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Abstract

We consider the frequency of fixpoints of meromorphic functions for which the set
of finite singular values of the inverse function is bounded, and we prove fairly sharp
estimates for the multipliers of these fixpoints. We go on to consider the critical values
of, and linear differential polynomials in, composite meromorphic functions.

A.M.S. classification 30D 35.

1 Introduction

Let B denote the class of meromorphic functions (this term being used throughout to mean
functions meromorphic in the plane) f for which the set of finite singular values of the inverse
function f−1, that is, finite asymptotic and critical values of f , is bounded. This class has
been considered extensively in iteration theory (see, for example, [4, 12]), as has the sub-class
S, for which this singular set is finite. We discuss some value-distribution properties of these
functions, in particular with reference to their fixpoints, as well as some general questions
which arise in the study of compositions of meromorphic and entire functions.

It is clear that functions in the class S can have Nevanlinna deficient values (the termi-
nology throughout being that of [16]). However, the following theorem shows, in particular,
that a non-constant rational function cannot be a deficient function of a transcendental
meromorphic function in the class S.

Theorem 1. Let f be transcendental and meromorphic, in the class B. If h is rational,
with h(∞) = ∞, then we have

m(r, 1/(f − h)) ≤ m(r, z(f ′(z)− h′(z))/(f(z)− h(z))) = O(log rT (r, f)) (1)

as r → ∞ outside a set of finite measure. If h is transcendental and meromorphic in the
plane, with only finitely many poles and with

T (r, h) = o(log r)2 (2)

as r →∞, then (1) holds as r →∞ through a set of infinite linear measure.

∗The second author was supported by a Royal Society K.C. Wong fellowship.
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We remark that the growth condition (2) assumed on h in this theorem seems unlikely to
be sharp. However, when h is rational and f is in B but not in S, the condition h(∞) = ∞
cannot be deleted, as the example f(z) = ez + 1/z shows.

Theorem 1 implies that if f is transcendental and meromorphic, in the class B, then the
Nevanlinna counting function N(r, 1/(f−z)) of the fixpoints of f cannot satisfy N(r, 1/(f−
z)) = o(T (r, f)) as r →∞. The authors thank the referee for bringing the following points
to their attention. First, it was proved in the preprint [11] that every transcendental entire
function in the class S has infinitely many fixpoints. Further, it follows from Theorem 1
that, if f is a transcendental entire function in the class S and n is a positive integer, then
f has a lot of periodic points of exact period n, that is, the iterate fn has fixpoints which
are not fixpoints of any fk with 1 ≤ k < n. To see this, we have

N(r, (fk − z)−1) ≤ T (r, fk) +O(log r) = o(T (r, fn))

if 1 ≤ k < n while, since fn is also in the class S, Theorem 1 gives

N(r, (fn − z)−1) = (1 + o(1))T (r, fn)

as r tends to infinity outside a set of finite measure.
We turn our attention now to the multipliers of fixpoints of a transcendental meromorphic

function f in the class B. It follows from a lemma of Eremenko, Lyubich and Bergweiler
[4, 5, 12] (see Section 2) that if z is a fixpoint of f with |z| large then the multiplier f ′(z)
corresponding to this fixpoint satisfies |f ′(z)| > c log |z|, with c a positive absolute constant.
The possibility of improving this estimate is suggested by the following observations.

A recent result of Bergweiler and Eremenko [6] implies that if g is meromorphic of finite
order, then all but finitely many asymptotic values of g must be limit points of critical values
of g and, in particular, if g′ has only finitely many zeros, then g is in the class S. It was
proved in [24] that if H is meromorphic in the plane with very few multiple points and with
order ρ(H) satisfying ∞ ≥ ρ(H) > σ > 0, then H has infinitely many fixpoints z with
|H ′(z)| > |z|σ. We obtain here comparable estimates for multipliers of functions in the class
B.

Theorem 2. There is a positive constant c such that if f is a transcendental entire
function in the class B and 0 < α < 1 then f has infinitely many fixpoints z satisfying

f(z) = z, |f ′(z)| > c logM(α|z|, f).

Examples such as cos
√
z and eP (z), with P a polynomial, show that Theorem 2 is close

to being sharp.
Of course it is well known that entire functions, not in the class B, can fail to have fix-

points, or can have only super-attracting fixpoints, as the simple examples z + ez, z + 1 + ez

show at once. However, it was proved by Whittington [31] that if f is entire and transcen-
dental of lower order less than 1/2 then f has infinitely many fixpoints zj with multipliers
satisfying f ′(zj) = 1 or |f ′(zj)| > 1. Further, Bergweiler [3] confirmed a conjecture of Baker
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by showing that if f is any transcendental entire function and n ≥ 2 is an integer then the
iterate fn has infinitely many repelling periodic points of exact order n.

For meromorphic functions in the class B, we have the following estimate for multipliers.

Theorem 3. Let f be a meromorphic function in the class B, with order ρ(f) satisfying
∞ ≥ ρ(f) > σ > 0. Then f has infinitely many fixpoints z with

f(z) = z, |f ′(z)| > |z|σ/2. (3)

The example f(z) = p(z)n, with p the Weierstrass doubly periodic function and n a large
positive integer, shows that σ/2 in Theorem 3 cannot in general be replaced by any constant
τ with τ > ρ(f)/2. This follows from the differential equation

(p′)2 = 4(p− e1)(p− e2)(p− e3),

in which the ej are distinct complex constants.
Of course, Theorem 3 does not apply to functions of order 0, and it is well known that

meromorphic functions in the class B may have arbitrarily slow growth: to see this, take the
reciprocal of the function h in Lemma 2 below. Further, there is a meromorphic function H
[1, 21] in the class S, which satisfies a differential equation

(z2 − 4)H ′(z)2 = 4(H(z)− e1)(H(z)− e2)(H(z)− e3) (4)

and the growth condition
T (r,H) = O(log r)2, r →∞. (5)

Indeed, this function is extremal for the growth of meromorphic functions in the class S in
the sense that, if g is transcendental and meromorphic with

lim sup
r→∞

T (r, g)

(log r)2
= 0,

then g has infinitely many critical values and so is not in S [23]. We refer the reader to [21,
p.234] and to the proof of Theorem 5 below for further discussion of this function. Taking
f = Hn with n a large positive integer shows that there is no positive absolute constant σ
such that every meromorphic function f in the class B must have fixpoints satisfying (3).
However, if f has a lot of poles of a given multiplicity, then more can be said than (3), and
our last result on multipliers is the following.

Theorem 4. Suppose that f is a transcendental meromorphic function in the class B,
and that m is a positive integer. Then there is a constant d depending on f and m such that
if r is large and f has poles of multiplicity m at n ≥ 1 points in {z : r/2 ≤ |z| ≤ r}, then f
has at least p fixpoints zj in {z : r/4 < |z| < 2r}, with p > n/2, each satisfying

|f ′(zj)| > dr1/mn1/2.

3



The examples above show that Theorem 4 is essentially sharp.

The same function H as in (4) and (5) plays a role in our next result, in which we
consider the question of when a composition of transcendental functions can be in the class
S. Suppose that F is defined by F = f ◦ g, with g a transcendental entire function and f
transcendental and meromorphic.

If f is entire and F is in the class B, then F must have infinite order. To see this, suppose
that F has finite order. Then it is well known [16, p.53] that f has order 0. Consequently,
∞ is a limit point of critical values of f [6, 23, 26], so that there are sequences wn and zn

tending to infinity such that f(zn) = wn and f ′(zn) = 0, and at most one of these zn can be
a Picard value of g.

It is also easy to show that if f is meromorphic and F is in the class S, then T (r, F ) 6=
O(log r)2 as r →∞. To see this, suppose that T (r, F ) = O(log r)2, and let a be finite. Then,
applying Theorem 1 of [9], or using minimum modulus results for g, we obtain

n(M(r, g), 1/(f − a)) ≤ n(r2, 1/(F − a)) +O(1) = O(log r) = o(logM(r, g))

as r → ∞. Thus T (r, f) = o(log r)2 as r → ∞, which implies that f has infinitely many
critical values [23], and therefore so has F .

In view of these observations, the following theorem seems to be of some interest.

Theorem 5. Let φ(r) be an increasing positive function such that φ(r) →∞ as r →∞.
Then there exist a transcendental entire function g and a function f transcendental and
meromorphic in the plane, such that the composition F = f ◦ g is in the class S, while
T (r, F ) = O(φ(r) log2 r) as r →∞.

The connection has already been noted between the class S and functions for which the
first derivative has only finitely many zeros. There is an extensive literature concerning
the zeros of derivatives of meromorphic functions and, more generally, of linear differential
polynomials

F (k) +
k−1∑
j=0

ajF
(j)

in a meromorphic function F , in which the coefficients aj are normally small functions
satisfying T (r, aj) = o(T (r, F )) as r →∞ (see Chapter 3 of [16] as well as, for example, [13,
21, 22, 24]). We consider here the value distribution of such a linear differential polynomial,
when F is a composition of transcendental functions, motivated in part by the following
simple observation. Suppose that g is a transcendental entire function and f is transcendental
and meromorphic, such that F = f ◦ g has finite order. Then f has order zero [9], so that f ′

has infinitely many zeros [10], and N(r, 1/F ′) 6= O(T (r, g)) as r → ∞. Our methods below
do not seem to work when f is meromorphic but, for entire f , we have the following result.
The standard abbreviation (n.e.) (“nearly everywhere”) will be used to denote “as r → ∞
outside a set of finite measure”.

Theorem 6. Suppose that k is a positive integer, and that f and g are transcendental
entire functions of finite order. Define F and H by

F = f ◦ g, H = F (k) +
k−1∑
j=0

AjF
(j) + A∗, (6)
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in which A∗, A0, . . . , Ak−1 are meromorphic functions with

T (r, A∗) + T (r, Aj) = O(T (r, g)) (n.e.). (7)

Suppose in addition that there exist a meromorphic function S and a rational number c with

Ak−1 = cS ′/S, T (r, S) = O(T (r, g)) (n.e.), (8)

and suppose finally that
N(r, 1/H) = O(T (r, g)) (n.e.). (9)

Then
T (r, f) 6= o(r1/k) as r →∞. (10)

Theorem 6 may also be regarded as in the spirit of work on the value distribution of
compositions F = f ◦ g of transcendental meromorphic f and transcendental entire g, such
as Goldstein’s theorem [14] that if f is entire and F has finite order then δ(0, F ) < 1, and
a substantial literature (including [2, 8, 20, 32, 33]) on the fixpoints of such functions. It
is not clear whether the extra hypothesis (8) on Ak−1 is really necessary, but we will show
below that no stronger conclusion than (10) on the upper growth of f is possible.

The authors thank the referee(s) for some very helpful comments.

2 Proof of Theorem 1

The lemma of Eremenko, Lyubich and Bergweiler referred to above is the following [4, 5, 12].

Lemma A. Suppose that f is a transcendental meromorphic function in the class B.
Then there are positive constants c, R, S such that we have

|zf ′(z)/f(z)| ≥ c log+ |f(z)/R| (11)

for |z| > S.

The lemma is proved by noting that since f is in the class B we have, for some R > 0,
the estimate |f(z)| ≤ R on the union of a circle |z| = S > 0 and a path Γ joining |z| = S
to infinity. Define a path γ by eγ = Γ. If R is large enough and |z| > S and |f(z)| > R,
then a branch of u = φ(w) = log f−1(ew) may be analytically continued without restriction
in the half plane Re(w) > logR, taking values in a domain bounded by Re(u) = logS and
the paths k2πi + γ, (k + 1)2πi + γ, for some integer k. The estimate (11) follows from an
application of Bloch’s theorem to φ(w), so that the constant c does not depend on f although
R and S in general do.

Assume now that f and h are as in the statement of Theorem 1. We consider first the
case where h is rational. Suppose that |z| is large, and that |f(z)− h(z)| ≤ 1. Then |h(z)|
and |f(z)| are large and (11) gives

|zf ′(z)| ≥ c|f(z)| log |f(z)/R| ≥ (c/2)|h(z)| log |h(z)|. (12)
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Thus
|z(f ′(z)− h′(z))| ≥ (c/2)|h(z)|(log |h(z)| − (2/c)|zh′(z)/h(z)|). (13)

Hence we have, writing g = f − h,

m(r, 1/g) ≤ m(r, zg′/g) ≤ O(log rT (r, f)) (n.e.). (14)

Now suppose that h is transcendental, with only finitely many poles, satisfying (2). Then
g = f − h cannot vanish identically, since h cannot be in the class B [6, 23, 26]. There exist
positive sequences Sn, Tn, vn tending to infinity, such that we have [23]

h(z) = anz
vn(1 + o(1)), h′(z)/h(z) = vn/z + o(1/|z|), Sn/Tn ≤ |z| ≤ SnTn, (15)

with each an a non-zero constant. For

|z| = r, Sn(Tn)−1/4 ≤ r ≤ Sn(Tn)1/4, (16)

we have
vn ≤ n(Sn/Tn, 1/h) = o(N(r, 1/h)) = o(T (r, h)) = o(log |h(z)|). (17)

Therefore, for z satisfying (16) and with |g(z)| ≤ 1, we have (12) and so (13), and (15) and
(17) give

|zg′(z)| ≥ (c/4)|h(z)| log |h(z)| ≥ 1.

For such r, we then have (14) again, using the fact that log T (r, g) ≤ log T (r, f) + O(log r).
This proves Theorem 1.

3 Proof of Theorems 2, 3 and 4

We need the following lemma.

Lemma 1. Suppose that f is a transcendental meromorphic function in the class B, and
define G by

G(z) = f(z)/z, 1 + zG′(z)/G(z) = zf ′(z)/f(z). (18)

Suppose that δ is a positive constant. Then there exists a positive constant ε such that the
following is true. If |z1| is large and |G(z1) − 1| < ε/4 then z1 lies in a component C1 of
the set {z : |G(z) − G(z1)| < ε/2}, such that C1 is contained in B(z1, δ|z1|) and is mapped
conformally onto B(G(z1), ε/2) by G. Further, |zG′(z)| is large on C1.

Proof. We choose a large positive R1 and a positive constant ε so small that |G(z)−1| > ε
on |z| = R1. Suppose that |z| > R1, and that |G(z)− 1| < ε. Then we have |f(z)| > |z|/2,
so that Lemma A gives

|zf ′(z)/f(z)| > c log |z|.

Henceforth c will denote a positive constant, not necessarily the same at each occurrence,
but not depending on R1 or ε. For z as above, we thus have, using (18),

|zG′(z)| > R2 = c logR1. (19)
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Suppose now that z1 is as in the statement of the lemma, with |z1| > 2R1. We set
H(z) = G(z)−G(z1). By (19) we have H ′(z1) 6= 0, and we define

ψ(w) =
∞∑

k=0

ckw
k, c0 = z1, (20)

to be that branch of the inverse function H−1 which maps 0 to z1. Let r1 be the radius of
convergence of the power series in (20). Then a standard compactness argument shows that
there is some w∗, with w∗ = r1e

iθ∗ for some real θ∗, such that ψ has no analytic continuation
to a neighbourhood of w∗. Consequently the image of the path w = teiθ∗ , 0 ≤ t < r1, under
ψ must either tend to infinity or to a multiple point z∗ of H with H(z∗) = w∗.

Set r2 = min{r1, ε/2} and let γ be the path γ(t) = teiθ∗ , 0 ≤ t < r2. Since |H(z)| > 3ε/4
on |z| = R1 the image path ψ(γ) lies in |z| > R1 and so (19) implies that

ψ(w)/ψ′(w) = zH ′(z) = zG′(z)

is large on γ. So for w on γ we have

| log(ψ(w)/z1)| ≤
∫ |w|

0
|ψ′(seiθ∗)/ψ(seiθ∗)|ds ≤ ε/2R2.

Provided ε was chosen small enough, the path ψ(γ) thus lies in B(z1, δ|z1|). On this path
we have |G(z)− 1| < 3ε/4 and, using (19), |H ′(z)| = |G′(z)| ≥ R2/2|z1|. In particular, ψ(γ)
is bounded and does not tend to a critical point of H, and so we must have r1 > ε/2. This
proves the lemma.

We now prove Theorem 2. Suppose that f is a transcendental entire function in the class
B. With G as in (18), we may write

G(z) = f(z)/z = 1 + f1(z) + f(0)/z, (21)

with f1 a transcendental entire function. Let δ be small and positive, and choose ε as in
Lemma 1. By Theorem 4 of [27] we may choose z1 with |z1| arbitrarily large and with

|f1(z1)| < ε/8, |z1f
′
1(z1)| > b1 logM(|z1|, f1). (22)

Here we are using bj to denote positive absolute constants. By (18) and (21) we thus have

|z1f
′(z1)/f(z1)| > b2 logM(|z1|, f). (23)

Now, z1 lies in a component C of the set {z : |G(z)−G(z1)| < ε/2} which by Lemma 1
itself lies in B(z1, δ|z1|) and contains a zero z2 of G(z)− 1. This point z2 is a fixpoint of f .
Further, C lies in a component D of the set {z : |f(z)| > R}, where R is a large constant as
in Lemma A, and

z = h(w) = f−1(ew) (24)

maps E = {w : Re(w) > logR} univalently onto D [26, p.287]. In addition, the function
φ(w) = log h(w) is univalent on E, and we have, if z and w are related by (24),

φ′(w)−1 = zf ′(z)/f(z). (25)
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Let h1 : D → E be the inverse function of h, and define wj = h1(zj) for j = 1, 2. For z in
C, we have |G(z)− 1| < ε and so

ew = exp(h1(z)) = f(z) = z(1 + η(z)), (26)

where |η(z)| < ε. Thus, since C lies in B(z1, δ|z1|),

|h1(z)− w1| < c(ε+ δ), z ∈ C.

In particular, |w2 − w1| < 1/4, provided δ was chosen small enough. But, using (26),
φ(w) is univalent on B(w1, 2) and so applying standard estimates [28, p.9] for β′′/β′ to
β(u) = φ(w1 + u) on B(0, 1) gives

log |φ′(w2)| ≤ log |φ′(w1)|+
∫ w2

w1

|φ′′(t)/φ′(t)||dt| ≤ − log logM(|z1|, f) + b3,

using (23) and (25). Applying (25) again, this gives

|z2f
′(z2)/f(z2)| > b4 logM(|z1|, f) > b4 logM(α|z2|, f),

provided δ was chosen small enough in Lemma 1. This completes the proof of Theorem 2.

We turn now to the proof of Theorem 3. Suppose that f is a transcendental meromorphic
function in the class B, and that ∞ ≥ ρ(f) > ρ > 0. Using Theorem 1, we may choose
arbitrarily large r such that there are at least 2rρ fixpoints zj of f lying in r/2 ≤ |z| ≤ r.
To each such fixpoint zj corresponds a component Cj of the set {z : |G(z)− 1| < ε/2} lying
in r/4 ≤ |z| ≤ 2r, and these disjoint components Cj are simple islands mapped conformally
onto B(1, ε/2) by G. At least rρ of these zj must be such that Cj has area at most cr2−ρ,
and for these j we have, using (18) and [28, p.4],

|f ′(zj)| > (1/2)|zjG
′(zj)| > c|zj|rρ/2−1.

This proves Theorem 3.

We close this section by proving Theorem 4. Suppose that f is a transcendental mero-
morphic function in the class B, that R is a large positive constant as in Lemma A, and that
m is a positive integer. Let T be a positive constant, possibly depending on m, such that
T/R is large.

Suppose that r is large, and that f(z) has n poles w1, . . . , wn, each of multiplicity m, in
{z : r/2 ≤ |z| ≤ r}. Set G(z) = T 1/mf(z)−1/m, so that G is univalent on a neighbourhood of
each wj. Since the inverse function f−1 has no singularities in {w : T ≤ |w| <∞}, each wj

lies in a component Ej of the set {z : |f(z)| > T}, mapped univalently onto B(0, 1) by G.
Let φj : B(0, 1) → Ej be that branch of the inverse function G−1 which maps 0 to wj. Since

wφ′j(w)/φj(w) = G(z)/zG′(z)

and since
−mzG′(z)/G(z) = zf ′(z)/f(z),
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it follows using Lemma A that φ′j(w)/φj(w) is small on |w| = 1/2. Consequently,

φj(w) = φj(1/2)(1 + η(w)), |w| = 1/2,

in which η(w) is small. Thus φj(B(0, 1/2)) is contained in some disc B(vj, δ|vj|) with δ a
small positive constant, and wj = φj(0) lies in this disc.

Now, each wj lies in a component Dj of the set {z : |G(z)| < 1/2} which is also a
component of the set {z : |f(z)| > 2mT}. Further, Dj lies in {z : r/4 < |z| < 2r} and is
mapped conformally onto B(0, 1/2) by G. At least p > n/2 of the Dj each have area at
most cr2n−1 and for these j we thus have |G′(wj)|−1 = |φ′j(0)| < cn−1/2r, by [28, p.4] again.

Since the boundary of each of these Dj is a simple closed curve lying in {z : |z| ≥ r/4}
and on which |f(z)| = 2mT , an application of Rouché’s theorem shows that each Dj contains
a zero of f(z)−1 − z−1 and so a fixpoint zj of f . Further, we have uj = G(zj) = o(1). But
the branch φj of the inverse function of G is univalent on B(0, 1). We estimate φ′j(uj) using
the same application of [28, p.9] as in the proof of Theorem 2 and deduce that, for these p
points zj, we have |G′(zj)| = |φ′j(uj)|−1 > cn1/2r−1. Finally, this gives

|f ′(zj)| ≥ mT−1/m|zj|1+1/m|G′(zj)| ≥ d|zj|1/mn1/2

for these j, and Theorem 4 is proved.

4 Proof of Theorem 5

To establish Theorem 5, we will set F = f ◦ g, with g entire and to be defined below, and
f = H, where H is the function appearing in (4) and (5). This function H is defined by [21,
p.234]

H(z) = p(log v), v + v−1 = z, (27)

in which p is the Weierstrass doubly periodic function, with primitive periods 1 and 2πi.
Because of the equation (4), the only multiple values of H are ∞ and the distinct finite
values e1, e2, e3. By [21, p.236, (11.33)], the set of points at which H(z) = e1 is {exp(m +
1/2) + exp(−m − 1/2) : m ∈ Z}. Consequently, the theorem will follow from (5) and the
next lemma, with wm = exp(m+ 1/2) + exp(−m− 1/2), and R = 2.

Lemma 2. Suppose that R is a constant with R > 1 and that ψ(r) is an increasing
positive function such that ψ(r) →∞ as r →∞. Suppose that (wm) is a complex sequence
such that, for all large r, the annulus {z : R−1r ≤ |w| ≤ Rr} contains at least one element of
the sequence (wm). Then there exists a transcendental entire function g such that T (r, g) =
O(ψ(r) log r) as r →∞ and such that all but finitely many critical values of g are elements
of the sequence (wm).

To prove Theorem 5, assuming Lemma 2, we note that F = f ◦g has finite order and only
finitely many critical values, and so is in the class S, using the theorem of Bergweiler and
Eremenko [6] cited above. Alternatively, we may observe that f has no asymptotic values
and g has no finite asymptotic values.
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Proof of Lemma 2. We first define

h(z) =
∞∏

k=1

(1− z/ak)

with each ak positive, such that ak+1 > (ak)
8, while ak tends to infinity so rapidly that

T (rM , h) = o(ψ(r) log r) as r →∞, for every positive constant M . We have

h′(z)/h(z) =
∞∑

k=1

1/(z − ak), (h′/h)′(z) = −
∞∑

k=1

1/(z − ak)
2. (28)

Because of the slow growth of h, all zeros bm of h′ are real and positive, and each interval
(ak, ak+1) contains precisely one of the bm [30, p.266]. We choose a large zero bm of h′ and
assert that h(bm) is large.

Suppose that aN < bm < aN+1. Then the restriction of h to (aN , aN+1) has either a
maximum or a minimum at bm. By a theorem of Hayman [19], we have

log |h(z)| = (1 + o(1)) logM(|z|, h) (29)

for all large z outside a family of discs B(an, εnan), where
∑
εn < ∞. Consequently there

is at least one z with (aN)3 < z < (aN)4 such that (29) holds. By a standard convexity
argument, we have

logM((aN)2, h) < (1− o(1)) logM((aN)3, h) ≤ log |h(bm)| < logM(aN+1, h). (30)

In particular, |h(bm)| is large, as asserted.
Put cm = h(bm), and choose wp lying in the annulus {z : R−1|cm| ≤ |w| ≤ R|cm|}.

Further, choose t in [−π, π] such that cm and wp both lie in | argw − t| ≤ π/2. We define
Am = {w : R−2|cm| < |w| < R2|cm|, t−3π/4 < argw < t+3π/4}. These simply connected
domains Am have pairwise disjoint closures, by a standard convexity argument and (30).

Let H(w) map Am conformally onto the unit disk B(0, 1), with H(|cm|eit) = 0. It is clear
that dm = H(cm) and vp = H(wp) both lie in the disc B(0, r0), with r0 < 1 depending on R
but not on cm or wp. Further, H extends continuously and univalently up to the boundary
of Am.

For |a| < 1, the function [7, 25]

Q(u) = Qa(u) =
u+ a

1 + au
, |u| < 1,

Qa(u) = u, |u| ≥ 1,

is a quasiconformal homeomorphism of the extended plane onto itself. Further, for |u| < 1 we
have ∂Q/∂u = σ(u)∂Q/∂u, with |σ(u)| ≤ |a|. Hence Qa is (1 + |a|)/(1− |a|) quasiconformal
and so is its inverse function.

We can now modify h as follows, first defining a quasiconformal homeomorphism H1 of
the extended plane by

H1(w) = (H−1QvpQ
−1
dm
H)(w), w ∈ Am, (31)
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with
H1(w) = w, w 6∈

⋃
Am.

To verify that H1 is indeed quasiconformal it is useful to note that (31) holds on a neigh-
bourhood of the closure of Am, since H has a quasiconformal extension to the extended
plane and each Qa is the identity outside B(0, 1). We then write G(z) = H1(h(z)). For
|z| large, the function G is one-one on a neighbourhood of z unless G(z) = wp, for some p.
Consequently, we can write G(z) = g(ω(z)) with ω(z) quasiconformal, and g entire, such
that all but finitely many critical values of g are elements of the sequence (wm). Further,
since |G(z)| ≤ R4|h(z)| and since there is a positive constant M such that ω−1(z) = O(|z|M)
as z tends to infinity [25], the function g has the required growth.

5 Proof of Theorem 6

We require the following theorem of Steinmetz [15, 29].

Theorem A. Suppose that g is a non-constant entire function and that F0, F1, . . . , Fm are
meromorphic functions which do not vanish identically, while h0, h1, . . . , hm are meromorphic
functions, not all identically zero, and satisfying

m∑
j=0

T (r, hj) = O(T (r, g))

as r →∞ in a set of infinite measure. Suppose that

F0(g)h0 + F1(g)h1 + . . .+ Fm(g)hm ≡ 0.

Then there are polynomials P0, P1, . . . , Pm, not all identically zero, as well as polynomials
Q0, Q1, . . . , Qm, again not all identically zero, such that

P0(g)h0 + P1(g)h1 + . . .+ Pm(g)hm ≡ 0, Q0F0 +Q1F1 + . . .+QmFm ≡ 0.

To prove Theorem 6, we assume that f, g, F,H are as in the hypotheses, but with

T (r, f) = o(r1/k) (32)

as r →∞. We note that, for each positive integer n,

F (n) = f (n)(g)(g′)n +
n(n− 1)

2
f (n−1)(g)(g′)n−2g′′ +

n−2∑
j=0

f (j)(g)Qj(g), (33)

in which each Qj(g) is a differential polynomial in g. We note further that H cannot
vanish identically and indeed that we cannot have T (r,H) = O(T (r, g)) (n.e.) because, if so,
applying Theorem A to (6) would yield a linear differential equation

k∑
j=0

Bj(w)f (j)(w) = B∗(w), (34)
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with polynomial coefficients B0, . . . , Bk, B
∗, not all identically zero, and a standard appli-

cation of the Wiman-Valiron theory [18] to (34) would show that f has at least order 1/k,
mean type.

Now, (33) and the definition (6) of H give

f (k+1)(g)(g′)k+1 + f (k)(g)

(
k(k + 1)

2
(g′)k−1g′′ + Ak−1(g

′)k

)
+

k−1∑
j=0

f (j)(g)Cj + C∗ =

= (H ′/H)

f (k)(g)(g′)k +
k−1∑
j=0

f (j)(g)Dj +D∗

 , (35)

with the coefficients satisfying

T (r, Cj) + T (r,Dj) + T (r, C∗) + T (r,D∗) = O(T (r, g)) (n.e.).

Since f and g have finite order, we may write, using [17],

m(r,H ′/H) = O(log rT (r,H)) ≤ O(log T (r, F )) +O(log r) ≤

≤ O(log logM(r, F )) +O(log r) ≤

≤ O(log logM(M(r, g), f)) +O(log r)

= O(logM(r, g)) = O(T (2r, g)) = O(T (r, g)), r ∈ E1, (36)

with Ej henceforth denoting subsets of (1,∞) of positive lower logarithmic density. Now
(7), (9) and (36) together give

T (r,H ′/H) = O(T (r, g)), r ∈ E2. (37)

Applying Theorem A again, there are polynomials Pj and P ∗, not all identically zero, such
that

k+1∑
j=0

Pj(w)f (j)(w) = P ∗(w). (38)

Notice that a standard application of the Wiman-Valiron theory to (38) immediately gives
T (r, f) 6= o(r1/(k+1)) as r →∞, without requiring the extra hypothesis (8) on Ak−1.

We assert that the two equations (35) and (38) together lead to an equation

k∑
j=0

Tjf
(j)(g) = T ∗, T (r, Tj) + T (r, T ∗) = O(T (r, g)), r ∈ E3, (39)

in which the coefficients Tj, T
∗ do not all vanish identically. Assuming (39), a further ap-

plication of Theorem A leads to an equation of form (34), and so to the conclusion of the
theorem.

Suppose then that no such equation (39) exists. We may substitute w = g in (38) and,
if this equation and (35) fail to give (39), we must have

k(k + 1)g′′/g′ + 2Ak−1 − 2H ′/H = g′R(g), (40)
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with R a rational function. We identify two sub-cases.

Case 1: Suppose that all poles of R(w) in the finite plane are simple and have rational
residues. Then we may use (8) to obtain

(g′)c1Sc2Hc3 = eS1(g)S2(g), (41)

with S1 a polynomial, S2 a rational function and c1, c2, c3 integers, c3 non-zero. We write
(41) in the form

ed1S1(g) = Hd2G, (42)

in which d1 = ±1 and d2 is a positive integer, while G is meromorphic, of finite order. We
proceed to show that S1 is constant. Assume then that S1 is non-constant, with

d1S1(w) = (1 + o(1))s1w
n1

when |w| is large. Routine estimates based on the Poisson-Jensen formula [16] give a constant
M1 > 0 such that

log+ |G(z)|+
k−1∑
j=0

log+ |Aj(z)|+ log+ |A∗(z)| ≤ |z|M1 , |z| 6∈ F1, (43)

in which F1 has finite measure. We choose r0 large, normal for g with respect to the
Wiman-Valiron theory, and not in the exceptional set F1. Choosing z0 with |z0| = r0 and
|g(z0)| = M(r0, g), we have

g(z) = g(z0)(z/z0)
ν(1 + o(1)), d1S1(g(z)) = s1g(z0)

n1(z/z0)
n1ν(1 + o(1)), (44)

for | log(z/z0)| ≤ ν−1/3, where ν = ν(r0, g) is the central index of g. On an arc Ω given by
z = z0e

it, −ν−1/3 ≤ t ≤ ν−1/3, the variation of arg(d1S1(g(z))) is greater than 2π, and (44)
implies that Ω contains a point z1 with

Re(d1S1(g(z1))) ≥
1

2
|s1|M(r0, g)

n1 . (45)

On the other hand, since we certainly have logM(r, f (j)) = o(r1/k) as r →∞, for 0 ≤ j ≤ k,
by (32), the estimate (43) gives, for some positive constant M2,

log |Hd2(z1)G(z1)| ≤ O(r0)
M2 + o(M(r0, g))

1/k,

contradicting (42) and (45), and establishing our assertion that S1 is constant.
The equation (41) now gives

T (r,H) = O(T (r, g)) (n.e.),

so that an application of Theorem A to (6) leads to (39), which we assumed impossible.
Case 1 is thus disposed of.

Case 2: Suppose that, at some finite α, the rational function R(w) has a multiple pole,
or a simple pole with non-rational residue. Then (40) implies that α must be an omitted
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value of g, and so we can write g = α + eq, with q a polynomial. Thus (40) leads to an
equation

(g′)c1Sc2Hc3 = exp(µq + S1(e
q) + S2(e

−q)),

with S1 and S2 polynomials and µ a constant. The same argument as in Case 1 shows that
S1 and S2 are constant and again we can write (42), with G of finite order, which as before
gives a contradiction.

We show now that the conclusion on the upper growth of f in Theorem 6 is sharp. For
k = 1 this is trivial, setting F = eg and H = F ′. Now let k ≥ 2 be an integer. The equation

wk−1f (k)(w) = f(w) + 1 (46)

has an entire solution f of order 1/k, mean type. Writing F = f ◦ g, we may choose
coefficients Aj, each a rational function in g and its derivatives, with

Ak−1 =
−k(k − 1)g′′

2g′
,

such that, defining H by (6) and using (33) and (46), we have

H = (g′)k(f (k)(g)− f(g)g1−k) = (g′)kg1−k.
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