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CHAPTER 1. Module information for G12MAN

◮ Module lecturer: Prof. J K Langley

◮ Room B46, Mathematics Building, (95) 14964

◮ jkl@maths.nott.ac.uk, james.langley@nottingham.ac.uk

◮ For office hours, optional booklist etc. see the Moodle page.
The main teaching resource for this module is these notes and
there is no book which is strongly recommended.

◮ Lectures: see Moodle page

◮ Problem classes: these will be roughly fortnightly. There will
also be some group tutorials. Participation in all of these is
vital in order to absorb and master the concepts involved.
There will also be opportunities to hand in non-assessed
coursework in order to gain practice and feedback.
Details will appear on the Moodle page.
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1. Module information for G12MAN

◮ Broad summary: This is a highly theoretical module, with a
strong emphasis on proof.
The module is much more about ideas and concepts than
techniques. It follows on from G11ACF in the first year, so
you need to be familiar with the material there.
G12MAN is an introduction to real analysis, mainly featuring
the following:
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1. Module information for G12MAN

◮ Broad summary: This is a highly theoretical module, with a
strong emphasis on proof.
The module is much more about ideas and concepts than
techniques. It follows on from G11ACF in the first year, so
you need to be familiar with the material there.
G12MAN is an introduction to real analysis, mainly featuring
the following:

◮ (a) properties of functions on the real line R (in particular
involving limits, continuity, differentiation and integration);

◮ (b) properties of sets in higher dimensional space Rd ;

◮ (c) properties of functions on subsets of Rd (such as
continuity).
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1. Module information for G12MAN

◮ The assessment will include one two-hour written examination
(90%).
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1. Module information for G12MAN

◮ The assessment will include one two-hour written examination
(90%).

◮ The exam: the best 3 questions out of 4 count.

◮ See the next slides for comments on the exam itself.

◮ There will also be one class test (counting 10%): details will
appear on the Moodle page.
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1. Module information for G12MAN

◮ The assessment will include one two-hour written examination
(90%).

◮ The exam: the best 3 questions out of 4 count.

◮ See the next slides for comments on the exam itself.

◮ There will also be one class test (counting 10%): details will
appear on the Moodle page.

◮ If re-assessment is required this will normally be 100%
examination (usually in August).
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1. The G12MAN examination

In the G12MAN examination you will need to be able to state and
use the definitions, facts and theorems from the module. While it
is unlikely that you would be asked to reproduce the proof of a
theorem as given in the slides, the ideas and concepts featuring in
the proofs may be required in order to answer questions on the
examination. Thus everything in the slides, lectures and problem
sets is potentially examinable, except where it is explicitly stated
otherwise (e.g. if a topic is marked “optional”). It will also be
assumed that you are familiar with material from the Core, in
particular G11ACF and G11CAL.
In the examination all answers should be justified fully, supported
where appropriate by stating in full facts or theorems from the
module. The only exception will be where the question explicitly
states that justification is not required. Marks will be lost for
careless or disjointed presentation.
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1. The G12MAN examination

While some marks will be available for stating definitions and/or
theorems, to score a good mark on this module you will need to be
able to prove statements. The 2012-13 and 2013-14 G12MAN
examinations will give you an idea of what to expect, but it is
important to note that it takes time and practice to absorb
concepts such as those in G12MAN, and merely studying past
exam questions is very unlikely to be adequate preparation.
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CHAPTER 2. Types of limits

We will review some of the basic limits from G11ACF, and in
particular look at what happens when these are combined.
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2.1 Types of limits

Commonly used limits include the following (all in G11ACF).

◮ The limit of a sequence e.g.

lim
n→∞

3n + 4

4n + 7
= lim

n→∞

3 + 4/n

4 + 7/n
=

3 + 0

4 + 0
=

3

4

(using the algebra of limits from G11ACF).
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◮ The limit of a sequence e.g.

lim
n→∞

3n + 4

4n + 7
= lim

n→∞

3 + 4/n

4 + 7/n
=

3 + 0

4 + 0
=

3

4

(using the algebra of limits from G11ACF).

◮ The limit of a function e.g. what is

lim
x→0+

e−1/x ?
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2.1 Types of limits

Commonly used limits include the following (all in G11ACF).

◮ The limit of a sequence e.g.

lim
n→∞

3n + 4

4n + 7
= lim

n→∞

3 + 4/n

4 + 7/n
=

3 + 0

4 + 0
=

3

4

(using the algebra of limits from G11ACF).

◮ The limit of a function e.g. what is

lim
x→0+

e−1/x ?

◮ What happens if we mix these ideas: are the following the
same?

(A) lim
n→+∞

(

lim
x→1−

xn

)

; (B) lim
x→1−

(

lim
n→+∞

xn

)

.
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2.2 Types of limits

More commonly used limits:

◮ The derivative of a function e.g. the derivative of f (x) = x2

at a ∈ R is

f ′(a) = lim
x→a

f (x) − f (a)

x − a
= lim

x→a

x2 − a2

x − a
= lim

x→a
(x + a) = 2a.
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2.2 Types of limits

More commonly used limits:

◮ The derivative of a function e.g. the derivative of f (x) = x2

at a ∈ R is

f ′(a) = lim
x→a

f (x) − f (a)

x − a
= lim

x→a

x2 − a2

x − a
= lim

x→a
(x + a) = 2a.

◮ What happens if we combine this concept with that of
sequences?
For x ∈ R and n ∈ N = {1, 2, . . .} set

fn(x) =
nx

1 + n2x2
, f (x) = lim

n→∞
fn(x).

Does f ′n(0) tend to f ′(0) as n → ∞?
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2.2 Types of limits

Figure 1 shows one of these functions.

Figure: Plot of the function f100 (MAPLE)

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



2.3 Types of limits

Commonly used limits include also:

◮ The sum of a series e.g.

T =

∞
∑

n=1

(

1

n
− 1

n + 1

)

= lim
N→∞

N
∑

n=1

(

1

n
− 1

n + 1

)

.
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2.3 Types of limits

Commonly used limits include also:

◮ The sum of a series e.g.

T =

∞
∑

n=1

(

1

n
− 1

n + 1

)

= lim
N→∞

N
∑

n=1

(

1

n
− 1

n + 1

)

.

◮ This gives

T = lim
N→∞

(

1 − 1

2
+

1

2
− 1

3
+ . . . +

1

N
− 1

N + 1

)

= lim
N→∞

(

1 − 1

N + 1

)

= 1.
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2.3 Types of limits

Commonly used limits include also:

◮ The sum of a series e.g.

T =

∞
∑

n=1

(

1

n
− 1

n + 1

)

= lim
N→∞

N
∑

n=1

(

1

n
− 1

n + 1

)

.

◮ This gives

T = lim
N→∞

(

1 − 1

2
+

1

2
− 1

3
+ . . . +

1

N
− 1

N + 1

)

= lim
N→∞

(

1 − 1

N + 1

)

= 1.

◮ If we take infinite sums involving functions we can get some
very counterintuitive examples.
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2.3 Types of limits

◮ Suppose we take −π < x < π and look at

S(x) =

∞
∑

n=1

(−1)n+1 sin nx

n
= sin x − sin 2x

2
+

sin 3x

3
− . . . .
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2.3 Types of limits

◮ Suppose we take −π < x < π and look at

S(x) =

∞
∑

n=1

(−1)n+1 sin nx

n
= sin x − sin 2x

2
+

sin 3x

3
− . . . .

◮ This is an example of a Fourier sine series. These feature in
the module G12DEF and are among the most important tools
in applied mathematics (waves, temperature distribution etc.).
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2.3 Types of limits

◮ Suppose we take −π < x < π and look at

S(x) =

∞
∑

n=1

(−1)n+1 sin nx

n
= sin x − sin 2x

2
+

sin 3x

3
− . . . .

◮ This is an example of a Fourier sine series. These feature in
the module G12DEF and are among the most important tools
in applied mathematics (waves, temperature distribution etc.).

◮ The sum of the series S(x) for −π < x < π is not obvious!
For the determination with proof of the sum you can look at
the document
Optional additional material for G12MAN
on the module Moodle page.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



2.3 Types of limits

Figure 2 shows a partial sum.

Figure: Plot of the sum of the sine series S(x) up to the n = 20 term
(MAPLE)
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2.3 Types of limits

But what is important here is whether the following are the same:

(A) lim
x→π−

(

∞
∑

n=1

(−1)n+1 sin nx

n

)

;

(B)
∞
∑

n=1

(

lim
x→π−

(−1)n+1 sin nx

n

)

.
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2.3 Types of limits

◮ It turns out that in this example the key fact is that the
coefficients are cn = (−1)n+1/n and

∞
∑

n=1

|cn| = 1 +
1

2
+

1

3
+ . . .

diverges (see G11ACF).
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2.3 Types of limits

◮ It turns out that in this example the key fact is that the
coefficients are cn = (−1)n+1/n and

∞
∑

n=1

|cn| = 1 +
1

2
+

1

3
+ . . .

diverges (see G11ACF).
◮ In fact, if (an) is a real sequence such that

∞
∑

n=1

|an|

converges, then we always have

lim
x→π−

(

∞
∑

n=1

an sin nx

)

=
∞
∑

n=1

an sin nπ = 0.

We will see this later in the module, in the section on the
Weierstrass M-test.
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2.3 Types of limits

◮ These examples illustrate the need for rigour and proof.
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2.3 Types of limits

◮ These examples illustrate the need for rigour and proof.

◮ Intuition tells you that if you interchange the order of limits
you should get the same answer, but the above examples
make it clear that this is wrong.
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2.3 Types of limits

◮ These examples illustrate the need for rigour and proof.

◮ Intuition tells you that if you interchange the order of limits
you should get the same answer, but the above examples
make it clear that this is wrong.

◮ Analysis gives us tools to determine what does work and why.
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CHAPTER 3. Another look at sequences in R

We will review briefly the idea of convergence, and consider the
important topic of subsequences.
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3.1 Another look at sequences in R

◮ A real sequence (xn) just means a non-terminating list of real
numbers

xp, xp+1, xp+2, . . . .
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3.1 Another look at sequences in R

◮ A real sequence (xn) just means a non-terminating list of real
numbers

xp, xp+1, xp+2, . . . .

◮ For example xn = 21/n, n = 1, 2, . . ..
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3.1 Another look at sequences in R

◮ A real sequence (xn) just means a non-terminating list of real
numbers

xp, xp+1, xp+2, . . . .

◮ For example xn = 21/n, n = 1, 2, . . ..

◮ A convergent sequence (xn) approaches a (finite) limit A ∈ R

as n → ∞ e.g. 21/n → 1, and yn = 21/n − 1 → 0.
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3.1 Another look at sequences in R

◮ A real sequence (xn) just means a non-terminating list of real
numbers

xp, xp+1, xp+2, . . . .

◮ For example xn = 21/n, n = 1, 2, . . ..

◮ A convergent sequence (xn) approaches a (finite) limit A ∈ R

as n → ∞ e.g. 21/n → 1, and yn = 21/n − 1 → 0.

◮ This means that xn approximates A arbitrarily well
(or equivalently A approximates xn arbitrarily well)
for all sufficiently large n.
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3.1 Another look at sequences in R

◮ A real sequence (xn) just means a non-terminating list of real
numbers

xp, xp+1, xp+2, . . . .

◮ For example xn = 21/n, n = 1, 2, . . ..

◮ A convergent sequence (xn) approaches a (finite) limit A ∈ R

as n → ∞ e.g. 21/n → 1, and yn = 21/n − 1 → 0.

◮ This means that xn approximates A arbitrarily well
(or equivalently A approximates xn arbitrarily well)
for all sufficiently large n.

◮ More precisely, if we are given a permitted error (tolerance)
ε > 0, then xn is within ε of A for for all sufficiently large n.
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3.1 Another look at sequences in R

◮ A real sequence (xn) just means a non-terminating list of real
numbers

xp, xp+1, xp+2, . . . .

◮ For example xn = 21/n, n = 1, 2, . . ..

◮ A convergent sequence (xn) approaches a (finite) limit A ∈ R

as n → ∞ e.g. 21/n → 1, and yn = 21/n − 1 → 0.

◮ This means that xn approximates A arbitrarily well
(or equivalently A approximates xn arbitrarily well)
for all sufficiently large n.

◮ More precisely, if we are given a permitted error (tolerance)
ε > 0, then xn is within ε of A for for all sufficiently large n.

◮ More precisely still, to each positive real number ε corresponds
an integer N = N(ε) such that |xn − A| < ε for all n ≥ N.
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3.1 Another look at sequences in R

◮ Infinite limits are also possible e.g., as n → ∞,

2n − n2 → +∞, log
1

n
→ −∞.
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3.1 Another look at sequences in R

◮ Infinite limits are also possible e.g., as n → ∞,

2n − n2 → +∞, log
1

n
→ −∞.

◮ An important class of real sequences are those which are
monotone: this means that they are either non-decreasing or
non-increasing.
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3.1 Another look at sequences in R

◮ Infinite limits are also possible e.g., as n → ∞,

2n − n2 → +∞, log
1

n
→ −∞.

◮ An important class of real sequences are those which are
monotone: this means that they are either non-decreasing or
non-increasing.

◮ A real sequence (xn) is non-decreasing for n ≥ N if we have
xn+1 ≥ xn for all n ≥ N i.e.

xN ≤ xN+1 ≤ xN+2 ≤ . . .
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3.1 Another look at sequences in R

◮ Infinite limits are also possible e.g., as n → ∞,

2n − n2 → +∞, log
1

n
→ −∞.

◮ An important class of real sequences are those which are
monotone: this means that they are either non-decreasing or
non-increasing.

◮ A real sequence (xn) is non-decreasing for n ≥ N if we have
xn+1 ≥ xn for all n ≥ N i.e.

xN ≤ xN+1 ≤ xN+2 ≤ . . .

◮ Saying that (xn) is non-increasing just means that (−xn) is
non-decreasing: equivalently xn+1 ≤ xn for all n ≥ N.
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3.1 Another look at sequences in R

◮ A key result from G11ACF is the monotone sequence theorem.
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3.1 Another look at sequences in R

◮ A key result from G11ACF is the monotone sequence theorem.

◮ If (xn) is non-decreasing for n ≥ N then (xn) either tends to
+∞ or converges;
if (xn) is non-increasing for n ≥ N then (xn) either tends to
−∞ or converges.
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3.1 Another look at sequences in R

◮ A key result from G11ACF is the monotone sequence theorem.

◮ If (xn) is non-decreasing for n ≥ N then (xn) either tends to
+∞ or converges;
if (xn) is non-increasing for n ≥ N then (xn) either tends to
−∞ or converges.

◮ Proof optional: see G11ACF notes or Optional additional
material for G12MAN if you want to see it again.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



3.1 Another look at sequences in R

◮ A key result from G11ACF is the monotone sequence theorem.

◮ If (xn) is non-decreasing for n ≥ N then (xn) either tends to
+∞ or converges;
if (xn) is non-increasing for n ≥ N then (xn) either tends to
−∞ or converges.

◮ Proof optional: see G11ACF notes or Optional additional
material for G12MAN if you want to see it again.

◮ For example

Xn = 1 +
1

4
+

1

9
+ . . . +

1

n2

is obviously non-decreasing for n ≥ 1, and it tends to a limit
as n → ∞.
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3.1 Another look at sequences in R

◮ A key result from G11ACF is the monotone sequence theorem.

◮ If (xn) is non-decreasing for n ≥ N then (xn) either tends to
+∞ or converges;
if (xn) is non-increasing for n ≥ N then (xn) either tends to
−∞ or converges.

◮ Proof optional: see G11ACF notes or Optional additional
material for G12MAN if you want to see it again.

◮ For example

Xn = 1 +
1

4
+

1

9
+ . . . +

1

n2

is obviously non-decreasing for n ≥ 1, and it tends to a limit
as n → ∞.

◮ In fact Xn → π2/6, which can be shown e.g. using Fourier
series (G12DEF).
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3.2 Another look at sequences in R

◮ An example of a sequence with no limit is

yn = (−1)n
(

1 +
1

n

)

.
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3.2 Another look at sequences in R

◮ An example of a sequence with no limit is

yn = (−1)n
(

1 +
1

n

)

.

◮ We can write out the first few terms of this sequence.
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3.2 Another look at sequences in R

◮ An example of a sequence with no limit is

yn = (−1)n
(

1 +
1

n

)

.

◮ We can write out the first few terms of this sequence.

◮ What happens if we just take the odd n i.e.

y1, y3, y5, . . .?
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3.2 Another look at sequences in R

◮ An example of a sequence with no limit is

yn = (−1)n
(

1 +
1

n

)

.

◮ We can write out the first few terms of this sequence.

◮ What happens if we just take the odd n i.e.

y1, y3, y5, . . .?

◮ Similarly we could look at the even n i.e. take

y2, y4, y6, . . .
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3.2 Another look at sequences in R

◮ An example of a sequence with no limit is

yn = (−1)n
(

1 +
1

n

)

.

◮ We can write out the first few terms of this sequence.

◮ What happens if we just take the odd n i.e.

y1, y3, y5, . . .?

◮ Similarly we could look at the even n i.e. take

y2, y4, y6, . . .

◮ When we do this we are forming what is called a subsequence.
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3.2 Another look at sequences in R

◮ Suppose we start with a real sequence (xn) (n = p, p + 1, . . .).
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3.2 Another look at sequences in R

◮ Suppose we start with a real sequence (xn) (n = p, p + 1, . . .).

◮ A subsequence is formed by taking infinitely many of the xn in
the right order.
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3.2 Another look at sequences in R

◮ Suppose we start with a real sequence (xn) (n = p, p + 1, . . .).

◮ A subsequence is formed by taking infinitely many of the xn in
the right order.

◮ Formally, this means that we take integers

p ≤ n1 < n2 < n3 < . . .

and our subsequence is yk = xnk
.
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3.2 Another look at sequences in R

◮ Suppose we start with a real sequence (xn) (n = p, p + 1, . . .).

◮ A subsequence is formed by taking infinitely many of the xn in
the right order.

◮ Formally, this means that we take integers

p ≤ n1 < n2 < n3 < . . .

and our subsequence is yk = xnk
.

◮ For example, if we start with xn = 1/n then

1

2
,

1

3
,

1

5
,

1

7
,

1

11
, . . .

is a subsequence,
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3.2 Another look at sequences in R

◮ Suppose we start with a real sequence (xn) (n = p, p + 1, . . .).

◮ A subsequence is formed by taking infinitely many of the xn in
the right order.

◮ Formally, this means that we take integers

p ≤ n1 < n2 < n3 < . . .

and our subsequence is yk = xnk
.

◮ For example, if we start with xn = 1/n then

1

2
,

1

3
,

1

5
,

1

7
,

1

11
, . . .

is a subsequence,

◮ but
1

2
,

1

6
,

1

3
,

1

8
, . . .

is not (why not?).
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3.2 Another look at sequences in R

◮ Now let’s take any real sequence (xn) (n = p, p + 1, . . .).
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3.2 Another look at sequences in R

◮ Now let’s take any real sequence (xn) (n = p, p + 1, . . .).

◮ For each q ≥ p, look at the set

Eq = {xn : n ≥ q} = {xq, xq+1, . . .}.

We consider two cases.
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3.2 Another look at sequences in R

◮ Now let’s take any real sequence (xn) (n = p, p + 1, . . .).

◮ For each q ≥ p, look at the set

Eq = {xn : n ≥ q} = {xq, xq+1, . . .}.

We consider two cases.

◮ Case I: suppose first that every one of these sets Eq has
a maximum element
(i.e. there exists r ≥ q such that xn ≤ xr for all n ≥ q).
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3.2 Another look at sequences in R

◮ Now let’s take any real sequence (xn) (n = p, p + 1, . . .).

◮ For each q ≥ p, look at the set

Eq = {xn : n ≥ q} = {xq, xq+1, . . .}.

We consider two cases.

◮ Case I: suppose first that every one of these sets Eq has
a maximum element
(i.e. there exists r ≥ q such that xn ≤ xr for all n ≥ q).

◮ Clearly, if p ≤ q < Q then EQ ⊆ Eq and so the maximum
element of EQ is not greater than the maximum element of
Eq.
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3.2 Another look at sequences in R

◮ So (still in Case I) we take n1 ≥ p such that xn1
is the

maximum element of Ep.
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3.2 Another look at sequences in R

◮ So (still in Case I) we take n1 ≥ p such that xn1
is the

maximum element of Ep.

◮ Then we look at the set E1+n1
and we let xn2

be the
maximum element of this set.
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3.2 Another look at sequences in R

◮ So (still in Case I) we take n1 ≥ p such that xn1
is the

maximum element of Ep.

◮ Then we look at the set E1+n1
and we let xn2

be the
maximum element of this set.

◮ This gives us n2 ≥ 1 + n1 > n1 and xn2
≤ xn1

.
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3.2 Another look at sequences in R

◮ So (still in Case I) we take n1 ≥ p such that xn1
is the

maximum element of Ep.

◮ Then we look at the set E1+n1
and we let xn2

be the
maximum element of this set.

◮ This gives us n2 ≥ 1 + n1 > n1 and xn2
≤ xn1

.

◮ Then we look at the set E1+n2
and we let xn3

be the
maximum element of this set.
Again, n3 ≥ 1 + n2 > n2 and xn3

≤ xn2
.
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3.2 Another look at sequences in R

◮ So (still in Case I) we take n1 ≥ p such that xn1
is the

maximum element of Ep.

◮ Then we look at the set E1+n1
and we let xn2

be the
maximum element of this set.

◮ This gives us n2 ≥ 1 + n1 > n1 and xn2
≤ xn1

.

◮ Then we look at the set E1+n2
and we let xn3

be the
maximum element of this set.
Again, n3 ≥ 1 + n2 > n2 and xn3

≤ xn2
.

◮ Repeating this gives us a non-increasing subsequence xnk

(k = 1, 2, . . .) of (xn).
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3.2 Another look at sequences in R

◮ So (still in Case I) we take n1 ≥ p such that xn1
is the

maximum element of Ep.

◮ Then we look at the set E1+n1
and we let xn2

be the
maximum element of this set.

◮ This gives us n2 ≥ 1 + n1 > n1 and xn2
≤ xn1

.

◮ Then we look at the set E1+n2
and we let xn3

be the
maximum element of this set.
Again, n3 ≥ 1 + n2 > n2 and xn3

≤ xn2
.

◮ Repeating this gives us a non-increasing subsequence xnk

(k = 1, 2, . . .) of (xn).

◮ To be precise, once we have chosen nk , we choose nk+1 so
that xnk+1

is the maximum element of E1+nk
.
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3.2 Another look at sequences in R

◮ Still taking

Eq = {xn : n ≥ q} = {xq, xq+1, . . .},

look at
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3.2 Another look at sequences in R

◮ Still taking

Eq = {xn : n ≥ q} = {xq, xq+1, . . .},

look at

◮ Case II: suppose that one of the sets Eq has NO
maximum element.
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3.2 Another look at sequences in R

◮ Still taking

Eq = {xn : n ≥ q} = {xq, xq+1, . . .},

look at

◮ Case II: suppose that one of the sets Eq has NO
maximum element.

◮ Take this Eq, and let n1 = q.
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3.2 Another look at sequences in R

◮ Still taking

Eq = {xn : n ≥ q} = {xq, xq+1, . . .},

look at

◮ Case II: suppose that one of the sets Eq has NO
maximum element.

◮ Take this Eq, and let n1 = q.

◮ Since Eq has no maximum element, there is a member of Eq

which is greater than xn1
. This must be xn2

for some n2 > n1.
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3.2 Another look at sequences in R

◮ Still taking

Eq = {xn : n ≥ q} = {xq, xq+1, . . .},

look at

◮ Case II: suppose that one of the sets Eq has NO
maximum element.

◮ Take this Eq, and let n1 = q.

◮ Since Eq has no maximum element, there is a member of Eq

which is greater than xn1
. This must be xn2

for some n2 > n1.

◮ Next, we can find a member of Eq which is greater than all of

xq = xn1
, x1+n1

, . . . , xn2
.

Let this element be xn3
: then we must have n3 > n2.
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3.2 Another look at sequences in R

◮ So in Case II the rule is as follows:
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3.2 Another look at sequences in R

◮ So in Case II the rule is as follows:

◮ once we’ve chosen nk , we take a member of Eq which is
greater than all of

xq = xn1
, x1+n1

, . . . , xnk
.

This is possible because by assumption Eq has no maximum
element.
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3.2 Another look at sequences in R

◮ So in Case II the rule is as follows:

◮ once we’ve chosen nk , we take a member of Eq which is
greater than all of

xq = xn1
, x1+n1

, . . . , xnk
.

This is possible because by assumption Eq has no maximum
element.

◮ This member of Eq must be xnk+1
for some nk+1 > nk .
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3.2 Another look at sequences in R

◮ So in Case II the rule is as follows:

◮ once we’ve chosen nk , we take a member of Eq which is
greater than all of

xq = xn1
, x1+n1

, . . . , xnk
.

This is possible because by assumption Eq has no maximum
element.

◮ This member of Eq must be xnk+1
for some nk+1 > nk .

◮ This process gives us a (strictly) increasing subsequence of
(xn).
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3.2 Another look at sequences in R

◮ We deduce an important theorem.
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3.2 Another look at sequences in R

◮ We deduce an important theorem.

◮ Theorem 3.1: Every real sequence (xn), n = p, p + 1, . . . , has
a monotone subsequence.
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3.2 Another look at sequences in R

◮ We deduce an important theorem.

◮ Theorem 3.1: Every real sequence (xn), n = p, p + 1, . . . , has
a monotone subsequence.

◮ This subsequence, being monotone, must tend to a limit.
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3.2 Another look at sequences in R

◮ We deduce an important theorem.

◮ Theorem 3.1: Every real sequence (xn), n = p, p + 1, . . . , has
a monotone subsequence.

◮ This subsequence, being monotone, must tend to a limit.

◮ In particular, suppose that (xn) is a bounded real sequence i.e.
there exists a real number M such that |xn| ≤ M for all n ≥ p.
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3.2 Another look at sequences in R

◮ We deduce an important theorem.

◮ Theorem 3.1: Every real sequence (xn), n = p, p + 1, . . . , has
a monotone subsequence.

◮ This subsequence, being monotone, must tend to a limit.

◮ In particular, suppose that (xn) is a bounded real sequence i.e.
there exists a real number M such that |xn| ≤ M for all n ≥ p.

◮ Then our monotone subsequence is also bounded, and so
cannot tend to +∞ or −∞.
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3.2 Another look at sequences in R

◮ So as a special case we have a (famous) theorem.
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3.2 Another look at sequences in R

◮ So as a special case we have a (famous) theorem.
◮ Theorem 3.2 (Bolzano-Weierstrass theorem): Every

bounded real sequence (xn), n = p, p + 1, . . . , has a
convergent subsequence.
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3.2 Another look at sequences in R

◮ So as a special case we have a (famous) theorem.
◮ Theorem 3.2 (Bolzano-Weierstrass theorem): Every

bounded real sequence (xn), n = p, p + 1, . . . , has a
convergent subsequence.

◮ Of course the Bolzano-Weierstrass theorem doesn’t tell you
how to find the convergent subsequence, but it is still an
extremely powerful result.
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3.2 Another look at sequences in R

◮ So as a special case we have a (famous) theorem.
◮ Theorem 3.2 (Bolzano-Weierstrass theorem): Every

bounded real sequence (xn), n = p, p + 1, . . . , has a
convergent subsequence.

◮ Of course the Bolzano-Weierstrass theorem doesn’t tell you
how to find the convergent subsequence, but it is still an
extremely powerful result.

◮ Later in the module we will use it in results about the
maximum of a function or the intersection of sets.
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3.2 Another look at sequences in R

◮ So as a special case we have a (famous) theorem.
◮ Theorem 3.2 (Bolzano-Weierstrass theorem): Every

bounded real sequence (xn), n = p, p + 1, . . . , has a
convergent subsequence.

◮ Of course the Bolzano-Weierstrass theorem doesn’t tell you
how to find the convergent subsequence, but it is still an
extremely powerful result.

◮ Later in the module we will use it in results about the
maximum of a function or the intersection of sets.

◮ For example, the sequence sin n (n = 1, 2, . . .) goes (2 d.p.)

0.84, 0.91, 0.14,−0.75,−0.95,−0.28, 0.66, 0.99, . . .

and looks quite random, but even this has a convergent
subsequence.
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3.2 Another look at sequences in R

◮ So as a special case we have a (famous) theorem.
◮ Theorem 3.2 (Bolzano-Weierstrass theorem): Every

bounded real sequence (xn), n = p, p + 1, . . . , has a
convergent subsequence.

◮ Of course the Bolzano-Weierstrass theorem doesn’t tell you
how to find the convergent subsequence, but it is still an
extremely powerful result.

◮ Later in the module we will use it in results about the
maximum of a function or the intersection of sets.

◮ For example, the sequence sin n (n = 1, 2, . . .) goes (2 d.p.)

0.84, 0.91, 0.14,−0.75,−0.95,−0.28, 0.66, 0.99, . . .

and looks quite random, but even this has a convergent
subsequence.

◮ Which real numbers are the limit of a subsequence of (sin n)?
See Optional additional material for G12MAN for answer.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



CHAPTER 4. Distance in Rd

This chapter will look at the standard properties of distance in Rd ,
which will later be used in connection with sequences and
functions.
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4.1 Distance in Rd

◮ The well known modulus function on R is given by

|x | =
√

x2 =

{

x , if x ≥ 0;

−x , otherwise.
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4.1 Distance in Rd

◮ The well known modulus function on R is given by

|x | =
√

x2 =

{

x , if x ≥ 0;

−x , otherwise.

◮ One way to think of of this is as follows: |x | is the distance
from 0 to x .
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4.1 Distance in Rd

◮ The well known modulus function on R is given by

|x | =
√

x2 =

{

x , if x ≥ 0;

−x , otherwise.

◮ One way to think of of this is as follows: |x | is the distance
from 0 to x .

◮ The distance from x ∈ R to y ∈ R equals the distance from
x − y to 0 and is |x − y |.
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4.1 Distance in Rd

◮ The well known modulus function on R is given by

|x | =
√

x2 =

{

x , if x ≥ 0;

−x , otherwise.

◮ One way to think of of this is as follows: |x | is the distance
from 0 to x .

◮ The distance from x ∈ R to y ∈ R equals the distance from
x − y to 0 and is |x − y |.

◮ This generalises naturally to higher dimensions.
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4.2 Distance in Rd

Figure 3 shows a simple example in R2.

length 5

length 3

A=(7,5)

B=(2,8)

Figure: Straight line between two points

The Euclidean “as the crow flies” distance from A to B is
obviously

√
32 + 52 =

√
34 ≈ 5.83. If we can travel only

horizontally and vertically we get 3 + 5 = 8 >
√

34
(sometimes called the “taxicab distance”).
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4.3 Distance in Rd

◮ We will consider points x in Rd given by

x = (x1, . . . , xd).

Here the coordinates xj are real numbers.
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4.3 Distance in Rd

◮ We will consider points x in Rd given by

x = (x1, . . . , xd).

Here the coordinates xj are real numbers.
◮ The analogue of the modulus for x is the norm (or length)

‖x‖ =
√

x2
1

+ x2
2

+ . . . + x2
d =

√

√

√

√

d
∑

j=1

x2
j .
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4.3 Distance in Rd

◮ We will consider points x in Rd given by

x = (x1, . . . , xd).

Here the coordinates xj are real numbers.
◮ The analogue of the modulus for x is the norm (or length)

‖x‖ =
√

x2
1

+ x2
2

+ . . . + x2
d =

√

√

√

√

d
∑

j=1

x2
j .

◮ It is easy to see that, for each k,

x2
k ≤ x2

1 + x2
2 + . . . + x2

d = |x1|2 + |x2|2 + . . . + |xd |2

≤ (|x1| + |x2| + . . . + |xd |)2.
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4.3 Distance in Rd

◮ We will consider points x in Rd given by

x = (x1, . . . , xd).

Here the coordinates xj are real numbers.
◮ The analogue of the modulus for x is the norm (or length)

‖x‖ =
√

x2
1

+ x2
2

+ . . . + x2
d =

√

√

√

√

d
∑

j=1

x2
j .

◮ It is easy to see that, for each k,

x2
k ≤ x2

1 + x2
2 + . . . + x2

d = |x1|2 + |x2|2 + . . . + |xd |2

≤ (|x1| + |x2| + . . . + |xd |)2.
◮ Taking square roots now gives a useful inequality: for each k,

|xk | ≤ ‖x‖ ≤
d
∑

j=1

|xj |.
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4.4 Distance in Rd

◮ Now suppose we take two points in Rd given by

x = (x1, . . . , xd), y = (y1, . . . , yd ).
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4.4 Distance in Rd

◮ Now suppose we take two points in Rd given by

x = (x1, . . . , xd), y = (y1, . . . , yd ).

◮ We just define the distance from x to y (points in Rd) to be

dist{x, y} = ‖x − y‖ =

√

√

√

√

d
∑

j=1

(xj − yj)2.

This is the same as the distance from 0 to x− y.
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4.4 Distance in Rd

◮ Now suppose we take two points in Rd given by

x = (x1, . . . , xd), y = (y1, . . . , yd ).

◮ We just define the distance from x to y (points in Rd) to be

dist{x, y} = ‖x − y‖ =

√

√

√

√

d
∑

j=1

(xj − yj)2.

This is the same as the distance from 0 to x− y.

◮ We then have

‖x − y‖ ≤
d
∑

j=1

|xj − yj |

i.e. the distance from x to y is not greater than the taxicab
distance.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



4.6 Distance in Rd

◮ A fundamental inequality is the triangle inequality for Rd :

‖x + y‖ ≤ ‖x‖ + ‖y‖.
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4.6 Distance in Rd

◮ A fundamental inequality is the triangle inequality for Rd :

‖x + y‖ ≤ ‖x‖ + ‖y‖.

◮ In R2 or R3 this is easy to visualise by drawing a
parallelogram.
An (optional) proof using the Cauchy-Schwarz inequality from
G11ACF is given in Optional additional material for
G12MAN.
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4.6 Distance in Rd

◮ A fundamental inequality is the triangle inequality for Rd :

‖x + y‖ ≤ ‖x‖ + ‖y‖.

◮ In R2 or R3 this is easy to visualise by drawing a
parallelogram.
An (optional) proof using the Cauchy-Schwarz inequality from
G11ACF is given in Optional additional material for
G12MAN.

◮ A useful companion inequality is given by

‖x‖ = ‖y + (x − y)‖ ≤ ‖y‖ + ‖x − y‖,

‖x − y‖ ≥ ‖x‖ − ‖y‖.
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4.6 Distance in Rd

◮ A fundamental inequality is the triangle inequality for Rd :

‖x + y‖ ≤ ‖x‖ + ‖y‖.

◮ In R2 or R3 this is easy to visualise by drawing a
parallelogram.
An (optional) proof using the Cauchy-Schwarz inequality from
G11ACF is given in Optional additional material for
G12MAN.

◮ A useful companion inequality is given by

‖x‖ = ‖y + (x − y)‖ ≤ ‖y‖ + ‖x − y‖,

‖x − y‖ ≥ ‖x‖ − ‖y‖.
◮ This is sometimes called the second triangle inequality.
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4.6 Distance in Rd

◮ We can interpret the second triangle inequality

‖x − y‖ ≥ ‖x‖ − ‖y‖

as saying that the distance from x to y is at least the distance
from x to 0 minus the distance from y to 0.
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CHAPTER 5. Sequences in Rd

This chapter will look at sequences (xn) in which each xn is a
point in Rd .
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5.1 Sequences in Rd

◮ By a sequence (xn) in Rd we mean a non-terminating list

xp, xp+1, xp+2, . . .

of points in Rd .
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5.1 Sequences in Rd

◮ By a sequence (xn) in Rd we mean a non-terminating list

xp, xp+1, xp+2, . . .

of points in Rd .

◮ We sometimes write (xn) in terms of its coordinates as

xn = (xn,1, xn,2, . . . , xn,d).

Each coordinate xn,j then forms a real sequence (j = 1, . . . , d).
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5.1 Sequences in Rd

◮ By a sequence (xn) in Rd we mean a non-terminating list

xp, xp+1, xp+2, . . .

of points in Rd .

◮ We sometimes write (xn) in terms of its coordinates as

xn = (xn,1, xn,2, . . . , xn,d).

Each coordinate xn,j then forms a real sequence (j = 1, . . . , d).

◮ For example, what happens as n → ∞ for (xn) as follows?

xn =

(

ln n√
n

, n1/n

)

.
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5.2 Sequences in Rd

◮ Suppose we take a sequence (xn) and a point a in Rd .
Our basic inequality for points in Rd gives, for each k,

|xn,k − ak | ≤ ‖xn − a‖ ≤
d
∑

j=1

|xn,j − aj |
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5.2 Sequences in Rd

◮ Suppose we take a sequence (xn) and a point a in Rd .
Our basic inequality for points in Rd gives, for each k,

|xn,k − ak | ≤ ‖xn − a‖ ≤
d
∑

j=1

|xn,j − aj |

◮ We say that a sequence (xn) in Rd converges if there exists
a ∈ Rd such that

lim
n→∞

‖xn − a‖ = 0

i.e. the distance from xn to a tends to 0.
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5.2 Sequences in Rd

◮ Suppose we take a sequence (xn) and a point a in Rd .
Our basic inequality for points in Rd gives, for each k,

|xn,k − ak | ≤ ‖xn − a‖ ≤
d
∑

j=1

|xn,j − aj |

◮ We say that a sequence (xn) in Rd converges if there exists
a ∈ Rd such that

lim
n→∞

‖xn − a‖ = 0

i.e. the distance from xn to a tends to 0.

◮ This holds if and only if each of the coordinate sequences
(xn,k) has limit ak .
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5.2 Sequences in Rd

◮ Again let’s take a sequence (xn) in Rd .
Our basic inequality gives, for each k,

|xn,k | ≤ ‖xn‖ ≤
d
∑

j=1

|xn,j |.
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5.2 Sequences in Rd

◮ Again let’s take a sequence (xn) in Rd .
Our basic inequality gives, for each k,

|xn,k | ≤ ‖xn‖ ≤
d
∑

j=1

|xn,j |.

◮ We say that a sequence (xn) (n = p, p + 1, . . .) in Rd is
bounded if there exists a real number M such that

‖xn‖ ≤ M for all n ≥ p.

i.e. the distance from xn to 0 is bounded.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



5.2 Sequences in Rd

◮ Again let’s take a sequence (xn) in Rd .
Our basic inequality gives, for each k,

|xn,k | ≤ ‖xn‖ ≤
d
∑

j=1

|xn,j |.

◮ We say that a sequence (xn) (n = p, p + 1, . . .) in Rd is
bounded if there exists a real number M such that

‖xn‖ ≤ M for all n ≥ p.

i.e. the distance from xn to 0 is bounded.

◮ So this holds if and only if each of the coordinate sequences
(xn,k) is bounded.
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5.2 Sequences in Rd

◮ Again let’s take a sequence (xn) in Rd .
Our basic inequality gives, for each k,

|xn,k | ≤ ‖xn‖ ≤
d
∑

j=1

|xn,j |.

◮ We say that a sequence (xn) (n = p, p + 1, . . .) in Rd is
bounded if there exists a real number M such that

‖xn‖ ≤ M for all n ≥ p.

i.e. the distance from xn to 0 is bounded.

◮ So this holds if and only if each of the coordinate sequences
(xn,k) is bounded.

◮ This will lead to an important theorem for sequences in Rd .
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5.3 Sequences in Rd

◮ Take a bounded sequence in Rd given in terms of its
coordinates as

xn = (xn,1, xn,2, . . . , xn,d).
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5.3 Sequences in Rd

◮ Take a bounded sequence in Rd given in terms of its
coordinates as

xn = (xn,1, xn,2, . . . , xn,d).

◮ So each coordinate sequence (xn,j) is bounded, and has a
convergent subsequence by the Bolzano-Weierstrass theorem
(Chapter 3).
Does (xn) have a convergent subsequence?
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5.3 Sequences in Rd

◮ Take a bounded sequence in Rd given in terms of its
coordinates as

xn = (xn,1, xn,2, . . . , xn,d).

◮ So each coordinate sequence (xn,j) is bounded, and has a
convergent subsequence by the Bolzano-Weierstrass theorem
(Chapter 3).
Does (xn) have a convergent subsequence?

◮ Recall that a convergent subsequence of (yn) ⊆ R means that
we take n1 < n2 < n3 < . . . in such a way that limk→∞ ynk

exists.
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5.3 Sequences in Rd

◮ Take a bounded sequence in Rd given in terms of its
coordinates as

xn = (xn,1, xn,2, . . . , xn,d).

◮ So each coordinate sequence (xn,j) is bounded, and has a
convergent subsequence by the Bolzano-Weierstrass theorem
(Chapter 3).
Does (xn) have a convergent subsequence?

◮ Recall that a convergent subsequence of (yn) ⊆ R means that
we take n1 < n2 < n3 < . . . in such a way that limk→∞ ynk

exists.

◮ We can think of this as discarding some members of the
sequence to leave a convergent sequence e.g. for yn = (−1)n

we can discard the even n to leave −1,−1,−1, . . ...
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5.3 Sequences in Rd

◮ So start with our bounded sequence

xn = (xn,1, xn,2, . . . , xn,d), ‖xn‖ ≤ M < ∞.
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5.3 Sequences in Rd

◮ So start with our bounded sequence

xn = (xn,1, xn,2, . . . , xn,d), ‖xn‖ ≤ M < ∞.

◮ By discarding some n we form a subsequence in which the
first coordinate converges.
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5.3 Sequences in Rd

◮ So start with our bounded sequence

xn = (xn,1, xn,2, . . . , xn,d), ‖xn‖ ≤ M < ∞.

◮ By discarding some n we form a subsequence in which the
first coordinate converges.

◮ This gives a sequence yn for which limn→∞ yn,1 exists (in R).
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5.3 Sequences in Rd

◮ So start with our bounded sequence

xn = (xn,1, xn,2, . . . , xn,d), ‖xn‖ ≤ M < ∞.

◮ By discarding some n we form a subsequence in which the
first coordinate converges.

◮ This gives a sequence yn for which limn→∞ yn,1 exists (in R).

◮ This sequence yn is still bounded (the same M will do) so we
take another subsequence so that the second coordinate
converges.
Keep repeating this. After d steps we get a convergent
subsequence of (xn).
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5.3 Sequences in Rd

◮ Theorem 6.1 (Bolzano-Weierstrass theorem for Rd):
Every bounded sequence in Rd has a convergent subsequence.
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5.3 Sequences in Rd

◮ Theorem 6.1 (Bolzano-Weierstrass theorem for Rd):
Every bounded sequence in Rd has a convergent subsequence.

◮ For example, given

xn = ((−1)n, cos(nπ/5)),

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



5.3 Sequences in Rd

◮ Theorem 6.1 (Bolzano-Weierstrass theorem for Rd):
Every bounded sequence in Rd has a convergent subsequence.

◮ For example, given

xn = ((−1)n, cos(nπ/5)),

◮ if we just take the even n we get a subsequence

yn = x2n = (1, cos(2nπ/5)),

in which the first coordinate converges.
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5.3 Sequences in Rd

◮ Theorem 6.1 (Bolzano-Weierstrass theorem for Rd):
Every bounded sequence in Rd has a convergent subsequence.

◮ For example, given

xn = ((−1)n, cos(nπ/5)),

◮ if we just take the even n we get a subsequence

yn = x2n = (1, cos(2nπ/5)),

in which the first coordinate converges.

◮ Now if we take n = 5, 10, 15, 20, . . . in yn we get

y5k = x10k = (1, cos(k2π)) = (1, 1),

a convergent subsequence.
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5.3 Sequences in Rd

◮ Sequences in Rd aren’t in themselves very important, because
as we have seen they can be reduced to real sequences by
looking at the coordinates.
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5.3 Sequences in Rd

◮ Sequences in Rd aren’t in themselves very important, because
as we have seen they can be reduced to real sequences by
looking at the coordinates.

◮ However, they are extremely useful when we look at properties
of sets in Rd .
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CHAPTER 6. Sets and frontiers in Rd

◮ In this chapter we classify in various ways subsets of Rd .
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CHAPTER 6. Sets and frontiers in Rd

◮ In this chapter we classify in various ways subsets of Rd .

◮ Examples include half-planes in R2 such as

E = {(u, v) : v ≥ 0} or F = {(u, v) : u + v > 2}.
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CHAPTER 6. Sets and frontiers in Rd

◮ In this chapter we classify in various ways subsets of Rd .

◮ Examples include half-planes in R2 such as

E = {(u, v) : v ≥ 0} or F = {(u, v) : u + v > 2}.

◮ There are also multidimensional “intervals” e.g.

G = {(u, v ,w) : 1 < u < 2, 3 ≤ v < 7, −π ≤ w ≤ π} ⊆ R3.
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CHAPTER 6. Sets and frontiers in Rd

◮ In this chapter we classify in various ways subsets of Rd .

◮ Examples include half-planes in R2 such as

E = {(u, v) : v ≥ 0} or F = {(u, v) : u + v > 2}.

◮ There are also multidimensional “intervals” e.g.

G = {(u, v ,w) : 1 < u < 2, 3 ≤ v < 7, −π ≤ w ≤ π} ⊆ R3.

◮ A very important subset of Rd is the open ball of centre
x ∈ Rd and radius r > 0 given by

Br (x) = B(x, r) = {y ∈ Rd : ‖y − x‖ < r} ⊆ Rd .
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CHAPTER 6. Sets and frontiers in Rd

◮ In this chapter we classify in various ways subsets of Rd .

◮ Examples include half-planes in R2 such as

E = {(u, v) : v ≥ 0} or F = {(u, v) : u + v > 2}.

◮ There are also multidimensional “intervals” e.g.

G = {(u, v ,w) : 1 < u < 2, 3 ≤ v < 7, −π ≤ w ≤ π} ⊆ R3.

◮ A very important subset of Rd is the open ball of centre
x ∈ Rd and radius r > 0 given by

Br (x) = B(x, r) = {y ∈ Rd : ‖y − x‖ < r} ⊆ Rd .

◮ This consists of all y whose distance from x is less than r :
hence the name ball. The label open will be explained later.
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6.1 Sets and frontiers in Rd

◮ Note: some authors use ]a, b[ to denote the open interval
{x ∈ R : a < x < b}.
I will use the more standard (a, b).
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6.1 Sets and frontiers in Rd

◮ Note: some authors use ]a, b[ to denote the open interval
{x ∈ R : a < x < b}.
I will use the more standard (a, b).

◮ Some sets in Rd can be written as Cartesian products e.g.

H = (0, 1) × [3, 4] = {(u, v) ∈ R2 : 0 < u < 1, 3 ≤ v ≤ 4}.
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6.1 Sets and frontiers in Rd

◮ Note: some authors use ]a, b[ to denote the open interval
{x ∈ R : a < x < b}.
I will use the more standard (a, b).

◮ Some sets in Rd can be written as Cartesian products e.g.

H = (0, 1) × [3, 4] = {(u, v) ∈ R2 : 0 < u < 1, 3 ≤ v ≤ 4}.

◮ Given a set E ⊆ Rd , its complement is the set

E c = Rd \ E = {x ∈ Rd : x 6∈ E}.
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6.1 Sets and frontiers in Rd

◮ Note: some authors use ]a, b[ to denote the open interval
{x ∈ R : a < x < b}.
I will use the more standard (a, b).

◮ Some sets in Rd can be written as Cartesian products e.g.

H = (0, 1) × [3, 4] = {(u, v) ∈ R2 : 0 < u < 1, 3 ≤ v ≤ 4}.

◮ Given a set E ⊆ Rd , its complement is the set

E c = Rd \ E = {x ∈ Rd : x 6∈ E}.

◮ For example, what is Hc in R2?
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6.2 Sets and frontiers in Rd

◮ Given a set E ⊆ Rd , we look at its frontier. An alternative
name is boundary, but I will use frontier to avoid confusion
with a set being “bounded”.
Informally the frontier consists of all points which lie on the
border between E and E c . They may or may not lie in E .
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6.2 Sets and frontiers in Rd

◮ Given a set E ⊆ Rd , we look at its frontier. An alternative
name is boundary, but I will use frontier to avoid confusion
with a set being “bounded”.
Informally the frontier consists of all points which lie on the
border between E and E c . They may or may not lie in E .

◮ For example the frontier of the open ball (disc) in R2 given by

E = B(0, 1) = {x ∈ R2 : ‖x‖ < 1} = {(u, v) : u2 + v2 < 1}
is the circle

C = {x ∈ R2 : ‖x‖ = 1} = {(u, v) : u2 + v2 = 1}.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



6.2 Sets and frontiers in Rd

◮ Given a set E ⊆ Rd , we look at its frontier. An alternative
name is boundary, but I will use frontier to avoid confusion
with a set being “bounded”.
Informally the frontier consists of all points which lie on the
border between E and E c . They may or may not lie in E .

◮ For example the frontier of the open ball (disc) in R2 given by

E = B(0, 1) = {x ∈ R2 : ‖x‖ < 1} = {(u, v) : u2 + v2 < 1}
is the circle

C = {x ∈ R2 : ‖x‖ = 1} = {(u, v) : u2 + v2 = 1}.
◮ Notice that

F = {x ∈ R2 : ‖x‖ ≤ 1}
seems to have the same frontier C , and so does

G = {x ∈ R2 : ‖x‖ > 1}.
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6.2 Sets and frontiers in Rd

◮ To define the frontier mathematically, take (in R2)

E = {x ∈ R2 : ‖x‖ < 1}, E c = {x ∈ R2 : ‖x‖ ≥ 1}.
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6.2 Sets and frontiers in Rd

◮ To define the frontier mathematically, take (in R2)

E = {x ∈ R2 : ‖x‖ < 1}, E c = {x ∈ R2 : ‖x‖ ≥ 1}.

◮ Take any y with ‖y‖ = 1. Now, as n → ∞,

un =

(

1 − 1

n

)

y ∈ E , un → y.
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6.2 Sets and frontiers in Rd

◮ To define the frontier mathematically, take (in R2)

E = {x ∈ R2 : ‖x‖ < 1}, E c = {x ∈ R2 : ‖x‖ ≥ 1}.

◮ Take any y with ‖y‖ = 1. Now, as n → ∞,

un =

(

1 − 1

n

)

y ∈ E , un → y.

◮ Also, as n → ∞,

vn = y ∈ E c , vn → y.
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6.2 Sets and frontiers in Rd

◮ To define the frontier mathematically, take (in R2)

E = {x ∈ R2 : ‖x‖ < 1}, E c = {x ∈ R2 : ‖x‖ ≥ 1}.

◮ Take any y with ‖y‖ = 1. Now, as n → ∞,

un =

(

1 − 1

n

)

y ∈ E , un → y.

◮ Also, as n → ∞,

vn = y ∈ E c , vn → y.

◮ So y is the limit of a sequence in E , and of a sequence in E c .
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6.2 Sets and frontiers in Rd

◮ So we define the frontier as follows.
Let E be a subset of Rd . The frontier ∂E of E (with respect
to Rd) is the set of all y ∈ Rd such that y is the limit of a
sequence in E , and of a sequence in E c .
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6.2 Sets and frontiers in Rd

◮ So we define the frontier as follows.
Let E be a subset of Rd . The frontier ∂E of E (with respect
to Rd) is the set of all y ∈ Rd such that y is the limit of a
sequence in E , and of a sequence in E c .

◮ We can check that for

F = {x ∈ R2 : ‖x‖ ≤ 1}, G = {x ∈ R2 : ‖x‖ > 1}

this gives the right frontier.
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6.2 Sets and frontiers in Rd

◮ So we define the frontier as follows.
Let E be a subset of Rd . The frontier ∂E of E (with respect
to Rd) is the set of all y ∈ Rd such that y is the limit of a
sequence in E , and of a sequence in E c .

◮ We can check that for

F = {x ∈ R2 : ‖x‖ ≤ 1}, G = {x ∈ R2 : ‖x‖ > 1}

this gives the right frontier.

◮ We will generally leave out the phrase “with respect to Rd”,
since it will be clear which dimension we are working in from
the set E .
The frontier is also commonly called the “boundary”.
This concept can give surprising results, however: what is the
frontier of Q ⊆ R?

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



CHAPTER 7. Interior points of sets in Rd

Having defined the frontier of a set, we now consider points which
lie in a set but not on its frontier.
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7.1 Interior points of sets in Rd

◮ We start with a useful fact. Let E be a subset of Rd , and let
x ∈ Rd , not necessarily in E .
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7.1 Interior points of sets in Rd

◮ We start with a useful fact. Let E be a subset of Rd , and let
x ∈ Rd , not necessarily in E .

◮ Suppose first that, for every real r > 0, the open ball

Br (x) = B(x, r) = {y ∈ Rd : ‖y − x‖ < r}

meets E i.e. B(x, r) ∩ E 6= ∅.
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7.1 Interior points of sets in Rd

◮ We start with a useful fact. Let E be a subset of Rd , and let
x ∈ Rd , not necessarily in E .

◮ Suppose first that, for every real r > 0, the open ball

Br (x) = B(x, r) = {y ∈ Rd : ‖y − x‖ < r}

meets E i.e. B(x, r) ∩ E 6= ∅.
◮ Then for each n ∈ N there exists yn ∈ B(x, 1/n) ∩ E i.e. there

exists yn ∈ E with ‖yn − x‖ < 1/n.
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7.1 Interior points of sets in Rd

◮ We start with a useful fact. Let E be a subset of Rd , and let
x ∈ Rd , not necessarily in E .

◮ Suppose first that, for every real r > 0, the open ball

Br (x) = B(x, r) = {y ∈ Rd : ‖y − x‖ < r}

meets E i.e. B(x, r) ∩ E 6= ∅.
◮ Then for each n ∈ N there exists yn ∈ B(x, 1/n) ∩ E i.e. there

exists yn ∈ E with ‖yn − x‖ < 1/n.

◮ Thus (yn) is a sequence in E with limit x.
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7.1 Interior points of sets in Rd

◮ Suppose next that, for some real r > 0, the open ball B(x, r)
does not meet E i.e. B(x, r) ∩ E = ∅.
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7.1 Interior points of sets in Rd

◮ Suppose next that, for some real r > 0, the open ball B(x, r)
does not meet E i.e. B(x, r) ∩ E = ∅.

◮ Then there cannot exist a sequence (yn) in E with limit x; if
we had such a sequence then we would get, for all sufficiently
large n,

‖yn − x‖ < r and so yn ∈ B(x, r) ∩ E .
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7.1 Interior points of sets in Rd

◮ Suppose next that, for some real r > 0, the open ball B(x, r)
does not meet E i.e. B(x, r) ∩ E = ∅.

◮ Then there cannot exist a sequence (yn) in E with limit x; if
we had such a sequence then we would get, for all sufficiently
large n,

‖yn − x‖ < r and so yn ∈ B(x, r) ∩ E .

◮ We combine these observations as a useful lemma.
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7.1 Interior points of sets in Rd

◮ Lemma 7.1: Let E be a subset of Rd , and let x ∈ Rd .
Then the following are equivalent:
(A) for every real r > 0, the open ball B(x, r) meets E ;
(B) there exists a sequence in E with limit x.
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7.1 Interior points of sets in Rd

◮ Lemma 7.1: Let E be a subset of Rd , and let x ∈ Rd .
Then the following are equivalent:
(A) for every real r > 0, the open ball B(x, r) meets E ;
(B) there exists a sequence in E with limit x.

◮ Stated another way (using the contrapositive), the following
are equivalent:
(C) there exists a real r > 0 such that the open ball B(x, r)
does not meet E;
(D) there is no sequence in E with limit x.
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7.2 Interior points of sets in Rd

◮ Let A be a subset of Rd . We define the interior points of A as
follows. A point x ∈ Rd is an interior point of A if there exists
a real r > 0 such that B(x, r) ⊆ A.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



7.2 Interior points of sets in Rd

◮ Let A be a subset of Rd . We define the interior points of A as
follows. A point x ∈ Rd is an interior point of A if there exists
a real r > 0 such that B(x, r) ⊆ A.

◮ Informally, this says that x and all its close neighbours lie in A.
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7.2 Interior points of sets in Rd

◮ Let A be a subset of Rd . We define the interior points of A as
follows. A point x ∈ Rd is an interior point of A if there exists
a real r > 0 such that B(x, r) ⊆ A.

◮ Informally, this says that x and all its close neighbours lie in A.

◮ If we take E = Ac = Rd \ A in Lemma 7.1 then we get the
following.
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7.2 Interior points of sets in Rd

◮ Let A be a subset of Rd . We define the interior points of A as
follows. A point x ∈ Rd is an interior point of A if there exists
a real r > 0 such that B(x, r) ⊆ A.

◮ Informally, this says that x and all its close neighbours lie in A.

◮ If we take E = Ac = Rd \ A in Lemma 7.1 then we get the
following.

◮ Lemma 7.1A: Let A be a subset of Rd , and let x ∈ Rd .
Then the following are equivalent:
(i) x is an interior point of A;
(i’) there exists an open ball B(x, r) which does not meet Ac ;
(ii) there exists no sequence in Ac with limit x.
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7.2 Interior points of sets in Rd

◮ Let A be a subset of Rd .
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7.2 Interior points of sets in Rd

◮ Let A be a subset of Rd .

◮ We just saw that if x ∈ Rd is an interior point of A then there
is no sequence in Ac with limit x.
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7.2 Interior points of sets in Rd

◮ Let A be a subset of Rd .

◮ We just saw that if x ∈ Rd is an interior point of A then there
is no sequence in Ac with limit x.

◮ Thus an interior point of A cannot belong to the frontier ∂A.
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7.2 Interior points of sets in Rd

◮ Let A be a subset of Rd .

◮ We just saw that if x ∈ Rd is an interior point of A then there
is no sequence in Ac with limit x.

◮ Thus an interior point of A cannot belong to the frontier ∂A.

◮ On the other hand, if y ∈ A is not an interior point of A, then
there exists a sequence in Ac with limit y, so y is in the
frontier ∂A. This yields:
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7.2 Interior points of sets in Rd

◮ Lemma 7.2: Let A be any subset of Rd . Then

A = (int A) ∪ (∂A ∩ A),

where int A denotes the set of interior points of A, and the
two sets int A and ∂A ∩ A are disjoint.
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7.2 Interior points of sets in Rd

◮ Lemma 7.2: Let A be any subset of Rd . Then

A = (int A) ∪ (∂A ∩ A),

where int A denotes the set of interior points of A, and the
two sets int A and ∂A ∩ A are disjoint.

◮ This says that every point in A is either an interior point or a
frontier point, but is never both.
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7.2 Interior points of sets in Rd

◮ Lemma 7.2: Let A be any subset of Rd . Then

A = (int A) ∪ (∂A ∩ A),

where int A denotes the set of interior points of A, and the
two sets int A and ∂A ∩ A are disjoint.

◮ This says that every point in A is either an interior point or a
frontier point, but is never both.

◮ Some people refer to ∂A ∩ A as the set of non-interior points
in A (sometimes written nintA), but I will not use this
terminology.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



7.2 Interior points of sets in Rd

◮ Lemma 7.2: Let A be any subset of Rd . Then

A = (int A) ∪ (∂A ∩ A),

where int A denotes the set of interior points of A, and the
two sets int A and ∂A ∩ A are disjoint.

◮ This says that every point in A is either an interior point or a
frontier point, but is never both.

◮ Some people refer to ∂A ∩ A as the set of non-interior points
in A (sometimes written nintA), but I will not use this
terminology.

◮ This leads to an important class of sets, called open sets.
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CHAPTER 8. Open sets in Rd

We look at open subsets of Rd , which play an important role in
analysis.
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8.1 Open sets in Rd

◮ Let A be any subset of Rd . We’ve seen that

A = (intA) ∪ (∂A ∩ A),

where int A denotes the set of interior points of A.
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8.1 Open sets in Rd

◮ Let A be any subset of Rd . We’ve seen that

A = (intA) ∪ (∂A ∩ A),

where int A denotes the set of interior points of A.

◮ A is called open if A = intA i.e. every point of A is an interior
point.
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8.1 Open sets in Rd

◮ Let A be any subset of Rd . We’ve seen that

A = (intA) ∪ (∂A ∩ A),

where int A denotes the set of interior points of A.

◮ A is called open if A = intA i.e. every point of A is an interior
point.

◮ This means that for every x ∈ A there exists r > 0 with
B(x, r) ⊆ A.
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8.1 Open sets in Rd

◮ Let A be any subset of Rd . We’ve seen that

A = (intA) ∪ (∂A ∩ A),

where int A denotes the set of interior points of A.

◮ A is called open if A = intA i.e. every point of A is an interior
point.

◮ This means that for every x ∈ A there exists r > 0 with
B(x, r) ⊆ A.

◮ This is equivalent to the condition that ∂A ∩ A = ∅, which is
the same as the condition that ∂A ⊆ Ac = Rd \ A.
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8.1 Open sets in Rd

◮ Let A be any subset of Rd . We’ve seen that

A = (intA) ∪ (∂A ∩ A),

where int A denotes the set of interior points of A.

◮ A is called open if A = intA i.e. every point of A is an interior
point.

◮ This means that for every x ∈ A there exists r > 0 with
B(x, r) ⊆ A.

◮ This is equivalent to the condition that ∂A ∩ A = ∅, which is
the same as the condition that ∂A ⊆ Ac = Rd \ A.

◮ The name open will be justified to some extent when we meet
closed sets.
Imagine also that you own a field, but none of its boundary
edge. Can you prevent your neighbour(s) from stepping on
your property?
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8.1 Open sets in Rd

◮ For example,
H = {(u, v) ∈ R2 : u > 0}

is an open set. If I take x = (u, v) ∈ H, then in fact
B(x, u) ⊆ H.
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8.1 Open sets in Rd

◮ For example,
H = {(u, v) ∈ R2 : u > 0}

is an open set. If I take x = (u, v) ∈ H, then in fact
B(x, u) ⊆ H.

◮ We can also note that ∂H = {(u, v) ∈ R2 : u = 0}, so that
∂H ∩ H = ∅.
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8.1 Open sets in Rd

◮ For example,
H = {(u, v) ∈ R2 : u > 0}

is an open set. If I take x = (u, v) ∈ H, then in fact
B(x, u) ⊆ H.

◮ We can also note that ∂H = {(u, v) ∈ R2 : u = 0}, so that
∂H ∩ H = ∅.

◮ For x ∈ Rd the open ball

B(x, r) = {y ∈ Rd : ‖y − x‖ < r}

is (as the name suggests) an open set.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



8.1 Open sets in Rd

◮ For example,
H = {(u, v) ∈ R2 : u > 0}

is an open set. If I take x = (u, v) ∈ H, then in fact
B(x, u) ⊆ H.

◮ We can also note that ∂H = {(u, v) ∈ R2 : u = 0}, so that
∂H ∩ H = ∅.

◮ For x ∈ Rd the open ball

B(x, r) = {y ∈ Rd : ‖y − x‖ < r}

is (as the name suggests) an open set.

◮ In fact, if ‖y − x‖ = s < r and z ∈ Rd then

‖z−y‖ < r−s ⇒ ‖z−x‖ ≤ ‖z−y‖+‖y−x‖ < (r−s)+s = r

so B(y, r − s) ⊆ B(x, r) (draw a sketch!).
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8.1 Open sets in Rd

◮ For example,
H = {(u, v) ∈ R2 : u > 0}

is an open set. If I take x = (u, v) ∈ H, then in fact
B(x, u) ⊆ H.

◮ We can also note that ∂H = {(u, v) ∈ R2 : u = 0}, so that
∂H ∩ H = ∅.

◮ For x ∈ Rd the open ball

B(x, r) = {y ∈ Rd : ‖y − x‖ < r}

is (as the name suggests) an open set.

◮ In fact, if ‖y − x‖ = s < r and z ∈ Rd then

‖z−y‖ < r−s ⇒ ‖z−x‖ ≤ ‖z−y‖+‖y−x‖ < (r−s)+s = r

so B(y, r − s) ⊆ B(x, r) (draw a sketch!).

◮ Alternatively, it’s not hard to work out what ∂B(x, r) is.
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8.1 Open sets in Rd

◮ Which of the following sets are open subsets of the given
space?
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8.1 Open sets in Rd

◮ Which of the following sets are open subsets of the given
space?

◮ We take

(a, b] ⊆ R; Q ⊆ R; {x = (u, v) ∈ R2 : ‖x‖ ≤ 1, u > 0}.
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8.2 Open sets in Rd

◮ Is the union/intersection of open sets open?
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8.2 Open sets in Rd

◮ Is the union/intersection of open sets open?

◮ Suppose we take the union of some open sets. Do we get an
open set?
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8.2 Open sets in Rd

◮ Is the union/intersection of open sets open?

◮ Suppose we take the union of some open sets. Do we get an
open set?

◮ To be precise, suppose that Ut is an open subset of Rd , for
every t belonging to some set T .
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8.2 Open sets in Rd

◮ Is the union/intersection of open sets open?

◮ Suppose we take the union of some open sets. Do we get an
open set?

◮ To be precise, suppose that Ut is an open subset of Rd , for
every t belonging to some set T .

◮ We then look at

W =
⋃

t∈T

Ut = {x ∈ Rd : x is in at least one of the Ut}.
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8.2 Open sets in Rd

◮ Is W open? This will be true if and only if every x ∈ W is an
interior point of W , i.e. to each x ∈ W corresponds r > 0
with B(x, r) ⊆ W .
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8.2 Open sets in Rd

◮ Is W open? This will be true if and only if every x ∈ W is an
interior point of W , i.e. to each x ∈ W corresponds r > 0
with B(x, r) ⊆ W .

◮ But if we take x ∈ W , then x lies in one of the Ut , and
because Ut is open we get r > 0 with B(x, r) ⊆ Ut .
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8.2 Open sets in Rd

◮ Is W open? This will be true if and only if every x ∈ W is an
interior point of W , i.e. to each x ∈ W corresponds r > 0
with B(x, r) ⊆ W .

◮ But if we take x ∈ W , then x lies in one of the Ut , and
because Ut is open we get r > 0 with B(x, r) ⊆ Ut .

◮ But Ut ⊆ W , and so we have B(x, r) ⊆ W as required.
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8.2 Open sets in Rd

◮ Is W open? This will be true if and only if every x ∈ W is an
interior point of W , i.e. to each x ∈ W corresponds r > 0
with B(x, r) ⊆ W .

◮ But if we take x ∈ W , then x lies in one of the Ut , and
because Ut is open we get r > 0 with B(x, r) ⊆ Ut .

◮ But Ut ⊆ W , and so we have B(x, r) ⊆ W as required.

◮ Thus W is open:
Theorem 8.1: the union of any family of open subsets of Rd

is an open subset of Rd .

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



8.2 Open sets in Rd

◮ Is W open? This will be true if and only if every x ∈ W is an
interior point of W , i.e. to each x ∈ W corresponds r > 0
with B(x, r) ⊆ W .

◮ But if we take x ∈ W , then x lies in one of the Ut , and
because Ut is open we get r > 0 with B(x, r) ⊆ Ut .

◮ But Ut ⊆ W , and so we have B(x, r) ⊆ W as required.

◮ Thus W is open:
Theorem 8.1: the union of any family of open subsets of Rd

is an open subset of Rd .

◮ Notice that we did not use the frontier here, and the frontier
of a union may be tricky to determine.
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8.3 Open sets in Rd

◮ Now let’s look at intersections.
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8.3 Open sets in Rd

◮ Now let’s look at intersections.

◮ If we take Un (n ∈ N) to be

Un = B(0, 1/n) = {x ∈ Rd : ‖x‖ < 1/n}

then each Un is an open ball and so open.
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8.3 Open sets in Rd

◮ Now let’s look at intersections.

◮ If we take Un (n ∈ N) to be

Un = B(0, 1/n) = {x ∈ Rd : ‖x‖ < 1/n}

then each Un is an open ball and so open.

◮ But the intersection
⋂

n∈N
Un of all the Un is just {0}, and

this is not an open set.
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8.3 Open sets in Rd

◮ Now let’s look at intersections.

◮ If we take Un (n ∈ N) to be

Un = B(0, 1/n) = {x ∈ Rd : ‖x‖ < 1/n}

then each Un is an open ball and so open.

◮ But the intersection
⋂

n∈N
Un of all the Un is just {0}, and

this is not an open set.

◮ So the intersection of infinitely many open sets may fail to be
open.
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8.3 Open sets in Rd

◮ But now let’s take finitely many open sets, say V1, . . . ,Vn (in
Rd) and look at their intersection

W =

n
⋂

j=1

Vj = {x ∈ Rd : x is in all of the Vj}.
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8.3 Open sets in Rd

◮ But now let’s take finitely many open sets, say V1, . . . ,Vn (in
Rd) and look at their intersection

W =

n
⋂

j=1

Vj = {x ∈ Rd : x is in all of the Vj}.

◮ If I take x ∈ W then x is in each Vj , and this gives me (since
Vj is open) a positive rj with B(x, rj) ⊆ Vj .
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8.3 Open sets in Rd

◮ But now let’s take finitely many open sets, say V1, . . . ,Vn (in
Rd) and look at their intersection

W =

n
⋂

j=1

Vj = {x ∈ Rd : x is in all of the Vj}.

◮ If I take x ∈ W then x is in each Vj , and this gives me (since
Vj is open) a positive rj with B(x, rj) ⊆ Vj .

◮ If I now let r be the minimum of the rj then r > 0 and
B(x, r) ⊆ B(x, rj) ⊆ Vj for j = 1, . . . , n, and so B(x, r) ⊆ W .
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8.3 Open sets in Rd

◮ But now let’s take finitely many open sets, say V1, . . . ,Vn (in
Rd) and look at their intersection

W =

n
⋂

j=1

Vj = {x ∈ Rd : x is in all of the Vj}.

◮ If I take x ∈ W then x is in each Vj , and this gives me (since
Vj is open) a positive rj with B(x, rj) ⊆ Vj .

◮ If I now let r be the minimum of the rj then r > 0 and
B(x, r) ⊆ B(x, rj) ⊆ Vj for j = 1, . . . , n, and so B(x, r) ⊆ W .

◮ Theorem 8.2: the intersection of finitely many open subsets
of Rd is an open subset of Rd .

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



8.3 Open sets in Rd

◮ But now let’s take finitely many open sets, say V1, . . . ,Vn (in
Rd) and look at their intersection

W =

n
⋂

j=1

Vj = {x ∈ Rd : x is in all of the Vj}.

◮ If I take x ∈ W then x is in each Vj , and this gives me (since
Vj is open) a positive rj with B(x, rj) ⊆ Vj .

◮ If I now let r be the minimum of the rj then r > 0 and
B(x, r) ⊆ B(x, rj) ⊆ Vj for j = 1, . . . , n, and so B(x, r) ⊆ W .

◮ Theorem 8.2: the intersection of finitely many open subsets
of Rd is an open subset of Rd .

◮ You can see from the proof why this fails for infinitely many
Vj : an infinite set of positive real numbers is not guaranteed
to have a positive lower bound.
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CHAPTER 9. Closed sets in Rd

Closed subsets of Rd are again very important from the point of
view of analysis.
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9.1 Closed sets in Rd

◮ First, closed does not mean “not open”!
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9.1 Closed sets in Rd

◮ First, closed does not mean “not open”!

◮ A set A ⊆ Rd is called closed if B = Ac = Rd \ A is open.
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9.1 Closed sets in Rd

◮ First, closed does not mean “not open”!

◮ A set A ⊆ Rd is called closed if B = Ac = Rd \ A is open.

◮ Since ∂A = ∂B , this is equivalent to the condition that
B ∩ ∂A = ∅, and so equivalent to the condition that ∂A ⊆ A.
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9.1 Closed sets in Rd

◮ First, closed does not mean “not open”!

◮ A set A ⊆ Rd is called closed if B = Ac = Rd \ A is open.

◮ Since ∂A = ∂B , this is equivalent to the condition that
B ∩ ∂A = ∅, and so equivalent to the condition that ∂A ⊆ A.

◮ Closed sets can be characterised in terms of sequences.
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9.2 Closed sets in Rd

Let A be a subset of Rd . Then the following are equivalent.

◮ A is not closed.
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9.2 Closed sets in Rd

Let A be a subset of Rd . Then the following are equivalent.

◮ A is not closed.

◮ B = Ac = Rd \ A is not open.
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9.2 Closed sets in Rd

Let A be a subset of Rd . Then the following are equivalent.

◮ A is not closed.

◮ B = Ac = Rd \ A is not open.

◮ There exists x ∈ B which is not an interior point of B .
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9.2 Closed sets in Rd

Let A be a subset of Rd . Then the following are equivalent.

◮ A is not closed.

◮ B = Ac = Rd \ A is not open.

◮ There exists x ∈ B which is not an interior point of B .

◮ There exists x ∈ B and a sequence in Bc = A with limit x
(using Lemma 7.1A).
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9.2 Closed sets in Rd

Let A be a subset of Rd . Then the following are equivalent.

◮ A is not closed.

◮ B = Ac = Rd \ A is not open.

◮ There exists x ∈ B which is not an interior point of B .

◮ There exists x ∈ B and a sequence in Bc = A with limit x
(using Lemma 7.1A).

◮ There exists a convergent sequence in A whose limit is not in
A.
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9.2 Closed sets in Rd

Taking contrapositives we get:
Theorem 9.1: Let A be a subset of Rd . Then A is closed if and
only if every convergent sequence (xn) in A satisfies
limn→∞ xn ∈ A.
So a closed set A is closed in the sense that a convergent sequence
in A cannot escape to a limit outside A.
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9.3 Closed sets in Rd

◮ Let A be a subset of Rd . We say that A is bounded if there
exists a positive real number M such that ‖x‖ < M for every
x ∈ A i.e. A ⊆ B(0,M).
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9.3 Closed sets in Rd

◮ Let A be a subset of Rd . We say that A is bounded if there
exists a positive real number M such that ‖x‖ < M for every
x ∈ A i.e. A ⊆ B(0,M).

◮ Suppose that A is closed and bounded, and take a sequence
(xn) in A.
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9.3 Closed sets in Rd

◮ Let A be a subset of Rd . We say that A is bounded if there
exists a positive real number M such that ‖x‖ < M for every
x ∈ A i.e. A ⊆ B(0,M).

◮ Suppose that A is closed and bounded, and take a sequence
(xn) in A.

◮ Then (xn) is a bounded sequence and so has a convergent
subsequence (Bolzano-Weierstrass).
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9.3 Closed sets in Rd

◮ Let A be a subset of Rd . We say that A is bounded if there
exists a positive real number M such that ‖x‖ < M for every
x ∈ A i.e. A ⊆ B(0,M).

◮ Suppose that A is closed and bounded, and take a sequence
(xn) in A.

◮ Then (xn) is a bounded sequence and so has a convergent
subsequence (Bolzano-Weierstrass).

◮ Because A is closed the convergent subsequence must have
limit in A.
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9.3 Closed sets in Rd

◮ Suppose on the other hand that A is not closed.
Then by Theorem 9.1 there exists a convergent sequence (xn)
in A with y = limn→∞ xn not in A.
Here any subsequence of (xn) must also have limit y 6∈ A.
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9.3 Closed sets in Rd

◮ Suppose on the other hand that A is not closed.
Then by Theorem 9.1 there exists a convergent sequence (xn)
in A with y = limn→∞ xn not in A.
Here any subsequence of (xn) must also have limit y 6∈ A.

◮ What happens if A is not bounded?
Then we can find yn ∈ A with ‖yn‖ > n → ∞, and this
sequence cannot have a convergent subsequence.
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9.3 Closed sets in Rd

◮ Suppose on the other hand that A is not closed.
Then by Theorem 9.1 there exists a convergent sequence (xn)
in A with y = limn→∞ xn not in A.
Here any subsequence of (xn) must also have limit y 6∈ A.

◮ What happens if A is not bounded?
Then we can find yn ∈ A with ‖yn‖ > n → ∞, and this
sequence cannot have a convergent subsequence.

◮ Combining these, we get another important theorem.
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9.3 Closed sets in Rd

Theorem 9.2: Let A be a subset of Rd . Then the following are
equivalent:
(i) The set A is closed and bounded.
(ii) Every sequence in A has a convergent subsequence with limit
in A.
This is sometimes called the Heine-Borel theorem.
A set A which satisfies condition (ii) is called sequentially compact.
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9.4 Closed sets in Rd

◮ Suppose that E1,E2, . . . are non-empty closed and bounded
subsets of Rd , with

E1 ⊇ E2 ⊇ E3 ⊇ . . . .
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9.4 Closed sets in Rd

◮ Suppose that E1,E2, . . . are non-empty closed and bounded
subsets of Rd , with

E1 ⊇ E2 ⊇ E3 ⊇ . . . .

◮ Take xj ∈ Ej . Then (xn) is a sequence in the closed and
bounded set E1.
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9.4 Closed sets in Rd

◮ Suppose that E1,E2, . . . are non-empty closed and bounded
subsets of Rd , with

E1 ⊇ E2 ⊇ E3 ⊇ . . . .

◮ Take xj ∈ Ej . Then (xn) is a sequence in the closed and
bounded set E1.

◮ Then (xn) has a convergent subsequence (say (xnk
), with

1 ≤ n1 < n2 < . . .). Let a = limk→∞ xnk
.
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9.4 Closed sets in Rd

◮ Suppose that E1,E2, . . . are non-empty closed and bounded
subsets of Rd , with

E1 ⊇ E2 ⊇ E3 ⊇ . . . .

◮ Take xj ∈ Ej . Then (xn) is a sequence in the closed and
bounded set E1.

◮ Then (xn) has a convergent subsequence (say (xnk
), with

1 ≤ n1 < n2 < . . .). Let a = limk→∞ xnk
.

◮ Now take m ∈ N. Since nk ≥ m for all k ≥ m we have
xnk

∈ Em for all k ≥ m.
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9.4 Closed sets in Rd

◮ Suppose that E1,E2, . . . are non-empty closed and bounded
subsets of Rd , with

E1 ⊇ E2 ⊇ E3 ⊇ . . . .

◮ Take xj ∈ Ej . Then (xn) is a sequence in the closed and
bounded set E1.

◮ Then (xn) has a convergent subsequence (say (xnk
), with

1 ≤ n1 < n2 < . . .). Let a = limk→∞ xnk
.

◮ Now take m ∈ N. Since nk ≥ m for all k ≥ m we have
xnk

∈ Em for all k ≥ m.

◮ Hence a ∈ Em, since Em is closed, and so

a ∈
∞
⋂

j=1

Ej .
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9.4 Closed sets in Rd

◮ Theorem 9.3 (nested closed and bounded sets theorem)
Suppose that E1,E2, . . . are non-empty closed and bounded
subsets of Rd , with

E1 ⊇ E2 ⊇ E3 ⊇ . . . .

Then the intersection
∞
⋂

j=1

Ej .

is non-empty.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



9.4 Closed sets in Rd

◮ Theorem 9.3 (nested closed and bounded sets theorem)
Suppose that E1,E2, . . . are non-empty closed and bounded
subsets of Rd , with

E1 ⊇ E2 ⊇ E3 ⊇ . . . .

Then the intersection
∞
⋂

j=1

Ej .

is non-empty.

◮ Is this still true if we drop the word “closed”?
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9.4 Closed sets in Rd

◮ Theorem 9.3 (nested closed and bounded sets theorem)
Suppose that E1,E2, . . . are non-empty closed and bounded
subsets of Rd , with

E1 ⊇ E2 ⊇ E3 ⊇ . . . .

Then the intersection
∞
⋂

j=1

Ej .

is non-empty.

◮ Is this still true if we drop the word “closed”?

◮ Is this still true if we drop the word “bounded”?
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CHAPTER 10. Continuous functions on sets in Rd

We will consider continuous functions defined on (subsets of) Rd

and their properties.
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10.1 Continuous functions on sets in Rd

◮ If we have a function f : R → R then f is continuous at a ∈ R

if
lim
x→a

f (x) = f (a).
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10.1 Continuous functions on sets in Rd

◮ If we have a function f : R → R then f is continuous at a ∈ R

if
lim
x→a

f (x) = f (a).

◮ This says that f (x) is as close as we need to f (a), for all x
which are close enough to a.
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10.1 Continuous functions on sets in Rd

◮ If we have a function f : R → R then f is continuous at a ∈ R

if
lim
x→a

f (x) = f (a).

◮ This says that f (x) is as close as we need to f (a), for all x
which are close enough to a.

◮ More precisely, given any positive real number ε, there exists a
positive real number δ such that |f (x) − f (a)| < ε for all x
with |x − a| < δ.
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10.1 Continuous functions on sets in Rd

◮ If we have a function f : R → R then f is continuous at a ∈ R

if
lim
x→a

f (x) = f (a).

◮ This says that f (x) is as close as we need to f (a), for all x
which are close enough to a.

◮ More precisely, given any positive real number ε, there exists a
positive real number δ such that |f (x) − f (a)| < ε for all x
with |x − a| < δ.

◮ Here ε can be thought of as εrror, or tolεrance, and δ as
δisplacement, or δistance.
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10.1 Continuous functions on sets in Rd

◮ We will extend this first to functions defined on an open set
U ⊆ Rd .
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10.1 Continuous functions on sets in Rd

◮ We will extend this first to functions defined on an open set
U ⊆ Rd .

◮ An open set U has the advantage that if a ∈ U then all points
x which are sufficiently close to a also lie in U.
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10.1 Continuous functions on sets in Rd

◮ We will extend this first to functions defined on an open set
U ⊆ Rd .

◮ An open set U has the advantage that if a ∈ U then all points
x which are sufficiently close to a also lie in U.

◮ Later we will consider functions on any E ⊆ Rd .
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10.2 Continuous functions on sets in Rd

◮ So suppose we have a function f : U → Rq, where U ⊆ Rd is
open.
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10.2 Continuous functions on sets in Rd

◮ So suppose we have a function f : U → Rq, where U ⊆ Rd is
open.

◮ We say that f is continuous at a ∈ U if the following is true.
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10.2 Continuous functions on sets in Rd

◮ So suppose we have a function f : U → Rq, where U ⊆ Rd is
open.

◮ We say that f is continuous at a ∈ U if the following is true.

◮ Given any positive real number ε, there exists a positive real
number δ such that ‖f(x) − f(a)‖ < ε for all x with
‖x − a‖ < δ.
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10.2 Continuous functions on sets in Rd

◮ So suppose we have a function f : U → Rq, where U ⊆ Rd is
open.

◮ We say that f is continuous at a ∈ U if the following is true.

◮ Given any positive real number ε, there exists a positive real
number δ such that ‖f(x) − f(a)‖ < ε for all x with
‖x − a‖ < δ.

◮ Again this just says that the distance from f(x) to f(a) is as
small as we like, provided the distance from x to a is small
enough.
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10.2 Continuous functions on sets in Rd

◮ So suppose we have a function f : U → Rq, where U ⊆ Rd is
open.

◮ We say that f is continuous at a ∈ U if the following is true.

◮ Given any positive real number ε, there exists a positive real
number δ such that ‖f(x) − f(a)‖ < ε for all x with
‖x − a‖ < δ.

◮ Again this just says that the distance from f(x) to f(a) is as
small as we like, provided the distance from x to a is small
enough.

◮ Keep in mind, though, that the first distance ‖f(x) − f(a)‖ is
with respect to Rq, and the second distance ‖x − a‖ is with
respect to Rd .
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10.3 Continuous functions on sets in Rd

◮ We can express this idea in terms of sequences. Suppose we
have a function f : U → Rq, where U ⊆ Rd is open.
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10.3 Continuous functions on sets in Rd

◮ We can express this idea in terms of sequences. Suppose we
have a function f : U → Rq, where U ⊆ Rd is open.

◮ Assume that f is continuous at a ∈ U and that (xn) is a
sequence in Rd with limit a.
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10.3 Continuous functions on sets in Rd

◮ We can express this idea in terms of sequences. Suppose we
have a function f : U → Rq, where U ⊆ Rd is open.

◮ Assume that f is continuous at a ∈ U and that (xn) is a
sequence in Rd with limit a.

◮ Given any positive real number ε, continuity gives us a
positive real number δ such that ‖f(x) − f(a)‖ < ε for all x
with ‖x − a‖ < δ.
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10.3 Continuous functions on sets in Rd

◮ We can express this idea in terms of sequences. Suppose we
have a function f : U → Rq, where U ⊆ Rd is open.

◮ Assume that f is continuous at a ∈ U and that (xn) is a
sequence in Rd with limit a.

◮ Given any positive real number ε, continuity gives us a
positive real number δ such that ‖f(x) − f(a)‖ < ε for all x
with ‖x − a‖ < δ.

◮ Since (xn) converges to a there exists an integer N such that
‖xn − a‖ < δ for all n ≥ N.
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10.3 Continuous functions on sets in Rd

◮ We can express this idea in terms of sequences. Suppose we
have a function f : U → Rq, where U ⊆ Rd is open.

◮ Assume that f is continuous at a ∈ U and that (xn) is a
sequence in Rd with limit a.

◮ Given any positive real number ε, continuity gives us a
positive real number δ such that ‖f(x) − f(a)‖ < ε for all x
with ‖x − a‖ < δ.

◮ Since (xn) converges to a there exists an integer N such that
‖xn − a‖ < δ for all n ≥ N.

◮ This gives ‖f(xn) − f(a)‖ < ε for all n ≥ N.
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10.3 Continuous functions on sets in Rd

◮ We can express this idea in terms of sequences. Suppose we
have a function f : U → Rq, where U ⊆ Rd is open.

◮ Assume that f is continuous at a ∈ U and that (xn) is a
sequence in Rd with limit a.

◮ Given any positive real number ε, continuity gives us a
positive real number δ such that ‖f(x) − f(a)‖ < ε for all x
with ‖x − a‖ < δ.

◮ Since (xn) converges to a there exists an integer N such that
‖xn − a‖ < δ for all n ≥ N.

◮ This gives ‖f(xn) − f(a)‖ < ε for all n ≥ N.

◮ Since we can do this for any ε > 0, we conclude that f(xn)
converges to f(a).
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10.3 Continuous functions on sets in Rd

◮ On the other hand, suppose that f is NOT continuous at
a ∈ U.
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10.3 Continuous functions on sets in Rd

◮ On the other hand, suppose that f is NOT continuous at
a ∈ U.

◮ Then there must exist a positive real number ε having NO
positive real number δ such that ‖f(x) − f(a)‖ < ε for all x
with ‖x − a‖ < δ.
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10.3 Continuous functions on sets in Rd

◮ On the other hand, suppose that f is NOT continuous at
a ∈ U.

◮ Then there must exist a positive real number ε having NO
positive real number δ such that ‖f(x) − f(a)‖ < ε for all x
with ‖x − a‖ < δ.

◮ So for each n ∈ N we can find xn with ‖xn − a‖ < 1/n but
‖f(xn) − f(a)‖ ≥ ε.
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10.3 Continuous functions on sets in Rd

◮ On the other hand, suppose that f is NOT continuous at
a ∈ U.

◮ Then there must exist a positive real number ε having NO
positive real number δ such that ‖f(x) − f(a)‖ < ε for all x
with ‖x − a‖ < δ.

◮ So for each n ∈ N we can find xn with ‖xn − a‖ < 1/n but
‖f(xn) − f(a)‖ ≥ ε.

◮ So (xn) converges to a, but (f(xn)) does not converge to f(a).
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10.3 Continuous functions on sets in Rd

◮ On the other hand, suppose that f is NOT continuous at
a ∈ U.

◮ Then there must exist a positive real number ε having NO
positive real number δ such that ‖f(x) − f(a)‖ < ε for all x
with ‖x − a‖ < δ.

◮ So for each n ∈ N we can find xn with ‖xn − a‖ < 1/n but
‖f(xn) − f(a)‖ ≥ ε.

◮ So (xn) converges to a, but (f(xn)) does not converge to f(a).

◮ Combining this reasoning gives the following theorem.
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10.3 Continuous functions on sets in Rd

Theorem 10.1: Let f : U → Rq be a function, where U ⊆ Rd is
open, and let a ∈ U. Then the following are equivalent:
(i) f is continuous at a;
(ii) for every sequence (xn) in Rd which converges to a, the image
sequence (f(xn)) converges to f(a).
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10.4 Continuous functions on sets in Rd

◮ Suppose next that we write our function f : U → Rq in terms
of its coordinates as

f = (f1, . . . , fq),

and suppose we take a sequence (xn) in Rd .
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10.4 Continuous functions on sets in Rd

◮ Suppose next that we write our function f : U → Rq in terms
of its coordinates as

f = (f1, . . . , fq),

and suppose we take a sequence (xn) in Rd .

◮ Then from Chapter 5 we know that (f(xn)) converges to f(a)
if and only if each coordinate sequence (fj(xn)) converges to
fj(a).
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10.4 Continuous functions on sets in Rd

◮ Suppose next that we write our function f : U → Rq in terms
of its coordinates as

f = (f1, . . . , fq),

and suppose we take a sequence (xn) in Rd .

◮ Then from Chapter 5 we know that (f(xn)) converges to f(a)
if and only if each coordinate sequence (fj(xn)) converges to
fj(a).

◮ So f is continuous at a if and only if all the fj are.
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10.4 Continuous functions on sets in Rd

◮ Suppose next that we write our function f : U → Rq in terms
of its coordinates as

f = (f1, . . . , fq),

and suppose we take a sequence (xn) in Rd .

◮ Then from Chapter 5 we know that (f(xn)) converges to f(a)
if and only if each coordinate sequence (fj(xn)) converges to
fj(a).

◮ So f is continuous at a if and only if all the fj are.

◮ So the continuity of our function f = (f1, . . . , fq) is equivalent
to the continuity of all of its coordinate functions fj .
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10.4 Continuous functions on sets in Rd

◮ Now consider

f (u, v) =
u4v2

u8 + v4
(if (u, v) 6= (0, 0)), f (0, 0) = 0.
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10.4 Continuous functions on sets in Rd

◮ Now consider

f (u, v) =
u4v2

u8 + v4
(if (u, v) 6= (0, 0)), f (0, 0) = 0.

◮ If we fix v = 0 then we get

f (u, 0) =
0

u8
= 0 → 0 as u → 0.
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10.4 Continuous functions on sets in Rd

◮ Now consider

f (u, v) =
u4v2

u8 + v4
(if (u, v) 6= (0, 0)), f (0, 0) = 0.

◮ If we fix v = 0 then we get

f (u, 0) =
0

u8
= 0 → 0 as u → 0.

◮ Similarly, if we fix u = 0 we get

f (0, v) =
0

v4
= 0 → 0 as v → 0.
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10.4 Continuous functions on sets in Rd

◮ Now consider

f (u, v) =
u4v2

u8 + v4
(if (u, v) 6= (0, 0)), f (0, 0) = 0.

◮ If we fix v = 0 then we get

f (u, 0) =
0

u8
= 0 → 0 as u → 0.

◮ Similarly, if we fix u = 0 we get

f (0, v) =
0

v4
= 0 → 0 as v → 0.

◮ So if we fix one variable (u or v) and regard f as a function of
the other variable then f is continuous.
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10.4 Continuous functions on sets in Rd

◮ Now consider

f (u, v) =
u4v2

u8 + v4
(if (u, v) 6= (0, 0)), f (0, 0) = 0.

◮ If we fix v = 0 then we get

f (u, 0) =
0

u8
= 0 → 0 as u → 0.

◮ Similarly, if we fix u = 0 we get

f (0, v) =
0

v4
= 0 → 0 as v → 0.

◮ So if we fix one variable (u or v) and regard f as a function of
the other variable then f is continuous.

◮ But is f really continuous as a function of both variables?
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10.4 Continuous functions on sets in Rd

◮ If we let (u, v) → (0, 0) along a straight line u = mv (where
m is a non-zero constant) then we get

f (mv , v) =
m4v6

m8v8 + v4
=

m4v2

m8v4 + 1
→ 0 as v → 0.
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10.4 Continuous functions on sets in Rd

◮ If we let (u, v) → (0, 0) along a straight line u = mv (where
m is a non-zero constant) then we get

f (mv , v) =
m4v6

m8v8 + v4
=

m4v2

m8v4 + 1
→ 0 as v → 0.

◮ So as (u, v) → (0, 0) along any straight line we have
f (u, v) → 0.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



10.4 Continuous functions on sets in Rd

◮ If we let (u, v) → (0, 0) along a straight line u = mv (where
m is a non-zero constant) then we get

f (mv , v) =
m4v6

m8v8 + v4
=

m4v2

m8v4 + 1
→ 0 as v → 0.

◮ So as (u, v) → (0, 0) along any straight line we have
f (u, v) → 0.

◮ But if we let (u, v) → (0, 0) along the curve v = u2 we get

f (u, v) = f (u, u2) =
u4u4

u8 + u8
=

1

2
→ 1

2
6= f (0, 0).
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10.4 Continuous functions on sets in Rd

◮ If we let (u, v) → (0, 0) along a straight line u = mv (where
m is a non-zero constant) then we get

f (mv , v) =
m4v6

m8v8 + v4
=

m4v2

m8v4 + 1
→ 0 as v → 0.

◮ So as (u, v) → (0, 0) along any straight line we have
f (u, v) → 0.

◮ But if we let (u, v) → (0, 0) along the curve v = u2 we get

f (u, v) = f (u, u2) =
u4u4

u8 + u8
=

1

2
→ 1

2
6= f (0, 0).

◮ So f is NOT continuous at (0, 0).
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10.4 Continuous functions on sets in Rd

◮ The conclusion is that in deciding whether a function
f = (f1, . . . , fq) is continuous it is sufficient to look at each
coordinate fj of the image separately, but it is NOT sufficient
to consider f with respect to each coordinate variable xk

separately.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



10.4 Continuous functions on sets in Rd

◮ The conclusion is that in deciding whether a function
f = (f1, . . . , fq) is continuous it is sufficient to look at each
coordinate fj of the image separately, but it is NOT sufficient
to consider f with respect to each coordinate variable xk

separately.

◮ Nor is it enough to look at f as x approaches a point along
straight lines.
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10.4 Continuous functions on sets in Rd

◮ The conclusion is that in deciding whether a function
f = (f1, . . . , fq) is continuous it is sufficient to look at each
coordinate fj of the image separately, but it is NOT sufficient
to consider f with respect to each coordinate variable xk

separately.

◮ Nor is it enough to look at f as x approaches a point along
straight lines.

◮ In general it can be quite tricky to determine whether a
function of several variables is continuous, but the next
example shows how this can be done in some cases.
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10.5 Continuous functions on sets in Rd

◮ We change v2 to v3 in the numerator to get

g(u, v) =
u4v3

u8 + v4
(if (u, v) 6= (0, 0)), g(0, 0) = 0.
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10.5 Continuous functions on sets in Rd

◮ We change v2 to v3 in the numerator to get

g(u, v) =
u4v3

u8 + v4
(if (u, v) 6= (0, 0)), g(0, 0) = 0.

◮ Note first that u8 + v4 ≥ u8, and u8 + v4 ≥ v4.
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10.5 Continuous functions on sets in Rd

◮ We change v2 to v3 in the numerator to get

g(u, v) =
u4v3

u8 + v4
(if (u, v) 6= (0, 0)), g(0, 0) = 0.

◮ Note first that u8 + v4 ≥ u8, and u8 + v4 ≥ v4.
◮ If we let (u, v) → (0, 0) with |v | ≤ |u|2 then

|u4v3| ≤ |u|4|u|6 = |u|10, |g(u, v)| ≤ |u|10
|u|8 = |u|2 → 0 = g(0, 0).
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10.5 Continuous functions on sets in Rd

◮ We change v2 to v3 in the numerator to get

g(u, v) =
u4v3

u8 + v4
(if (u, v) 6= (0, 0)), g(0, 0) = 0.

◮ Note first that u8 + v4 ≥ u8, and u8 + v4 ≥ v4.
◮ If we let (u, v) → (0, 0) with |v | ≤ |u|2 then

|u4v3| ≤ |u|4|u|6 = |u|10, |g(u, v)| ≤ |u|10
|u|8 = |u|2 → 0 = g(0, 0).

◮ If we let (u, v) → (0, 0) with |v | > |u|2 then |u| < |v |1/2 and

|u4v3| < |v |2|v |3 = |v |5, |g(u, v)| ≤ |v |5
|v |4 = |v | → 0 = g(0, 0).
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10.5 Continuous functions on sets in Rd

◮ We change v2 to v3 in the numerator to get

g(u, v) =
u4v3

u8 + v4
(if (u, v) 6= (0, 0)), g(0, 0) = 0.

◮ Note first that u8 + v4 ≥ u8, and u8 + v4 ≥ v4.
◮ If we let (u, v) → (0, 0) with |v | ≤ |u|2 then

|u4v3| ≤ |u|4|u|6 = |u|10, |g(u, v)| ≤ |u|10
|u|8 = |u|2 → 0 = g(0, 0).

◮ If we let (u, v) → (0, 0) with |v | > |u|2 then |u| < |v |1/2 and

|u4v3| < |v |2|v |3 = |v |5, |g(u, v)| ≤ |v |5
|v |4 = |v | → 0 = g(0, 0).

◮ So this time g(u, v) → g(0, 0) as (u, v) → (0, 0) in any
fashion, and so g is continuous at (0, 0).

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



10.5 Continuous functions on sets in Rd

◮ We change v2 to v3 in the numerator to get

g(u, v) =
u4v3

u8 + v4
(if (u, v) 6= (0, 0)), g(0, 0) = 0.

◮ Note first that u8 + v4 ≥ u8, and u8 + v4 ≥ v4.
◮ If we let (u, v) → (0, 0) with |v | ≤ |u|2 then

|u4v3| ≤ |u|4|u|6 = |u|10, |g(u, v)| ≤ |u|10
|u|8 = |u|2 → 0 = g(0, 0).

◮ If we let (u, v) → (0, 0) with |v | > |u|2 then |u| < |v |1/2 and

|u4v3| < |v |2|v |3 = |v |5, |g(u, v)| ≤ |v |5
|v |4 = |v | → 0 = g(0, 0).

◮ So this time g(u, v) → g(0, 0) as (u, v) → (0, 0) in any
fashion, and so g is continuous at (0, 0).

◮ If you try this method on the previous example you will see
that it is inconclusive.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



10.6 Continuous functions on sets in Rd

◮ So far we have only defined continuity for functions defined on
open sets in Rd .
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10.6 Continuous functions on sets in Rd

◮ So far we have only defined continuity for functions defined on
open sets in Rd .

◮ However,
f (x) =

√

1 − ‖x‖
is meaningful (as a real function) for ‖x‖ ≤ 1, but this set is
not open.
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10.6 Continuous functions on sets in Rd

◮ So far we have only defined continuity for functions defined on
open sets in Rd .

◮ However,
f (x) =

√

1 − ‖x‖
is meaningful (as a real function) for ‖x‖ ≤ 1, but this set is
not open.

◮ In this case the sequence criterion from Theorem 10.1 gives a
convenient way to talk about continuity.
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10.6 Continuous functions on sets in Rd

◮ So far we have only defined continuity for functions defined on
open sets in Rd .

◮ However,
f (x) =

√

1 − ‖x‖
is meaningful (as a real function) for ‖x‖ ≤ 1, but this set is
not open.

◮ In this case the sequence criterion from Theorem 10.1 gives a
convenient way to talk about continuity.

◮ Let E ⊆ Rd , and let f : E → Rq be a function. Then f is said
to be continuous on E if the following is true.
For every convergent sequence (xn) in E with limit a ∈ E we
have limn→∞ f(xn) = f(a).
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10.6 Continuous functions on sets in Rd

◮ So far we have only defined continuity for functions defined on
open sets in Rd .

◮ However,
f (x) =

√

1 − ‖x‖
is meaningful (as a real function) for ‖x‖ ≤ 1, but this set is
not open.

◮ In this case the sequence criterion from Theorem 10.1 gives a
convenient way to talk about continuity.

◮ Let E ⊆ Rd , and let f : E → Rq be a function. Then f is said
to be continuous on E if the following is true.
For every convergent sequence (xn) in E with limit a ∈ E we
have limn→∞ f(xn) = f(a).

◮ When E is open this is, by Theorem 10.1, equivalent to f
being continuous, in terms of the original definition, at every
point in E .
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10.6 Continuous functions on sets in Rd

◮ An important case is where E is a closed and bounded subset
of Rd . Let E ⊆ Rd be closed and bounded, and let
f : E → Rq be a continuous function on E .
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10.6 Continuous functions on sets in Rd

◮ An important case is where E is a closed and bounded subset
of Rd . Let E ⊆ Rd be closed and bounded, and let
f : E → Rq be a continuous function on E .

◮ Let (yn) be a sequence in f(E ). Then each yn is f(xn) for
some xn ∈ E .
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10.6 Continuous functions on sets in Rd

◮ An important case is where E is a closed and bounded subset
of Rd . Let E ⊆ Rd be closed and bounded, and let
f : E → Rq be a continuous function on E .

◮ Let (yn) be a sequence in f(E ). Then each yn is f(xn) for
some xn ∈ E .

◮ Since E is closed and bounded the sequence (xn) has a
convergent subsequence with limit a ∈ E , by the Heine-Borel
theorem (Theorem 9.2).
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10.6 Continuous functions on sets in Rd

◮ An important case is where E is a closed and bounded subset
of Rd . Let E ⊆ Rd be closed and bounded, and let
f : E → Rq be a continuous function on E .

◮ Let (yn) be a sequence in f(E ). Then each yn is f(xn) for
some xn ∈ E .

◮ Since E is closed and bounded the sequence (xn) has a
convergent subsequence with limit a ∈ E , by the Heine-Borel
theorem (Theorem 9.2).

◮ This means we have n1 < n2 < n3 < . . . and xnk
→ a as

k → ∞.
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10.6 Continuous functions on sets in Rd

◮ An important case is where E is a closed and bounded subset
of Rd . Let E ⊆ Rd be closed and bounded, and let
f : E → Rq be a continuous function on E .

◮ Let (yn) be a sequence in f(E ). Then each yn is f(xn) for
some xn ∈ E .

◮ Since E is closed and bounded the sequence (xn) has a
convergent subsequence with limit a ∈ E , by the Heine-Borel
theorem (Theorem 9.2).

◮ This means we have n1 < n2 < n3 < . . . and xnk
→ a as

k → ∞.

◮ Since f is continuous on E we get f(xnk
) → f(a) as k → ∞.
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10.6 Continuous functions on sets in Rd

◮ An important case is where E is a closed and bounded subset
of Rd . Let E ⊆ Rd be closed and bounded, and let
f : E → Rq be a continuous function on E .

◮ Let (yn) be a sequence in f(E ). Then each yn is f(xn) for
some xn ∈ E .

◮ Since E is closed and bounded the sequence (xn) has a
convergent subsequence with limit a ∈ E , by the Heine-Borel
theorem (Theorem 9.2).

◮ This means we have n1 < n2 < n3 < . . . and xnk
→ a as

k → ∞.

◮ Since f is continuous on E we get f(xnk
) → f(a) as k → ∞.

◮ Thus (yn) has a convergent subsequence (ynk
) with limit

f(a) ∈ f(E ).
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10.6 Continuous functions on sets in Rd

◮ This gives another important theorem:
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10.6 Continuous functions on sets in Rd

◮ This gives another important theorem:

◮ Theorem 10.2 Let E ⊆ Rd be closed and bounded, and let
f : E → Rq be a continuous function on E. Then the image
f(E ) = {f(x) : x ∈ E} is a closed and bounded subset of Rq.
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10.6 Continuous functions on sets in Rd

◮ This gives another important theorem:

◮ Theorem 10.2 Let E ⊆ Rd be closed and bounded, and let
f : E → Rq be a continuous function on E. Then the image
f(E ) = {f(x) : x ∈ E} is a closed and bounded subset of Rq.

◮ In this theorem the special case where q = 1 plays a key role.
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10.6 Continuous functions on sets in Rd

◮ This gives another important theorem:

◮ Theorem 10.2 Let E ⊆ Rd be closed and bounded, and let
f : E → Rq be a continuous function on E. Then the image
f(E ) = {f(x) : x ∈ E} is a closed and bounded subset of Rq.

◮ In this theorem the special case where q = 1 plays a key role.

◮ Let E ⊆ Rd be closed and bounded and non-empty, and let
f : E → R be a continuous real-valued function on E .
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10.6 Continuous functions on sets in Rd

◮ This gives another important theorem:

◮ Theorem 10.2 Let E ⊆ Rd be closed and bounded, and let
f : E → Rq be a continuous function on E. Then the image
f(E ) = {f(x) : x ∈ E} is a closed and bounded subset of Rq.

◮ In this theorem the special case where q = 1 plays a key role.

◮ Let E ⊆ Rd be closed and bounded and non-empty, and let
f : E → R be a continuous real-valued function on E .

◮ The theorem tells us that f is bounded on E . Does f have a
maximum on E?
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10.6 Continuous functions on sets in Rd

◮ To answer this, let A = f (E ). Then A is a bounded
non-empty subset of R.
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10.6 Continuous functions on sets in Rd

◮ To answer this, let A = f (E ). Then A is a bounded
non-empty subset of R.

◮ Let M = supA be the least upper bound i.e. the least real
number which is greater than or equal to every member of A.
Such a number M exists (G11ACF).
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10.6 Continuous functions on sets in Rd

◮ To answer this, let A = f (E ). Then A is a bounded
non-empty subset of R.

◮ Let M = supA be the least upper bound i.e. the least real
number which is greater than or equal to every member of A.
Such a number M exists (G11ACF).

◮ Since M is the least upper bound there are members of A as
close as we like to M, and so we can find x ∈ E with f (x) as
close as we like to M.
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10.6 Continuous functions on sets in Rd

◮ To answer this, let A = f (E ). Then A is a bounded
non-empty subset of R.

◮ Let M = supA be the least upper bound i.e. the least real
number which is greater than or equal to every member of A.
Such a number M exists (G11ACF).

◮ Since M is the least upper bound there are members of A as
close as we like to M, and so we can find x ∈ E with f (x) as
close as we like to M.

◮ So there must be some x ∈ E with f (x) = M, because if not
then the function

g(x) =
1

M − f (x)

is continuous, real-valued and unbounded on the closed and
bounded set E , contradicting the fact that g(E ) must be
closed and bounded.
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10.6 Continuous functions on sets in Rd

◮ We deduce:
Theorem 10.3 (the maximum theorem for continuous
functions): Let E ⊆ Rd be closed and bounded and
non-empty, and let f : E → R be a continuous real-valued
function on E. Then f has a maximum on E i.e. there exists
x0 ∈ E with f (x) ≤ f (x0) for every x ∈ E.
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10.6 Continuous functions on sets in Rd

◮ We deduce:
Theorem 10.3 (the maximum theorem for continuous
functions): Let E ⊆ Rd be closed and bounded and
non-empty, and let f : E → R be a continuous real-valued
function on E. Then f has a maximum on E i.e. there exists
x0 ∈ E with f (x) ≤ f (x0) for every x ∈ E.

◮ Note that x0 does not have to be unique here.
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10.6 Continuous functions on sets in Rd

◮ We deduce:
Theorem 10.3 (the maximum theorem for continuous
functions): Let E ⊆ Rd be closed and bounded and
non-empty, and let f : E → R be a continuous real-valued
function on E. Then f has a maximum on E i.e. there exists
x0 ∈ E with f (x) ≤ f (x0) for every x ∈ E.

◮ Note that x0 does not have to be unique here.

◮ Applying the theorem to −f , we also get that f has a
minimum on E .
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10.6 Continuous functions on sets in Rd

◮ We deduce:
Theorem 10.3 (the maximum theorem for continuous
functions): Let E ⊆ Rd be closed and bounded and
non-empty, and let f : E → R be a continuous real-valued
function on E. Then f has a maximum on E i.e. there exists
x0 ∈ E with f (x) ≤ f (x0) for every x ∈ E.

◮ Note that x0 does not have to be unique here.

◮ Applying the theorem to −f , we also get that f has a
minimum on E .

◮ The particular case where E = [a, b] is a closed and bounded
interval in R is one of the most important theorems in
calculus.
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10.7 Continuous functions on sets in Rd

◮ To close the chapter, let’s take a function f : Rd → Rq.
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10.7 Continuous functions on sets in Rd

◮ To close the chapter, let’s take a function f : Rd → Rq.

◮ Let V ⊆ Rq be open, and consider the pre-image

f−1(V ) = {x ∈ Rd : f(x) ∈ V }.
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10.7 Continuous functions on sets in Rd

◮ To close the chapter, let’s take a function f : Rd → Rq.

◮ Let V ⊆ Rq be open, and consider the pre-image

f−1(V ) = {x ∈ Rd : f(x) ∈ V }.

◮ We are not assuming here that f is injective or has an inverse
function: the notation f−1(V ) just means all points which are
mapped into V .
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10.7 Continuous functions on sets in Rd

◮ Suppose first that f is continuous, and take x0 ∈ f−1(V ).
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10.7 Continuous functions on sets in Rd

◮ Suppose first that f is continuous, and take x0 ∈ f−1(V ).

◮ Then y0 = f(x0) ∈ V , and since V is open there exists s > 0
such that B(y0, s) ⊆ V .
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10.7 Continuous functions on sets in Rd

◮ Suppose first that f is continuous, and take x0 ∈ f−1(V ).

◮ Then y0 = f(x0) ∈ V , and since V is open there exists s > 0
such that B(y0, s) ⊆ V .

◮ Since f is continuous, there exists r > 0 such that
‖x − x0‖ < r implies that

‖f(x) − f(x0)‖ = ‖f(x) − y0‖ < s.
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10.7 Continuous functions on sets in Rd

◮ Suppose first that f is continuous, and take x0 ∈ f−1(V ).

◮ Then y0 = f(x0) ∈ V , and since V is open there exists s > 0
such that B(y0, s) ⊆ V .

◮ Since f is continuous, there exists r > 0 such that
‖x − x0‖ < r implies that

‖f(x) − f(x0)‖ = ‖f(x) − y0‖ < s.

◮ But this says that if ‖x − x0‖ < r then f(x) ∈ B(y0, s) ⊆ V ,
i.e. x ∈ f−1(V ). Hence B(x0, r) ⊆ f−1(V ).
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10.7 Continuous functions on sets in Rd

◮ Suppose first that f is continuous, and take x0 ∈ f−1(V ).

◮ Then y0 = f(x0) ∈ V , and since V is open there exists s > 0
such that B(y0, s) ⊆ V .

◮ Since f is continuous, there exists r > 0 such that
‖x − x0‖ < r implies that

‖f(x) − f(x0)‖ = ‖f(x) − y0‖ < s.

◮ But this says that if ‖x − x0‖ < r then f(x) ∈ B(y0, s) ⊆ V ,
i.e. x ∈ f−1(V ). Hence B(x0, r) ⊆ f−1(V ).

◮ This tells us that f−1(V ) is open.
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10.7 Continuous functions on sets in Rd

◮ Conversely, suppose we know that f−1(V ) is open, for every
open subset V of Rq.
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10.7 Continuous functions on sets in Rd

◮ Conversely, suppose we know that f−1(V ) is open, for every
open subset V of Rq.

◮ Take x0 ∈ Rd and y0 = f(x0), and ε > 0.
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10.7 Continuous functions on sets in Rd

◮ Conversely, suppose we know that f−1(V ) is open, for every
open subset V of Rq.

◮ Take x0 ∈ Rd and y0 = f(x0), and ε > 0.

◮ Then V = B(y0, ε) is open, and therefore so is f−1(V ).
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10.7 Continuous functions on sets in Rd

◮ Conversely, suppose we know that f−1(V ) is open, for every
open subset V of Rq.

◮ Take x0 ∈ Rd and y0 = f(x0), and ε > 0.

◮ Then V = B(y0, ε) is open, and therefore so is f−1(V ).

◮ Since x0 ∈ f−1(V ), we get δ > 0 such that
B(x0, δ) ⊆ f−1(V ).
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10.7 Continuous functions on sets in Rd

◮ Conversely, suppose we know that f−1(V ) is open, for every
open subset V of Rq.

◮ Take x0 ∈ Rd and y0 = f(x0), and ε > 0.

◮ Then V = B(y0, ε) is open, and therefore so is f−1(V ).

◮ Since x0 ∈ f−1(V ), we get δ > 0 such that
B(x0, δ) ⊆ f−1(V ).

◮ This tells us that ‖x − x0‖ < δ implies ‖f(x)− f(x0)‖ < ε, and
since we can do this for any ε > 0 our f must be continuous.
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10.7 Continuous functions on sets in Rd

◮ We deduce:
Theorem 10.4: Let f : Rd → Rq be a function. Then the
following are equivalent:
(a) f is continuous on Rd ;
(b) for every open subset V of Rq, the pre-image f−1(V ) is
an open subset of Rd .
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10.7 Continuous functions on sets in Rd

◮ We deduce:
Theorem 10.4: Let f : Rd → Rq be a function. Then the
following are equivalent:
(a) f is continuous on Rd ;
(b) for every open subset V of Rq, the pre-image f−1(V ) is
an open subset of Rd .

◮ There is a version of this for functions on subsets of Rd , but it
is not quite so easy to state.
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10.7 Continuous functions on sets in Rd

◮ We deduce:
Theorem 10.4: Let f : Rd → Rq be a function. Then the
following are equivalent:
(a) f is continuous on Rd ;
(b) for every open subset V of Rq, the pre-image f−1(V ) is
an open subset of Rd .

◮ There is a version of this for functions on subsets of Rd , but it
is not quite so easy to state.

◮ This idea gives a useful alternative approach to continuity
(avoiding ε and δ) and this is developed in the module
G13MTS (Metric and Topological Spaces).
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CHAPTER 11. Convergence of sequences of functions

We saw in Chapter 2 that taking sequences of functions may lead
to unexpected consequences. This chapter will introduce a strong
form of convergence called uniform convergence.
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11.1 Convergence of sequences of functions

◮ We start with an example. For n ∈ N and x ∈ [0, 1] ⊆ R set
fn(x) = xn.
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11.1 Convergence of sequences of functions

◮ We start with an example. For n ∈ N and x ∈ [0, 1] ⊆ R set
fn(x) = xn.

◮ We can then define a limit function

f (x) = lim
n→∞

fn(x)

for each x ∈ [0, 1].
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11.1 Convergence of sequences of functions

◮ We start with an example. For n ∈ N and x ∈ [0, 1] ⊆ R set
fn(x) = xn.

◮ We can then define a limit function

f (x) = lim
n→∞

fn(x)

for each x ∈ [0, 1].

◮ In fact we have

f (x) =

{

0, if 0 ≤ x < 1;

1, for x = 1.
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11.1 Convergence of sequences of functions

◮ We start with an example. For n ∈ N and x ∈ [0, 1] ⊆ R set
fn(x) = xn.

◮ We can then define a limit function

f (x) = lim
n→∞

fn(x)

for each x ∈ [0, 1].

◮ In fact we have

f (x) =

{

0, if 0 ≤ x < 1;

1, for x = 1.

◮ Thus although the functions fn are continuous on [0, 1], the
limit function f is not.
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11.1 Convergence of sequences of functions

◮ We start with an example. For n ∈ N and x ∈ [0, 1] ⊆ R set
fn(x) = xn.

◮ We can then define a limit function

f (x) = lim
n→∞

fn(x)

for each x ∈ [0, 1].

◮ In fact we have

f (x) =

{

0, if 0 ≤ x < 1;

1, for x = 1.

◮ Thus although the functions fn are continuous on [0, 1], the
limit function f is not.

◮ We saw similar phenomena in Chapter 2.
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11.1 Convergence of sequences of functions

◮ The problem is that the condition

f (x) = lim
n→∞

fn(x)

(which is usually called pointwise convergence) is not
generally strong enough for the limit f to inherit “nice”
properties (such as being continuous) from the fn.
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11.1 Convergence of sequences of functions

◮ The problem is that the condition

f (x) = lim
n→∞

fn(x)

(which is usually called pointwise convergence) is not
generally strong enough for the limit f to inherit “nice”
properties (such as being continuous) from the fn.

◮ We will define a stronger form of convergence of functions,
which does preserve many good properties.
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11.2 Convergence of sequences of functions

◮ Let E ⊆ Rd and let fn (n = p, p + 1, . . .) and f be functions
from E into Rq. We say that fn converges uniformly to f on E
if

sup{‖fn(x) − f(x)‖ : x ∈ E} → 0 as n → ∞.
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11.2 Convergence of sequences of functions

◮ Let E ⊆ Rd and let fn (n = p, p + 1, . . .) and f be functions
from E into Rq. We say that fn converges uniformly to f on E
if

sup{‖fn(x) − f(x)‖ : x ∈ E} → 0 as n → ∞.

◮ If this is true then for each y ∈ E we have

‖fn(y)−f(y)‖ ≤ sup{‖fn(x)−f(x)‖ : x ∈ E} → 0 as n → ∞.

Thus uniform convergence on E implies pointwise
convergence on E .
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11.2 Convergence of sequences of functions

◮ Let E ⊆ Rd and let fn (n = p, p + 1, . . .) and f be functions
from E into Rq. We say that fn converges uniformly to f on E
if

sup{‖fn(x) − f(x)‖ : x ∈ E} → 0 as n → ∞.

◮ If this is true then for each y ∈ E we have

‖fn(y)−f(y)‖ ≤ sup{‖fn(x)−f(x)‖ : x ∈ E} → 0 as n → ∞.

Thus uniform convergence on E implies pointwise
convergence on E .

◮ But for our first example

sup{|fn(x)−f (x)| : 0 ≤ x ≤ 1} = sup{xn : 0 ≤ x < 1} = 1 6→ 0,

and so in this example the convergence is NOT uniform.
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11.3 Convergence of sequences of functions

◮ Let E ⊆ Rd and suppose that continuous functions
fn : E → Rq converge uniformly to f : E → Rq on E .

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



11.3 Convergence of sequences of functions

◮ Let E ⊆ Rd and suppose that continuous functions
fn : E → Rq converge uniformly to f : E → Rq on E .

◮ Must f also be continuous on E?
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11.3 Convergence of sequences of functions

◮ Let E ⊆ Rd and suppose that continuous functions
fn : E → Rq converge uniformly to f : E → Rq on E .

◮ Must f also be continuous on E?

◮ It is enough to show that for every convergent sequence (xm)
in E with limit a ∈ E we have limm→∞ f(xm) = f(a).
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11.3 Convergence of sequences of functions

◮ Let E ⊆ Rd and suppose that continuous functions
fn : E → Rq converge uniformly to f : E → Rq on E .

◮ Must f also be continuous on E?

◮ It is enough to show that for every convergent sequence (xm)
in E with limit a ∈ E we have limm→∞ f(xm) = f(a).

◮ To do this it is enough to take ε > 0 and find an integer M
such that ‖f(xm) − f(a)‖ < ε for all m ≥ M.
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11.3 Convergence of sequences of functions

◮ First of all, since fn → f uniformly on E , we can find N ∈ N

such that

sup{‖fn(x) − f(x)‖ : x ∈ E} < ε/3

for all n ≥ N.
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11.3 Convergence of sequences of functions

◮ First of all, since fn → f uniformly on E , we can find N ∈ N

such that

sup{‖fn(x) − f(x)‖ : x ∈ E} < ε/3

for all n ≥ N.

◮ In particular this gives us

‖fN(x) − f(x)‖ < ε/3

for all x ∈ E .
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11.3 Convergence of sequences of functions

◮ First of all, since fn → f uniformly on E , we can find N ∈ N

such that

sup{‖fn(x) − f(x)‖ : x ∈ E} < ε/3

for all n ≥ N.

◮ In particular this gives us

‖fN(x) − f(x)‖ < ε/3

for all x ∈ E .

◮ But fN is itself continuous and so limm→∞ fN(xm) = fN(a).
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11.3 Convergence of sequences of functions

◮ First of all, since fn → f uniformly on E , we can find N ∈ N

such that

sup{‖fn(x) − f(x)‖ : x ∈ E} < ε/3

for all n ≥ N.

◮ In particular this gives us

‖fN(x) − f(x)‖ < ε/3

for all x ∈ E .

◮ But fN is itself continuous and so limm→∞ fN(xm) = fN(a).

◮ So we can find M ∈ N such that

‖fN(xm) − fN(a)‖ < ε/3

for all m ≥ M.
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11.3 Convergence of sequences of functions

◮ Now for m ≥ M we use the triangle inequality to write

‖f(xm) − f(a)‖ = ‖f(xm) − fN(xm) +

+fN(xm) − fN(a) + fN(a) − f(a)‖
≤ ‖f(xm) − fN(xm)‖ + ‖fN(xm) − fN(a)‖ +

+ ‖fN(a) − f(a)‖
< ε/3 + ε/3 + ε/3 = ε

as required.
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11.3 Convergence of sequences of functions

◮ Now for m ≥ M we use the triangle inequality to write

‖f(xm) − f(a)‖ = ‖f(xm) − fN(xm) +

+fN(xm) − fN(a) + fN(a) − f(a)‖
≤ ‖f(xm) − fN(xm)‖ + ‖fN(xm) − fN(a)‖ +

+ ‖fN(a) − f(a)‖
< ε/3 + ε/3 + ε/3 = ε

as required.

◮ We deduce:
Theorem 11.1: Let E ⊆ Rd and suppose that the functions
fn : E → Rq converge uniformly to f : E → Rq on E. If the fn
are continuous on E then so is f.
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11.3 Convergence of sequences of functions

◮ Now for m ≥ M we use the triangle inequality to write

‖f(xm) − f(a)‖ = ‖f(xm) − fN(xm) +

+fN(xm) − fN(a) + fN(a) − f(a)‖
≤ ‖f(xm) − fN(xm)‖ + ‖fN(xm) − fN(a)‖ +

+ ‖fN(a) − f(a)‖
< ε/3 + ε/3 + ε/3 = ε

as required.

◮ We deduce:
Theorem 11.1: Let E ⊆ Rd and suppose that the functions
fn : E → Rq converge uniformly to f : E → Rq on E. If the fn
are continuous on E then so is f.

◮ Put briefly, the uniform limit of continuous functions is
continuous.
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11.4 Convergence of sequences of functions

◮ There is a useful version of this for series, due to Weierstrass.
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11.4 Convergence of sequences of functions

◮ There is a useful version of this for series, due to Weierstrass.
◮ Let E ⊆ Rd and suppose that the functions fk : E → Rq

satisfy

‖fk(x)‖ ≤ Mk for all k ≥ p and all x ∈ E ,

and suppose that
∞
∑

k=p

Mk < ∞.
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11.4 Convergence of sequences of functions

◮ There is a useful version of this for series, due to Weierstrass.
◮ Let E ⊆ Rd and suppose that the functions fk : E → Rq

satisfy

‖fk(x)‖ ≤ Mk for all k ≥ p and all x ∈ E ,

and suppose that
∞
∑

k=p

Mk < ∞.

◮ On E we look at the sum

F(x) =

∞
∑

k=p

fk(x)

and the partial sums

Fn(x) =

n
∑

k=p

fk(x).
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11.4 Convergence of sequences of functions

◮ For n ≥ p and x ∈ E we can write, by the triangle inequality,

‖F(x) − Fn(x)‖ = lim
m→∞

‖Fm(x) − Fn(x)‖

= lim
m→∞

∥

∥

∥

∥

∥

m
∑

k=n+1

fk(x)

∥

∥

∥

∥

∥

≤ lim
m→∞

m
∑

k=n+1

‖fk(x)‖

≤ lim
m→∞

m
∑

k=n+1

Mk

=

∞
∑

k=n+1

Mk .
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11.4 Convergence of sequences of functions

◮ So this gives us

sup{‖F(x) − Fn(x)‖ : x ∈ E} ≤
∞
∑

k=n+1

Mk

and the RHS tends to 0 as n → ∞, because the series
∑∞

k=p Mk converges!
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11.4 Convergence of sequences of functions

◮ So this gives us

sup{‖F(x) − Fn(x)‖ : x ∈ E} ≤
∞
∑

k=n+1

Mk

and the RHS tends to 0 as n → ∞, because the series
∑∞

k=p Mk converges!

◮ Hence the series F converges uniformly on E , in the sense that
the partial sums Fn converge uniformly to F on E . This is:
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11.4 Convergence of sequences of functions

Theorem 11.2 (the Weierstrass M-test): Let E ⊆ Rd and
suppose that the functions fk : E → Rq satisfy

‖fk(x)‖ ≤ Mk for all k ≥ p and all x ∈ E ,

where
∞
∑

k=p

Mk < ∞.

Then the series

F(x) =

∞
∑

k=p

fk(x)

converges uniformly on E. In particular, if the fk are continuous on
E then so is F.
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11.4 Convergence of sequences of functions

◮ As a special case we can take our example from Chapter 2: if
an ∈ R and

∑∞
n=1

|an| < ∞, look at

U(x) =

∞
∑

n=1

an sinnx .
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11.4 Convergence of sequences of functions

◮ As a special case we can take our example from Chapter 2: if
an ∈ R and

∑∞
n=1

|an| < ∞, look at

U(x) =

∞
∑

n=1

an sinnx .

◮ What is limx→π− U(x)?
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11.5 Convergence of sequences of functions

◮ Unfortunately, even uniform convergence has its limitations.
For example, as n → ∞,

fn(x) =
sin(n2x)

n

converges uniformly on R to 0 (since |fn(x) − 0| ≤ 1/n on R).
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11.5 Convergence of sequences of functions

◮ Unfortunately, even uniform convergence has its limitations.
For example, as n → ∞,

fn(x) =
sin(n2x)

n

converges uniformly on R to 0 (since |fn(x) − 0| ≤ 1/n on R).

◮ But is it true that the derivative of the limit equals the limit
of the derivative?
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11.6 A space filling curve

◮ An important application of the M-test is the famous
Schoenberg curve.
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11.6 A space filling curve

◮ An important application of the M-test is the famous
Schoenberg curve.

◮ We start by taking a continuous function φ : R → [0, 1] with
the following properties:
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11.6 A space filling curve

◮ An important application of the M-test is the famous
Schoenberg curve.

◮ We start by taking a continuous function φ : R → [0, 1] with
the following properties:

◮ (i) φ has period 2 (i.e. φ(t + 2) = φ(t));

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



11.6 A space filling curve

◮ An important application of the M-test is the famous
Schoenberg curve.

◮ We start by taking a continuous function φ : R → [0, 1] with
the following properties:

◮ (i) φ has period 2 (i.e. φ(t + 2) = φ(t));

◮ (ii) we have φ(t) = 0 for 0 ≤ t ≤ 1/3;
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11.6 A space filling curve

◮ An important application of the M-test is the famous
Schoenberg curve.

◮ We start by taking a continuous function φ : R → [0, 1] with
the following properties:

◮ (i) φ has period 2 (i.e. φ(t + 2) = φ(t));

◮ (ii) we have φ(t) = 0 for 0 ≤ t ≤ 1/3;

◮ (iii) we have φ(t) = 1 for 2/3 ≤ t ≤ 1.
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11.6 A space filling curve

Figure 4 shows the standard way to define the Schoenberg function
φ.

0 1/3 2/3 4/3 5/3 2 7/3

Figure: Part of the graph of the periodic function φ
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11.6 A space filling curve

◮ Now we set

f1(t) =

∞
∑

n=1

φ(32n−2t)

2n
, f2(t) =

∞
∑

n=1

φ(32n−1t)

2n
.
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11.6 A space filling curve

◮ Now we set

f1(t) =

∞
∑

n=1

φ(32n−2t)

2n
, f2(t) =

∞
∑

n=1

φ(32n−1t)

2n
.

◮ By the Weierstrass M-test, both of these converge uniformly
on R, and they are continuous.
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11.6 A space filling curve

◮ Now we set

f1(t) =

∞
∑

n=1

φ(32n−2t)

2n
, f2(t) =

∞
∑

n=1

φ(32n−1t)

2n
.

◮ By the Weierstrass M-test, both of these converge uniformly
on R, and they are continuous.

◮ So if we take f(t) = (f1(t), f2(t)) for 0 ≤ t ≤ 1 then f(t)
depends continuously on t and this defines a curve in R2.
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11.6 A space filling curve

◮ Now we set

f1(t) =

∞
∑

n=1

φ(32n−2t)

2n
, f2(t) =

∞
∑

n=1

φ(32n−1t)

2n
.

◮ By the Weierstrass M-test, both of these converge uniformly
on R, and they are continuous.

◮ So if we take f(t) = (f1(t), f2(t)) for 0 ≤ t ≤ 1 then f(t)
depends continuously on t and this defines a curve in R2.

◮ Where does this curve lie? We have

0 ≤ fj(t) ≤
∞
∑

n=1

1

2n
=

1

2
+

1

4
+ . . . = 1,

so our curve lies in the unit square [0, 1] × [0, 1].
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11.6 A space filling curve

◮ Now we set

f1(t) =

∞
∑

n=1

φ(32n−2t)

2n
, f2(t) =

∞
∑

n=1

φ(32n−1t)

2n
.

◮ By the Weierstrass M-test, both of these converge uniformly
on R, and they are continuous.

◮ So if we take f(t) = (f1(t), f2(t)) for 0 ≤ t ≤ 1 then f(t)
depends continuously on t and this defines a curve in R2.

◮ Where does this curve lie? We have

0 ≤ fj(t) ≤
∞
∑

n=1

1

2n
=

1

2
+

1

4
+ . . . = 1,

so our curve lies in the unit square [0, 1] × [0, 1].

◮ How much of this square does it occupy?
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11.6 A space filling curve

◮ To answer this question take the point (a, b) ∈ [0, 1]2 with
a, b ∈ [0, 1] and write a and b in binary as

a =
a1

2
+

a2

4
+

a3

8
+ . . . , b =

b1

2
+

b2

4
+

b3

8
+ . . . ,

where the entries aj , bj are each 0 or 1.
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11.6 A space filling curve

◮ To answer this question take the point (a, b) ∈ [0, 1]2 with
a, b ∈ [0, 1] and write a and b in binary as

a =
a1

2
+

a2

4
+

a3

8
+ . . . , b =

b1

2
+

b2

4
+

b3

8
+ . . . ,

where the entries aj , bj are each 0 or 1.

◮ e.g. for a = 1 we set all aj to be 1.
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11.6 A space filling curve

◮ To answer this question take the point (a, b) ∈ [0, 1]2 with
a, b ∈ [0, 1] and write a and b in binary as

a =
a1

2
+

a2

4
+

a3

8
+ . . . , b =

b1

2
+

b2

4
+

b3

8
+ . . . ,

where the entries aj , bj are each 0 or 1.

◮ e.g. for a = 1 we set all aj to be 1.

◮ Now let

c = 2

(

a1

3
+

b1

9
+

a2

27
+

b2

81
+ . . .

)

= 2

∞
∑

n=1

cn

3n
.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



11.6 A space filling curve

◮ To answer this question take the point (a, b) ∈ [0, 1]2 with
a, b ∈ [0, 1] and write a and b in binary as

a =
a1

2
+

a2

4
+

a3

8
+ . . . , b =

b1

2
+

b2

4
+

b3

8
+ . . . ,

where the entries aj , bj are each 0 or 1.

◮ e.g. for a = 1 we set all aj to be 1.

◮ Now let

c = 2

(

a1

3
+

b1

9
+

a2

27
+

b2

81
+ . . .

)

= 2

∞
∑

n=1

cn

3n
.

◮ Here c2n = bn and c2n−1 = an for n ∈ N.
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11.6 A space filling curve

◮ To answer this question take the point (a, b) ∈ [0, 1]2 with
a, b ∈ [0, 1] and write a and b in binary as

a =
a1

2
+

a2

4
+

a3

8
+ . . . , b =

b1

2
+

b2

4
+

b3

8
+ . . . ,

where the entries aj , bj are each 0 or 1.

◮ e.g. for a = 1 we set all aj to be 1.

◮ Now let

c = 2

(

a1

3
+

b1

9
+

a2

27
+

b2

81
+ . . .

)

= 2

∞
∑

n=1

cn

3n
.

◮ Here c2n = bn and c2n−1 = an for n ∈ N.

◮ Note that

0 ≤ c ≤ 2

(

1

3
+

1

9
+

1

27
+ . . .

)

=
2

3

(

1

1 − 1/3

)

= 1.
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11.6 A space filling curve

◮ We calculate f(c).
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11.6 A space filling curve

◮ We calculate f(c).

◮ To do this let k ≥ 0 be an integer. Then

3kc = 2

∞
∑

n=1

cn

3n−k
= 2

∑

1≤n≤k

cn

3n−k
+ 2

∞
∑

n=k+1

cn

3n−k
.
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11.6 A space filling curve

◮ We calculate f(c).

◮ To do this let k ≥ 0 be an integer. Then

3kc = 2

∞
∑

n=1

cn

3n−k
= 2

∑

1≤n≤k

cn

3n−k
+ 2

∞
∑

n=k+1

cn

3n−k
.

◮ The first term

2
∑

1≤n≤k

cn

3n−k
= 2

∑

1≤n≤k

cn3
k−n

is an even integer.
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11.6 A space filling curve

◮ We calculate f(c).

◮ To do this let k ≥ 0 be an integer. Then

3kc = 2

∞
∑

n=1

cn

3n−k
= 2

∑

1≤n≤k

cn

3n−k
+ 2

∞
∑

n=k+1

cn

3n−k
.

◮ The first term

2
∑

1≤n≤k

cn

3n−k
= 2

∑

1≤n≤k

cn3
k−n

is an even integer.

◮ So since φ has period 2 we get that

φ(3kc) = φ(dk), dk = 2

∞
∑

n=k+1

cn

3n−k
= 2

∞
∑

m=1

ck+m

3m
.
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11.6 A space filling curve

◮ Now ck+1 is either 0 or 1. If ck+1 is 0 then

0 ≤ dk = 2
∞
∑

m=1

ck+m

3m
= 2

∞
∑

m=2

ck+m

3m
≤ 2

(

1

9
+

1

27
+ . . .

)

=
1

3
,

and so φ(dk) = 0.
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11.6 A space filling curve

◮ Now ck+1 is either 0 or 1. If ck+1 is 0 then

0 ≤ dk = 2
∞
∑

m=1

ck+m

3m
= 2

∞
∑

m=2

ck+m

3m
≤ 2

(

1

9
+

1

27
+ . . .

)

=
1

3
,

and so φ(dk) = 0.

◮ If ck+1 is 1 then

2

3
≤ dk = 2

∞
∑

m=1

ck+m

3m
≤ 2

(

1

3
+

1

9
+

1

27
+ . . .

)

= 1, φ(dk) = 1.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 1-11



11.6 A space filling curve

◮ Now ck+1 is either 0 or 1. If ck+1 is 0 then

0 ≤ dk = 2
∞
∑

m=1

ck+m

3m
= 2

∞
∑

m=2

ck+m

3m
≤ 2

(

1

9
+

1

27
+ . . .

)

=
1

3
,

and so φ(dk) = 0.

◮ If ck+1 is 1 then

2

3
≤ dk = 2

∞
∑

m=1

ck+m

3m
≤ 2

(

1

3
+

1

9
+

1

27
+ . . .

)

= 1, φ(dk) = 1.

◮ So in either case we have φ(3kc) = ck+1.
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11.6 A space filling curve

◮ But then, for n ∈ N,

φ(32n−2c) = c2n−1 = an, φ(32n−1c) = c2n = bn.
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11.6 A space filling curve

◮ But then, for n ∈ N,

φ(32n−2c) = c2n−1 = an, φ(32n−1c) = c2n = bn.

◮ This gives

f1(c) =
a1

2
+

a2

4
+

a3

8
+. . . = a, f2(c) =

b1

2
+

b2

4
+

b3

8
+. . . = b.
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11.6 A space filling curve

◮ But then, for n ∈ N,

φ(32n−2c) = c2n−1 = an, φ(32n−1c) = c2n = bn.

◮ This gives

f1(c) =
a1

2
+

a2

4
+

a3

8
+. . . = a, f2(c) =

b1

2
+

b2

4
+

b3

8
+. . . = b.

◮ This means that f(c) is the point (a, b) and so f([0, 1])
occupies the whole unit square [0, 1]2.
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11.6 A space filling curve

◮ But then, for n ∈ N,

φ(32n−2c) = c2n−1 = an, φ(32n−1c) = c2n = bn.

◮ This gives

f1(c) =
a1

2
+

a2

4
+

a3

8
+. . . = a, f2(c) =

b1

2
+

b2

4
+

b3

8
+. . . = b.

◮ This means that f(c) is the point (a, b) and so f([0, 1])
occupies the whole unit square [0, 1]2.

◮ So a square can be filled up using a curve, and this highly
counter-intuitive fact ends the first half of the module.
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