identical to that of Lemma 5.3 in [14]. Since h1 ◦ f maps D onto B(0, 1),
Koebe’s theorem implies that to prove (24) it suffices to show that G′(0) 6= o(|z0|), where G is that
branch of the inverse function of V = h1 ◦ f ′ which maps B(0, 1) onto D. Assume that z0 is large and
G′(0) = o(|z0|). Since D is a type II component, f ′ has distinct finite asymptotic values a1, a2 such
that f ′(z) tends to ap as z →∞ on a boundary arc of D, for p = 1, 2. Because G′(0) = o(|z0|) there
exists a path γ∗ in D, of length o(|z0|), joining points η1, η2 with |f ′(ηp)− ap| < δ1. Moreover ηp lies
in Up by (13). Integrating f ′ along γ∗ and using (23) then gives a contradiction. 2

Lemma 4.2 Let L(r) →∞ with L(r) ≤ 1
8 log r as r →∞, and for k > 0 and large r let

A(k) = {z : re−kL(r) ≤ |z| ≤ rekL(r)}.

Then the number N1 of distinct poles of f in A(1) satisfies

N1 = O(φ(r)) as r →∞, where φ(r) = L(r) +
log r
L(r)

. (25)

The proof of Lemma 4.2 is the same as that of Lemma 5.4 in [14]. Assume that f has distinct poles
w1, . . . , wN1 in A(1), where φ(r) = o(N1). The only direct application of the hypothesis of finite order
in the proof of [14, Lemma 5.4] is to give a positive constant M1 and an estimate mj ≤ rM1 for the
multiplicity mj of a pole wj of f in A(1). In the present setting this bound follows at once from (2).
Harmonic measure estimates (the same as those used in the proof of Lemma 3.1) then give distinct
poles w1, . . . , wN say, where φ(r) = o(N), to each of which is associated a type II component Ej of
the set (f ′)−1(B1) with the property that Hj = {z ∈ Ej : |h1(f ′(z))| < 1/2} ⊆ A(3). Combining this
with (24) then gives N = O(L(r)) and so a contradiction. The detailed proof is omitted since, apart
from the minor change already noted, it is identical to that of Lemma 5.4 in [14]. 2

Choosing L(r) = 1
8 log r now gives

n(r9/8, f)− n(r7/8, f) = O(log r) and n(r, f) = O(log r) as r →∞. (26)

But then combining (26) with the hypothesis (2) on the multiplicities of poles leads to

n(r, f ′′) ≤ 3n(r, f) = O(rM+1) and N(r, f ′′) = O(rM+1) as r →∞.

Since f ′′ has finitely many zeros and finite lower order, it follows that f ′′ and f have finite order. Hence
f has finitely many poles by Theorem 1.1, contrary to assumption. This proves Theorem 1.2. 2

5 Two lemmas required for Theorem 1.3, and a special case

Lemma 5.1 Let A ∈ C and let the function f be meromorphic in the plane of order ρ(f) > 1. Then
g = f ′ +Af has order ρ(f).

Proof. Set G(z) = f(z)eAz. Then G has the same order as f , and so has G′(z) = g(z)eAz. 2

Lemma 5.2 ([15, 16]) Let d1 > 0 and let the function G be transcendental and meromorphic in the
plane of order ρ(G) < d1. Then there exists an unbounded uncountable set of R such that the length
L(r,R,G) of the level curves |G(z)| = R > 0 lying in |z| < r satisfies L(r,R,G) ≤ r1+d1/2 as r →∞.
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2

Proposition 5.1 Let the function f be meromorphic of finite order in the plane such that f ′′ + f ′ has
finitely many zeros. For r ≥ 1 and S > 0 let nS(r) denote the number of distinct poles of f in the set

{z ∈ C : 1 ≤ |z| ≤ r, Re (z) ≥ S}.

Then there exists S > 0 such that nS(r) = O(r3) as r →∞.

To prove Proposition 5.1 let the function f be meromorphic of finite order ρ in the plane, such that
F ′ has finitely many zeros, where F = f ′+f . Assume that there exists S0 > 0 such that nS0(r) 6= O(r3)
as r →∞. Then obviously ρ ≥ 3. Moreover F has order ρ by Lemma 5.1 and so the function ezF ′(z)
is transcendental, and the reasoning and notation of §3 may be applied to F .

Lemma 5.3 Choose r1 > 1 such that ezF ′(z) has no zeros in |z| ≥ r1. Choose d2 > 1 + ρ/2 and an
integer N1 > d2 and set

G1(z) =
1

zN1ezF ′(z)
. (27)

Then there exists R1 > M(r1, G1) such that the length L(r,R1, G1) of the level curves |G1(z)| = R1

lying in |z| < r satisfies L(r,R1, G1) ≤ rd2 as r → ∞. Moreover the set {z ∈ C : |G1(z)| > R1} has
finitely many unbounded components Ωj , and there exists T1 > 0 such that

|ezf(z)− ezF (z)| ≤ T1 (28)

on each Ωj . Finally if |z| > r1 and |G1(z)| > R1 then z lies in one of the Ωj .

Proof. The existence of R1 follows from Lemma 5.2, and it remains only to prove (28) since all other
assertions are standard. Let Ω be one of the Ωj and divide the boundary ∂Ω into its intersections with
the annuli 2n ≤ |z| < 2n+1, n ≥ 0. Then ∂Ω satisfies∫

∂Ω
|etF ′(t)| |dt| ≤

∞∑
n=0

R−1
1 2−nN1L(2n+1, R1, G1) ≤

∞∑
n=0

R−1
1 2−nN1+d2(n+1) +O(1) <∞. (29)

Fix z1 ∈ Ω and let z ∈ Ω be arbitrary. Then z1 may be joined to z by a path Γz in the closure of Ω
consisting of part of the ray arg t = arg z1, part of the circle S(0, |z|) and part of ∂Ω, so that (29) gives∫

Γz

|etF ′(t)| |dt| ≤
∫

∂Ω
|etF ′(t)| |dt|+

∫ ∞

1
R−1

1 t−N1 dt+ 2πR−1
1 |z|1−N1 ≤ c1, (30)

where c1 is independent of z. Since F = f ′ + f integration by parts leads to

ezf(z)− ez1f(z1) =
∫

Γz

etF (t) dt = ezF (z)− ez1F (z1)−
∫

Γz

etF ′(t) dt,

and so (28) now follows using (30). 2

To complete the proof of Proposition 5.1 assume now that there exists a sequence Sq → +∞ such
that nSq(r) 6= O(r3) as r → ∞. Let q be large. There exist arbitrarily large r such that the set Ar

given by r ≤ |z| ≤ 2r, Re (z) ≥ Sq contains at least N0 distinct poles of f , where r3 = o(N0). This
implies the existence of ζ0 ∈ Ar such that the disc B(ζ0, 1) contains at least N1 distinct poles of f ,
where

r = o(N1) and N1 ≤ rρ+1. (31)
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Moreover all these poles have multiplicity at most rρ+1. Applying Lemma 3.1 with s = τ = 1, d = 5
and ν = ρ + 1 then gives distinct finite asymptotic values am, an of F and points vm, vn lying in
B(ζ0, 65) and satisfying (14). Here the constants Cj arising from Lemma 3.1 may depend on f but do
not depend on q or r. Since r is large and

vp ∈ B(ζ0, 65) ⊆ {z ∈ C : 2r/3 ≤ |z| ≤ 3r, Re (z) ≥ Sq/2} (32)

it follows from (14) and (31) that |evpF ′(vp)| ≤ e−r. In particular G1(vp) is large for p = m,n, where
G1 is defined by (27). Hence Lemma 5.3 and (14) give

evnf(vn)− evmf(vm) = evnF (vn)− evmF (vm)−A1 = ane
vn − ame

vm −A2, (33)

in which A1 and A2 may depend on q and r but satisfy |A2| ≤ |A1|+ 1 ≤ 2T1 + 1. Next, Lemma 3.1
also gives a path γ joining vm to vn such that γ has length o(1) and F (z) lies in the bounded domain
B1 for z ∈ γ. Hence

evnf(vn)− evmf(vm) =
∫

γ
etF (t) dt = o(|evm |). (34)

Combining (33) and (34) now yields

ane
vn = ame

vm +A2 + o(|evm |) = ame
vm(1 + o(1)) +A2 = ame

vn(1 + o(1)) +A2.

But am 6= an and |A2| ≤ 2T1 + 1, in which T1 arises from Lemma 5.3 and is independent of q and r,
whereas (32) gives Re (vn) ≥ Sq/2 →∞ as q →∞. This contradiction proves Proposition 5.1. 2

Corollary 5.1 Let α, β be distinct complex numbers, and let D denote d/dz. Let the function f be
meromorphic of finite order in the plane such that F = (D − α)(D − β)f has finitely many zeros, and
let mS(r) be defined by (5). Then there exists S > 0 such that mS(r) = O(r3) as r →∞.

Proof. Write
f(z) = eβzg((β − α)z) = eαzh((α− β)z).

Then
F = (α− β)2eβz(g′′ + g′)((β − α)z) = (α− β)2eαz(h′′ + h′)((α− β)z).

Now apply Proposition 5.1 to g and h.
2

6 Proof of Theorem 1.3

To prove Theorem 1.3 let f and Q = L(f) be as in the hypotheses, write D = d/dz, and let the roots
of the equation (4) be x1, . . . , xk. For the proof of part (i) assume that x1 = x2 = α, and write

g = (D−x3) . . . (D−xk)f, Q = (D−α)2g = L(f), h(z) = e−αzg(z), h′′(z) = e−αzQ(z). (35)

The result then follows on applying Theorem 1.1 to h. Next, part (ii) is proved by assuming without
loss of generality that α = x1 6= x2 = β, and applying Corollary 5.1 to g as defined by (35).

To establish part (iii) assume without loss of generality that (4) has distinct roots x1 = α, x2 = β1,
x3 = β2 such that

0 < arg(β2 − α)− arg(β1 − α) < π.

10



Applying part (ii), first with α and β1, and subsequently with α and β2, shows that n(r, f) = O(r3)
as r → ∞, which proves the first assertion of part (iii). Assume now in addition that there exists
M ∈ (0,∞) such that the poles ζ of f have multiplicities mζ satisfying (2), but that the order ρ of f
exceeds M + 3. Then N(r, f) = O(rM+3+o(1)) as r →∞. Write

G(z) = e−αzH(z), H = (D − x2) . . . (D − xk)f, G′(z) = e−αz(H ′(z)− αH(z)) = e−αzQ(z),

where Q = L(f). Then H and G both have order ρ > M + 3 by Lemma 5.1, while G′ has order ρ and
finitely many zeros. By [13, Theorem 1.4], the function G has finitely many poles and so has f . 2
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