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Abstract

Let f be meromorphic of finite order in the plane, such that f*) has finitely many zeros,
for some k > 2. The author has conjectured that f then has finitely many poles. In the present
paper, we strengthen a previous estimate for the frequency of distinct poles of f. Further, we
show that the conjecture is true if either (i) f has order less than 1+¢, for some positive absolute
constant € or (i) f(™, for some 0 < m < k, has few zeros away from the real axis. A.M.S.
Classification: 30D35.

1 Introduction

Suppose that f is a function transcendental and meromorphic in the plane. By a theorem of Pdlya
[9, 26], if f has at least two poles then for each sufficiently large k the k’th derivative f (k) has at
least one zero. The following theorem confirmed a conjecture of Hayman [8] from 1959:

Theorem 1.1 ([5, 7, 18]) Suppose that m > 0 and k > 2 and that f is meromorphic in the plane
such that ™ and f™%) each have finitely many zeros. Then f(m"'l)/f(m) is a rational function.
In particular, f has finite order and finitely many poles.

We refer the reader to [2, 6, 13, 20, 23] for related results. Now Gol’dberg has conjectured that
the frequency of distinct poles of f is controlled by the frequency of zeros of a single derivative
%), provided k > 2, and the author made the following, related conjecture in [21].

Conjecture 1.1 Suppose that k > 2 and f is meromorphic of finite order in the plane and that
%) has finitely many zeros. Then f has finitely many poles.

Obviously if Conjecture 1.1 is true for £ = 2 then it is true for £ > 2. On the other hand,
Conjecture 1.1 is false for functions of infinite order, as shown in [21] by examples of form f”/f' =
elg~! with g, h entire, for which both f’ and f” are zero-free. The following theorem, in which the
notation is that of [9], summarizes some results in the direction of Conjecture 1.1.

Theorem 1.2 ([22, 23]) Suppose that f is meromorphic of finite order p in the plane and that
f" has finitely many zeros. Then

N(r, f) = O(logr)®, r — o0. (1)
If, in addition, [ satisfies any one of the following, then f has finitely many poles:
(i) N(r,1/f") = o(r'/?) as r — oo;
(ii) T(r, f) = O(r(logr)?) as r — oo, with § a constant satisfying 0 < 3200e'66 < 1;

(i) there exists € > 0 such that all but finitely many poles w of f have multiplicity p(w) < |w|P~¢.



The main results of the present paper are substantial improvements of (1) and of part (ii) of
Theorem 1.2. First we have:

Theorem 1.3 Suppose that f is meromorphic of finite order p in the plane, and that f" has finitely
many zeros. Then
N(r, f) < k(logr)?, 7= o0, (2)

in which K is a positive constant depending only on the asymptotic values of f'.

The key to the proof of Theorem 1.3 is a new way, described in Section 4, of estimating f
on regions where f’ is close to its finite asymptotic values. Theorem 1.3 leads to the next result,
establishing Conjecture 1.1 for functions of order not much greater than 1.

Theorem 1.4 There exists a constant € with 0 < € < % such that if f is meromorphic of order
less than 1+ ¢ in the plane and f" has finitely many zeros then f has finitely many poles.

Our last result proves Conjecture 1.1 for functions for which some derivative f(™), with 0 <
m < k, has relatively few zeros away from the real axis.

Theorem 1.5 Suppose that 0 < m < k and k > 2 and that ¢(r) is a positive function tending to
0 as r — co. Suppose further that f is meromorphic of finite order p in the plane, and that f®
has finitely many zeros. Finally, suppose that

+ Arx (m)
lim sup 28~ V(1 1/£0)
r—00 logT

(3)

in which N*(r,1/f(™) counts the zeros of f(™) which lie outside the set {z : |arg2?| < $(|z|)}.
Then f has finitely many poles.

Note that by Theorem 1.2, part (ii), we may assume that p > 1 in Theorem 1.5. Functions
satisfying the hypotheses of Theorem 1.5 abound: for example f(z) = 1—e'#. There is a substantial
literature dealing with entire and meromorphic functions f, some of whose derivatives have only
real zeros [15, 16, 29]. Theorem 1.5 does not really belong to this strand: rather, in addition
to improving part (i) of Theorem 1.2, it shows that some extra geometric information on the
distribution of zeros of f(™ suffices to prove Conjecture 1.1.

The author takes pleasure in acknowledging valuable correspondence with Jim Clunie.

2 Lemmas needed for the theorems

Throughout this paper we denote by B(zg,r) the Euclidean disc {z : |z — zy| < r}, by S(z0,7) the
circle {z : |z — z9| = r}, and by A(z¢, R, S) the open annulus {z: R < |z — 29| < S}.

Lemma 2.1 ([17, 22]) Suppose that h(z) = 372, ajz’ maps the disc B(0,s) conformally onto a
simply connected domain D of finite area A. Then, for real @ and 0 < r < s, the length L(r,8) of
the image under h of the line segment z = te*®,0 < t < r, satisfies

L(r,0)% < (A/m)log1/(1 — r2s72).

Lemma 2.2 ([24]) Suppose that d > 1 and that F is transcendental and meromorphic in the plane
with T(r, f) = O(r%) as r — co. Then there exist arbitrarily small positive R such that F(z) has
no multiple points with |F(z)| = R and the length L(r, R, F') of the level curves |F(z)| = R lying in
|z| < r satisfies L(r, R, F) = O(rB*t)/2) as r — co.



We require next Tsuji’s well known estimate for harmonic measure [30, p.116].

Lemma 2.3 ([30]) Let D be a simply connected domain not containing the origin, and let 2z lie
in D. Let T # |z9|. Let 6(t) denote the angular measure of DNS(0,t), and let D, be the component
of D\S(0,7) which contains zy. Then the harmonic measure of S(0,7) with respect to the domain
D,, evaluated at zy, satisfies

w(z9,5(0,7),D;) < Cexp <_7T/1 tHd%) , (4)

in which C is an absolute constant, and I = [2|z|,r/2] if r > 4|zo|, with I = [2r, |20|/2] if 4r < |20|.

Note that (4) for 4r < |zg| is obtained from the same estimate for the case r > 4|z| by the
substitution { = 1/z.

Lemma 2.4 Let 0 < p< 1073 and let Q = {2 : p < |2| < 1,Im(z) > 0}. Let Fy = {e" : 1/3 <t <
27 /3}. Let z1 lie in Q with 200p < |z1|. Then

w(z1, Fo, Q) > ¢p(|21] ™" = |1 sin(arg 21), (5

~—

in which c is a positive constant, independent of p and z1.

Proof. Let d; denote positive constants, independent of p and 21, and set w = ¢(z) = 2p(z+1/2).
Then |z| = p gives |w| > 3/2, so that ¢(£2) contains the semi-disc D; = {w : |w| < 1,Im(w) < 0}.
Also ¢(Fy) = Gy is a subset of [—4p,4p| of measure d;p, and w1 = ¢(z1) has |wq| < 1/50.

Let 1 map D; to the unit disc, with )(—i/2) = 0. Then the Schwarz reflection principle (or
elementary calculation) gives do < |¢'(w)| < 1/dy for w in D1 N B(0,1/4), and so Poisson’s formula
leads to (5), since

w(z1, Fy, Q) > w(wy, Go, D1) > d3p dist{wy,dD1} = d3p|Im(w)|.

We recall next that for 0 < L < oo and a subset E of (0,00) the upper logarithmic density of

E satisfies f -
logdensE = lim sup JirnE 7

r—00 log T

= logdens{t : Lt € E}. (6)

Lemma 2.5 Let S(r) be an unbounded positive non-decreasing function on [rg,00), continuous
from the right, of finite order p. Let A >1,B > 1. Then

log A
log B

logdensG < p( > , G={r>rg:S(Ar) > BS(r)}.

Lemma 2.5 is stated in [10] for a characteristic function T'(r, F'), but the proof goes through
for S(r). Finally, we require some standard facts from the Wiman-Valiron theory [11, 31]. Let F’
be a transcendental entire function. Provided r is mormal for F, that is provided r lies outside

an exceptional set E of finite logarithmic measure, we have, for zy with |z9| = r and |F(z)| >
(1 —o(1))M(r, F),

F'(20)/F(20) = v(r)z5 ' (1 + o(1)), (7)
in which v(r) = v(r, F) is the non-decreasing central index of F. Suppose now that G is transcen-
dental and meromorphic in the plane, with finitely many poles b1, ..., by, repeated according to

multiplicity. Then F(z) = G(z)H?Zl(z — b;) is entire and the estimate (7) holds with F' replaced
by G. Thus, with a slight abuse of notation, we may regard v(r, F') as the central index of G.



3 Preliminaries

Suppose that h is transcendental and meromorphic in the plane, and that h(z) tends to the finite
complex number a as z tends to infinity along a path 7. Then the inverse function h~! is said
to have a transcendental singularity over a [3, 25]. For each positive ¢, a domain C(t) is uniquely
determined as that component of the set C'(t) = {z : |h(z) — a| < t} which contains an unbounded
component of the intersection of C'(¢) with the path . Here C(t) C C(s) if 0 < ¢t < s, and the
intersection of all the C(t),t > 0, is empty.

The singularity of h~! over a corresponding to v is said to be direct if C(t), for some positive ,
contains finitely many zeros of h(z) —a, and indirect otherwise. If the singularity is direct then C(¢),
for sufficiently small ¢, contains no zeros of h(z) —a. Singularities over oo are classified analogously.

Theorem 3.1 ([3]) If the transcendental meromorphic function h has finite order and the inverse
function h™' has an indirect transcendental singularity over a, then a is a limit point of critical
values of h, that is, values taken by h at multiple points of h.

Consequently, if h is meromorphic of finite order in the plane with finitely many critical values,
then all transcendental singularities of h~! are direct and, by the Denjoy-Carleman- Ahlfors theorem
[3, 25], the number of direct transcendental singularities of h~! is at most 2p(h).

We need next a modification of some standard facts discussed in [25]. Suppose that F is a
transcendental meromorphic function with finitely many asymptotic values a,,, and with finitely
many critical values b,. Suppose that F' has no asymptotic values in ¢y < |w| < oo and no critical
values in ¢; < |w| < 0o, where ¢y < ¢1. Let Vj be the domain obtained by deleting from the annulus
A(0, ¢y, 00), for each finite non-zero critical value b, of F, the half-open line segment

w = pezargbn’

cp<p<ec.
Consider a component Cj of the set F~1(1;), and choose zy € Cy and vy such that e” = wy =
F(z). Then

$(v) = h(e") = F~(e"),
with 1) = F~1 the branch of the inverse function mapping wg to 2o, extends by continuation to an
analytic function on the simply connected domain Uy = {v : " € Vj}.

Further, ¢ maps Uy into Cy. Indeed, ¢p(Uy) = Cy, for if z* € Cy we may join 2 to z* by a path
~1 in Cj and choose a path 7, in Uy starting at vy such that €7 = F(vy;). Then F(¢(y2)) = F(y1)
and so ¢(y2) = 1 by uniqueness of lifts, since both paths start at zg.

There are now two possibilities. The first is that the function ¢ is univalent on Cj, so that the
image under ¢ of Re(v) = 1+ log¢; is a simple curve tending to infinity in both directions. Thus,
by a standard argument, such as the Phragmén-Lindel6f principle, ¢(u) — oo as u — oo with
Re(u) > 1+1logecy and Cj is an unbounded simply connected domain containing a path tending to
infinity on which F(z) — oo.

On the other hand if ¢ is not univalent in Uy then the open mapping theorem shows that ¢
has period k27i, for some minimal positive integer k. In this case 11(¢) = %(¢*) = ¢(klog ()
extends to be analytic in Wy = {¢ : ¢¥ € V,}, mapping W, univalently onto Cy. Also, 11 (¢) has
a limit as ( — oo, which must be finite, and so a pole z; of F, since F' is transcendental, and
F'k . Cyu{z1} — Wy U{oo} is univalent.

The same two possibilities occur for any component C; of the set {z : ¢y < |F(z)| < oo} such
that C contains no critical point of F'.



4 An estimate on components where the derivative is small

Lemma 4.1 Suppose that G is a transcendental meromorphic function of finite order p and that
G’ has no asymptotic values in 0 < |w| < dy < 00, and no critical values in 0 < |w| < ds < di, and
that G' has finitely many critical points z with |G'(z)| < dy.

Form the domain Vy by deleting from the annulus A(0,0,dy) the half-open line segment

w= sy <s<d,

for each non-zero finite critical value b, of G'. Let D be a component of the set (G')~*(Vy) con-
taining a path v on which G'(z) — 0 as z — oc.

Let N be an integer with N > 2 + p. Choose d3 with 0 < d3 < dy such that |G'(z)| > ds on
some circle S(0,0) with 1 < o <2, and let Dy = {2 € D : |z] > 0,|G'(2)| < d3}. Choose d as in
Lemma 2.2, with 0 < d < d3, such that the length of the level curves |2V G'(2)| = d lying in |z| <r
is O(r?*P) for all sufficiently large r. Define:

u(z) = {bg* |d/2NG'(2)|, if 2 € Dy;
0, otherwise.

Then u(z) is subharmonic in the plane, and D contains finitely many components W; of the set
{z 1 u(z) > 0}, and these are simply connected. Let z* € W;. Then there exists M* > 0 such that
to each z € W; corresponds a path vy, from z* to z, lying in the closure of W;, with

tG'(t)| |dt| < M” (8)
Y2

for each non-negative integer u with N — p > 2 + p.

Finally, there exist positive constants Sy, S1 depending on D such that for z in D with |z| > Sy
and |G'(z)| < e~tdy we have

C|zG'(z)|

ey v (9)
log |d1/G'(z)|

in which C is a positive absolute constant, in particular not depending on di,ds, G or D.

|G(2)| < 81+

Proof. The W; are simply connected by the maximum principle, since Z2NG'(z) # 0,00 on Dy,
by the discussion in Section 3. Since G’ has finite order and

By(r,u) < 3m(2r,u) < 3m(2r,1/G") + O(logr), r — 00,

in which By(r,u) = sup{u(re) : 0 < t < 27}, the number of W is finite [12, Chapter 8].

Next, if z is in W) then we join z* to z by a path +, in the closure of W) consisting of part of
the ray argt = argz*, part of the circle |¢t| = |z|, and part of the boundary 0W; of W;. Dividing
OW; into its intersections with annuli {2 : 297! < |t| < 29} we have

o0
/ G (1) dt] < Y- d2 M oi )y 1 O(1) < M,
oW 9=90

and
o0
[, e < s [ ar i omdt e = 00),

z

which proves (8).



To prove (9), fix zg € D. Let g = G' and let ¢ = g ! be that branch of the inverse function
mapping wy = g(zg) to zp. Choose vy such that e " = wy and set

pv) =p(e™”) =g (e™"), H={v:e W}
Then H is the half-plane {v : Re(v) > log1/d;} with the half-open line segments
Lpg={s+q2mi—iargb, :logl/di <s<logl/ds}, q€Z,

deleted. Further, as in Section 3, ¢ is analytic and univalent on H and ¢(H) = D, and D is simply
connected.

Now suppose that we attempt to analytically continue ¢ along one of the line segments L, ;.
This continuation can only fail if ¢(v) hits a critical point of g and, since ¢ is univalent on H, this
can only happen for finitely many Ly ,. Hence there exists a constant Ry > 0 (depending on D)
such that ¢ extends analytically and univalently to the set

H, ={v:Re(v) > cp,|v —co| > Ro}, co=1logl/dy,
with ¢(v) # 0 on Hj. Set
Hy = {v: Re(v) > co,|v — co| > 100Ry }.

Then ¢(H\H>) is bounded, since G’ has no asymptotic value in 0 < |w| < di. Further, for v; in
H,, ¢ is univalent on the disc B(v1, 3(Re(v1) — c))-

We apply a logarithmic change of variables as used in [1, 2, 4] and elsewhere. Since ¢ # 0 on
Hy, we may define an analytic and univalent branch of { = log ¢(v) on Hs. By Koebe’s one-quarter
theorem [27], we thus have

|d¢/dv| = |¢'(v)/$(v)| < 87/(Re(v) — co) < 32/(Re(v) — o) (10)
for v in Hy. Let v; be in Hy with
2 =¢(v1), v =Q+iy, Q=log|l/G'(z1)] >co+1. (11)

Let L be the line given by v = s + iy, s > Q. For s > @, by (10),

|6/ (s +iy) /¢(s +iy)| < 32/(s — o),

and so
lp(s +iy)| < [$(Q + 1y)] exp(/Qs 32(t — co) ' dt) = [$(Q + i) |(s — c0)**(Q — c0) P, (12)

and, recalling (10) and (11),
| (s + iy)| < |21/32(s — c0)* (@ — co) ™. (13)

Now ¢(L) is unbounded, and we have
o0
|16 @I 1del = [ exp(-Re(@)Ig'w)] Ido| = [ eI (s +i)lds.
(L) L Q
Thus (13) and integration by parts give

Lo, GG el < lai] [ 7673205 — )" (@ — o) s < Culale Q) (14)
#(L Q
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in which C is a positive absolute constant.
Now we assert that for large s we have z = ¢(s + iy) € W;, for some j. By (11) and (12),

2| < |z1](s — c0)**(Q — ¢o) ™2

and so
s =1log|1/G'(2)| > co + (Q — co) |2/ 21|/

so that
log |z| = o(log [1/G"(2)])

as s — 4o00. It follows that a sub-path of ¢(L) joins z; to a point in one of the finitely many W;.
But G(z) = O(1) on W}, so that using (14) we deduce (9), and Lemma 4.1 is proved.

5 Critical points and asymptotic values

Suppose now that F' is meromorphic of finite order in the plane, such that F' has infinitely many
poles, but F' has finitely many zeros. Then, by Theorem 3.1, F has finitely many asymptotic
values, and each corresponds to finitely many direct transcendental singularities [3, 25] of the
inverse function.

Let J be a circle or a simple closed polygonal path, such that every finite asymptotic value of
F lies on J, but is not a vertex of J. Then J divides its complement in C* = C U {oo} into two
simply connected domains By and Bs, such that B; is bounded, while co € B,. Fix conformal
mappings

hm : By = A= B(0,1), m=1,2, hy(oo)=0.

By the Schwarz reflection principle, if I is a line segment contained in J and not meeting any vertex
of J then for m = 1,2 there are positive constants d,, such that

dp < B, (w)] <1/dp, wel (15)

Let J' be the set of vertices of J and asymptotic values of F', and let J” = J\J'. For each component
J* of J" we choose an arc I, of J* whose closure does not meet J', and for each such I, there are
constants d,, as in (15).

We consider the components of the sets F—1(B,,), this more complicated than in [22] because
of the different way that J was chosen. It is convenient to take a quasiconformal homeomorphism
11 of the extended plane onto itself such that 11 (00) = oo and 11 (B;1) = A. There exist a function
g meromorphic in the plane and a quasiconformal mapping v such that

¢(00)Zooa ¢1°F:g°¢-

This g has finitely many asymptotic values, all of modulus 1, and ¢’ has finitely many zeros. By
choosing 1, appropriately, we may assume that 0 is not a critical value of g and that the distinct
finite asymptotic and critical values of g have pairwise distinct principal arguments.

Since g may have finite critical values off the unit circle we choose ¢; € (0,1) and ¢z > 1 such
that ¢ has no critical values in |w| < ¢; nor in ¢ < |w| < co. Let M be the union of the line
segments

w=se!¥Bn ¢ <5< ey,

in which the (,, are the finite critical values of g, and let

AlzB(O,l)\M, AQZ{’LU].<|'LU|SOO}\M



Then, as in Section 3, all components of the sets g~ 1(4,) are simply connected. Further, for each
component T of g !(Asy), either T contains just one pole of g, or T contains no pole of g, but
instead a path tending to infinity on which g(z) tends to infinity. Because the inverse function g—*
has finitely many singularities, there are only finitely many components 7' of this second type.

Consider now a pole z; of g. Then z; lies in a component T} of the set g~ (As). We assert first
that if z1 is large enough then T} is unbounded, and to prove this we assume the contrary. Since ¢’
has finitely many zeros the closure T of T} is a bounded component of the set {z : |g(z)| > 1} and,
by analytic continuation, T} is a subset of a bounded component T3 of the set {z : g(z) € C*\ 41},
such that ¢'(z) # 0 on T3. Hence the set g (A1) has a multiply connected component, which is
impossible.

Consider next an unbounded component S of {z : |g(z)| < 1} having no zero of ¢’ in its closure
in the finite plane. By Section 3, S is simply connected and conformally equivalent under g to the
unit disc. There must be at least one path tending to infinity in S on which g(z) tends to one of
its finitely many asymptotic values: we call S type I if there is only one such asymptotic value of
g approached along a path tending to infinity in S, and type II if there are at least two distinct
such values. Clearly a type I component S with no zero of ¢’ on its boundary 95 is such that 95
consists of just one simple analytic curve going to infinity in both directions, and such an S cannot
separate the plane. We shall call an unbounded component S’ of the set F~!(B;) type I or II if
S =1(S") is a type I or II component of {z : |g(z)| < 1}.

We return now to a pole z; of g, of multiplicity p, with |z;| large, lying in a component 7} of
g '(Az). Then T} is unbounded and cannot share a finite boundary point with another component
of g71(A). Thus T} is a subset of a component Ty of {z : |g(z)| > 1}, such that 0Ty C 9T}
and such that ¢’ has no zeros in the closure of T} in the finite plane. By Section 3, T} is simply
connected and v(z) = g(z) /P is conformal on Ty. Each boundary point of T} is a boundary point
of a component of g (A1). Indeed, the boundary of Ty consists of finitely many simple level curves
L* of g on which arg g(z) is monotone, each mapped by g onto an open arc of |w| = 1. Each such
arc must form a boundary curve of a type I or type II component of the set {z : [g(z)| < 1}, with
type II for at least one L*. In particular, ¢ must have at least two distinct finite asymptotic values
and so must F.

Lemma 5.1 Let M; > 0 and let ¢ : [0,00) — [0,00) be such that ¢(r) — o0 as 7 — oo, and let
Alk) = {z: rY/* < |2| < 1%} (16)

for large r and for positive integer k. Suppose that A(2) contains Ny distinct poles z1,...,zn, of F,
with N1 > ¢(r). Then provided r is large enough there exist N > coNy distinct type II components
E; of the set F~1(By), each with the property that

Li={z€E;:|V(2)| <1—r"M}CA®B), V=moF (17)
Here ¢y is a positive constant depending only on the finite asymptotic values of F'.

Proof. Let D; be the component of F~!(By) in which z; lies, and denote by 6;(¢) the angular
measure of the intersection of D; with the circle $(0,t). Since r is assumed large the D; are simply
connected.

We shall use in this proof ¢ to denote positive constants, not necessarily the same at each
occurrence, but depending only on the asymptotic values of F', and in particular not on r or Nj.
By the discussion above, we may assume that at least 256 N of these D;, say D1,..., Dossn, with
N an integer satisfying

N > cNy > e(r) (18)



are such that the following is true. There are distinct finite asymptotic values a1, as of F' such that
to each D; corresponds a type II component E; of F~(By), the boundaries of Dj; and Ej; sharing
a component K. Here K; is a simple piecewise smooth curve going to infinity in both directions
and mapped by F' onto a fixed sub-path J; of the curve J, the closure of J; joining a; to as. Since
F' is univalent on each Ej;, we have E; # Ej for 1 < j <k < 256N.

Now each D; meets |z| > S, and at least 64N of the D;,1 < j < 256N, are such that

(1/2)r
/ dt/tf;(t) > cNlogr, (19)
2

2

since if (19) fails for Dy,..., Dy we have

(1/2)r4

M M
M? < (2 @(t)) (Z 1/0j(t)) , cNMlogr > Z / dt/t0;(t) > M*(logr/2)/m.
j=1 j=1
Of these 64N domains Dj, at least 16 N of them, say D1,..., Dign, have

(1/2)rt/?
/ dt/6;(t) > N logr. (20)
2T1/4
If the closures of at least 16V of the D; satisfying (19) fail to meet {2 : |2| < 2r'/} then we choose
16N of these domains, and (20) is obvious, while otherwise we use the same argument as in (19).
We now fix a sub-arc Jy of Ji, one of the arcs I, chosen following (15). We write p; for the
multiplicity of the pole of F at z;, and for 1 < j < 16N we define v; = (hg o F)'/Pi, so that v,
maps D; conformally onto A, with v;(z;) = 0. The path K; forming the boundary between D;
and E; has a sub-path \; mapped onto Jy by F. As z describes the arc \;, the image (hy o F')(z)
describes an arc of the unit circle of length at least ¢, using (15), so that v;(z) describes an arc of
the unit circle of length at least c/p; > er—PF) =1 This gives

w(zj, Aj, Dj) > ¢/pj > cr PE)-L, (21)

Set 0; = Aj\A(4). Since z; lies in A(2), Lemma 2.3, (19) and (20) imply that

/2)r (1/2)r1/?
cexp (—7‘(’/ dt/t@(t)) + cexp (—7‘(’/ dt/th(t)>
2r2 271/4

< cexp(—cNlogr).

W(Zj,O'j,Dj)

AN

Thus (18) and (21) give, provided r is large enough,
w(zj, A;, Dj) > ¢/pj > er )1 ;=X NA(4). (22)

By (22), Aj is mapped by v; into a finite union of sub-arcs of the unit circle of total length at
least ¢/p; and so is mapped by F into a union of sub-arcs of Jy of total length at least ¢, using
(15) again. Let ¢;(t) be the angular measure of the intersection of E; with the circle S(0,%). The
above reasoning gives at least N of the Ej, say Ei,..., Ey, each having

(1/2)r!/*

(1/2)r?
/ " dtftgi(t) > eNlogr, / Lo dftgi(t) > eN logr. (23)
2r 2

r

We know that V' maps E; univalently onto A, with A} mapped onto a union p; of sub-arcs of the
unit circle of total length at least ¢. Hence

w(w, g, A) > o1 — w]) (24)



for |w| < 1. If # lies in E;\A(8) then, because A} lies in A(4), Lemma 2.3 and (23) imply that

w(V(2),15,8) = w(z,X; Ej)

(1/2)r8 (1/2)r1/4
< cexp <—7r/ \ dt/t¢j(t)> + cexp (—7‘[’/ e dt/td)j(t))
2r 2r

< cexp(—cN logr).

(17) now follows using (24).

6 Proof of Theorem 1.3

We assume that f is meromorphic of finite order p(f), and that f has infinitely many poles, while
f" has finitely many zeros. We apply the reasoning of Section 5, with F = f’, and retain the
notation there. Let the finite asymptotic values of f’ be a,, repeated according to how often they
occur as direct transcendental singularities of (f')~!. Choose a path I, starting at 0 and tending
to infinity, such that f'(z) — an, as z tends to infinity on I'. Next choose di,ds with 0 < ds < d;
such that:

(i) for each n, there are no asymptotic values of f' in 0 < |w — a,| < dy;
(ii) for each n, there are no critical values of f’ in 0 < |w — a,| < ds.

Obviously d; depends only on the a,, while ds depends also on f.
For each n, define a domain V,, as follows. From the annulus A(a,,0,d;) delete, for each finite
critical value by, # a, of f’, the half-open line line segment

w = a, + seiarg(bm*a"), do < s <dj.
The following lemma is an immediate consequence of Lemma 4.1 and the discussion preceding it.

Lemma 6.1 Choose €y > 0 such that |a, — anm| > 4eg for an # anm. There ezist a positive constant
g1 and, for each n, an unbounded simply connected domain Uy, a component of the set (f')~1(Va),
such that Uy, contains a path tending to infinity on which f'(z) tends to ay,. Further, f'(z) # a, on
Un and |f(z) — anz| < go|z| for all large z in U, with |f'(z) — an| < €1. The constant €1 depends
only on the asymptotic values of f'.

Now let €5 be such that, for each n, if |hi(w) — hi(a,)| < &2 then |w — a,| < €1, in which ¢ is
as determined in Lemma 6.1. Next, let 3 be positive but so small that |w — a,| < €3 implies that
|hi(w) — hi(ap)| < i@, for n = 1,2. Both g5 and €3 depend only on the a,. Let p,q be such that
ap # aq and, for n = p, g, let W), be a component of the set {z € U, : |f'(2) —an| < e3}. For r > ro,
with 7y large, let 1(r) be the angular measure of the intersection of S(0,7) with the complement
of W, UW,.

Lemma 6.2 There exists a positive constant C, depending only on the asymptotic values of f’,
such that for large v the number of distinct poles of f in the annulus A(2), as defined by (16), is at
most

C+ C/TB b(b)dt /1.
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Proof. Suppose that r is large and that A(2) contains N; distinct poles of f, where

1+ / "Bttt = o(NY). (25)

Applying Lemma 5.1 we obtain N > ¢oN; distinct type II components E; of the set (f')~'(By),
each satisfying (17). Since there are finitely many a,, we may assume that a1 # ay and that a1, a2
are each asymptotic values of f’ in each E;. For n = 1,2, as w tends to a, along a path in By, the
pre-image in E; tends to infinity in Uy,. Provided r is large enough, (17) shows that A(8) contains
the pre-image H; under V' = hy o f' of the disc B(0,1 — %52), for1<j<N.

We may also assume that r is so large that none of the H; meet the path I' chosen prior to
Lemma 6.1, on which f’(z) — ap, as z — oco. Defining an analytic and univalent branch of ¢ = log 2
on the complement of the path T', the regions ((H;) are disjoint and, since the H; all lie in the
intersection of A(8) with the complement of W, UW,, (25) shows that at least one of the {(H;), say
C(Hy), has area o(1). Using Lemma 2.1, the pre-image in ((H;) under V o exp of the line segment
w = thi(an), 0 <t<1- 2y, has length o(1). This allows us to choose a path v* in ((H;), of
length o(1), such that the path v = exp(y*) in H; joins 7; to 72, and such that

3
V() = ha(an)| < 72, n=1,2.

By the choice of e9, there are points 7 arbitrarily close to n,, with f'(n}) € V,,. By the choice of
J and Vj,, there exists a path og in V,, N By which starts at f'(n}) and tends to a,. Thus 5} € U,
and Lemma 6.1 gives

|f (1) — annn| < eolmml, n=1,2. (26)

We estimate the length of . Since v* has length o(1), we have z = (1 + o(1))n; for all z on y and

[ 1azt= [ Jeliacl = olimi).

But f’ maps  into the bounded domain By, and so f(n2) — f(m) = [, f'(2)dz = o(|m|). Since
ay # a9, this contradicts (26), and Lemma 6.2 is proved.

We now complete the proof of Theorem 1.3. By Lemma 6.2 and the fact that ¢ (¢) < 27, there
exist positive C; depending only on the a,, such that, for all large r,

8

(2, f) — m(rl2, f) < Cy + Cy / W(t)dt/t < Cologr < C(logr® — log r'/?).

o

Thus 7i(r, f) < Cylogr and Theorem 1.3 is proved.

7 Proof of Theorem 1.4

We assume that f is meromorphic in the plane of order less than 1+ ¢, where 0 < ¢ < %, and that
f" has finitely many zeros but f has infinitely many poles. We retain the notation of the previous
section. By the discussion in Section 5, f’ has at least two distinct finite asymptotic values a1, as.
By the Denjoy-Carleman-Ahlfors theorem [3, 25], these are the only asymptotic values of f’. Hence
we may assume that a, = a1 = 1,ay = ao = —1.

11



Lemma 7.1 We have

.
/ W(t)dt/t < 2melogr, T(r,f) < Celogr, T — oo, 27)

T0

in which C is a positive absolute constant, in particular not depending on .

Proof. For n = 1,2, define the following. For r > ry, let 1, (r) be the angular measure of the
intersection of W,, with the circle |z| = r. Let u,(z) be defined by u,(z) = logles/(f'(2) — a,)|
for z in W,,, with u,(z) = 0 for z outside W,,. Then u; and uy are subharmonic in the plane and
Lemma 2.3 gives

" dt [t (£) < log Bo(2r,un) + O(1) < (1 +¢) log

T0

as r — 0o, for n = 1,2. But, for ¢t > ry,

m/1h1(t) + 7/ 1pa(t) = 4m/(P1(E) + pa(t)) = dm/(2m —p(E)) 2> 2+ (E) /7.

This proves the first assertion of Lemma, 7.1, and the second follows as in the previous section. The
following is a simple consequence of Lemma 2.3.

Lemma 7.2 There exists Ly > 1 such that the following is true. Let v > 0,L > 1 and let ~y, be a
simple piecewise smooth path which, apart from its endpoints, lies in r < |z| < Lr and which joins
|z| =7 to |z| = Lr. Let U, ={z: 7 < |2| < Lr,z &€ 7, }. Then if L > Ly we have

w(z,8(0,7),U,) + w(z,8(0,Lr),U,) < 1/2, zeU,, |z|=L"%
Let L > Ly, with L as in Lemma 7.2. By (6) and (27), the sets
Ki={r>rq:(r)>e"?}, Ko={r>ry:y(Lr)>e/?} (28)
each have upper logarithmic density at most 27e'/2. Next we note that by Lemma 2.5 the set
Ky ={r>1:T(L’r, f") > L°T(r, f")} (29)
has upper logarithmic density at most 2/3. Further, (27) gives
h(r) = exp(7(r, f)) = O(r%), - oo,
and so by Lemma 2.5 again and (6) the set
Ky={r>1:n(Lr,f) >n(r/L,f)} = {r > 1: h(L?r) > eh(r/L)} (30)

has upper logarithmic density at most 3Celog L.
Provided ¢ is small enough we may choose arbitrarily large r, not in any of the exceptional sets
K1, K5, K3, Ky, and such that

f"(z) f"(2)
fi(z) —a1| | f'(z) — a2

denoting by c; positive constants which do not depend on €. By (30), f has no poles in r/L <
|z| < L?r. Hence by (29) and a standard application of the Poisson-Jensen formula we have

<r®, |zl =rLr (31)

log |f"(2)| < exT(r, "), r<|z| < Lr, (32)

12



since L does not depend on e. Further, by (28) and (31), we have
log[f"(2)] < ezlogr, =€ (S(0,r)\T;) U (S(0, Lr)\TL,), (33)

in which T,, C §(0,r) and Tz, C S(0, Lr), each having angular measure at most £'/2.
Choose a simple piecewise smooth curve 7, on which

log | "(2)] < —(1/2)T(r, f"), (34)

such that ~y, joins |z| = r to |z| = Lr and, apart from its endpoints, lies in r < |z| < Lr. Such a
curve exists by the maximum principle applied to 1/f”. Define U, as in Lemma 7.2, so that

w(z,7,Up) >1/2, z€U,, |z|=LY?r (35)
For z in U, with |z| = L'/2p
w(zaTL’ra UT‘) < w(zaTLTaB(OaLT)) < 0351/2’

and the change of variables ( = 1/z shows that the same estimate holds for w(z,T,,U,). Hence
(32), (33), (34) and (35) give

log |f"(2)] < (=1/4 + c4e'/?)T(r, f")

so that f”(z) is small on the whole circle |z| = L'/?r, provided ¢ is small enough. This contradicts
the existence of the distinct asymptotic values +1 of f’ and Theorem 1.4 is proved.

8 Proof of Theorem 1.5

Assume that f satisfies the hypotheses of Theorem 1.5, but has infinitely many poles. By Theorem
1.3 we have (2). Let the finite asymptotic values of f (5=1) be a,,, repeated according to how often
they occur as direct transcendental singularities of the inverse function of f(*~1). By Section 5 there
are at least two distinct a,. If the positive constant ¢ is small enough then to each a, corresponds,
as in Section 4, an unbounded simply connected component U,, of the set {z : [f*~1)(2) —a,| < o},
lying in {z : || > 2}, such that f*~)(z) # a,, on U,, and

152 (2) — anz| < C1l2||[f*D(2) — an| +O(1), 2z € Un, (36)
in which C is a positive constant not depending on a,, or f.
Lemma 8.1 Choose a large positive integer N and for each n let the subharmonic function u,
be defined as in Lemma 4.1 by u,(2) = log® |dn /2N (f* =V (2) — ap)| for z in Uy, with u,(z) = 0
otherwise, and with d, a small positive constant.

Then U, contains finitely many components Wj,, of the set {z : un(z) > 0}, each simply
connected, and we have

f2) = 0(z[F Y, 2€Wjn v=0,....,k—2. (37)

Each u, has lower order at least 1/(2 — 1/p).

13



Proof. The estimate (37) will be proved by applying (8) to f*~2(z) — a,z. Fixing z* in Win,
choose a polynomial P, of degree at most k£ — 1 such that

lcu2
f(z) = +/ k_y_ (f(k_l)(t)—an)dt, z2€Win, 0<v<k-2. (38)

Expanding out the (z —)¥~~2 term in (38), and using (8), we obtain (37).

To prove that each u, has lower order at least 1/(2 — 1/p), assume without loss of generality
that a1 # ag and, for n = 1,2 and t > 0, let 6 (¢) be the angular measure of the intersection of U,
with the circle S(0,t). Proceeding as in [28, Lemma 3|, the Cauchy-Schwarz inequality gives

(/ wdt/t0; (t )(/ 0 (t dt/tw)Z(long, r—o00, n=12.

But, by Lemma 2.3, for large r,

(p+ o(1)) log r > log Bo(2r, up) + O(1) > /1 wdt/103(2).

Thus

T

05(t)dt/tw > (p+ (1))~ " logr, /lr 05 (t)dt/tm < (2 — (p + o(1))™") logr,
so that .
log Bo(2r,u1) + O(1) > /1 xdt/107(8) > (1/(2 = 1/p) — o(1)) log -

Lemma 8.2 Choose p; with pg < p1 < ... < pg < 1/(2—1/p), and let 6; be a small positive
constant. Then there exists o > 0 such that the following is true. If Hy is a subset of [1,00) of
finite measure then for each sufficiently large v and each n there exists s & Hy such that

P <5 <UL gy (2) > P8, 2z € Hy(r), (39)
in which H,(r) is a subset of the circle |z| = s, of angular measure at least ds.

Proof. Using Lemma 8.1, take (o with |(p| = r and uy, (o) > r7?, and let Dy be the component of
the set {z € Uy, : u,(z) > rP®} in which (j lies. Let 0(t) be the angular measure of the intersection
of Dy with the circle |z| = ¢. Since u, has order at most p, Lemma 2.3 gives

1/2)r' 21 gy
b < < ros g D04 e [ S
T ~ un(CO) =T + r eXp T 2,’.1+51 ta(t)

and Lemma 8.2 follows.

Lemma 8.3 Let a, # 0 and let K be a large positive constant. Let the positive function n(r) tend
to 0 slowly as r — oo. Then for all sufficiently large r, at least one of the sets

Of ={z:7/K <[] <Kr, n(r) <argz <7 —n(r)},

Q ={z:7/K<|z| <Kr, wm+n(r)<argz<2m—n(r)}
is a subset of one of the W, .
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Proof. Using (2) and (3), write

FB(@)/ 17 (2) = hi(2) /ha(z) (40)

in which h; is analytic outside the region |argz?| < ¢(|z|), and hs is entire of order less than py.
Choose a family of discs B,, with finite sum of radii, and a positive constant M7, such that for all
z not in the union H* of the B, we have

11 @)/ F @)+ FED R ™ @]+ 19 @)1 @)+ B2/ (F 5D (2) = an)| < 12,
[ Tog [Ra(2)[] < [2[" (41)

Further, choose a small positive d; and s = s, satisfying (39). We may assume without loss of
generality that the part H(r) of H,(r) lying in {z : n(r) < argz < 7 —n(r)} has angular measure
at least d3 > d2/4, in which § is as in Lemma 8.2. We may choose s, as well as r; and A with

K5 <ri <K%, n(r)/8<Xx<n(r)/4,

such that
00 (s, 4s,\) N H* = 0Q(r1,25,2)) N H* = 0Q(K?ry,s,4\) N H* = 0,

in which
Q(tl,tg,tg) = {Z 1 < ‘Z| <tg,lzg<argz < m— t3}.

Since ¢d; is small we have, by (40) and (41),
log|hi(2)] < 7P, z € O0(s,4s,A) UOQ(r1,2s,2N). (42)

We apply the two-constants theorem to log |h1(z)| on the region (s, 4s, ). Since
f&) f®) fE=1) _ g, fl=1)
flm)y — \ fle=1) — ¢ fk=1) flm) ]’

log |h1(2)| < —7P7", =z € H}(r).

(39) and (41) give

Thus (42) and a standard estimate for harmonic measure lead to
log|hi(z)] < —1P8, z€ Ey={z:|z| =2s,7/8 < argz < Tn/8}. (43)
By Lemma 2.4 and a simple change of variables,
w(z, B, Q(r1,25,2)0)) > r 9 2 € 00(K?r, s,4)).
Hence, using (41), (42) and (43), we have

RO
Fm(z)

We estimate f on 9Q(K?rq,s,4)). Choose 21 in H}(r) and so in 0Q(K?ry,s,4\) N Wj,, and a
polynomial P; such that Pl(u) (z1) = f¥)(z1) for 0 < v < k — 1. Then we may write

<exp(—rPt), ze€ INK?%ry,s,4)). (44)

log [l (2)] < —r*, ‘

oz — 1 k—1

10 =)+ [ o 0= )+ [
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in which, using (37), (41) and (44), for some M5 > 0 independent of r and K,
|Pi(2)] < M2 |n(t)| < exp(—rP2), =z € OQ(K?%ry,s,4N).
A standard application of Gronwall’s lemma [14] and (41) and (44) give
log™ | f(2)] = O(logr), log™ |f™(2)] = O(logr), |f*)(2)] < exp(—r")

for z € 0Q(K?r1,s,4)\). Since z; is in H,(r), a further integration shows that 0Q(K?2r1, s,4)) is a
subset of Wj ., and so is Q(K?ry,s,4)), since W, ,, is simply connected. This proves Lemma 8.3.

Lemma 8.4 We have N(r, f) # o(logr)? as r — oo.
Proof. Suppose on the contrary that N(r, f) = o(log7)? as » — co. Then
T(r, f*+D /f®)) <N(r, f) + Ologr) = o(logr)”.
It follows from Lemma 2 of [19] that there exist sequences R, — oo and S, — oo such that
FEDE)fP(2) = Buz™ (1 +0(1), 8, %Ry < |2 < SRy, (45)

in which each 7, is an integer and each (3, is a non-zero complex number. There is no loss of
generality in assuming that both R, and 2R, are normal for the Wiman-Valiron theory [11, 31]
applied to 1/f (k)| for otherwise we may adjust R, and make S, slightly smaller. Since the central
index o(r) of 1/f®*) is non-decreasing, (7) gives 7, > —1 for each . We may also assume that

F®()

FENG) —an O(R)), |zl =Ry, (46)

o

for all finite asymptotic values a, of f*~1) and for some fixed M, independent of y.
Case 1: Suppose that 7, = —1.

In this case (7) shows that we may assume without loss of generality that 8, = —N; = —o(Ry,).
Integration of (45) gives, with C' a non-zero constant,

1/f®)(z) = O(z/R,)Me”™) | 2R, < |z| < 3R,.

Since M(2R,,1/f®) is large, this implies that C(5/2) must be large. Thus f*)(2) = O(R,?)

on |z| = 3R, and a further integration leads to a contradiction to the established fact that f*~1)

has at least two asymptotic values.
Case 2: Suppose that 7, > 0.
Choose z1, z9 with
lz1] = Ry, |22l = RuSpt 11/ £ (25)| = M (171, 1/ f®).
Next, choose a branch of log f*)(z) with

[Im(log f*)(22))| < 7. (47)
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For z with
RNS;1 <lz| £ RuSy, -m<argz/z <, (48)

we integrate by parts along the straight line from 2o to 2z2|2z/22| and then around an arc of the circle
|¢| = |#| to obtain

Tu+1 Tp+1 z Tu+l
log ) (2) = log f® Pu™™ 0 oy = P Pu¢ “1h\ge
og F19(2) = 1og [ (z2) + 7 (14 0(1) = PE (o) + [P ol e
Thus, for z satisfying (48),
log f®)(2) = D + AzN (1 + o(1)), (49)
in which +1
T
D =log f®) () — Buzy” A= B N = _
ng (ZQ) T +1 3 T T 1’ Tu +1 (50)

We set T, = R, Sy 3/% and distinguish two subcases.
Case 2A. Suppose that |AT,)| < |log F®) ().

Then using (47) and the fact that 7, > 0,

log f¥)(2) = D(1 4+ 0(1)) = (1 + (1)) log |[f ¥ (z2)|, 2| = RuS,", —m <argz/a <,

and f*)(z) = O(|2| 2) on |z| = R,S, !, a contradiction arising as in Case 1.
Case 2B. Suppose that |ATéV| > |log f%)(22)].

Then |ATIiV | is large and (49) becomes

log f*)(2) = A2V (1 + 0(1)), RMS';I/Q <|z| < R“SII/Q, —m < argz/z <. (51)

But f(*)(2) is small on an arc of |z| = R, of angular measure at least = — o(1), by Lemma 8.3 and
(46), so that (51) gives N = 1. However,

~(1+0(1)o(Ry) /21 = fETD(z1) [ F P (z1) = AL+ 0(1)),

by (45) and (50), since R, is normal for the Wiman-Valiron theory applied to 1/f®*). Thus

arg Az = m+ o(1). (52)
Writing (51) in the form
u=—log f")(2) = —Az(2/z)(L +o(1), (53)
it follows that u is univalent with "
i —A(1+0(1)) (54)

on

Q={z:R,/16 < |z| <16R,, |argz/z|<57/8}

and u(Q2) contains the region

O ={u:|AR,/8 < |u| <8|A|R,, |argu|<9m/16}.
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Let
Qo ={z:R,/4<|2| <4R,, log|f®(2)| < —2MlogR,}.

Then (52) and (53) imply that s is a subset of 2, and
u(Q2) C Q3 ={u:|A|R,/8 < |u| <8|A|R,, Re(u)>2MlogR,} C Q.
Using Lemma 8.1, choose distinct asymptotic values a1, as of f*=1). and v, and 1, with
[Ynl = Ry, log|f* D (¢,) —an| < —4MlogR,, n=1,2.
Then 11,19 lie in Q9 by (46), and their images under u lie in 3. Thus u(t);) and u(w)2) may be
joined by a path X in Q3, of length O(|A|R,,). Now the pre-image A = u~!()) joining t; to 1), has
length O(R,,), by (54), and is such that
log|f®)(z)] < —2Mlog R, =z € A.
Thus f* (1) — f5=D(4h9) = o(1), which contradicts the choice of the 1,. Lemma 8.4 is proved.

As in Section 5, choose a closed path J on which each finite asymptotic value a,, of f* =1 lies.
If there are just two distinct ay,, say ai,as, then J is the circle of centre (a1 + a2)/2 and diameter
|ay — ag|. Let By be the interior domain of J, and let Bs,hi,ho be defined as in Section 5. In
particular, if J is a circle then h; is simply a linear transformation.

Lemma 8.5 For each type IT component E; of the set {z : f71)(2) € By}, choose {; € E; such
that hy (f*=Y(¢;)) = 0. Let no(r) be the number of ¢; in |z| < r. Then ng(r) # o(logr) as r — oo.

This follows at once from Lemmas 5.1 and 8.4.

Choose a large positive L such that for arbitrarily large r there are at least 64 distinct (; in
A(0,7/L, Lr). Since w = hy(f*~(2)) maps E; univalently onto B(0, 1), we may choose G; to be
the inverse function mapping B(0,1) onto E;.

Lemma 8.6 Denote by c; positive constants independent of v and L. Then

ar <1G5(0)] < cor (55)

Proof. The right-hand estimate of (55) follows from the Koebe one-quarter theorem, since 0
is not in Ej. To prove the left-hand estimate, suppose that G3(0) = o(r). Let a1,a2 be distinct

finite asymptotic values of f~1 in E;. Koebe’s distortion theorem gives a path vy, of length o(r),
joining z, € Uy to 2z, € Uy, with a, # a4 and
[ 1@z = ofr),
v
which contradicts (36) if 9 was chosen small enough.

Lemma 8.7 f%~1 has precisely one finite non-zero asymptotic value.
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Proof. Suppose that f*~1) has more than one finite non-zero asymptotic value. Then Lemma
8.3 and the Koebe one-quarter theorem applied to Gj on B(0,1/2) give G(0) = o(r). On the other

hand, f*~1 has at least two finite asymptotic values, and this proves Lemma 8.7.

We may assume henceforth that the finite asymptotic values of f*~1) are 0 and 1. Thus J is
the circle S(1/2,1/2), while By is the disc B(1/2,1/2), and h;(w) = 2(w — 1/2). Set

9(z) = 2(/*7V(z) - 1/2) = i (f*V(2)).
Let 6;(t) be the angular measure of the intersection of E; with the circle S(0,¢). Recall that

w = ¢g(z) maps E; univalently onto B(0, 1), with g({;) = 0 and inverse function z = Gj(w). Since
there are 64 of the Ej;, at least one of them must be such that

L’r q¢
/Lr t0;(t) —
Suppose that Z € E;\A(0,7/L?,L?r) and W = g(Z). Then

log <1+|W|> 2/ |dw| _2/ |dz|
1—|W]| o,w] 1 — |w]? G;(ow)) (1= |w[?)|GY(w)]

and so Koebe’s one-quarter theorem and (56) give

1+ |W|) |dz| |dz|
lo ( > — _— > / ——— >4log L, 57
& 1—|W| 2 G;([0,W)) dist{z, 0F; } G;([0,W]) |z|9 (lz]) — & (57)

r/L dt
r/L? t9 )

(56)

since (; = G(0) € A(0,7/L, Lr). Define vy, v by
v, =Gjty), t1=-1+L3 to=1-L"73 (58)

Then (57) gives
Hy = Gj([t1,t2]) C A(0,7/L?, L*r). (59)

Let
h(z) = 2f* 2 (2) =z, (2) = g(2).

Using Lemma 4.1, we obtain
‘h(’l)l) + ’01‘ S 03|’U1‘L_3, |h(1)2) — ’U2| S 03|U2|L_3. (60)

Integration by parts gives

h(ve) — h(v1) = . 9(2)dz = vag(ve) — v1g(v1) — /Ho 2q' (2)dz.

Thus, using (58), (59) and (60),

/ zdw‘ = ‘/ 2q'(z)dz
[t1,t2] Hyp

But Lemmas 8.3 and 8.6 and the Koebe theorems give, without loss of generality, Im({;) > csr,
and Im(G(t)) > cgr for —c7 < ¢ < ¢7, while Im(G(t)) > —o(r) for t; <t < t5. This contradicts
(61) and Theorem 1.5 is proved.

< |h(v1) — v1g(v1)| + |h(v2) — v2g(va)| < car L™ (61)
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