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1. The Wiman conjecture
Wiman conjectured around 1911 that if f is an entire function, real on the real axis, such that
f and f ′′ have only real zeros, then f belongs to the Laguerre-Pólya class LP , which consists
of all entire functions g which are locally uniform limits of real polynomials with real zeros. For
such functions, all derivatives g(k) have only real zeros. Wiman’s conjecture was proved in [16]
for functions of very rapid growth, and by Sheil-Small [18] for functions of finite order. The
remaining case (the so-called “small infinite order”) was settled in a joint paper of Bergweiler,
Eremenko and Langley [2]. Langley subsequently extended the result to higher derivatives [12].
On combination with [2] this shows that if f is a real entire function of infinite order then either
f or f (k) has infinitely many non-real zeros, for every integer k ≥ 2.

Pólya conjectured around 1943 that if f = Pg, where P is a real polynomial and g is a
real entire function with real zeros but not in the Laguerre-Pólya class LP , then the number of
non-real zeros of f (k) tends to infinity with k. For functions of finite order this has recently been
proved by Bergweiler and Eremenko [1], and the case of infinite order follows at once from [12].

2. Integer points of entire and meromorphic functions
A result of Pólya [20, p.55] states that the function 2z is the slowest growing transcendental entire
function taking integer values at the non-negative integers. The following related conjecture was
advanced in 1976 [17].

Conjecture 0.1 Let f and g be non-constant entire functions, such that T (r, f) = O(T (r, g))
as r → ∞, and such that g(z) ∈ Z implies f(z) ∈ Z. Then there exists a polynomial G such
that G(Z) ⊆ Z and f = G ◦ g.

Conjecture 0.1 was established in a strong form by Langley [10]. It turns out that it suffices for
f(z) to take integer values when g(z) ∈ N and g(z) is close to the maximum modulus M(|z|, g),
and for this to take place for |z| in a reasonably thick subset of (0,∞). An extension to mero-
morphic functions has been proved in [11].

3. Value distribution and difference operators
The recent interest in meromorphic solutions of difference equations (see [7] for references) sug-
gests the possibility of developing for difference operators an analogue of the value distribution
theory for derivatives of meromorphic functions [8, Chapter 3]. In this direction Bergweiler and
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Langley [3] determined conditions under which the first difference ∆f(z) = f(z +1)−f(z) must
have zeros. The results are analogous to the sharp theorem from [6, 9] that if f is a transcenden-
tal meromorphic function of lower order λ(f) < 1 then f ′ has infinitely many zeros. However, in
a departure from the theory for derivatives, it is shown in [3] that results for differences depend
on upper growth and not lower.

4. Critical points of discrete potentials
It was conjectured in [5] that if

f(z) =
∞∑

k=1

ak

z − zk

, (1)

where ak > 0 and

zk ∈ C, lim
k→∞

zk = ∞,
∑
zk 6=0

∣∣∣∣ak

zk

∣∣∣∣ < ∞, (2)

then f has infinitely many zeros in C. This conjecture has a physical interpretation in terms of
the existence of equilibrium points of the electrostatic field arising from a system of infinite wires,
each carrying a charge density ak and perpendicular to the complex plane at zk, and analogous
conjectures involving distributions of point charges in space appear also in [5]. Results in the
direction of these conjectures may be found in [5, 6, 14, 15, 19].

An analogous conjecture for the unit disc was advanced in [4]: if f is given by (1), where

|zk| < 1, lim
k→∞

zk = 1, ak > 0,
∞∑

k=1

ak < ∞,

then f has infinitely many zeros in B(0, 1). It was shown in [13] that this conjecture is false.
On the other hand if the zk converge sufficiently rapidly to 1 from within a suitable Stolz angle,
then f must indeed have infinitely many zeros in the disc [13, Theorem 1.1].
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