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CHAPTER 12. Functions on the real line

These are the notes for Chapters 12-14, the second part of the
module.
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CHAPTER 12. Functions on the real line

◮ All functions in Chapters 12-14 will be real-valued, each
defined on some subset of R.
We first recall some terminology.
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CHAPTER 12. Functions on the real line

◮ All functions in Chapters 12-14 will be real-valued, each
defined on some subset of R.
We first recall some terminology.

◮ A function f : A → B is SURJECTIVE (or ONTO) if
f (A) = B i.e. if for every y in B there is at least one x in A
such that f (x) = y .
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CHAPTER 12. Functions on the real line

◮ All functions in Chapters 12-14 will be real-valued, each
defined on some subset of R.
We first recall some terminology.

◮ A function f : A → B is SURJECTIVE (or ONTO) if
f (A) = B i.e. if for every y in B there is at least one x in A
such that f (x) = y .

◮ A function f is INJECTIVE (or ONE-ONE, also written
one-to-one) on A if f takes different values at different points
in A i.e. if the following holds. For all x1, x2 in A, if
f (x1) = f (x2) then x1 = x2.
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12.1 Functions on the real line

◮ We begin with a function which is nowhere continuous.
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12.1 Functions on the real line

◮ We begin with a function which is nowhere continuous.

◮ Set f (x) = 1 if x is rational and f (x) = −1 if x is irrational.
This is a perfectly good function but it is worth noting that
you cannot draw its graph.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



12.1 Functions on the real line

◮ We begin with a function which is nowhere continuous.

◮ Set f (x) = 1 if x is rational and f (x) = −1 if x is irrational.
This is a perfectly good function but it is worth noting that
you cannot draw its graph.

◮ To see, for instance, that f is not continuous at 0, just put
xn =

√
2/n. Then xn tends to 0, but f (xn) = −1 and so we

clearly don’t have limn→∞ f (xn) = f (0) = 1.
In fact, this function has no limits of any kind whatsover.
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12.2 Functions on the real line

◮ Next we look at a class of functions for which all one-sided
limits exist.
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12.2 Functions on the real line

◮ Next we look at a class of functions for which all one-sided
limits exist.

◮ Let I be any real interval (it could be [a, b], (a, b], (−∞, b],
any interval at all), and let f be a real-valued function defined
on I . We say that (on I ) the function f is:
strictly increasing if f (x) < f (y) for all x , y ∈ I with x < y ;
non-decreasing if f (x) ≤ f (y) for all x , y ∈ I with x < y ;
non-increasing if f (x) ≥ f (y) for all x , y ∈ I with x < y ;
strictly decreasing if f (x) > f (y) for all x , y ∈ I with x < y .
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12.2 Functions on the real line

◮ Next we look at a class of functions for which all one-sided
limits exist.

◮ Let I be any real interval (it could be [a, b], (a, b], (−∞, b],
any interval at all), and let f be a real-valued function defined
on I . We say that (on I ) the function f is:
strictly increasing if f (x) < f (y) for all x , y ∈ I with x < y ;
non-decreasing if f (x) ≤ f (y) for all x , y ∈ I with x < y ;
non-increasing if f (x) ≥ f (y) for all x , y ∈ I with x < y ;
strictly decreasing if f (x) > f (y) for all x , y ∈ I with x < y .

◮ If any of the above hold, we say that f is monotone on I .
Now we look at one-sided limits for these functions.
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12.2 Functions on the real line

◮ Theorem 12.1: Let f be a non-decreasing real function on
(a, b). Then limx→a+ f (x) and limx→b− f (x) both exist.
If a < c < b, then

lim
x→c−

f (x) ≤ f (c) ≤ lim
x→c+

f (x).

If f is non-decreasing on (a,+∞) then limx→+∞ f (x) exists.
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12.2 Functions on the real line

◮ Theorem 12.1: Let f be a non-decreasing real function on
(a, b). Then limx→a+ f (x) and limx→b− f (x) both exist.
If a < c < b, then

lim
x→c−

f (x) ≤ f (c) ≤ lim
x→c+

f (x).

If f is non-decreasing on (a,+∞) then limx→+∞ f (x) exists.

◮ The proofs of these assertions are all easy, once we’ve decided
what the limit should be.
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12.2 Functions on the real line

◮ Theorem 12.1: Let f be a non-decreasing real function on
(a, b). Then limx→a+ f (x) and limx→b− f (x) both exist.
If a < c < b, then

lim
x→c−

f (x) ≤ f (c) ≤ lim
x→c+

f (x).

If f is non-decreasing on (a,+∞) then limx→+∞ f (x) exists.

◮ The proofs of these assertions are all easy, once we’ve decided
what the limit should be.

◮ The proofs should remind you of a theorem about sequences.
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12.2 Functions on the real line

◮ To handle limx→b− f (x), we let

L = supC , C = {f (x) : a < x < b},

and use the convention that L is +∞ if the set C is not
bounded above.
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12.2 Functions on the real line

◮ To handle limx→b− f (x), we let

L = supC , C = {f (x) : a < x < b},

and use the convention that L is +∞ if the set C is not
bounded above.

◮ I assert that limx→b− f (x) = L. Why?
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12.2 Functions on the real line

◮ To handle limx→b− f (x), we let

L = supC , C = {f (x) : a < x < b},

and use the convention that L is +∞ if the set C is not
bounded above.

◮ I assert that limx→b− f (x) = L. Why?

◮ We use the definition of one-sided limit as given in G11ACF.
We need to show that f (xn) → L as n → ∞, for every
sequence (xn) which converges to b with xn < b for all n.
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12.2 Functions on the real line

◮ To handle limx→b− f (x), we let

L = supC , C = {f (x) : a < x < b},

and use the convention that L is +∞ if the set C is not
bounded above.

◮ I assert that limx→b− f (x) = L. Why?

◮ We use the definition of one-sided limit as given in G11ACF.
We need to show that f (xn) → L as n → ∞, for every
sequence (xn) which converges to b with xn < b for all n.

◮ To do this we will split into the cases where L is or is not
finite.
Take any such sequence (xn).
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12.2 Functions on the real line

◮ Suppose first that L is +∞ and take any real M > 0.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



12.2 Functions on the real line

◮ Suppose first that L is +∞ and take any real M > 0.

◮ Since supC = ∞ there must be some t in (a, b) such that
f (t) > M.
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12.2 Functions on the real line

◮ Suppose first that L is +∞ and take any real M > 0.

◮ Since supC = ∞ there must be some t in (a, b) such that
f (t) > M.

◮ Because xn → b from the left, we can find some integer N
such that t ≤ xn < b for all n ≥ N.
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12.2 Functions on the real line

◮ Suppose first that L is +∞ and take any real M > 0.

◮ Since supC = ∞ there must be some t in (a, b) such that
f (t) > M.

◮ Because xn → b from the left, we can find some integer N
such that t ≤ xn < b for all n ≥ N.

◮ But this gives us f (xn) ≥ f (t) > M for all n ≥ N.
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12.2 Functions on the real line

◮ Suppose first that L is +∞ and take any real M > 0.

◮ Since supC = ∞ there must be some t in (a, b) such that
f (t) > M.

◮ Because xn → b from the left, we can find some integer N
such that t ≤ xn < b for all n ≥ N.

◮ But this gives us f (xn) ≥ f (t) > M for all n ≥ N.

◮ Since M can be chosen arbitrarily large we must have
limn→∞ f (xn) = ∞.
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12.2 Functions on the real line

◮ Now suppose that L is finite, and take any real ε > 0.
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12.2 Functions on the real line

◮ Now suppose that L is finite, and take any real ε > 0.

◮ Since supC = L > L − ε there must be some t in (a, b) such
that f (t) > L − ε.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



12.2 Functions on the real line

◮ Now suppose that L is finite, and take any real ε > 0.

◮ Since supC = L > L − ε there must be some t in (a, b) such
that f (t) > L − ε.

◮ Again because xn → b from the left, we can find some integer
N such that t ≤ xn < b for all n ≥ N.
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12.2 Functions on the real line

◮ Now suppose that L is finite, and take any real ε > 0.

◮ Since supC = L > L − ε there must be some t in (a, b) such
that f (t) > L − ε.

◮ Again because xn → b from the left, we can find some integer
N such that t ≤ xn < b for all n ≥ N.

◮ But this gives us f (xn) ≥ f (t) > L − ε for all n ≥ N.
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12.2 Functions on the real line

◮ Now suppose that L is finite, and take any real ε > 0.

◮ Since supC = L > L − ε there must be some t in (a, b) such
that f (t) > L − ε.

◮ Again because xn → b from the left, we can find some integer
N such that t ≤ xn < b for all n ≥ N.

◮ But this gives us f (xn) ≥ f (t) > L − ε for all n ≥ N.

◮ We also have f (xn) ≤ L for all n ≥ N, because L is an upper
bound for C . So in fact, for all n ≥ N,

L − ε < f (xn) ≤ L, |f (xn) − L| < ε.
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12.2 Functions on the real line

◮ Now suppose that L is finite, and take any real ε > 0.

◮ Since supC = L > L − ε there must be some t in (a, b) such
that f (t) > L − ε.

◮ Again because xn → b from the left, we can find some integer
N such that t ≤ xn < b for all n ≥ N.

◮ But this gives us f (xn) ≥ f (t) > L − ε for all n ≥ N.

◮ We also have f (xn) ≤ L for all n ≥ N, because L is an upper
bound for C . So in fact, for all n ≥ N,

L − ε < f (xn) ≤ L, |f (xn) − L| < ε.

◮ Since ε can be chosen arbitrarily small we must have
limn→∞ f (xn) = L.
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12.2 Functions on the real line

◮ Similarly (proof deferred to practice questions),

lim
x→a+

f (x) = inf{f (x) : a < x < b}.
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12.2 Functions on the real line

◮ Similarly (proof deferred to practice questions),

lim
x→a+

f (x) = inf{f (x) : a < x < b}.

◮ Also

lim
x→c−

f (x) = sup{f (x) : a < x < c}

≤ f (c)

≤ inf{f (x) : c < x < b}
= lim

x→c+
f (x).
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12.2 Functions on the real line

◮ Similarly (proof deferred to practice questions),

lim
x→a+

f (x) = inf{f (x) : a < x < b}.

◮ Also

lim
x→c−

f (x) = sup{f (x) : a < x < c}

≤ f (c)

≤ inf{f (x) : c < x < b}
= lim

x→c+
f (x).

◮ However, if g(x) = x for x < 0 and g(x) = 1 for x ≥ 0,
does limx→0 g(x) (the two-sided limit) exist?
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12.3 Functions on the real line

◮ In this section we will derive a famous theorem that you’ve
seen before, but by a different method.
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12.3 Functions on the real line

◮ In this section we will derive a famous theorem that you’ve
seen before, but by a different method.

◮ Let f be a continuous real-valued function on the closed
interval [a, b] ⊆ R, and assume that f (a) < T < f (b).
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12.3 Functions on the real line

◮ In this section we will derive a famous theorem that you’ve
seen before, but by a different method.

◮ Let f be a continuous real-valued function on the closed
interval [a, b] ⊆ R, and assume that f (a) < T < f (b).

◮ We will make two sequences (xn) and (yn) so that

a ≤ xn ≤ yn ≤ b, yn−xn =
b − a

2n
, f (xn) ≤ T , f (yn) ≥ T .
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12.3 Functions on the real line

◮ In this section we will derive a famous theorem that you’ve
seen before, but by a different method.

◮ Let f be a continuous real-valued function on the closed
interval [a, b] ⊆ R, and assume that f (a) < T < f (b).

◮ We will make two sequences (xn) and (yn) so that

a ≤ xn ≤ yn ≤ b, yn−xn =
b − a

2n
, f (xn) ≤ T , f (yn) ≥ T .

◮ We start by setting x0 = a and y0 = b.
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12.3 Functions on the real line

◮ We have to show how to get xn+1 and yn+1 from xn and yn.
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12.3 Functions on the real line

◮ We have to show how to get xn+1 and yn+1 from xn and yn.

◮ To do this, let tn = (xn + yn)/2 (midpoint). We know that
f (xn) ≤ T and f (yn) ≥ T .

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



12.3 Functions on the real line

◮ We have to show how to get xn+1 and yn+1 from xn and yn.

◮ To do this, let tn = (xn + yn)/2 (midpoint). We know that
f (xn) ≤ T and f (yn) ≥ T .

◮ If f (tn) ≥ T we put xn+1 = xn and yn+1 = tn.
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12.3 Functions on the real line

◮ We have to show how to get xn+1 and yn+1 from xn and yn.

◮ To do this, let tn = (xn + yn)/2 (midpoint). We know that
f (xn) ≤ T and f (yn) ≥ T .

◮ If f (tn) ≥ T we put xn+1 = xn and yn+1 = tn.

◮ If f (tn) < T we put xn+1 = tn and yn+1 = yn.
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12.3 Functions on the real line

◮ We have to show how to get xn+1 and yn+1 from xn and yn.

◮ To do this, let tn = (xn + yn)/2 (midpoint). We know that
f (xn) ≤ T and f (yn) ≥ T .

◮ If f (tn) ≥ T we put xn+1 = xn and yn+1 = tn.

◮ If f (tn) < T we put xn+1 = tn and yn+1 = yn.

◮ In either case we have yn+1 − xn+1 = (yn − xn)/2 and
f (xn+1) ≤ T , f (yn+1) ≥ T .
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12.3 Functions on the real line

◮ We have to show how to get xn+1 and yn+1 from xn and yn.

◮ To do this, let tn = (xn + yn)/2 (midpoint). We know that
f (xn) ≤ T and f (yn) ≥ T .

◮ If f (tn) ≥ T we put xn+1 = xn and yn+1 = tn.

◮ If f (tn) < T we put xn+1 = tn and yn+1 = yn.

◮ In either case we have yn+1 − xn+1 = (yn − xn)/2 and
f (xn+1) ≤ T , f (yn+1) ≥ T .

◮ Thus our sequences (xn) and (yn) are constructed inductively.
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12.3 Functions on the real line

◮ Now the intervals In = [xn, yn] are closed and bounded
non-empty sets (in R), and

[a, b] = I0 ⊇ I1 ⊇ I2 ⊇ . . .
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12.3 Functions on the real line

◮ Now the intervals In = [xn, yn] are closed and bounded
non-empty sets (in R), and

[a, b] = I0 ⊇ I1 ⊇ I2 ⊇ . . .

◮ By the theorem on nested closed and bounded sets (Theorem
9.3) there exists c belonging to all of the In.
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12.3 Functions on the real line

◮ Now the intervals In = [xn, yn] are closed and bounded
non-empty sets (in R), and

[a, b] = I0 ⊇ I1 ⊇ I2 ⊇ . . .

◮ By the theorem on nested closed and bounded sets (Theorem
9.3) there exists c belonging to all of the In.

◮ Since xn ≤ c ≤ yn and yn − xn → 0 we have xn → c , yn → c .
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12.3 Functions on the real line

◮ Now the intervals In = [xn, yn] are closed and bounded
non-empty sets (in R), and

[a, b] = I0 ⊇ I1 ⊇ I2 ⊇ . . .

◮ By the theorem on nested closed and bounded sets (Theorem
9.3) there exists c belonging to all of the In.

◮ Since xn ≤ c ≤ yn and yn − xn → 0 we have xn → c , yn → c .

◮ Since f is continuous we have T ≥ f (xn) → f (c) and
T ≤ f (yn) → f (c).
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12.3 Functions on the real line

◮ Now the intervals In = [xn, yn] are closed and bounded
non-empty sets (in R), and

[a, b] = I0 ⊇ I1 ⊇ I2 ⊇ . . .

◮ By the theorem on nested closed and bounded sets (Theorem
9.3) there exists c belonging to all of the In.

◮ Since xn ≤ c ≤ yn and yn − xn → 0 we have xn → c , yn → c .

◮ Since f is continuous we have T ≥ f (xn) → f (c) and
T ≤ f (yn) → f (c).

◮ So we must have f (c) = T . This is:
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12.3 Functions on the real line

◮ Theorem 12.2 (the intermediate value theorem): Let f
be a real-valued function which is continuous on the closed
real interval [a, b]. If f (a) < T < f (b), or f (b) < T < f (a),
then there exists c in (a, b) such that f (c) = T.
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12.3 Functions on the real line

◮ Theorem 12.2 (the intermediate value theorem): Let f
be a real-valued function which is continuous on the closed
real interval [a, b]. If f (a) < T < f (b), or f (b) < T < f (a),
then there exists c in (a, b) such that f (c) = T.

◮ To handle the case where f (b) < T < f (a), we apply the first
case (just proved) to −f and −T .
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12.3 Functions on the real line

◮ Theorem 12.2 (the intermediate value theorem): Let f
be a real-valued function which is continuous on the closed
real interval [a, b]. If f (a) < T < f (b), or f (b) < T < f (a),
then there exists c in (a, b) such that f (c) = T.

◮ To handle the case where f (b) < T < f (a), we apply the first
case (just proved) to −f and −T .

◮ This IVT is one of the most powerful theorems in
calculus/analysis. For example any continuous function
f : [a, b] → [a, b] must have a fixpoint (i.e. a solution of
f (x) = x) in [a, b]. Why?
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12.3 Functions on the real line

◮ Theorem 12.2 (the intermediate value theorem): Let f
be a real-valued function which is continuous on the closed
real interval [a, b]. If f (a) < T < f (b), or f (b) < T < f (a),
then there exists c in (a, b) such that f (c) = T.

◮ To handle the case where f (b) < T < f (a), we apply the first
case (just proved) to −f and −T .

◮ This IVT is one of the most powerful theorems in
calculus/analysis. For example any continuous function
f : [a, b] → [a, b] must have a fixpoint (i.e. a solution of
f (x) = x) in [a, b]. Why?

◮ The IVT also allows us to determine what kind of function
can be continuous and injective on an interval.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



12.4 Functions on the real line

◮ Let I = [a, b] be a closed interval in R (with a < b) and
suppose that f : I → R is continuous and injective.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



12.4 Functions on the real line

◮ Let I = [a, b] be a closed interval in R (with a < b) and
suppose that f : I → R is continuous and injective.

◮ Then f (a) 6= f (b). Suppose first that f (a) < f (b).
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12.4 Functions on the real line

◮ Let I = [a, b] be a closed interval in R (with a < b) and
suppose that f : I → R is continuous and injective.

◮ Then f (a) 6= f (b). Suppose first that f (a) < f (b).

◮ I assert that f is strictly increasing on I . Suppose not: then
there exist x , y with a ≤ x < y ≤ b such that f (x) ≥ f (y),
which implies that f (x) > f (y). We consider two cases.
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12.4 Functions on the real line

◮ Let I = [a, b] be a closed interval in R (with a < b) and
suppose that f : I → R is continuous and injective.

◮ Then f (a) 6= f (b). Suppose first that f (a) < f (b).

◮ I assert that f is strictly increasing on I . Suppose not: then
there exist x , y with a ≤ x < y ≤ b such that f (x) ≥ f (y),
which implies that f (x) > f (y). We consider two cases.

◮ Case 1: If f (y) < f (a) then f (y) < f (a) < f (b) and by the
IVT there must be some c in (y , b) such that f (c) = f (a),
contradicting the fact that f is injective.
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12.4 Functions on the real line

◮ Let I = [a, b] be a closed interval in R (with a < b) and
suppose that f : I → R is continuous and injective.

◮ Then f (a) 6= f (b). Suppose first that f (a) < f (b).

◮ I assert that f is strictly increasing on I . Suppose not: then
there exist x , y with a ≤ x < y ≤ b such that f (x) ≥ f (y),
which implies that f (x) > f (y). We consider two cases.

◮ Case 1: If f (y) < f (a) then f (y) < f (a) < f (b) and by the
IVT there must be some c in (y , b) such that f (c) = f (a),
contradicting the fact that f is injective.

◮ Case 2: If f (y) ≥ f (a) then f (y) > f (a), and so
f (x) > f (y) > f (a).
But then the IVT gives d in (a, x) such that f (d) = f (y),
which again contradicts the fact that f is injective.
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12.4 Functions on the real line

◮ Theorem 12.3: Let I be any interval (closed, open,
half-open etc.) in R and suppose that f : I → R is continuous
and injective. Then f is either strictly increasing on I or
strictly decreasing on I .
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12.4 Functions on the real line

◮ Theorem 12.3: Let I be any interval (closed, open,
half-open etc.) in R and suppose that f : I → R is continuous
and injective. Then f is either strictly increasing on I or
strictly decreasing on I .

◮ We’ve just proved this when I is a closed interval [a, b] and
f (a) < f (b).
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12.4 Functions on the real line

◮ Theorem 12.3: Let I be any interval (closed, open,
half-open etc.) in R and suppose that f : I → R is continuous
and injective. Then f is either strictly increasing on I or
strictly decreasing on I .

◮ We’ve just proved this when I is a closed interval [a, b] and
f (a) < f (b).

◮ The case where I is a closed interval [a, b] and f (a) > f (b)
follows by looking at −f .
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12.4 Functions on the real line

◮ Theorem 12.3: Let I be any interval (closed, open,
half-open etc.) in R and suppose that f : I → R is continuous
and injective. Then f is either strictly increasing on I or
strictly decreasing on I .

◮ We’ve just proved this when I is a closed interval [a, b] and
f (a) < f (b).

◮ The case where I is a closed interval [a, b] and f (a) > f (b)
follows by looking at −f .

◮ Now suppose that we have any interval I and f is neither
strictly increasing nor strictly decreasing on I . Then there
must exist t, u, v ,w in I such that t < u, v < w , but
f (t) < f (u) and f (v) > f (w).
Just choose a closed interval J contained in I such that
t, u, v ,w all belong to J. By the first part this is impossible.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



12.5 Functions on the real line

◮ The converse of Theorem 12.3 is not true, as a strictly
increasing function need not be continuous e.g. set

f (x) = x (x < 0), f (x) = x + 1 (x ≥ 0).
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12.5 Functions on the real line

◮ The converse of Theorem 12.3 is not true, as a strictly
increasing function need not be continuous e.g. set

f (x) = x (x < 0), f (x) = x + 1 (x ≥ 0).

◮ However, for functions which are onto (aka surjective), we
have the following.
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12.5 Functions on the real line

◮ The converse of Theorem 12.3 is not true, as a strictly
increasing function need not be continuous e.g. set

f (x) = x (x < 0), f (x) = x + 1 (x ≥ 0).

◮ However, for functions which are onto (aka surjective), we
have the following.

◮ Theorem 12.4: Let I and J be intervals in R (not
necessarily bounded) and let the function f : I → J be
non-decreasing and onto. Then f is continuous on I .
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12.5 Functions on the real line

◮ The converse of Theorem 12.3 is not true, as a strictly
increasing function need not be continuous e.g. set

f (x) = x (x < 0), f (x) = x + 1 (x ≥ 0).

◮ However, for functions which are onto (aka surjective), we
have the following.

◮ Theorem 12.4: Let I and J be intervals in R (not
necessarily bounded) and let the function f : I → J be
non-decreasing and onto. Then f is continuous on I .

◮ To prove Theorem 12.4 take any β in I , and any sequence
(xn) in I with limit β. We have to show that
limn→∞ f (xn) = f (β). We assume for simplicity that J is an
open interval (the other cases are OPTIONAL).
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12.5 Functions on the real line

◮ To do this, take ε > 0. Because f (β) lies in the open interval
J, we can find A and B in J such that

f (β) − ε < A < f (β) < B < f (β) + ε.
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12.5 Functions on the real line

◮ To do this, take ε > 0. Because f (β) lies in the open interval
J, we can find A and B in J such that

f (β) − ε < A < f (β) < B < f (β) + ε.

◮ Because J = f (I ), we can find s and t in I such that

f (β) − ε < f (s) = A < f (β) < B = f (t) < f (β) + ε.
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12.5 Functions on the real line

◮ To do this, take ε > 0. Because f (β) lies in the open interval
J, we can find A and B in J such that

f (β) − ε < A < f (β) < B < f (β) + ε.

◮ Because J = f (I ), we can find s and t in I such that

f (β) − ε < f (s) = A < f (β) < B = f (t) < f (β) + ε.

◮ Because f is non-decreasing on I we must have s < β < t.
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12.5 Functions on the real line

◮ To do this, take ε > 0. Because f (β) lies in the open interval
J, we can find A and B in J such that

f (β) − ε < A < f (β) < B < f (β) + ε.

◮ Because J = f (I ), we can find s and t in I such that

f (β) − ε < f (s) = A < f (β) < B = f (t) < f (β) + ε.

◮ Because f is non-decreasing on I we must have s < β < t.
◮ But xn → β, and so there exists some integer N such that

s < xn < t for all n ≥ N.
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12.5 Functions on the real line

◮ To do this, take ε > 0. Because f (β) lies in the open interval
J, we can find A and B in J such that

f (β) − ε < A < f (β) < B < f (β) + ε.

◮ Because J = f (I ), we can find s and t in I such that

f (β) − ε < f (s) = A < f (β) < B = f (t) < f (β) + ε.

◮ Because f is non-decreasing on I we must have s < β < t.
◮ But xn → β, and so there exists some integer N such that

s < xn < t for all n ≥ N.
◮ This gives, for all n ≥ N, since f is non-decreasing,

f (β) − ε < f (s) ≤ f (xn) ≤ f (t) < f (β) + ε,

and hence |f (xn) − f (β)| < ε.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



12.5 Functions on the real line

◮ To do this, take ε > 0. Because f (β) lies in the open interval
J, we can find A and B in J such that

f (β) − ε < A < f (β) < B < f (β) + ε.

◮ Because J = f (I ), we can find s and t in I such that

f (β) − ε < f (s) = A < f (β) < B = f (t) < f (β) + ε.

◮ Because f is non-decreasing on I we must have s < β < t.
◮ But xn → β, and so there exists some integer N such that

s < xn < t for all n ≥ N.
◮ This gives, for all n ≥ N, since f is non-decreasing,

f (β) − ε < f (s) ≤ f (xn) ≤ f (t) < f (β) + ε,

and hence |f (xn) − f (β)| < ε.
◮ Since ε can be chosen arbitrarily small, we must have

limn→∞ f (xn) = f (β).
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CHAPTER 13. Differentiability on the real line

We will review the concept of differentiability from G11CAL and
look at some important consequences.
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13.1 Differentiability on the real line

◮ The real-valued function f is differentiable at a ∈ R if there
exists a real number f ′(a) such that

f ′(a) = lim
x→a

f (x) − f (a)

x − a
.
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13.1 Differentiability on the real line

◮ The real-valued function f is differentiable at a ∈ R if there
exists a real number f ′(a) such that

f ′(a) = lim
x→a

f (x) − f (a)

x − a
.

◮ Here f must be defined on an open interval containing a for
the definition to make sense.
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13.1 Differentiability on the real line

◮ The real-valued function f is differentiable at a ∈ R if there
exists a real number f ′(a) such that

f ′(a) = lim
x→a

f (x) − f (a)

x − a
.

◮ Here f must be defined on an open interval containing a for
the definition to make sense.

◮ We can rewrite this as

f (x) − f (a)

x − a
= f ′(a) + ε(x),

and so

f (x) = f (a) + f ′(a)(x − a) + ε(x)(x − a).

where ε(x) → 0 as x → a.
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13.1 Differentiability on the real line

◮ The formula

f (x) = f (a) + f ′(a)(x − a) + ε(x)(x − a),

where ε(x) → 0 as x → a, can be interpreted as follows.
To approximate f (x) for x near a, we can use the linear
function g(x) = f (a) + f ′(a)(x − a), and this approximation
will be very good if x is close enough to a.
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13.1 Differentiability on the real line

◮ The formula

f (x) = f (a) + f ′(a)(x − a) + ε(x)(x − a),

where ε(x) → 0 as x → a, can be interpreted as follows.
To approximate f (x) for x near a, we can use the linear
function g(x) = f (a) + f ′(a)(x − a), and this approximation
will be very good if x is close enough to a.

◮ Thus differentiability is really about whether you can
approximate f (x) by a linear function. This idea also has the
advantage that you can generalise it to higher dimensions.
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13.1 Differentiability on the real line

◮ The formula

f (x) = f (a) + f ′(a)(x − a) + ε(x)(x − a),

where ε(x) → 0 as x → a, can be interpreted as follows.
To approximate f (x) for x near a, we can use the linear
function g(x) = f (a) + f ′(a)(x − a), and this approximation
will be very good if x is close enough to a.

◮ Thus differentiability is really about whether you can
approximate f (x) by a linear function. This idea also has the
advantage that you can generalise it to higher dimensions.

◮ We also see at once that f (x) → f (a) as x → a.
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13.1 Differentiability on the real line

◮ The formula

f (x) = f (a) + f ′(a)(x − a) + ε(x)(x − a),

where ε(x) → 0 as x → a, can be interpreted as follows.
To approximate f (x) for x near a, we can use the linear
function g(x) = f (a) + f ′(a)(x − a), and this approximation
will be very good if x is close enough to a.

◮ Thus differentiability is really about whether you can
approximate f (x) by a linear function. This idea also has the
advantage that you can generalise it to higher dimensions.

◮ We also see at once that f (x) → f (a) as x → a.

◮ Theorem 13.1: If the real-valued function f is differentiable
at a ∈ R, then f is continuous at a.
The converse is false, as the example f (x) = |x |, a = 0 shows.
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13.2 Differentiability on the real line

◮ Example 1: Define f by

f (x) = x2 sin(1/x2) (x 6= 0), f (0) = 0.

For x 6= 0, the product rule and chain rule give us

f ′(x) = 2x sin(1/x2) − 2x−1 cos(1/x2).
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13.2 Differentiability on the real line

◮ Example 1: Define f by

f (x) = x2 sin(1/x2) (x 6= 0), f (0) = 0.

For x 6= 0, the product rule and chain rule give us

f ′(x) = 2x sin(1/x2) − 2x−1 cos(1/x2).

◮ Does f ′(0) exist? For x 6= 0 we have

f (x) − f (0)

x − 0
= x sin(1/x2) → 0 as x → 0.

So f ′(0) = 0.
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13.2 Differentiability on the real line

◮ Example 1: Define f by

f (x) = x2 sin(1/x2) (x 6= 0), f (0) = 0.

For x 6= 0, the product rule and chain rule give us

f ′(x) = 2x sin(1/x2) − 2x−1 cos(1/x2).

◮ Does f ′(0) exist? For x 6= 0 we have

f (x) − f (0)

x − 0
= x sin(1/x2) → 0 as x → 0.

So f ′(0) = 0.

◮ Note that f ′(x) is not bounded as x → 0 and so not
continuous at 0, so f ′′(0) cannot exist.
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13.2 Differentiability on the real line

◮ Example 2: Define f by

f (x) = x3 (x ≤ 0), f (x) = x2 (x > 0).
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13.2 Differentiability on the real line

◮ Example 2: Define f by

f (x) = x3 (x ≤ 0), f (x) = x2 (x > 0).

◮ For x > 0 calculus gives f ′(x) = 2x and f ′′(x) = 2. Why?
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13.2 Differentiability on the real line

◮ Example 2: Define f by

f (x) = x3 (x ≤ 0), f (x) = x2 (x > 0).

◮ For x > 0 calculus gives f ′(x) = 2x and f ′′(x) = 2. Why?

◮ Similarly, for x < 0 we get f ′(x) = 3x2 and f ′′(x) = 6x .
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13.2 Differentiability on the real line

◮ Example 2: Define f by

f (x) = x3 (x ≤ 0), f (x) = x2 (x > 0).

◮ For x > 0 calculus gives f ′(x) = 2x and f ′′(x) = 2. Why?

◮ Similarly, for x < 0 we get f ′(x) = 3x2 and f ′′(x) = 6x .

◮ What happens at 0? Since f (x) is either x2 or x3,

f ′(0) = lim
x→0

f (x) − f (0)

x − 0
= lim

x→0

f (x)

x
= 0.
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13.2 Differentiability on the real line

◮ Example 2: Define f by

f (x) = x3 (x ≤ 0), f (x) = x2 (x > 0).

◮ For x > 0 calculus gives f ′(x) = 2x and f ′′(x) = 2. Why?

◮ Similarly, for x < 0 we get f ′(x) = 3x2 and f ′′(x) = 6x .

◮ What happens at 0? Since f (x) is either x2 or x3,

f ′(0) = lim
x→0

f (x) − f (0)

x − 0
= lim

x→0

f (x)

x
= 0.

◮ But f ′′(0) does not exist, as

lim
x→0+

f ′(x) − f ′(0)

x − 0
= lim

x→0+

2x

x
= 2,

lim
x→0−

f ′(x) − f ′(0)

x − 0
= lim

x→0−

3x2

x
= 0 6= 2.
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13.2 Differentiability on the real line

◮ Example 3: The function |x | is continuous on R but not
differentiable at 0.
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13.2 Differentiability on the real line

◮ Example 3: The function |x | is continuous on R but not
differentiable at 0.

◮ It turns out that there are functions which are continuous on
R but not differentiable anywhere.
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13.2 Differentiability on the real line

◮ Example 3: The function |x | is continuous on R but not
differentiable at 0.

◮ It turns out that there are functions which are continuous on
R but not differentiable anywhere.

◮ Weierstrass discovered a whole class of these, including

W (x) =

∞
∑

n=0

2−n cos((21)nπx).
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13.2 Differentiability on the real line

◮ Example 3: The function |x | is continuous on R but not
differentiable at 0.

◮ It turns out that there are functions which are continuous on
R but not differentiable anywhere.

◮ Weierstrass discovered a whole class of these, including

W (x) =

∞
∑

n=0

2−n cos((21)nπx).

◮ Since
∑

∞

n=0
2−n converges and | cos((21)nπx)| ≤ 1 on R, the

series W (x) converges on R and is continuous, by the
Weierstrass M-test (Theorem 11.2).

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



13.2 Differentiability on the real line

◮ Example 3: The function |x | is continuous on R but not
differentiable at 0.

◮ It turns out that there are functions which are continuous on
R but not differentiable anywhere.

◮ Weierstrass discovered a whole class of these, including

W (x) =

∞
∑

n=0

2−n cos((21)nπx).

◮ Since
∑

∞

n=0
2−n converges and | cos((21)nπx)| ≤ 1 on R, the

series W (x) converges on R and is continuous, by the
Weierstrass M-test (Theorem 11.2).

◮ The effect of the powers (21)n is to make the graph of
cos((21)nπx) so steep that the graph of W turns out to have
no tangent.
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13.2 Differentiability on the real line

Figure 1 shows a partial sum of the Weierstrass function.

Figure: Plot of the function
∑20

n=0
2−n cos((21)nπx) (MAPLE)
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13.2 Differentiability on the real line

◮ A slightly easier example of a continuous nowhere
differentiable function (due to van der Waerden in 1930) is
given in detail in Optional additional material for
G12MAN on the Moodle page.
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13.2 Differentiability on the real line

◮ A slightly easier example of a continuous nowhere
differentiable function (due to van der Waerden in 1930) is
given in detail in Optional additional material for
G12MAN on the Moodle page.

◮ Let n ≥ 0 be an integer. For any real number x , define fn(x)
to be the distance from x to the nearest rational number of
the form m/10n, with m an integer.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



13.2 Differentiability on the real line

◮ A slightly easier example of a continuous nowhere
differentiable function (due to van der Waerden in 1930) is
given in detail in Optional additional material for
G12MAN on the Moodle page.

◮ Let n ≥ 0 be an integer. For any real number x , define fn(x)
to be the distance from x to the nearest rational number of
the form m/10n, with m an integer.

◮ Now we define

f (x) =
∞
∑

n=0

fn(x).

Note that |fn(x)| < 10−n for all x and for all n ≥ 0.
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13.2 Differentiability on the real line

◮ A slightly easier example of a continuous nowhere
differentiable function (due to van der Waerden in 1930) is
given in detail in Optional additional material for
G12MAN on the Moodle page.

◮ Let n ≥ 0 be an integer. For any real number x , define fn(x)
to be the distance from x to the nearest rational number of
the form m/10n, with m an integer.

◮ Now we define

f (x) =
∞
∑

n=0

fn(x).

Note that |fn(x)| < 10−n for all x and for all n ≥ 0.

◮ So the sum converges, and is continuous by the Weierstrass
M-test.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



13.2 Differentiability on the real line

Figure 2 shows f0 and f1 for 0 ≤ x ≤ 1.

Figure: The functions f0, f1 for 0 ≤ x ≤ 1
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13.2 Differentiability on the real line

◮ Let x be a real number. Then f ′(x) does not exist. We will
prove this for x of form r/10s , with r , s ∈ Z and s ≥ 0.
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13.2 Differentiability on the real line

◮ Let x be a real number. Then f ′(x) does not exist. We will
prove this for x of form r/10s , with r , s ∈ Z and s ≥ 0.

◮ Take q ∈ N with q > s, and set yq = x + 1/10q+1.
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13.2 Differentiability on the real line

◮ Let x be a real number. Then f ′(x) does not exist. We will
prove this for x of form r/10s , with r , s ∈ Z and s ≥ 0.

◮ Take q ∈ N with q > s, and set yq = x + 1/10q+1.
◮ Then for n > q both x and yq are integer multiples of 1/10n,

so we have fn(x) = fn(yq) = 0.
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13.2 Differentiability on the real line

◮ Let x be a real number. Then f ′(x) does not exist. We will
prove this for x of form r/10s , with r , s ∈ Z and s ≥ 0.

◮ Take q ∈ N with q > s, and set yq = x + 1/10q+1.
◮ Then for n > q both x and yq are integer multiples of 1/10n,

so we have fn(x) = fn(yq) = 0.
◮ For s ≤ n ≤ q our x is an integer multiple of 1/10n, but yq is

not, so fn(yq) − fn(x) = 1/10q+1 = yq − x .
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13.2 Differentiability on the real line

◮ Let x be a real number. Then f ′(x) does not exist. We will
prove this for x of form r/10s , with r , s ∈ Z and s ≥ 0.

◮ Take q ∈ N with q > s, and set yq = x + 1/10q+1.
◮ Then for n > q both x and yq are integer multiples of 1/10n,

so we have fn(x) = fn(yq) = 0.
◮ For s ≤ n ≤ q our x is an integer multiple of 1/10n, but yq is

not, so fn(yq) − fn(x) = 1/10q+1 = yq − x .
◮ For 0 ≤ n < s then since we move a distance 1/10q+1 from x

to yq, we get that fn cannot change by more than 1/10q+1

and so

fn(yq) − fn(x) ≥ −1/10q+1 = −(yq − x).
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13.2 Differentiability on the real line

◮ Let x be a real number. Then f ′(x) does not exist. We will
prove this for x of form r/10s , with r , s ∈ Z and s ≥ 0.

◮ Take q ∈ N with q > s, and set yq = x + 1/10q+1.
◮ Then for n > q both x and yq are integer multiples of 1/10n,

so we have fn(x) = fn(yq) = 0.
◮ For s ≤ n ≤ q our x is an integer multiple of 1/10n, but yq is

not, so fn(yq) − fn(x) = 1/10q+1 = yq − x .
◮ For 0 ≤ n < s then since we move a distance 1/10q+1 from x

to yq, we get that fn cannot change by more than 1/10q+1

and so

fn(yq) − fn(x) ≥ −1/10q+1 = −(yq − x).

◮ So as q → ∞ we have yq → x and

f (yq) − f (x)

yq − x
=

q
∑

n=0

fn(yq) − fn(x)

yq − x
≥ (q + 1 − s) − s → ∞.
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13.2 Differentiability on the real line

◮ Example 4: Let

h(x) = x (x < 0), h(x) = sin x (x ≥ 0).
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13.2 Differentiability on the real line

◮ Example 4: Let

h(x) = x (x < 0), h(x) = sin x (x ≥ 0).

◮ A student writes:
For x < 0 we have h′(x) = 1 and for x > 0 we have
h′(x) = cos x . Since

lim
x→0−

1 = lim
x→0+

cos x = 1

we have h′(0) = 1.
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13.2 Differentiability on the real line

◮ Example 4: Let

h(x) = x (x < 0), h(x) = sin x (x ≥ 0).

◮ A student writes:
For x < 0 we have h′(x) = 1 and for x > 0 we have
h′(x) = cos x . Since

lim
x→0−

1 = lim
x→0+

cos x = 1

we have h′(0) = 1.

◮ Is this correct?
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13.2 Differentiability on the real line

The following theorem is very useful:
Theorem 13.2: Let a < c < b and let the real-valued function f
be continuous on (a, b) and differentiable on (a, c) and on (c , b).
Assume that

lim
x→c−

f ′(x) = L, lim
x→c+

f ′(x) = M.

(i) If L = M ∈ R then f ′(c) exists and equals M.
(ii) If f ′(c) exists then L = M = f ′(c) ∈ R.
Note that this result will use L’Hôpital’s rule from G11ACF, which
depends on Rolle’s theorem, but we will prove Rolle’s theorem later
on.
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13.2 Differentiability on the real line

◮ First we prove (i), so suppose L = M ∈ R. Then we have

lim
x→c

f ′(x) = L = M.
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13.2 Differentiability on the real line

◮ First we prove (i), so suppose L = M ∈ R. Then we have

lim
x→c

f ′(x) = L = M.

◮ Now

lim
x→c

f (x) − f (c)

x − c

is an indeterminate form of type 0/0 (because f is
continuous).
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13.2 Differentiability on the real line

◮ First we prove (i), so suppose L = M ∈ R. Then we have

lim
x→c

f ′(x) = L = M.

◮ Now

lim
x→c

f (x) − f (c)

x − c

is an indeterminate form of type 0/0 (because f is
continuous).

◮ So L’Hôpital’s rule gives

f ′(c) = lim
x→c

f (x) − f (c)

x − c
= lim

x→c

f ′(x)

1
= L = M.
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13.2 Differentiability on the real line

◮ Next we prove (ii), so suppose f ′(c) exists. Then (by
definition) we have

lim
x→c

f (x) − f (c)

x − c
= f ′(c) ∈ R.
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13.2 Differentiability on the real line

◮ Next we prove (ii), so suppose f ′(c) exists. Then (by
definition) we have

lim
x→c

f (x) − f (c)

x − c
= f ′(c) ∈ R.

◮ Now L’Hôpital’s rule gives

f ′(c) = lim
x→c−

f (x) − f (c)

x − c
= lim

x→c−

f ′(x)

1
= L

and so L = f ′(c).
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13.2 Differentiability on the real line

◮ Next we prove (ii), so suppose f ′(c) exists. Then (by
definition) we have

lim
x→c

f (x) − f (c)

x − c
= f ′(c) ∈ R.

◮ Now L’Hôpital’s rule gives

f ′(c) = lim
x→c−

f (x) − f (c)

x − c
= lim

x→c−

f ′(x)

1
= L

and so L = f ′(c).

◮ Similarly we obtain f ′(c) = M.
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13.3 Differentiability on the real line

Theorem 13.3 (the product rule etc.): Suppose that the
real-valued functions f and g are differentiable at a ∈ R, and that
λ ∈ R. Then:
(i) (f + g)′(a) = f ′(a) + g ′(a) ;
(ii) (λf )′(a) = λf ′(a) ;
(iii) (fg)′(a) = f ′(a)g(a) + f (a)g ′(a) ;
(iv) if g(a) 6= 0, then (1/g)′(a) = −g ′(a)/g(a)2 .
The proofs are omitted (and so OPTIONAL).
See Optional additional material for G12MAN if you want to
read them.
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13.3 Differentiability on the real line

◮ Slightly harder is the chain rule:
Theorem 13.4: If the real-valued function g is differentiable
at a ∈ R and the real-valued function f is differentiable at
b = g(a), then h = f (g) is differentiable at a and
h′(a) = g ′(a)f ′(b).
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13.3 Differentiability on the real line

◮ Slightly harder is the chain rule:
Theorem 13.4: If the real-valued function g is differentiable
at a ∈ R and the real-valued function f is differentiable at
b = g(a), then h = f (g) is differentiable at a and
h′(a) = g ′(a)f ′(b).

◮ We can write

g(x) = g(a) + (x − a)(g ′(a) + ε(x))

where ε(x) → 0 as x → a.
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13.3 Differentiability on the real line

◮ Slightly harder is the chain rule:
Theorem 13.4: If the real-valued function g is differentiable
at a ∈ R and the real-valued function f is differentiable at
b = g(a), then h = f (g) is differentiable at a and
h′(a) = g ′(a)f ′(b).

◮ We can write

g(x) = g(a) + (x − a)(g ′(a) + ε(x))

where ε(x) → 0 as x → a.

◮ Similarly,

f (y) = f (b) + (y − b)(f ′(b) + ρ(y))

where ρ(y) → 0 as y → b. We put ρ(b) = 0 and combine
these as follows.
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13.3 Differentiability on the real line

◮ If x is close to a then g(x) will be close to b (since g is
continuous at a) and so

h(x)−h(a) = f (g(x))−f (g(a)) = (g(x)−b)(f ′(b)+ρ(g(x))).
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13.3 Differentiability on the real line

◮ If x is close to a then g(x) will be close to b (since g is
continuous at a) and so

h(x)−h(a) = f (g(x))−f (g(a)) = (g(x)−b)(f ′(b)+ρ(g(x))).

◮ Thus

h(x) − h(a) = (x − a)(g ′(a) + ε(x))(f ′(b) + ρ(g(x)))

= (x − a)g ′(a)f ′(b) + (x − a)δ(x).
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13.3 Differentiability on the real line

◮ If x is close to a then g(x) will be close to b (since g is
continuous at a) and so

h(x)−h(a) = f (g(x))−f (g(a)) = (g(x)−b)(f ′(b)+ρ(g(x))).

◮ Thus

h(x) − h(a) = (x − a)(g ′(a) + ε(x))(f ′(b) + ρ(g(x)))

= (x − a)g ′(a)f ′(b) + (x − a)δ(x).

◮ Here

δ(x) = ε(x)f ′(b) + ε(x)ρ(g(x)) + g ′(a)ρ(g(x))

tends to 0 as x → a. This gives h′(a) = g ′(a)f ′(b).
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13.4 Differentiability on the real line

◮ Local maxima: the real-valued function f has a local
maximum at a ∈ R if there exists an open interval U
containing a such that f (x) ≤ f (a) for all x in U.
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13.4 Differentiability on the real line

◮ Local maxima: the real-valued function f has a local
maximum at a ∈ R if there exists an open interval U
containing a such that f (x) ≤ f (a) for all x in U.

◮ A local minimum is defined similarly.
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13.4 Differentiability on the real line

◮ Local maxima: the real-valued function f has a local
maximum at a ∈ R if there exists an open interval U
containing a such that f (x) ≤ f (a) for all x in U.

◮ A local minimum is defined similarly.

◮ If a is a local maximum or local minimum and f is
differentiable at a, then f ′(a) = 0.
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13.4 Differentiability on the real line

◮ Local maxima: the real-valued function f has a local
maximum at a ∈ R if there exists an open interval U
containing a such that f (x) ≤ f (a) for all x in U.

◮ A local minimum is defined similarly.

◮ If a is a local maximum or local minimum and f is
differentiable at a, then f ′(a) = 0.

◮ Say a is a local maximum. If x is in U and x > a, then
(f (x) − f (a))/(x − a) ≤ 0, so f ′(a) ≤ 0. Similarly, if x is in U
and x < a, then (f (x) − f (a))/(x − a) ≥ 0, so f ′(a) ≥ 0.
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13.4 Differentiability on the real line

◮ Suppose that f : [a, b] → R is continuous on [a, b] ⊆ R and
differentiable on (a, b), with f (a) = f (b).
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13.4 Differentiability on the real line

◮ Suppose that f : [a, b] → R is continuous on [a, b] ⊆ R and
differentiable on (a, b), with f (a) = f (b).

◮ If f (x) = f (a) for all x in [a, b] then obviously f ′(c) = 0 for
all c ∈ (a, b).
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13.4 Differentiability on the real line

◮ Suppose that f : [a, b] → R is continuous on [a, b] ⊆ R and
differentiable on (a, b), with f (a) = f (b).

◮ If f (x) = f (a) for all x in [a, b] then obviously f ′(c) = 0 for
all c ∈ (a, b).

◮ If f (x) > f (a) for some x in [a, b] then f has a maximum at
some c ∈ (a, b) (by the maximum theorem 10.3).
Then c is a local maximum and f ′(c) = 0.
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13.4 Differentiability on the real line

◮ Suppose that f : [a, b] → R is continuous on [a, b] ⊆ R and
differentiable on (a, b), with f (a) = f (b).

◮ If f (x) = f (a) for all x in [a, b] then obviously f ′(c) = 0 for
all c ∈ (a, b).

◮ If f (x) > f (a) for some x in [a, b] then f has a maximum at
some c ∈ (a, b) (by the maximum theorem 10.3).
Then c is a local maximum and f ′(c) = 0.

◮ If f (x) < f (a) for some x in [a, b] then f has a minimum at
some c ∈ (a, b), and c is a local minimum and f ′(c) = 0.
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13.4 Differentiability on the real line

◮ Suppose that f : [a, b] → R is continuous on [a, b] ⊆ R and
differentiable on (a, b), with f (a) = f (b).

◮ If f (x) = f (a) for all x in [a, b] then obviously f ′(c) = 0 for
all c ∈ (a, b).

◮ If f (x) > f (a) for some x in [a, b] then f has a maximum at
some c ∈ (a, b) (by the maximum theorem 10.3).
Then c is a local maximum and f ′(c) = 0.

◮ If f (x) < f (a) for some x in [a, b] then f has a minimum at
some c ∈ (a, b), and c is a local minimum and f ′(c) = 0.

◮ So in all three cases there exists c ∈ (a, b) with f ′(c) = 0.
This is Rolle’s theorem.
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13.4 Differentiability on the real line

◮ Theorem 13.5 (the mean value theorem) Suppose that
f : [a, b] → R is continuous on [a, b] ⊆ R and differentiable on
(a, b). Then there exists c in (a, b) such that

f ′(c) =
f (b) − f (a)

b − a
.
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13.4 Differentiability on the real line

◮ Theorem 13.5 (the mean value theorem) Suppose that
f : [a, b] → R is continuous on [a, b] ⊆ R and differentiable on
(a, b). Then there exists c in (a, b) such that

f ′(c) =
f (b) − f (a)

b − a
.

◮ To prove this, set

g(x) = f (x) − (x − a)

(

f (b) − f (a)

b − a

)

.

Then g(a) = f (a) = g(b), and by Rolle’s theorem there must
be some c ∈ (a, b) such that g ′(c) = 0.
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13.5 Differentiability on the real line

◮ Theorem 13.6 Suppose that the real-valued function f is
differentiable on the open interval I ⊆ R. Then the following
all hold:
(i) f is strictly increasing on I if f ′(x) > 0 for all x in I :
(ii) f is non-decreasing on I iff f ′(x) ≥ 0 for all x in I :
(iii) f is constant on I iff f ′(x) = 0 for all x in I :
(iv) f is non-increasing on I iff f ′(x) ≤ 0 for all x in I :
(v) f is strictly decreasing on I if f ′(x) < 0 for all x in I :
(vi) f is injective on I if f ′(x) 6= 0 for all x ∈ I .
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13.5 Differentiability on the real line

◮ Theorem 13.6 Suppose that the real-valued function f is
differentiable on the open interval I ⊆ R. Then the following
all hold:
(i) f is strictly increasing on I if f ′(x) > 0 for all x in I :
(ii) f is non-decreasing on I iff f ′(x) ≥ 0 for all x in I :
(iii) f is constant on I iff f ′(x) = 0 for all x in I :
(iv) f is non-increasing on I iff f ′(x) ≤ 0 for all x in I :
(v) f is strictly decreasing on I if f ′(x) < 0 for all x in I :
(vi) f is injective on I if f ′(x) 6= 0 for all x ∈ I .

◮ All of these follow from the definition of f ′ and the mean
value theorem.
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13.5 Differentiability on the real line

◮ Theorem 13.6 Suppose that the real-valued function f is
differentiable on the open interval I ⊆ R. Then the following
all hold:
(i) f is strictly increasing on I if f ′(x) > 0 for all x in I :
(ii) f is non-decreasing on I iff f ′(x) ≥ 0 for all x in I :
(iii) f is constant on I iff f ′(x) = 0 for all x in I :
(iv) f is non-increasing on I iff f ′(x) ≤ 0 for all x in I :
(v) f is strictly decreasing on I if f ′(x) < 0 for all x in I :
(vi) f is injective on I if f ′(x) 6= 0 for all x ∈ I .

◮ All of these follow from the definition of f ′ and the mean
value theorem.

◮ The function f (x) = x3 is strictly increasing but f ′(0) = 0.
Thus (i) is not “if and only if”.
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13.5 Differentiability on the real line

◮ Example A: Show that g(x) = x/(1 + x2) is strictly
increasing on [0, 1].
This is not obvious, as g is an increasing function divided by
an increasing function.
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13.5 Differentiability on the real line

◮ Example A: Show that g(x) = x/(1 + x2) is strictly
increasing on [0, 1].
This is not obvious, as g is an increasing function divided by
an increasing function.

◮ Example B: Show that (1 + x)−1/2 > 1 − x/2 for x > 0.
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13.6 Differentiability on the real line

◮ We saw from the IVT that a continuous function
f : [a, b] → R must satisfy the intermediate value property:
if f (a) < T < f (b) or f (a) > T > f (b) then f takes the
value T at some c ∈ (a, b).
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13.6 Differentiability on the real line

◮ We saw from the IVT that a continuous function
f : [a, b] → R must satisfy the intermediate value property:
if f (a) < T < f (b) or f (a) > T > f (b) then f takes the
value T at some c ∈ (a, b).

◮ A non-continuous function may fail to have this property e.g.

g(x) = −1 (x < 0), g(x) = 1 (x ≥ 0)

never takes the value 0.
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13.6 Differentiability on the real line

◮ We saw from the IVT that a continuous function
f : [a, b] → R must satisfy the intermediate value property:
if f (a) < T < f (b) or f (a) > T > f (b) then f takes the
value T at some c ∈ (a, b).

◮ A non-continuous function may fail to have this property e.g.

g(x) = −1 (x < 0), g(x) = 1 (x ≥ 0)

never takes the value 0.

◮ We’ve seen in this chapter that a derivative can fail to be
continuous.
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13.6 Differentiability on the real line

◮ We saw from the IVT that a continuous function
f : [a, b] → R must satisfy the intermediate value property:
if f (a) < T < f (b) or f (a) > T > f (b) then f takes the
value T at some c ∈ (a, b).

◮ A non-continuous function may fail to have this property e.g.

g(x) = −1 (x < 0), g(x) = 1 (x ≥ 0)

never takes the value 0.

◮ We’ve seen in this chapter that a derivative can fail to be
continuous.

◮ But can a derivative fail to have the intermediate value
property?
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13.6 Differentiability on the real line

◮ Theorem 13.6: Let the real-valued function f be
differentiable at every point in [a, b] ⊆ R. If
f ′(a) < T < f ′(b) or f ′(a) > T > f ′(b) then f ′ takes the
value T at some c ∈ (a, b).
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13.6 Differentiability on the real line

◮ Theorem 13.6: Let the real-valued function f be
differentiable at every point in [a, b] ⊆ R. If
f ′(a) < T < f ′(b) or f ′(a) > T > f ′(b) then f ′ takes the
value T at some c ∈ (a, b).

◮ To see this, we can assume T = 0 (else look at f (x) − Tx).
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13.6 Differentiability on the real line

◮ Theorem 13.6: Let the real-valued function f be
differentiable at every point in [a, b] ⊆ R. If
f ′(a) < T < f ′(b) or f ′(a) > T > f ′(b) then f ′ takes the
value T at some c ∈ (a, b).

◮ To see this, we can assume T = 0 (else look at f (x) − Tx).

◮ We can also assume that f ′(a) < 0 < f ′(b) (else look at −f ).
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13.6 Differentiability on the real line

◮ Theorem 13.6: Let the real-valued function f be
differentiable at every point in [a, b] ⊆ R. If
f ′(a) < T < f ′(b) or f ′(a) > T > f ′(b) then f ′ takes the
value T at some c ∈ (a, b).

◮ To see this, we can assume T = 0 (else look at f (x) − Tx).

◮ We can also assume that f ′(a) < 0 < f ′(b) (else look at −f ).

◮ We assume that f ′ is never 0 on (a, b) and seek a
contradiction.
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13.6 Differentiability on the real line

◮ Clearly f is continuous on I = [a, b].
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13.6 Differentiability on the real line

◮ Clearly f is continuous on I = [a, b].

◮ By the mean value theorem, f is injective on I . Why?
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13.6 Differentiability on the real line

◮ Clearly f is continuous on I = [a, b].

◮ By the mean value theorem, f is injective on I . Why?

◮ By Theorem 12.3, f is either strictly increasing on I , or
strictly decreasing on I .
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13.6 Differentiability on the real line

◮ Clearly f is continuous on I = [a, b].

◮ By the mean value theorem, f is injective on I . Why?

◮ By Theorem 12.3, f is either strictly increasing on I , or
strictly decreasing on I .

◮ But if f is strictly increasing on I , then f ′(a) ≥ 0.
If f is strictly decreasing on I , then f ′(b) ≤ 0.
Both give a contradiction.
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CHAPTER 14. The Riemann integral

◮ Suppose that we have a bounded real-valued function f on
the closed interval I = [a, b] ⊆ R.
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CHAPTER 14. The Riemann integral

◮ Suppose that we have a bounded real-valued function f on
the closed interval I = [a, b] ⊆ R.

◮ We need to define what is meant by the integral
∫ b

a
f (x) dx ,

and to determine for which f it exists.
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CHAPTER 14. The Riemann integral

◮ Suppose that we have a bounded real-valued function f on
the closed interval I = [a, b] ⊆ R.

◮ We need to define what is meant by the integral
∫ b

a
f (x) dx ,

and to determine for which f it exists.

◮ It may be tempting to define the integral as the “area under
the curve”, but it is not obvious that the area exists.
The function f may give a very messy curve, such as the
continuous, nowhere differentiable function in Chapter 13.
Moreover, it is not obvious what to do if f changes sign
infinitely often, as does, for example, x sin(1/x).
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CHAPTER 14. The Riemann integral

◮ Suppose that we have a bounded real-valued function f on
the closed interval I = [a, b] ⊆ R.

◮ We need to define what is meant by the integral
∫ b

a
f (x) dx ,

and to determine for which f it exists.

◮ It may be tempting to define the integral as the “area under
the curve”, but it is not obvious that the area exists.
The function f may give a very messy curve, such as the
continuous, nowhere differentiable function in Chapter 13.
Moreover, it is not obvious what to do if f changes sign
infinitely often, as does, for example, x sin(1/x).

◮ The idea is to “approximate” the area from above and below.
Throughout this chapter, −∞ < a < b < ∞.
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14.1 The Riemann integral

◮ Let f be a bounded real-valued function on the closed interval
[a, b] = I ⊆ R. Assume that |f (x)| ≤ M < ∞ for all x in I .
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14.1 The Riemann integral

◮ Let f be a bounded real-valued function on the closed interval
[a, b] = I ⊆ R. Assume that |f (x)| ≤ M < ∞ for all x in I .

◮ A PARTITION P of I means a finite set {x0, ...., xn} such that

a = x0 < x1 < .... < xn = b.

The points xj are called the vertices of P .
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14.1 The Riemann integral

◮ For a partition P = {x0, ...., xn} of I , we define

Mk(P , f ) = Mk(f ) = sup{f (x) : xk−1 ≤ x ≤ xk} ≤ M

and

mk(P , f ) = mk(f ) = inf{f (x) : xk−1 ≤ x ≤ xk} ≥ −M.
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14.1 The Riemann integral

◮ For a partition P = {x0, ...., xn} of I , we define

Mk(P , f ) = Mk(f ) = sup{f (x) : xk−1 ≤ x ≤ xk} ≤ M

and

mk(P , f ) = mk(f ) = inf{f (x) : xk−1 ≤ x ≤ xk} ≥ −M.

◮ Further, we define the UPPER SUM

U(P , f ) =

n
∑

k=1

Mk(f )(xk − xk−1)

and the LOWER SUM

L(P , f ) =
n
∑

k=1

mk(f )(xk − xk−1).
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14.1 The Riemann integral

◮ For a partition P = {x0, ...., xn} of I , we define

Mk(P , f ) = Mk(f ) = sup{f (x) : xk−1 ≤ x ≤ xk} ≤ M

and

mk(P , f ) = mk(f ) = inf{f (x) : xk−1 ≤ x ≤ xk} ≥ −M.

◮ Further, we define the UPPER SUM

U(P , f ) =

n
∑

k=1

Mk(f )(xk − xk−1)

and the LOWER SUM

L(P , f ) =
n
∑

k=1

mk(f )(xk − xk−1).

◮ Note that −M(b − a) ≤ L(P , f ) ≤ U(P , f ) ≤ M(b − a).
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14.1 The Riemann integral

Figure 3 shows a Riemann upper sum.

y=f(x)

Figure: A Riemann upper sum
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14.1 The Riemann integral

Figure 4 shows a Riemann lower sum.

y=f(x)

Figure: A Riemann lower sum
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14.2 The Riemann integral

◮ Now we introduce the idea of refinements.
If P and Q are partitions of [a, b] then Q is a refinement of P
if every vertex of P is a vertex of Q (crudely put, P ⊆ Q).
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14.2 The Riemann integral

◮ Now we introduce the idea of refinements.
If P and Q are partitions of [a, b] then Q is a refinement of P
if every vertex of P is a vertex of Q (crudely put, P ⊆ Q).

◮ If you draw for yourself a simple curve, it is not hard to
convince yourself that refining P tends to increase L(P , f ) and
decrease U(P , f ).
The proof is OPTIONAL, but see the next slide.
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14.2 The Riemann integral

In Figure 5 an extra vertex has been introduced, and the lower sum
has increased.

y=f(x)

Figure: A Riemann lower sum and the effect of refinement
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14.2 The Riemann integral

◮ Lemma 14.1 Let f be a bounded real-valued function on
I = [a, b].
(i) If P ,Q are partitions of I and Q is a refinement of P, then

L(P , f ) ≤ L(Q, f ), U(P , f ) ≥ U(Q, f ).

(ii) If P1 and P2 are any partitions of I , then
L(P1, f ) ≤ U(P2, f ).
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14.2 The Riemann integral

◮ Lemma 14.1 Let f be a bounded real-valued function on
I = [a, b].
(i) If P ,Q are partitions of I and Q is a refinement of P, then

L(P , f ) ≤ L(Q, f ), U(P , f ) ≥ U(Q, f ).

(ii) If P1 and P2 are any partitions of I , then
L(P1, f ) ≤ U(P2, f ).

◮ The proof of (i) is OPTIONAL, but not hard. To get (ii) we
just let P be the partition obtained by taking all the vertices
of P1 and all those of P2, in order.
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14.2 The Riemann integral

◮ Lemma 14.1 Let f be a bounded real-valued function on
I = [a, b].
(i) If P ,Q are partitions of I and Q is a refinement of P, then

L(P , f ) ≤ L(Q, f ), U(P , f ) ≥ U(Q, f ).

(ii) If P1 and P2 are any partitions of I , then
L(P1, f ) ≤ U(P2, f ).

◮ The proof of (i) is OPTIONAL, but not hard. To get (ii) we
just let P be the partition obtained by taking all the vertices
of P1 and all those of P2, in order.

◮ Since P is a refinement of P1 and of P2,

L(P1, f ) ≤ L(P , f ) ≤ U(P , f ) ≤ U(P2, f ).

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



14.3 The Riemann integral

◮ Let f be bounded, real-valued on I = [a, b] as before, with
|f (x)| ≤ M < ∞ there. We define the UPPER INTEGRAL of
f from a to b as

∫ b

a

f (x) dx = inf{U(P , f ) : P is a partition of I }.

This exists and is finite, because all the upper sums are
bounded below by −M(b − a).
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14.3 The Riemann integral

◮ Let f be bounded, real-valued on I = [a, b] as before, with
|f (x)| ≤ M < ∞ there. We define the UPPER INTEGRAL of
f from a to b as

∫ b

a

f (x) dx = inf{U(P , f ) : P is a partition of I }.

This exists and is finite, because all the upper sums are
bounded below by −M(b − a).

◮ Similarly we define the LOWER INTEGRAL

∫ b

a

f (x) dx = sup{L(P , f ) : P is a partition of I }.

Again this exists and is finite, because all the lower sums are
bounded above by M(b − a).
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14.3 The Riemann integral

◮ Since U(P , f ) ≤ M(b − a) for every P we get

∫ b

a

f (x) dx ≤ M(b − a).
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14.3 The Riemann integral

◮ Since U(P , f ) ≤ M(b − a) for every P we get

∫ b

a

f (x) dx ≤ M(b − a).

◮ Similarly, L(Q, f ) ≥ −M(b − a) for every Q, so

∫ b

a

f (x) dx ≥ −M(b − a).
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14.3 The Riemann integral

◮ Since U(P , f ) ≤ M(b − a) for every P we get

∫ b

a

f (x) dx ≤ M(b − a).

◮ Similarly, L(Q, f ) ≥ −M(b − a) for every Q, so

∫ b

a

f (x) dx ≥ −M(b − a).

◮ The lower integral is never greater than the upper integral,
since L(P , f ) ≤ U(Q, f ) for partitions P ,Q.
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14.4 The Riemann integral

◮ We say that f is Riemann integrable on I if

∫ b

a

f (x) dx =

∫ b

a

f (x) dx ,

and, if so, we denote their common value by
∫ b

a
f (x) dx .
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14.4 The Riemann integral

◮ We say that f is Riemann integrable on I if

∫ b

a

f (x) dx =

∫ b

a

f (x) dx ,

and, if so, we denote their common value by
∫ b

a
f (x) dx .

◮ Note that we then get

−M(b−a) ≤
∫ b

a

f (x) dx ≤ M(b−a),

∣

∣

∣

∣

∫ b

a

f (x) dx

∣

∣

∣

∣

≤ M(b−a).
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14.4 The Riemann integral

◮ We say that f is Riemann integrable on I if

∫ b

a

f (x) dx =

∫ b

a

f (x) dx ,

and, if so, we denote their common value by
∫ b

a
f (x) dx .

◮ Note that we then get

−M(b−a) ≤
∫ b

a

f (x) dx ≤ M(b−a),

∣

∣

∣

∣

∫ b

a

f (x) dx

∣

∣

∣

∣

≤ M(b−a).

◮ As usual in integration, it does not matter whether you write
f (x) dx or f (t) dt etc.
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14.5 The Riemann integral

◮ Define f on I = [0, 1] as follows. Let H(x) = 1 if x is a
rational number of form p/10q with p and q non-negative
integers, and H(x) = 0 otherwise.
Is H Riemann integrable?
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14.5 The Riemann integral

◮ Define f on I = [0, 1] as follows. Let H(x) = 1 if x is a
rational number of form p/10q with p and q non-negative
integers, and H(x) = 0 otherwise.
Is H Riemann integrable?

◮ Let P = {x0, ...., xn} be any partition of I . So
0 = x0 < x1 < . . . < xn = 1.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



14.5 The Riemann integral

◮ Define f on I = [0, 1] as follows. Let H(x) = 1 if x is a
rational number of form p/10q with p and q non-negative
integers, and H(x) = 0 otherwise.
Is H Riemann integrable?

◮ Let P = {x0, ...., xn} be any partition of I . So
0 = x0 < x1 < . . . < xn = 1.

◮ Clearly each sub-interval [xk−1, xk ] contains a point where
H(x) = 1, and so Mk(H) = 1.
This gives U(P ,H) =

∑n
k=1

(xk − xk−1) = 1 and so the upper
integral is 1.
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14.5 The Riemann integral

◮ Define f on I = [0, 1] as follows. Let H(x) = 1 if x is a
rational number of form p/10q with p and q non-negative
integers, and H(x) = 0 otherwise.
Is H Riemann integrable?

◮ Let P = {x0, ...., xn} be any partition of I . So
0 = x0 < x1 < . . . < xn = 1.

◮ Clearly each sub-interval [xk−1, xk ] contains a point where
H(x) = 1, and so Mk(H) = 1.
This gives U(P ,H) =

∑n
k=1

(xk − xk−1) = 1 and so the upper
integral is 1.

◮ Similarly, each [xk−1, xk ] contains a point where H(x) = 0.
So we have mk(H) = 0, all lower sums are 0, and the lower
integral is 0.
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14.5 The Riemann integral

◮ Define f on I = [0, 1] as follows. Let H(x) = 1 if x is a
rational number of form p/10q with p and q non-negative
integers, and H(x) = 0 otherwise.
Is H Riemann integrable?

◮ Let P = {x0, ...., xn} be any partition of I . So
0 = x0 < x1 < . . . < xn = 1.

◮ Clearly each sub-interval [xk−1, xk ] contains a point where
H(x) = 1, and so Mk(H) = 1.
This gives U(P ,H) =

∑n
k=1

(xk − xk−1) = 1 and so the upper
integral is 1.

◮ Similarly, each [xk−1, xk ] contains a point where H(x) = 0.
So we have mk(H) = 0, all lower sums are 0, and the lower
integral is 0.

◮ So
∫

1

0
H(x) dx does not exist.
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14.5 The Riemann integral

◮ In the other direction, suppose that G : [0, 1] → [0,M] is a
bounded non-negative function which is 0 except at finitely
many points. Is G Riemann integrable?
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14.5 The Riemann integral

◮ In the other direction, suppose that G : [0, 1] → [0,M] is a
bounded non-negative function which is 0 except at finitely
many points. Is G Riemann integrable?

◮ Clearly any partition Q gives mk(G ) = 0 and L(Q,G ) = 0. So
the lower integral is 0.
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14.5 The Riemann integral

◮ In the other direction, suppose that G : [0, 1] → [0,M] is a
bounded non-negative function which is 0 except at finitely
many points. Is G Riemann integrable?

◮ Clearly any partition Q gives mk(G ) = 0 and L(Q,G ) = 0. So
the lower integral is 0.

◮ Now let n be a positive integer and let
P = {0, 1/n, ...., (n − 1)/n, 1}.
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14.5 The Riemann integral

◮ In the other direction, suppose that G : [0, 1] → [0,M] is a
bounded non-negative function which is 0 except at finitely
many points. Is G Riemann integrable?

◮ Clearly any partition Q gives mk(G ) = 0 and L(Q,G ) = 0. So
the lower integral is 0.

◮ Now let n be a positive integer and let
P = {0, 1/n, ...., (n − 1)/n, 1}.

◮ There are at most N < ∞ points at which G 6= 0, and each of
these belongs to at most 2 of the intervals of P , each of
which has length 1/n.
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14.5 The Riemann integral

◮ In the other direction, suppose that G : [0, 1] → [0,M] is a
bounded non-negative function which is 0 except at finitely
many points. Is G Riemann integrable?

◮ Clearly any partition Q gives mk(G ) = 0 and L(Q,G ) = 0. So
the lower integral is 0.

◮ Now let n be a positive integer and let
P = {0, 1/n, ...., (n − 1)/n, 1}.

◮ There are at most N < ∞ points at which G 6= 0, and each of
these belongs to at most 2 of the intervals of P , each of
which has length 1/n.

◮ So U(P ,G ) ≤ 2NM/n and since N and M do not depend on
n we can make this as small as we like.
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14.5 The Riemann integral

◮ In the other direction, suppose that G : [0, 1] → [0,M] is a
bounded non-negative function which is 0 except at finitely
many points. Is G Riemann integrable?

◮ Clearly any partition Q gives mk(G ) = 0 and L(Q,G ) = 0. So
the lower integral is 0.

◮ Now let n be a positive integer and let
P = {0, 1/n, ...., (n − 1)/n, 1}.

◮ There are at most N < ∞ points at which G 6= 0, and each of
these belongs to at most 2 of the intervals of P , each of
which has length 1/n.

◮ So U(P ,G ) ≤ 2NM/n and since N and M do not depend on
n we can make this as small as we like.

◮ So the upper integral (infimum of the upper sums) is 0, and
∫

1

0
G (x) dx = 0.
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14.6 The Riemann integral

◮ Suppose f is a non-decreasing real function on I = [a, b].
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14.6 The Riemann integral

◮ Suppose f is a non-decreasing real function on I = [a, b].
◮ Let ε > 0 and choose a partition P = {x0, ..., xn} such that

for each k we have xk − xk−1 ≤ ε.
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14.6 The Riemann integral

◮ Suppose f is a non-decreasing real function on I = [a, b].
◮ Let ε > 0 and choose a partition P = {x0, ..., xn} such that

for each k we have xk − xk−1 ≤ ε.
◮ Since f is non-decreasing we have Mk(f ) = f (xk) and

mk(f ) = f (xk−1).
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14.6 The Riemann integral

◮ Suppose f is a non-decreasing real function on I = [a, b].
◮ Let ε > 0 and choose a partition P = {x0, ..., xn} such that

for each k we have xk − xk−1 ≤ ε.
◮ Since f is non-decreasing we have Mk(f ) = f (xk) and

mk(f ) = f (xk−1).
◮ Thus

U(P , f ) − L(P , f ) =

n
∑

k=1

(Mk(f ) − mk(f ))(xk − xk−1)

=

n
∑

k=1

(f (xk) − f (xk−1))(xk − xk−1)

≤
n
∑

k=1

(f (xk) − f (xk−1)) ε

= (f (xn) − f (x0))ε = (f (b) − f (a))ε.
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14.6 The Riemann integral

◮ Thus
∫ b

a

f (x) dx ≤
∫ b

a

f (x) dx ≤ U(P , f )

≤ L(P , f ) + (f (b) − f (a)) ε

≤
∫ b

a

f (x) dx + (f (b) − f (a)) ε.
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14.6 The Riemann integral

◮ Thus
∫ b

a

f (x) dx ≤
∫ b

a

f (x) dx ≤ U(P , f )

≤ L(P , f ) + (f (b) − f (a)) ε

≤
∫ b

a

f (x) dx + (f (b) − f (a)) ε.

◮ Since ε can be chosen arbitrarily small we have

∫ b

a

f (x) dx =

∫ b

a

f (x) dx .
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14.6 The Riemann integral

◮ Thus
∫ b

a

f (x) dx ≤
∫ b

a

f (x) dx ≤ U(P , f )

≤ L(P , f ) + (f (b) − f (a)) ε

≤
∫ b

a

f (x) dx + (f (b) − f (a)) ε.

◮ Since ε can be chosen arbitrarily small we have

∫ b

a

f (x) dx =

∫ b

a

f (x) dx .

◮ An almost identical argument works for a non-increasing
function f .
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14.6 The Riemann integral

◮ Thus
∫ b

a

f (x) dx ≤
∫ b

a

f (x) dx ≤ U(P , f )

≤ L(P , f ) + (f (b) − f (a)) ε

≤
∫ b

a

f (x) dx + (f (b) − f (a)) ε.

◮ Since ε can be chosen arbitrarily small we have

∫ b

a

f (x) dx =

∫ b

a

f (x) dx .

◮ An almost identical argument works for a non-increasing
function f .

◮ Theorem 14.1: Every monotone real function on [a, b] is
Riemann integrable on [a, b].
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14.7 The Riemann integral

◮ What happens if f : [a, b] → R is continuous?
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14.7 The Riemann integral

◮ What happens if f : [a, b] → R is continuous?
◮ Suppose that f : [a, b] → R is continuous but NOT Riemann

integrable. Then

C =

∫ b

a

f (x) dx −
∫ b

a

f (x) dx > 0.
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14.7 The Riemann integral

◮ What happens if f : [a, b] → R is continuous?
◮ Suppose that f : [a, b] → R is continuous but NOT Riemann

integrable. Then

C =

∫ b

a

f (x) dx −
∫ b

a

f (x) dx > 0.

◮ I claim that for every m ∈ N there exist sm, tm ∈ [a, b] with

|sm − tm| <
1

m
and |f (sm) − f (tm)| ≥ D =

C

2(b − a)
.
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14.7 The Riemann integral

◮ What happens if f : [a, b] → R is continuous?
◮ Suppose that f : [a, b] → R is continuous but NOT Riemann

integrable. Then

C =

∫ b

a

f (x) dx −
∫ b

a

f (x) dx > 0.

◮ I claim that for every m ∈ N there exist sm, tm ∈ [a, b] with

|sm − tm| <
1

m
and |f (sm) − f (tm)| ≥ D =

C

2(b − a)
.

◮ If I can prove this claim, then by the Bolzano-Weierstrass
theorem there exists a convergent subsequence (smk

) of (sm),
tending as k → ∞ to u ∈ [a, b]. But then tmk

→ u also and

D =
C

2(b − a)
≤ |f (smk

) − f (tmk
)| → |f (u) − f (u)| = 0,

a contradiction.
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14.7 The Riemann integral

◮ To prove the claim take a partition P = {x0, . . . , xn} of [a, b]
with xk − xk−1 < 1/m for every k. Then we get:
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14.7 The Riemann integral

◮ To prove the claim take a partition P = {x0, . . . , xn} of [a, b]
with xk − xk−1 < 1/m for every k. Then we get:

◮

0 < C =

∫ b

a

f (x) dx −
∫ b

a

f (x) dx

≤ U(P , f ) − L(P , f ) =

n
∑

k=1

(Mk(f ) − mk(f ))(xk − xk−1)

≤
(

n
∑

k=1

(xk − xk−1)

)

max
k

{Mk(f ) − mk(f )}

= (b − a)max
k

{Mk(f ) − mk(f )}.
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14.7 The Riemann integral

◮ To prove the claim take a partition P = {x0, . . . , xn} of [a, b]
with xk − xk−1 < 1/m for every k. Then we get:

◮

0 < C =

∫ b

a

f (x) dx −
∫ b

a

f (x) dx

≤ U(P , f ) − L(P , f ) =

n
∑

k=1

(Mk(f ) − mk(f ))(xk − xk−1)

≤
(

n
∑

k=1

(xk − xk−1)

)

max
k

{Mk(f ) − mk(f )}

= (b − a)max
k

{Mk(f ) − mk(f )}.

◮ So there must be some k with
Mk(f ) − mk(f ) ≥ C/(b − a) = 2D.
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14.7 The Riemann integral

◮ We have some k with Mk(f ) − mk(f ) ≥ C/(b − a) = 2D.
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14.7 The Riemann integral

◮ We have some k with Mk(f ) − mk(f ) ≥ C/(b − a) = 2D.

◮ We choose sm, tm ∈ [xk−1, xk ] with f (sm) close to mk(f ) and
f (tm) close to Mk(f ). This gives

|sm − tm| ≤ xk − xk−1 <
1

m
, |f (sm) − f (tm)| ≥ D,

as asserted.
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14.7 The Riemann integral

◮ We have some k with Mk(f ) − mk(f ) ≥ C/(b − a) = 2D.

◮ We choose sm, tm ∈ [xk−1, xk ] with f (sm) close to mk(f ) and
f (tm) close to Mk(f ). This gives

|sm − tm| ≤ xk − xk−1 <
1

m
, |f (sm) − f (tm)| ≥ D,

as asserted.

◮ Theorem 14.2: Every continuous real-valued function on
[a, b] is Riemann integrable on [a, b].
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14.8 The Riemann integral

◮ Theorem 14.3: Let a < c < b and let f : [a, b] → R be a
bounded function which is Riemann integrable on [a, c] and
[c , b]. Then f is Riemann integrable on [a, b] and

∫ b

a

f (x) dx =

∫ c

a

f (x) dx +

∫ b

c

f (x) dx .
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14.8 The Riemann integral

◮ Theorem 14.3: Let a < c < b and let f : [a, b] → R be a
bounded function which is Riemann integrable on [a, c] and
[c , b]. Then f is Riemann integrable on [a, b] and

∫ b

a

f (x) dx =

∫ c

a

f (x) dx +

∫ b

c

f (x) dx .

◮ The proof is not hard, but is OPTIONAL.
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14.8 The Riemann integral

◮ Similarly, we have
Theorem 14.4: Let a < c < b and let f : [a, b] → R be a
bounded function which is Riemann integrable on [a, b]. Then
f is Riemann integrable on [a, c] and [c , b].
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14.8 The Riemann integral

◮ Similarly, we have
Theorem 14.4: Let a < c < b and let f : [a, b] → R be a
bounded function which is Riemann integrable on [a, b]. Then
f is Riemann integrable on [a, c] and [c , b].

◮ Again the proof is not hard, but is OPTIONAL.
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14.9 The Riemann integral

◮ Suppose that f : [a, b] → R is a bounded real function and
that f is Riemann integrable on [a, b].
For a ≤ x ≤ b set F (x) =

∫ x

a
f (t) dt. What kind of a function

is F (x)?
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14.9 The Riemann integral

◮ Suppose that f : [a, b] → R is a bounded real function and
that f is Riemann integrable on [a, b].
For a ≤ x ≤ b set F (x) =

∫ x

a
f (t) dt. What kind of a function

is F (x)?

◮ Since f is bounded we have, say, |f (t)| ≤ M < ∞ for all
t ∈ [a, b].
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14.9 The Riemann integral

◮ Suppose that f : [a, b] → R is a bounded real function and
that f is Riemann integrable on [a, b].
For a ≤ x ≤ b set F (x) =

∫ x

a
f (t) dt. What kind of a function

is F (x)?

◮ Since f is bounded we have, say, |f (t)| ≤ M < ∞ for all
t ∈ [a, b].

◮ So for a ≤ x < y ≤ b we get

|F (y) − F (x)| =

∣

∣

∣

∣

∫ y

x

f (t) dt

∣

∣

∣

∣

≤ M(y − x).
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14.9 The Riemann integral

◮ Suppose that f : [a, b] → R is a bounded real function and
that f is Riemann integrable on [a, b].
For a ≤ x ≤ b set F (x) =

∫ x

a
f (t) dt. What kind of a function

is F (x)?

◮ Since f is bounded we have, say, |f (t)| ≤ M < ∞ for all
t ∈ [a, b].

◮ So for a ≤ x < y ≤ b we get

|F (y) − F (x)| =

∣

∣

∣

∣

∫ y

x

f (t) dt

∣

∣

∣

∣

≤ M(y − x).

◮ So F is certainly continuous.
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14.9 The Riemann integral

◮ Is F (x) =
∫ x

a
f (t) dt differentiable?
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14.9 The Riemann integral

◮ Is F (x) =
∫ x

a
f (t) dt differentiable?

◮ Not necessarily: see the problem sheets.
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14.9 The Riemann integral

◮ Is F (x) =
∫ x

a
f (t) dt differentiable?

◮ Not necessarily: see the problem sheets.

◮ But suppose that f is continuous at c ∈ (a, b).
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14.9 The Riemann integral

◮ Is F (x) =
∫ x

a
f (t) dt differentiable?

◮ Not necessarily: see the problem sheets.

◮ But suppose that f is continuous at c ∈ (a, b).

◮ Let a ≤ x < y ≤ b: then

∫ y

x

f (t) dt ≤ sup{f (t) : x ≤ t ≤ y} (y − x),

∫ y

x

f (t) dt ≥ inf{f (t) : x ≤ t ≤ y} (y − x).

Now divide by y − x .
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14.9 The Riemann integral

◮ We get

inf{f (t) : x ≤ t ≤ y} ≤
∫ y

x
f (t) dt

y − x
=

=
F (y) − F (x)

y − x
≤ sup{f (t) : x ≤ t ≤ y}.
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14.9 The Riemann integral

◮ We get

inf{f (t) : x ≤ t ≤ y} ≤
∫ y

x
f (t) dt

y − x
=

=
F (y) − F (x)

y − x
≤ sup{f (t) : x ≤ t ≤ y}.

◮ If I let x and y tend to c with x < y then the first and last
terms tend to f (c). Thus F ′(c) = f (c).
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14.9 The Riemann integral

◮ We get

inf{f (t) : x ≤ t ≤ y} ≤
∫ y

x
f (t) dt

y − x
=

=
F (y) − F (x)

y − x
≤ sup{f (t) : x ≤ t ≤ y}.

◮ If I let x and y tend to c with x < y then the first and last
terms tend to f (c). Thus F ′(c) = f (c).

◮ Theorem 14.5 Suppose that f : [a, b] → R is a bounded real
function and is Riemann integrable on [a, b]. For a ≤ x ≤ b
set F (x) =

∫ x

a
f (t) dt.

If f is continuous at c ∈ (a, b) then F ′(c) = f (c).
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14.9 The Riemann integral

◮ We get

inf{f (t) : x ≤ t ≤ y} ≤
∫ y

x
f (t) dt

y − x
=

=
F (y) − F (x)

y − x
≤ sup{f (t) : x ≤ t ≤ y}.

◮ If I let x and y tend to c with x < y then the first and last
terms tend to f (c). Thus F ′(c) = f (c).

◮ Theorem 14.5 Suppose that f : [a, b] → R is a bounded real
function and is Riemann integrable on [a, b]. For a ≤ x ≤ b
set F (x) =

∫ x

a
f (t) dt.

If f is continuous at c ∈ (a, b) then F ′(c) = f (c).

◮ This is usually called the first fundamental theorem of the
calculus.
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14.10 The Riemann integral

◮ The second fundamental theorem of the calculus is better
known, since it is the key to integration by antiderivatives.
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14.10 The Riemann integral

◮ The second fundamental theorem of the calculus is better
known, since it is the key to integration by antiderivatives.

◮ Suppose that F , f are real-valued functions on [a, b], that F is
continuous and f is Riemann integrable on [a, b], and that
F ′(x) = f (x) for all x in (a, b).
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14.10 The Riemann integral

◮ The second fundamental theorem of the calculus is better
known, since it is the key to integration by antiderivatives.

◮ Suppose that F , f are real-valued functions on [a, b], that F is
continuous and f is Riemann integrable on [a, b], and that
F ′(x) = f (x) for all x in (a, b).

◮ Take any partition P = {x0, . . . , xn} of [a, b].
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14.10 The Riemann integral

◮ The second fundamental theorem of the calculus is better
known, since it is the key to integration by antiderivatives.

◮ Suppose that F , f are real-valued functions on [a, b], that F is
continuous and f is Riemann integrable on [a, b], and that
F ′(x) = f (x) for all x in (a, b).

◮ Take any partition P = {x0, . . . , xn} of [a, b].

◮ Then the mean value theorem gives points ck with

F (b) − F (a) =

n
∑

k=1

(F (xk) − F (xk−1))

=

n
∑

k=1

f (ck)(xk − xk−1) (xk−1 < ck < xk).

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



14.10 The Riemann integral

◮ But mk(f ) ≤ f (ck) ≤ Mk(f ). So we get

F (b) − F (a) ≤
n
∑

k=1

Mk(f )(xk − xk−1) = U(P , f ),

F (b) − F (a) ≥
n
∑

k=1

mk(f )(xk − xk−1) = L(P , f ).
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14.10 The Riemann integral

◮ But mk(f ) ≤ f (ck) ≤ Mk(f ). So we get

F (b) − F (a) ≤
n
∑

k=1

Mk(f )(xk − xk−1) = U(P , f ),

F (b) − F (a) ≥
n
∑

k=1

mk(f )(xk − xk−1) = L(P , f ).

◮ Taking the inf over upper sums U(P , f ) gives

F (b) − F (a) ≤
∫ b

a
f (t) dt.
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14.10 The Riemann integral

◮ But mk(f ) ≤ f (ck) ≤ Mk(f ). So we get

F (b) − F (a) ≤
n
∑

k=1

Mk(f )(xk − xk−1) = U(P , f ),

F (b) − F (a) ≥
n
∑

k=1

mk(f )(xk − xk−1) = L(P , f ).

◮ Taking the inf over upper sums U(P , f ) gives

F (b) − F (a) ≤
∫ b

a
f (t) dt.

◮ Taking the sup over lower sums L(P , f ) gives

F (b) − F (a) ≥
∫ b

a
f (t) dt.
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14.10 The Riemann integral

◮ But mk(f ) ≤ f (ck) ≤ Mk(f ). So we get

F (b) − F (a) ≤
n
∑

k=1

Mk(f )(xk − xk−1) = U(P , f ),

F (b) − F (a) ≥
n
∑

k=1

mk(f )(xk − xk−1) = L(P , f ).

◮ Taking the inf over upper sums U(P , f ) gives

F (b) − F (a) ≤
∫ b

a
f (t) dt.

◮ Taking the sup over lower sums L(P , f ) gives

F (b) − F (a) ≥
∫ b

a
f (t) dt.

◮ This proves the last (but most important) theorem of this
chapter.
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14.10 The Riemann integral

◮ Theorem 14.6 (second fundamental theorem of the
calculus): Suppose that F and f are real-valued functions on
[a, b], that F is continuous and f is Riemann integrable on
[a, b], and that F ′(x) = f (x) for all x in (a, b). Then

∫ b

a

f (x) dx = F (b) − F (a).
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