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CHAPTER 12. Functions on the real line

These are the notes for Chapters 12-14, the second part of the
modaule.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



CHAPTER 12. Functions on the real line

» All functions in Chapters 12-14 will be real-valued, each
defined on some subset of R.
We first recall some terminology.
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CHAPTER 12. Functions on the real line

» All functions in Chapters 12-14 will be real-valued, each
defined on some subset of R.
We first recall some terminology.

» A function f : A— B is SURJECTIVE (or ONTO) if
f(A) = B i.e. if for every y in B there is at least one x in A
such that f(x) = y.
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CHAPTER 12. Functions on the real line

» All functions in Chapters 12-14 will be real-valued, each
defined on some subset of R.

We first recall some terminology.

» A function f : A— B is SURJECTIVE (or ONTO) if
f(A) = B i.e. if for every y in B there is at least one x in A
such that f(x) = y.

» A function f is INJECTIVE (or ONE-ONE, also written
one-to-one) on A if f takes different values at different points
in A i.e. if the following holds. For all x;,x, in A, if
f(Xl) = f(XQ) then x; = xo.
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12.1 Functions on the real line

» We begin with a function which is nowhere continuous.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



12.1 Functions on the real line

» We begin with a function which is nowhere continuous.

» Set f(x) = 1if x is rational and f(x) = —1 if x is irrational.
This is a perfectly good function but it is worth noting that
you cannot draw its graph.
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12.1 Functions on the real line

» We begin with a function which is nowhere continuous.

» Set f(x) = 1if x is rational and f(x) = —1 if x is irrational.
This is a perfectly good function but it is worth noting that
you cannot draw its graph.

» To see, for instance, that f is not continuous at 0, just put
Xn = V/2/n. Then x, tends to 0, but f(x,) = —1 and so we
clearly don't have lim,_ f(x,) = f(0) = 1.

In fact, this function has no limits of any kind whatsover.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



12.2 Functions on the real line

» Next we look at a class of functions for which all one-sided
limits exist.
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12.2 Functions on the real line

» Next we look at a class of functions for which all one-sided
limits exist.

» Let / be any real interval (it could be [a, b], (a, b], (—o0, b],
any interval at all), and let f be a real-valued function defined
on /. We say that (on /) the function f is:
strictly increasing if f(x) < f(y) for all x,y € I with x < y;
non-decreasing if f(x) < f(y) for all x,y € | with x < y;
non-increasing if f(x) > f(y) for all x,y € | with x < y;
strictly decreasing if f(x) > f(y) for all x,y € | with x < y.
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12.2 Functions on the real line

» Next we look at a class of functions for which all one-sided
limits exist.

» Let / be any real interval (it could be [a, b], (a, b], (—o0, b],
any interval at all), and let f be a real-valued function defined
on /. We say that (on /) the function f is:
strictly increasing if f(x) < f(y) for all x,y € I with x < y;
non-decreasing if f(x) < f(y) for all x,y € | with x < y;
non-increasing if f(x) > f(y) for all x,y € | with x < y;
strictly decreasing if f(x) > f(y) for all x,y € | with x < y.

» If any of the above hold, we say that f is monotone on /.
Now we look at one-sided limits for these functions.
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12.2 Functions on the real line

» Theorem 12.1: Let f be a non-decreasing real function on

(a, b). Then limy_ .1 f(x) and lim,_,_ f(x) both exist.
Ifa<c<b, then

lim f(x) < f(c) < lim f(x).

X—C— X—C+

If f is non-decreasing on (a,+00) then limy,_ o f(x) exists.
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12.2 Functions on the real line

» Theorem 12.1: Let f be a non-decreasing real function on
(a, b). Then limy_ .1 f(x) and lim,_,_ f(x) both exist.
If a < c < b, then

lim f(x) < f(c) < lim f(x).

X—C— X—C+

If f is non-decreasing on (a,+00) then limy,_ o f(x) exists.

» The proofs of these assertions are all easy, once we've decided
what the limit should be.
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12.2 Functions on the real line

» Theorem 12.1: Let f be a non-decreasing real function on
(a, b). Then limy_ .1 f(x) and lim,_,_ f(x) both exist.
If a < c < b, then

lim f(x) < f(c) < lim f(x).

X—C— X—C+

If f is non-decreasing on (a,+00) then limy,_ o f(x) exists.

» The proofs of these assertions are all easy, once we've decided
what the limit should be.

» The proofs should remind you of a theorem about sequences.
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12.2 Functions on the real line

» To handle lim,_,p_ f(x), we let
L=supC, C={f(x):a<x<b},

and use the convention that L is +oo if the set C is not
bounded above.
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12.2 Functions on the real line

» To handle lim,_,p_ f(x), we let
L=supC, C={f(x):a<x<b},

and use the convention that L is +oo if the set C is not
bounded above.

» | assert that lim,_,_ f(x) = L. Why?
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12.2 Functions on the real line

» To handle lim,_,p_ f(x), we let
L=supC, C={f(x):a<x<b},

and use the convention that L is +oo if the set C is not
bounded above.

» | assert that lim,_,_ f(x) = L. Why?

» We use the definition of one-sided limit as given in G11ACF.
We need to show that f(x,) — L as n — oo, for every
sequence (x,) which converges to b with x, < b for all n.
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12.2 Functions on the real line

» To handle lim,_,p_ f(x), we let
L=supC, C={f(x):a<x<b},

and use the convention that L is +oo if the set C is not
bounded above.

» | assert that lim,_,_ f(x) = L. Why?

» We use the definition of one-sided limit as given in G11ACF.
We need to show that f(x,) — L as n — oo, for every
sequence (x,) which converges to b with x, < b for all n.

» To do this we will split into the cases where L is or is not
finite.
Take any such sequence (x,).
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12.2 Functions on the real line

» Suppose first that L is +0o0 and take any real M > 0.
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12.2 Functions on the real line

» Suppose first that L is +0o0 and take any real M > 0.

» Since sup C = oo there must be some t in (a, b) such that
f(t) > M.
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12.2 Functions on the real line

» Suppose first that L is +0o0 and take any real M > 0.

» Since sup C = oo there must be some t in (a, b) such that
f(t) > M.

» Because x, — b from the left, we can find some integer N
such that t < x, < bfor all n > N.
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12.2 Functions on the real line

» Suppose first that L is +0o0 and take any real M > 0.

» Since sup C = oo there must be some t in (a, b) such that
f(t) > M.

» Because x, — b from the left, we can find some integer N
such that t < x, < bfor all n > N.

» But this gives us f(x,) > f(t) > M for all n > N.
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12.2 Functions on the real line

» Suppose first that L is +0o0 and take any real M > 0.

» Since sup C = oo there must be some t in (a, b) such that
f(t) > M.

» Because x, — b from the left, we can find some integer N
such that t < x, < bfor all n > N.

» But this gives us f(x,) > f(t) > M for all n > N.

» Since M can be chosen arbitrarily large we must have
limp— o0 F(Xn) = 0.
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12.2 Functions on the real line

» Now suppose that L is finite, and take any real € > 0.
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12.2 Functions on the real line

» Now suppose that L is finite, and take any real € > 0.

» Since sup C = L > L — ¢ there must be some t in (a, b) such
that f(t) > L —e.
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12.2 Functions on the real line

» Now suppose that L is finite, and take any real € > 0.

» Since sup C = L > L — ¢ there must be some t in (a, b) such
that f(t) > L —e.

» Again because x, — b from the left, we can find some integer
N such that t < x, < b for all n > N.
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12.2 Functions on the real line

» Now suppose that L is finite, and take any real € > 0.

» Since sup C = L > L — ¢ there must be some t in (a, b) such
that f(t) > L —e.

» Again because x, — b from the left, we can find some integer
N such that t < x, < b for all n > N.

» But this gives us f(x,) > f(t) > L —¢ for all n > N.
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12.2 Functions on the real line

» Now suppose that L is finite, and take any real € > 0.

» Since sup C = L > L — ¢ there must be some t in (a, b) such
that f(t) > L —e.

» Again because x, — b from the left, we can find some integer
N such that t < x, < b for all n > N.

» But this gives us f(x,) > f(t) > L —¢ for all n > N.

» We also have f(x,) < L for all n > N, because L is an upper
bound for C. So in fact, for all n > N,

L—e<f(xp) <L, |f(xs)—L|<e.
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12.2 Functions on the real line

» Now suppose that L is finite, and take any real € > 0.

» Since sup C = L > L — ¢ there must be some t in (a, b) such
that f(t) > L —e.

» Again because x, — b from the left, we can find some integer
N such that t < x, < b for all n > N.

» But this gives us f(x,) > f(t) > L —¢ for all n > N.

» We also have f(x,) < L for all n > N, because L is an upper
bound for C. So in fact, for all n > N,

L—e<f(xp) <L, |f(xs)—L|<e.
» Since € can be chosen arbitrarily small we must have

limp—oo F(xa) = L.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



12.2 Functions on the real line

» Similarly (proof deferred to practice questions),

lim f(x)=inf{f(x):a<x < b}.

X—a+
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12.2 Functions on the real line

» Similarly (proof deferred to practice questions),

lim f(x)=inf{f(x):a<x < b}.

x—at
> Also
Xincw_ f(x) = sup{f(x):a<x<c}
< (o)
< inf{f(x):c < x < b}
= Xincw+ f(x).
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12.2 Functions on the real line

» Similarly (proof deferred to practice questions),

lim f(x)=inf{f(x):a<x < b}.

x—at
> Also
Xincw_ f(x) = sup{f(x):a<x<c}
< (o)
< inf{f(x):c < x < b}
= Xincw+ f(x).

> However, if g(x) = x for x < 0 and g(x) =1 for x > 0,
does limy_,0 g(x) (the two-sided limit) exist?
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12.3 Functions on the real line

» In this section we will derive a famous theorem that you've
seen before, but by a different method.
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12.3 Functions on the real line

» In this section we will derive a famous theorem that you've
seen before, but by a different method.

» Let f be a continuous real-valued function on the closed
interval [a, b] C R, and assume that f(a) < T < f(b).
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12.3 Functions on the real line

» In this section we will derive a famous theorem that you've
seen before, but by a different method.

» Let f be a continuous real-valued function on the closed
interval [a, b] C R, and assume that f(a) < T < f(b).

» We will make two sequences (x,) and (y,) so that

b—a
on

a<xpn<yn<b, VYo—x,= f(xn) < T, f(yn)>T.
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12.3 Functions on the real line

» In this section we will derive a famous theorem that you've
seen before, but by a different method.

» Let f be a continuous real-valued function on the closed
interval [a, b] C R, and assume that f(a) < T < f(b).

» We will make two sequences (x,) and (y,) so that

b—a
2n

a<xpn<yn<b, VYo—x,= , fxn) < T, f(yn)>T.

» We start by setting xo = a and yp = b.
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12.3 Functions on the real line

» We have to show how to get x,4+1 and y,1 from x, and y,.
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12.3 Functions on the real line

» We have to show how to get x,4+1 and y,1 from x, and y,.

» To do this, let t, = (xn + ¥n)/2 (midpoint). We know that
f(x,) < T and f(y,) > T.
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12.3 Functions on the real line

» We have to show how to get x,4+1 and y,1 from x, and y,.

» To do this, let t, = (xn + ¥n)/2 (midpoint). We know that
f(x,) < T and f(y,) > T.

> If f(ty) > T we put x,11 = X, and y,+1 = ty.
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12.3 Functions on the real line

» We have to show how to get x,4+1 and y,1 from x, and y,.

» To do this, let t, = (xn + ¥n)/2 (midpoint). We know that
f(x,) < T and f(y,) > T.

> If f(ty) > T we put x,11 = X, and y,+1 = ty.
> If f(t,) < T we put x,11 =t and y,11 = Yn.
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12.3 Functions on the real line

v

We have to show how to get x,1 and y,+1 from x, and y,.

To do this, let t, = (x5 + yn)/2 (midpoint). We know that
f(x,) < T and f(y,) > T.

If f(t,) > T we put X511 = X, and y,11 = t5.

v

v

v

If f(t,) < T we put x,11 = t, and y,11 = yn.

v

In either case we have y,11 — Xp+1 = (Yo — X»)/2 and
f(Xne1) < T, f(Yny1) > T.
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12.3 Functions on the real line

» We have to show how to get x,4+1 and y,1 from x, and y,.

» To do this, let t, = (xn + ¥n)/2 (midpoint). We know that
f(x,) < T and f(y,) > T.

> If f(ty) > T we put x,11 = X, and y,+1 = ty.
> If f(t,) < T we put x,11 =t and y,11 = Yn.

» In either case we have y,11 — Xp+1 = (Yo — X»)/2 and
f(Xne1) < T, f(Yny1) > T.

» Thus our sequences (x,) and (y,) are constructed inductively.
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12.3 Functions on the real line

» Now the intervals I, = [xp, y,] are closed and bounded
non-empty sets (in R), and

[a,b]:IOQI;lQbQ...
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12.3 Functions on the real line

» Now the intervals I, = [xp, y,] are closed and bounded
non-empty sets (in R), and

[a,b]:IOQI;lQbQ...

» By the theorem on nested closed and bounded sets (Theorem
9.3) there exists ¢ belonging to all of the /,.
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12.3 Functions on the real line

» Now the intervals I, = [xp, y,] are closed and bounded
non-empty sets (in R), and

[a,b]:IOQI;lQbQ...

» By the theorem on nested closed and bounded sets (Theorem
9.3) there exists ¢ belonging to all of the /,.

» Since x, < ¢ <y, and y, — x, — 0 we have x, — ¢, y, — c.
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12.3 Functions on the real line

» Now the intervals I, = [xp, y,] are closed and bounded
non-empty sets (in R), and

[a,b]:IOQI;lQbQ...

» By the theorem on nested closed and bounded sets (Theorem
9.3) there exists ¢ belonging to all of the /,.

» Since x, < ¢ <y, and y, — x, — 0 we have x, — ¢, y, — c.

» Since f is continuous we have T > f(x,) — f(c) and
T < f(yn) — f(c).
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12.3 Functions on the real line

Now the intervals I, = [x,, ya] are closed and bounded
non-empty sets (in R), and

v

[a,b]:IOQI;lQbQ...

v

By the theorem on nested closed and bounded sets (Theorem
9.3) there exists ¢ belonging to all of the /,.

v

Since x, < c <y, and y, — x, — 0 we have x, — ¢, y, — C.

v

Since f is continuous we have T > f(x,) — f(c) and
T < f(yn) — f(c).
So we must have f(c) = T. This is:

v
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12.3 Functions on the real line

» Theorem 12.2 (the intermediate value theorem): Let f
be a real-valued function which is continuous on the closed
real interval [a, b]. If f(a) < T < f(b), or f(b) < T < f(a),
then there exists c in (a, b) such that f(c) = T.
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12.3 Functions on the real line

» Theorem 12.2 (the intermediate value theorem): Let f
be a real-valued function which is continuous on the closed
real interval [a, b]. If f(a) < T < f(b), or f(b) < T < f(a),
then there exists c in (a, b) such that f(c) = T.

» To handle the case where f(b) < T < f(a), we apply the first
case (just proved) to —f and —T.
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12.3 Functions on the real line

» Theorem 12.2 (the intermediate value theorem): Let f
be a real-valued function which is continuous on the closed
real interval [a, b]. If f(a) < T < f(b), or f(b) < T < f(a),
then there exists c in (a, b) such that f(c) = T.

» To handle the case where f(b) < T < f(a), we apply the first
case (just proved) to —f and —T.

» This IVT is one of the most powerful theorems in
calculus/analysis. For example any continuous function

f :[a, b] — [a, b] must have a fixpoint (i.e. a solution of
f(x) = x) in [a, b]. Why?
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12.3 Functions on the real line

» Theorem 12.2 (the intermediate value theorem): Let f
be a real-valued function which is continuous on the closed
real interval [a, b]. If f(a) < T < f(b), or f(b) < T < f(a),
then there exists c in (a, b) such that f(c) = T.

» To handle the case where f(b) < T < f(a), we apply the first
case (just proved) to —f and —T.

» This IVT is one of the most powerful theorems in
calculus/analysis. For example any continuous function
f :[a, b] — [a, b] must have a fixpoint (i.e. a solution of
f(x) = x) in [a, b]. Why?

» The IVT also allows us to determine what kind of function
can be continuous and injective on an interval.
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12.4 Functions on the real line

» Let / = [a, b] be a closed interval in R (with a < b) and
suppose that f : I — R is continuous and injective.
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12.4 Functions on the real line

» Let / = [a, b] be a closed interval in R (with a < b) and
suppose that f : I — R is continuous and injective.

» Then f(a) # f(b). Suppose first that f(a) < f(b).
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12.4 Functions on the real line

» Let / = [a, b] be a closed interval in R (with a < b) and
suppose that f : | — R is continuous and injective.
» Then f(a) # f(b). Suppose first that f(a) < f(b).

» | assert that f is strictly increasing on /. Suppose not: then
there exist x, y with a < x <y < b such that f(x) > f(y),
which implies that f(x) > f(y). We consider two cases.
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12.4 Functions on the real line

» Let / = [a, b] be a closed interval in R (with a < b) and
suppose that f : | — R is continuous and injective.

» Then f(a) # f(b). Suppose first that f(a) < f(b).

» | assert that f is strictly increasing on /. Suppose not: then
there exist x,y with a < x < y < b such that f(x) > f(y),
which implies that f(x) > f(y). We consider two cases.

» Case 1: If f(y) < f(a) then f(y) < f(a) < f(b) and by the
IVT there must be some c in (y, b) such that f(c) = f(a),
contradicting the fact that f is injective.
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12.4 Functions on the real line

» Let / = [a, b] be a closed interval in R (with a < b) and
suppose that f : | — R is continuous and injective.

» Then f(a) # f(b). Suppose first that f(a) < f(b).

» | assert that f is strictly increasing on /. Suppose not: then
there exist x,y with a < x < y < b such that f(x) > f(y),
which implies that f(x) > f(y). We consider two cases.

» Case 1: If f(y) < f(a) then f(y) < f(a) < f(b) and by the
IVT there must be some c in (y, b) such that f(c) = f(a),
contradicting the fact that f is injective.

» Case 2: If f(y) > f(a) then f(y) > f(a), and so
f(x) > f(y) > f(a).

But then the IVT gives d in (a, x) such that f(d) = f(y),
which again contradicts the fact that f is injective.
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12.4 Functions on the real line

» Theorem 12.3: Let | be any interval (closed, open,
half-open etc.) in R and suppose that f : | — R is continuous
and injective. Then f is either strictly increasing on | or
strictly decreasing on .
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12.4 Functions on the real line

» Theorem 12.3: Let | be any interval (closed, open,
half-open etc.) in R and suppose that f : | — R is continuous
and injective. Then f is either strictly increasing on | or
strictly decreasing on .

» We've just proved this when [ is a closed interval [a, b] and
f(a) < f(b).
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12.4 Functions on the real line

» Theorem 12.3: Let | be any interval (closed, open,
half-open etc.) in R and suppose that f : | — R is continuous
and injective. Then f is either strictly increasing on | or
strictly decreasing on .

» We've just proved this when [ is a closed interval [a, b] and
f(a) < f(b).

» The case where / is a closed interval [a, b] and f(a) > f(b)
follows by looking at —f.
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12.4 Functions on the real line

» Theorem 12.3: Let | be any interval (closed, open,
half-open etc.) in R and suppose that f : | — R is continuous
and injective. Then f is either strictly increasing on | or
strictly decreasing on .

» We've just proved this when [ is a closed interval [a, b] and
f(a) < f(b).

» The case where / is a closed interval [a, b] and f(a) > f(b)
follows by looking at —f.

» Now suppose that we have any interval / and f is neither
strictly increasing nor strictly decreasing on /. Then there
must exist t, u,v,w in [ such that t < u, v < w, but
f(t) < f(u) and f(v) > f(w).

Just choose a closed interval J contained in / such that
t,u,v,w all belong to J. By the first part this is impossible.
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12.5 Functions on the real line

» The converse of Theorem 12.3 is not true, as a strictly
increasing function need not be continuous e.g. set

f(x)=x (x<0), f(x)=x+1 (x=>0).
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12.5 Functions on the real line

» The converse of Theorem 12.3 is not true, as a strictly
increasing function need not be continuous e.g. set

f(x)=x (x<0), f(x)=x+1 (x=>0).

» However, for functions which are onto (aka surjective), we
have the following.
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12.5 Functions on the real line

» The converse of Theorem 12.3 is not true, as a strictly
increasing function need not be continuous e.g. set

f(x)=x (x<0), f(x)=x+1 (x=>0).

» However, for functions which are onto (aka surjective), we
have the following.

» Theorem 12.4: Let | and J be intervals in R (not
necessarily bounded) and let the function f : | — J be
non-decreasing and onto. Then f is continuous on .
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12.5 Functions on the real line

» The converse of Theorem 12.3 is not true, as a strictly
increasing function need not be continuous e.g. set

f(x)=x (x<0), f(x)=x+1 (x=>0).

» However, for functions which are onto (aka surjective), we
have the following.

» Theorem 12.4: Let | and J be intervals in R (not
necessarily bounded) and let the function f : | — J be
non-decreasing and onto. Then f is continuous on .

» To prove Theorem 12.4 take any § in /, and any sequence
(xn) in [ with limit 5. We have to show that
limp—oo F(xn) = f(B). We assume for simplicity that J is an
open interval (the other cases are OPTIONAL).
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12.5 Functions on the real line

» To do this, take £ > 0. Because f([3) lies in the open interval
J, we can find A and B in J such that

f(B)—e<A<f(B)<B<f(B)+e.
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12.5 Functions on the real line

» To do this, take £ > 0. Because f([3) lies in the open interval
J, we can find A and B in J such that

f(B)—e<A<f(B)<B<f(B)+e.
» Because J = f(/), we can find s and t in / such that

f(B)—e<f(s)=A<f(B)<B="Ff(t)<f(B)+e.
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12.5 Functions on the real line

» To do this, take £ > 0. Because f([3) lies in the open interval
J, we can find A and B in J such that

f(B)—e<A<f(B)<B<f(B)+e.
» Because J = f(/), we can find s and t in / such that
f(B)—e < f(s)=A<f(B)<B=F(t)<f(B)+e.

» Because f is non-decreasing on / we must have s < § < t.
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12.5 Functions on the real line

» To do this, take £ > 0. Because f([3) lies in the open interval
J, we can find A and B in J such that

f(B)—e<A<f(B)<B<f(B)+e.
» Because J = f(/), we can find s and t in / such that
f(B)—e < f(s)=A<f(B)<B=F(t)<f(B)+e.

» Because f is non-decreasing on / we must have s < § < t.
» But x, — (3, and so there exists some integer N such that
s<xp<tforalln>N.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



12.5 Functions on the real line

» To do this, take £ > 0. Because f([3) lies in the open interval
J, we can find A and B in J such that

f(B)—e<A<f(B)<B<f(B)+e.
» Because J = f(/), we can find s and t in / such that
f(B)—e < f(s)=A<f(B)<B=F(t)<f(B)+e.

» Because f is non-decreasing on / we must have s < § < t.

» But x, — (3, and so there exists some integer N such that
s<xp<tforalln>N.

» This gives, for all n > N, since f is non-decreasing,

f(B) —e < f(s) < f(xn) < F(t) < F(B)+e,
and hence |f(x,) — f(5)] < e.
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12.5 Functions on the real line

» To do this, take £ > 0. Because f([3) lies in the open interval
J, we can find A and B in J such that

f(B)—e<A<f(B)<B<f(B)+e.
» Because J = f(/), we can find s and t in / such that
f(B)—e < f(s)=A<f(B)<B=F(t)<f(B)+e.

» Because f is non-decreasing on / we must have s < § < t.

» But x, — (3, and so there exists some integer N such that
s<xp<tforalln>N.

» This gives, for all n > N, since f is non-decreasing,

f(B) —e < f(s) <f(xn) <f(t)<f(B)+e,

and hence |f(x,) — f(5)] < e.
» Since ¢ can be chosen arbitrarily small, we must have
limp—oo F(xn) = F(5).
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CHAPTER 13. Differentiability on the real line

We will review the concept of differentiability from G11CAL and
look at some important consequences.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



13.1 Differentiability on the real line

» The real-valued function f is differentiable at a € R if there
exists a real number f’(a) such that

f'(a) = lim 7'(()() — f(a)'

X—a X —a
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13.1 Differentiability on the real line

» The real-valued function f is differentiable at a € R if there
exists a real number f’(a) such that

f'(a) = lim 7'(()() — f(a)'

X—a X —a

» Here f must be defined on an open interval containing a for
the definition to make sense.
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13.1 Differentiability on the real line

» The real-valued function f is differentiable at a € R if there
exists a real number f’(a) such that

f'(a) = lim 7'(()() — f(a)'

» Here f must be defined on an open interval containing a for
the definition to make sense.

» We can rewrite this as

POZ1E) _ o) e,

and so
f(x) = f(a) + f'(a)(x — a) + e(x)(x — a).
where ¢(x) — 0 as x — a.
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13.1 Differentiability on the real line

» The formula
f(x)=f(a) + f'(a)(x — a) + e(x)(x — a),

where £(x) — 0 as x — a, can be interpreted as follows.

To approximate f(x) for x near a, we can use the linear
function g(x) = f(a) + f'(a)(x — a), and this approximation
will be very good if x is close enough to a.
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13.1 Differentiability on the real line

» The formula
f(x)=f(a) + f'(a)(x — a) + e(x)(x — a),

where £(x) — 0 as x — a, can be interpreted as follows.
To approximate f(x) for x near a, we can use the linear
function g(x) = f(a) + f'(a)(x — a), and this approximation
will be very good if x is close enough to a.

» Thus differentiability is really about whether you can
approximate f(x) by a linear function. This idea also has the
advantage that you can generalise it to higher dimensions.
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13.1 Differentiability on the real line

» The formula
f(x)=f(a) + f'(a)(x — a) + e(x)(x — a),

where £(x) — 0 as x — a, can be interpreted as follows.
To approximate f(x) for x near a, we can use the linear
function g(x) = f(a) + f'(a)(x — a), and this approximation
will be very good if x is close enough to a.

» Thus differentiability is really about whether you can
approximate f(x) by a linear function. This idea also has the
advantage that you can generalise it to higher dimensions.

» We also see at once that f(x) — f(a) as x — a.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



13.1 Differentiability on the real line

» The formula
f(x)=f(a) + f'(a)(x — a) + e(x)(x — a),

where £(x) — 0 as x — a, can be interpreted as follows.
To approximate f(x) for x near a, we can use the linear
function g(x) = f(a) + f'(a)(x — a), and this approximation
will be very good if x is close enough to a.

» Thus differentiability is really about whether you can
approximate f(x) by a linear function. This idea also has the
advantage that you can generalise it to higher dimensions.

» We also see at once that f(x) — f(a) as x — a.

» Theorem 13.1: /f the real-valued function f is differentiable
at a € R, then f is continuous at a.
The converse is false, as the example f(x) = |x|, a = 0 shows.
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13.2 Differentiability on the real line

» Example 1: Define f by
f(x) = x?sin(1/x?) (x#0), f(0)=0.
For x # 0, the product rule and chain rule give us

f'(x) = 2xsin(1/x?) — 2x~ ! cos(1/x?).
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13.2 Differentiability on the real line

» Example 1: Define f by
f(x) = x*sin(1/x?) (x #0), f(0)=0.
For x # 0, the product rule and chain rule give us
f'(x) = 2xsin(1/x?) — 2x~ ! cos(1/x?).
» Does f'(0) exist? For x # 0 we have

f(x) — f(0)
x—0

So f'(0) = 0.

= xsin(1/x?) =0 as x — 0.
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13.2 Differentiability on the real line

» Example 1: Define f by
f(x) = x*sin(1/x?) (x #0), f(0)=0.
For x # 0, the product rule and chain rule give us
f'(x) = 2xsin(1/x?) — 2x~ ! cos(1/x?).
» Does f'(0) exist? For x # 0 we have

f(x) — £(0)

0 = xsin(1/x?) =0 as x — 0.

So f'(0) = 0.
» Note that f(x) is not bounded as x — 0 and so not
continuous at 0, so f”(0) cannot exist.
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13.2 Differentiability on the real line

» Example 2: Define f by
f(x)=x3 (x<0), f(x)=x> (x>0).
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13.2 Differentiability on the real line

» Example 2: Define f by
f(x)=x3 (x<0), f(x)=x> (x>0).

» For x > 0 calculus gives f'(x) = 2x and f”(x) = 2. Why?
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13.2 Differentiability on the real line

» Example 2: Define f by
f(x)=x3 (x<0), f(x)=x> (x>0).

» For x > 0 calculus gives f'(x) = 2x and f”(x) = 2. Why?
» Similarly, for x < 0 we get f'(x) = 3x? and f”(x) = 6x.
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13.2 Differentiability on the real line

» Example 2: Define f by
f(x)=x3 (x<0), f(x)=x> (x>0).

» For x > 0 calculus gives f'(x) = 2x and f”(x) = 2. Why?

» Similarly, for x < 0 we get f'(x) = 3x? and f"(x) = 6x.

» What happens at 07 Since f(x) is either x> or x>,

£(0) = lim ) —f0) _ )

x—>0 x—0 x—>0 X
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13.2 Differentiability on the real line

v

Example 2: Define f by
f(x)=x3 (x<0), f(x)=x> (x>0).

For x > 0 calculus gives f'(x) = 2x and f”(x) = 2. Why?
Similarly, for x < 0 we get f'(x) = 3x2 and f”(x) = 6x.

What happens at 07 Since f(x) is either x? or x3,

F0-fO) . f)

vyvyy

F1(0) = lim

x—>0 x—0 x—>0 X
» But f”(0) does not exist, as
/ Y
lim i) —(0) _ lim 2 _ 2,
x—0+ x—0 x—0+ X
. f'(x) = f'(0) . 3x?
AT A=A
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13.2 Differentiability on the real line

» Example 3: The function |x| is continuous on R but not
differentiable at 0.
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13.2 Differentiability on the real line

» Example 3: The function |x| is continuous on R but not
differentiable at 0.

» It turns out that there are functions which are continuous on
R but not differentiable anywhere.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



13.2 Differentiability on the real line

» Example 3: The function |x| is continuous on R but not
differentiable at 0.

» It turns out that there are functions which are continuous on
R but not differentiable anywhere.

> Weierstrass discovered a whole class of these, including

W(x) = 2 "cos((21)"mx).
n=0
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13.2 Differentiability on the real line

» Example 3: The function |x| is continuous on R but not
differentiable at 0.

» It turns out that there are functions which are continuous on
R but not differentiable anywhere.

> Weierstrass discovered a whole class of these, including
o
W(x) = 2 "cos((21)"mx).
n=0

> Since Y 2,2 " converges and | cos((21)"mx)| < 1 on R, the
series W/(x) converges on R and is continuous, by the
Weierstrass M-test (Theorem 11.2).
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13.2 Differentiability on the real line

» Example 3: The function |x| is continuous on R but not
differentiable at 0.

» It turns out that there are functions which are continuous on
R but not differentiable anywhere.

> Weierstrass discovered a whole class of these, including

W(x) = 2 "cos((21)"mx).
n=0

> Since Y 2,2 " converges and | cos((21)"mx)| < 1 on R, the
series W/(x) converges on R and is continuous, by the
Weierstrass M-test (Theorem 11.2).

» The effect of the powers (21)" is to make the graph of
cos((21)"7x) so steep that the graph of W turns out to have
no tangent.
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13.2 Differentiability on the real line

Figure 1 shows a partial sum of the Weierstrass function.

fz ‘W’i 'Wl“

Figure: Plot of the function 3"2° 27" cos((21)"7x) (MAPLE)
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13.2 Differentiability on the real line

> A slightly easier example of a continuous nowhere
differentiable function (due to van der Waerden in 1930) is
given in detail in Optional additional material for
G12MAN on the Moodle page.
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13.2 Differentiability on the real line

> A slightly easier example of a continuous nowhere
differentiable function (due to van der Waerden in 1930) is
given in detail in Optional additional material for
G12MAN on the Moodle page.

» Let n > 0 be an integer. For any real number x, define f,(x)
to be the distance from x to the nearest rational number of
the form m/10", with m an integer.
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13.2 Differentiability on the real line

> A slightly easier example of a continuous nowhere
differentiable function (due to van der Waerden in 1930) is

given in detail in Optional additional material for
G12MAN on the Moodle page.

» Let n > 0 be an integer. For any real number x, define f,(x)
to be the distance from x to the nearest rational number of
the form m/10", with m an integer.

» Now we define

Fx) = falx).
n=0

Note that |f,(x)| < 10~" for all x and for all n > 0.
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13.2 Differentiability on the real line

> A slightly easier example of a continuous nowhere
differentiable function (due to van der Waerden in 1930) is

given in detail in Optional additional material for
G12MAN on the Moodle page.

» Let n > 0 be an integer. For any real number x, define f,(x)
to be the distance from x to the nearest rational number of
the form m/10", with m an integer.

» Now we define -
Fx) = falx).
n=0
Note that |f,(x)| < 10~" for all x and for all n > 0.

» So the sum converges, and is continuous by the Weierstrass
M-test.
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13.2 Differentiability on the real line

Figure 2 shows fy and f; for 0 < x < 1.

Figure: The functions fy, f; for 0 < x <1
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13.2 Differentiability on the real line

> Let x be a real number. Then f/(x) does not exist. We will
prove this for x of form r/10°, with r;s € Z and s > 0.
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13.2 Differentiability on the real line

> Let x be a real number. Then f/(x) does not exist. We will
prove this for x of form r/10°, with r;s € Z and s > 0.
» Take g € N with g > s, and set y, = x + 1/109F1.
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13.2 Differentiability on the real line

> Let x be a real number. Then f/(x) does not exist. We will
prove this for x of form r/10°, with r;s € Z and s > 0.

» Take g € N with g > s, and set y, = x + 1/109F1.

» Then for n > q both x and yq are integer multiples of 1/10",
so we have f,(x) = fp(yq) = 0.
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13.2 Differentiability on the real line

> Let x be a real number. Then f/(x) does not exist. We will
prove this for x of form r/10°, with r;s € Z and s > 0.

» Take g € N with g > s, and set y, = x + 1/109F1.

» Then for n > q both x and yq are integer multiples of 1/10",
so we have f,(x) = fp(yq) = 0.

» For s < n < qour x is an integer multiple of 1/10”, but y, is
not, so fp(yq) — fu(x) = 1/1097! =y, — x.
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13.2 Differentiability on the real line

> Let x be a real number. Then f/(x) does not exist. We will
prove this for x of form r/10°, with r;s € Z and s > 0.

» Take g € N with g > s, and set y, = x + 1/109F1.

» Then for n > q both x and yq are integer multiples of 1/10",
so we have f,(x) = fp(yq) = 0.

» For s < n < qour x is an integer multiple of 1/10”, but y, is
not, so fp(yq) — fu(x) = 1/1097! =y, — x.

» For 0 < n < s then since we move a distance 1/109"! from x
to yq, we get that f, cannot change by more than 1/109+1
and so

fa(yq) = fa(x) 2 —1/109%" = —(yg — x).
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13.2 Differentiability on the real line

> Let x be a real number. Then f/(x) does not exist. We will
prove this for x of form r/10°, with r;s € Z and s > 0.

» Take g € N with g > s, and set y, = x + 1/109F1.

» Then for n > q both x and yq are integer multiples of 1/10",
so we have f,(x) = fp(yq) = 0.

» For s < n < qour x is an integer multiple of 1/10”, but y, is
not, so fp(yq) — fu(x) = 1/1097! =y, — x.

» For 0 < n < s then since we move a distance 1/109"! from x
to yq, we get that f, cannot change by more than 1/109+1
and so

fa(yq) = fa(x) 2 —1/109%" = —(yg — x).

> So as g — oo we have y, — x and

flyg) = F(x) zq: fa(yq) — f(x) > (

=) ————>(q+1—-5)—5— o0.
Yq —X —0 Yq — X
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13.2 Differentiability on the real line

» Example 4: Let

h(x)=x (x<0), h(x)=sinx (x>0).
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13.2 Differentiability on the real line

» Example 4: Let
h(x)=x (x<0), h(x)=sinx (x>0).

> A student writes:
For x < 0 we have h'(x) =1 and for x > 0 we have
W (x) = cos x. Since

im 1= |lim cosx=1
x—0— x—0+

we have H'(0) = 1.
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13.2 Differentiability on the real line

» Example 4: Let
h(x)=x (x<0), h(x)=sinx (x>0).

> A student writes:
For x < 0 we have h'(x) =1 and for x > 0 we have
W (x) = cos x. Since

im 1= |lim cosx=1
x—0— x—0+

we have H'(0) = 1.
» |s this correct?
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13.2 Differentiability on the real line

The following theorem is very useful:
Theorem 13.2: Let a < ¢ < b and let the real-valued function f
be continuous on (a, b) and differentiable on (a, c) and on (c, b).
Assume that
lim f(x)=1L, lim f(x)= M.

X—C— x—c+
(i) If L= M € R then f'(c) exists and equals M.
(ii) If f'(c) exists then L= M = f'(c) € R.
Note that this result will use L'Hépital’s rule from G11ACF, which

depends on Rolle's theorem, but we will prove Rolle's theorem later
on.
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13.2 Differentiability on the real line

» First we prove (i), so suppose L = M € R. Then we have

lim f/(x) = L= M.

X—C
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13.2 Differentiability on the real line

» First we prove (i), so suppose L = M € R. Then we have

lim f/(x) = L= M.

X—C

» Now

o 0 — (O

is an indeterminate form of type 0/0 (because f is
continuous).
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13.2 Differentiability on the real line

» First we prove (i), so suppose L = M € R. Then we have

lim f/(x) = L= M.

X—C
» Now

o 0 — (O

is an indeterminate form of type 0/0 (because f is
continuous).

» So L'Hopital’s rule gives

f'(c) = lim

X—C X—C x—c 1
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13.2 Differentiability on the real line

» Next we prove (ii), so suppose f’(c) exists. Then (by
definition) we have

jim ) =€) _ f'(c) €R.

X—C X —C
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13.2 Differentiability on the real line

» Next we prove (ii), so suppose f’(c) exists. Then (by
definition) we have

jim ) =€) _ f'(c) €R.

X—C X —C

» Now L'Hopital’s rule gives

Flo) = tim (=MD _ oy FO)

X—>C— X—cC x—c— 1

and so L = f'(c).
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13.2 Differentiability on the real line

» Next we prove (ii), so suppose f’(c) exists. Then (by
definition) we have

lim f(x) — f(c) = f'(c) € R.

X—C X —C

» Now L'Hopital’s rule gives
f(x) —f(c) '

X—>C— X—cC x—c— 1

and so L = f'(c).
» Similarly we obtain f/(c) = M.
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13.3 Differentiability on the real line

Theorem 13.3 (the product rule etc.): Suppose that the
real-valued functions f and g are differentiable at a € R, and that
A €R. Then:

(i) (f +g)'(a) = f'(a) + &'(a) ;

(i) (Af)'(a) = Af'(a) ;

(iii) (fg)'(a) = f'(a)g(a) + f(a)g'(a) ;

(iv) if g(a) # 0, then (1/g)'(a) = —g'(a)/g(a)* .

The proofs are omitted (and so OPTIONAL).

See Optional additional material for GI12MAN if you want to
read them.
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13.3 Differentiability on the real line

» Slightly harder is the chain rule:
Theorem 13.4: [f the real-valued function g is differentiable
at a € R and the real-valued function f is differentiable at
b = g(a), then h = f(g) is differentiable at a and
H(a) = g'(a)f'(b).

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



13.3 Differentiability on the real line

» Slightly harder is the chain rule:
Theorem 13.4: [f the real-valued function g is differentiable
at a € R and the real-valued function f is differentiable at
b = g(a), then h = f(g) is differentiable at a and

h'(a) = g'(a)f'(b).
» We can write

g(x) = g(a) + (x — a)(g'(a) + &(x))

where ¢(x) — 0 as x — a.
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13.3 Differentiability on the real line

» Slightly harder is the chain rule:
Theorem 13.4: [f the real-valued function g is differentiable
at a € R and the real-valued function f is differentiable at
b = g(a), then h = f(g) is differentiable at a and

h'(a) = g'(a)f'(b).
» We can write

where ¢(x) — 0 as x — a.

» Similarly,

f(y) = f(b) + (y — b)(f'(b) + p(¥))

where p(y) — 0 as y — b. We put p(b) = 0 and combine
these as follows.
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13.3 Differentiability on the real line

> If x is close to a then g(x) will be close to b (since g is
continuous at a) and so

h(x)—h(a) = f(g(x))—f(g(a)) = (g(x)— b)(F'(b) +p(g(x)))-
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13.3 Differentiability on the real line

> If x is close to a then g(x) will be close to b (since g is
continuous at a) and so

h(x)—h(a) = f(g(x))—f(g(a)) = (g(x)—b)(f'(b)+p(g(x)))-
» Thus

h(x) = h(a) = (x—a)(g'(a) +(x))(F'(b) + p(g(x)))
= (x—a)g'(a)f'(b) + (x — a)d(x).
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13.3 Differentiability on the real line

> If x is close to a then g(x) will be close to b (since g is
continuous at a) and so

h(x)—h(a) = f(g(x))—f(g(a)) = (g(x)—b)(f'(b)+p(g(x)))-
» Thus

h(x) = h(a) = (x—a)(g'(a) +(x))(F'(b) + p(g(x)))
= (x—a)g'(a)f'(b) + (x — a)d(x).

> Here

3(x) = e(x)f'(b) + e(x)p(g(x)) + &'(a)p(g(x))

tends to 0 as x — a. This gives h'(a) = g'(a)f/(b)-
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13.4 Differentiability on the real line

» Local maxima: the real-valued function f has a local
maximum at a € R if there exists an open interval U
containing a such that f(x) < f(a) for all x in U.
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13.4 Differentiability on the real line

» Local maxima: the real-valued function f has a local
maximum at a € R if there exists an open interval U
containing a such that f(x) < f(a) for all x in U.

» A local minimum is defined similarly.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



13.4 Differentiability on the real line

» Local maxima: the real-valued function f has a local
maximum at a € R if there exists an open interval U
containing a such that f(x) < f(a) for all x in U.

» A local minimum is defined similarly.

» If ais a local maximum or local minimum and f is
differentiable at a, then f’(a) = 0.
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13.4 Differentiability on the real line

» Local maxima: the real-valued function f has a local
maximum at a € R if there exists an open interval U
containing a such that f(x) < f(a) for all x in U.

» A local minimum is defined similarly.

» If ais a local maximum or local minimum and f is
differentiable at a, then f’(a) = 0.

» Say ais a local maximum. If x is in U and x > a, then
(f(x) —f(a))/(x —a) <0, so f'(a) < 0. Similarly, if x is in U
and x < a, then (f(x) — f(a))/(x —a) >0, so f'(a) > 0.
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13.4 Differentiability on the real line

» Suppose that f : [a, b] — R is continuous on [a, b] C R and
differentiable on (a, b), with f(a) = f(b).
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13.4 Differentiability on the real line

» Suppose that f : [a, b] — R is continuous on [a, b] C R and
differentiable on (a, b), with f(a) = f(b).

» If f(x) = f(a) for all x in [a, b] then obviously f'(c) = 0 for
all c € (a, b).
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13.4 Differentiability on the real line

» Suppose that f : [a, b] — R is continuous on [a, b] C R and
differentiable on (a, b), with f(a) = f(b).

» If f(x) = f(a) for all x in [a, b] then obviously f'(c) = 0 for
all c € (a, b).

» If f(x) > f(a) for some x in [a, b] then f has a maximum at
some ¢ € (a, b) (by the maximum theorem 10.3).
Then c is a local maximum and f/(c) = 0.
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13.4 Differentiability on the real line

» Suppose that f : [a, b] — R is continuous on [a, b] C R and
differentiable on (a, b), with f(a) = f(b).

» If f(x) = f(a) for all x in [a, b] then obviously f'(c) = 0 for
all c € (a, b).

» If f(x) > f(a) for some x in [a, b] then f has a maximum at

some ¢ € (a, b) (by the maximum theorem 10.3).
Then c is a local maximum and f/(c) = 0.

» If f(x) < f(a) for some x in [a, b] then f has a minimum at
some ¢ € (a, b), and c is a local minimum and f'(c) = 0.
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13.4 Differentiability on the real line

» Suppose that f : [a, b] — R is continuous on [a, b] C R and
differentiable on (a, b), with f(a) = f(b).

» If f(x) = f(a) for all x in [a, b] then obviously f'(c) = 0 for
all c € (a, b).

» If f(x) > f(a) for some x in [a, b] then f has a maximum at
some ¢ € (a, b) (by the maximum theorem 10.3).
Then c is a local maximum and f/(c) = 0.

» If f(x) < f(a) for some x in [a, b] then f has a minimum at
some ¢ € (a, b), and c is a local minimum and f'(c) = 0.

» So in all three cases there exists ¢ € (a, b) with f'(c) = 0.
This is Rolle’s theorem.
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13.4 Differentiability on the real line

» Theorem 13.5 (the mean value theorem) Suppose that
f :[a, b] — R is continuous on [a, b] C R and differentiable on
(a, b). Then there exists ¢ in (a, b) such that

f'(c) = w.
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13.4 Differentiability on the real line

» Theorem 13.5 (the mean value theorem) Suppose that
f :[a, b] — R is continuous on [a, b] C R and differentiable on
(a, b). Then there exists c in (a, b) such that

f'(c) = w.

» To prove this, set

) = 1)~ (- a) (O =12)).

Then g(a) = f(a) = g(b), and by Rolle’s theorem there must
be some ¢ € (a, b) such that g’(c) = 0.
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13.5 Differentiability on the real line

» Theorem 13.6 Suppose that the real-valued function f is
differentiable on the open interval | C R. Then the following
all hold:

(i) f is strictly increasing on | if f'(x) > 0 for all x in I:
(ii) f is non-decreasing on | iff f'(x) > 0 for all x in I:
(iii) f is constant on | iff f'(x) = 0 for all x in I:

(iv) f is non-increasing on I iff f'(x) <0 for all x in I:
(v) f is strictly decreasing on | if f'(x) < 0 for all x in I:
(vi) f is injective on | if f'(x) # 0 for all x € 1.
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13.5 Differentiability on the real line

» Theorem 13.6 Suppose that the real-valued function f is
differentiable on the open interval | C R. Then the following
all hold:

(i) f is strictly increasing on | if f'(x) > 0 for all x in I:
(ii) f is non-decreasing on | iff f'(x) > 0 for all x in I:
(iii) f is constant on | iff f'(x) = 0 for all x in I:

(iv) f is non-increasing on I iff f'(x) <0 for all x in I:
(v) f is strictly decreasing on | if f'(x) < 0 for all x in I:
(vi) f is injective on | if f'(x) # 0 for all x € 1.

> All of these follow from the definition of f/ and the mean
value theorem.
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13.5 Differentiability on the real line

» Theorem 13.6 Suppose that the real-valued function f is
differentiable on the open interval | C R. Then the following
all hold:

(i) f is strictly increasing on | if f'(x) > 0 for all x in I:
(ii) f is non-decreasing on | iff f'(x) > 0 for all x in I:
(iii) f is constant on | iff f'(x) = 0 for all x in I:

(iv) f is non-increasing on I iff f'(x) <0 for all x in I:
(v) f is strictly decreasing on | if f'(x) < 0 for all x in I:
(vi) f is injective on | if f'(x) # 0 for all x € 1.

> All of these follow from the definition of f/ and the mean
value theorem.

» The function f(x) = x3 is strictly increasing but f’(0) = 0.
Thus (i) is not "“if and only if".
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13.5 Differentiability on the real line

» Example A: Show that g(x) = x/(1 + x2) is strictly
increasing on [0, 1].
This is not obvious, as g is an increasing function divided by
an increasing function.
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13.5 Differentiability on the real line

» Example A: Show that g(x) = x/(1 + x2) is strictly
increasing on [0, 1].
This is not obvious, as g is an increasing function divided by
an increasing function.

» Example B: Show that (14 x)~%/2 > 1 — x/2 for x > 0.
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13.6 Differentiability on the real line

» We saw from the IVT that a continuous function
f :[a, b] — R must satisfy the intermediate value property:

iff(a) < T < f(b) or f(a) > T > f(b) then f takes the
value T at some c € (a, b).
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13.6 Differentiability on the real line

» We saw from the IVT that a continuous function
f :[a, b] — R must satisfy the intermediate value property:

iff(a) < T < f(b) or f(a) > T > f(b) then f takes the
value T at some c € (a, b).

» A non-continuous function may fail to have this property e.g.
gx)=-1 (x<0), gx)=1 (x=0)

never takes the value 0.
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13.6 Differentiability on the real line

» We saw from the IVT that a continuous function
f :[a, b] — R must satisfy the intermediate value property:
iff(a) < T < f(b) or f(a) > T > f(b) then f takes the
value T at some c € (a, b).

» A non-continuous function may fail to have this property e.g.
gx)=-1 (x<0), gx)=1 (x=0)

never takes the value 0.

» We've seen in this chapter that a derivative can fail to be
continuous.
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13.6 Differentiability on the real line

» We saw from the IVT that a continuous function
f :[a, b] — R must satisfy the intermediate value property:
iff(a) < T < f(b) or f(a) > T > f(b) then f takes the
value T at some c € (a, b).

» A non-continuous function may fail to have this property e.g.
gx)=-1 (x<0), gx)=1 (x=0)

never takes the value 0.

» We've seen in this chapter that a derivative can fail to be
continuous.

» But can a derivative fail to have the intermediate value
property?
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13.6 Differentiability on the real line

» Theorem 13.6: Let the real-valued function f be
differentiable at every point in [a, b] C R. If
f'(a) < T < f'(b) or f'(a) > T > f'(b) then f’ takes the
value T at some c € (a, b).

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



13.6 Differentiability on the real line

» Theorem 13.6: Let the real-valued function f be
differentiable at every point in [a, b] C R. If
f'(a) < T < f'(b) or f'(a) > T > f'(b) then f’ takes the
value T at some c € (a, b).

> To see this, we can assume T = 0 (else look at f(x) — Tx).
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13.6 Differentiability on the real line

» Theorem 13.6: Let the real-valued function f be
differentiable at every point in [a, b] C R. If
f'(a) < T < f'(b) or f'(a) > T > f'(b) then f’ takes the
value T at some c € (a, b).

> To see this, we can assume T = 0 (else look at f(x) — Tx).

» We can also assume that f'(a) < 0 < f’(b) (else look at —f).
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13.6 Differentiability on the real line

» Theorem 13.6: Let the real-valued function f be
differentiable at every point in [a, b] C R. If
f'(a) < T < f'(b) or f'(a) > T > f'(b) then f’ takes the
value T at some c € (a, b).

> To see this, we can assume T = 0 (else look at f(x) — Tx).

» We can also assume that f'(a) < 0 < f’(b) (else look at —f).

» We assume that f’ is never 0 on (a, b) and seek a
contradiction.
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13.6 Differentiability on the real line

» Clearly f is continuous on | = [a, b].
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13.6 Differentiability on the real line

» Clearly f is continuous on | = [a, b].

» By the mean value theorem, f is injective on /. Why?
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13.6 Differentiability on the real line

» Clearly f is continuous on | = [a, b].
» By the mean value theorem, f is injective on /. Why?

» By Theorem 12.3, f is either strictly increasing on [, or
strictly decreasing on /.
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13.6 Differentiability on the real line

» Clearly f is continuous on | = [a, b].
» By the mean value theorem, f is injective on /. Why?

» By Theorem 12.3, f is either strictly increasing on [, or
strictly decreasing on /.

» But if f is strictly increasing on [, then f’(a) > 0.
If f is strictly decreasing on [, then f’(b) < 0.
Both give a contradiction.
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CHAPTER 14. The Riemann integral

» Suppose that we have a bounded real-valued function f on
the closed interval | = [a, b] C R.
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CHAPTER 14. The Riemann integral

» Suppose that we have a bounded real-valued function f on
the closed interval | = [a, b] C R.

» We need to define what is meant by the integral fab f(x) dx,
and to determine for which f it exists.
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CHAPTER 14. The Riemann integral

» Suppose that we have a bounded real-valued function f on
the closed interval | = [a, b] C R.

» We need to define what is meant by the integral fab f(x) dx,
and to determine for which f it exists.

» It may be tempting to define the integral as the “area under
the curve”, but it is not obvious that the area exists.
The function f may give a very messy curve, such as the
continuous, nowhere differentiable function in Chapter 13.
Moreover, it is not obvious what to do if f changes sign
infinitely often, as does, for example, xsin(1/x).
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CHAPTER 14. The Riemann integral

» Suppose that we have a bounded real-valued function f on
the closed interval | = [a, b] C R.

» We need to define what is meant by the integral fab f(x) dx,
and to determine for which f it exists.

» It may be tempting to define the integral as the “area under
the curve”, but it is not obvious that the area exists.
The function f may give a very messy curve, such as the
continuous, nowhere differentiable function in Chapter 13.
Moreover, it is not obvious what to do if f changes sign
infinitely often, as does, for example, xsin(1/x).

» The idea is to “approximate” the area from above and below.
Throughout this chapter, —oco < a < b < o0.
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14.1 The Riemann integral

» Let f be a bounded real-valued function on the closed interval
[a,b] =1 C R. Assume that |f(x)| < M < oo for all x in /.
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14.1 The Riemann integral

» Let f be a bounded real-valued function on the closed interval
[a,b] =1 C R. Assume that |f(x)| < M < oo for all x in /.

» A PARTITION P of | means a finite set {xp, ...., xn} such that
a=xg<x1<...<xp=b.

The points x; are called the vertices of P.
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14.1 The Riemann integral

» For a partition P = {xg, ...., xn} of I, we define
M (P, f) = Mi(f) = sup{f(x) : xkm1 <x <x} <M
and

mk(P, f) = mk(f) = mf{f(x)  Xk—1 <x< Xk} > —M.
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14.1 The Riemann integral

» For a partition P = {xg, ...., xn} of I, we define
My(P,f) = M(f) = sup{f(x) : xk—1 < x < x¢} <M
and
mg(P,f) = mi(f) =inf{f(x): xk_1 < x < x¢} > —M.
» Further, we define the UPPER SUM

U(P,f) =) Mi(f)(xk — xi—1)

k=1
and the LOWER SUM

L(PF) =) mi(F) (X — Xk-1).
k=1
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14.1 The Riemann integral

» For a partition P = {xg, ...., xn} of I, we define
My(P,f) = M(f) = sup{f(x) : xk—1 < x < x¢} <M
and
mg(P,f) = mi(f) =inf{f(x): xk_1 < x < x¢} > —M.
» Further, we define the UPPER SUM

U(P,f) =) Mi(f)(xk — xi—1)

k=1
and the LOWER SUM

L(PF) =) mi(F) (X — Xk-1).
k=1

» Note that —M(b—a) < L(P,f) < U(P,f) < M(b— a).



14.1 The Riemann integral

Figure 3 shows a Riemann upper sum.

y=f(x)

Figure: A Riemann upper sum
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14.1 The Riemann integral

Figure 4 shows a Riemann lower sum.

y=f(x)

Figure: A Riemann lower sum
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14.2 The Riemann integral

» Now we introduce the idea of refinements.
If P and Q are partitions of [a, b] then Q is a refinement of P
if every vertex of P is a vertex of Q (crudely put, P C Q).
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14.2 The Riemann integral

» Now we introduce the idea of refinements.
If P and Q are partitions of [a, b] then Q is a refinement of P
if every vertex of P is a vertex of Q (crudely put, P C Q).

» If you draw for yourself a simple curve, it is not hard to
convince yourself that refining P tends to increase L(P, f) and
decrease U(P, f).

The proof is OPTIONAL, but see the next slide.
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14.2 The Riemann integral

In Figure 5 an extra vertex has been introduced, and the lower sum
has increased.

y=f(x)

Figure: A Riemann lower sum and the effect of refinement
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14.2 The Riemann integral

» Lemma 14.1 Let f be a bounded real-valued function on
I = [a, b].
(i) If P, Q are partitions of | and Q is a refinement of P, then

L(P,f) < L(Q,f), U(P,f)>U(Q,f).

(ii) If Py and Py are any partitions of |, then
L(Py,f) < U(Py,f).
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14.2 The Riemann integral

» Lemma 14.1 Let f be a bounded real-valued function on
I = [a, b].
(i) If P, Q are partitions of | and Q is a refinement of P, then

L(P,f) < L(Q,f), U(P,f)>U(Q,f).

(ii) If Py and Py are any partitions of |, then
L(Plv f) < U(P2’f)

» The proof of (i) is OPTIONAL, but not hard. To get (ii) we
just let P be the partition obtained by taking all the vertices
of P; and all those of P,, in order.
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14.2 The Riemann integral

» Lemma 14.1 Let f be a bounded real-valued function on
I = [a, b].
(i) If P, Q are partitions of | and Q is a refinement of P, then

L(P,f) < L(Q,f), U(P,f)>U(Q,f).

(ii) If Py and Py are any partitions of |, then
L(Plv f) < U(P2’f)

» The proof of (i) is OPTIONAL, but not hard. To get (ii) we
just let P be the partition obtained by taking all the vertices
of P; and all those of P,, in order.

» Since P is a refinement of P; and of P,

L(Py,f) < L(P,f) < U(P,f) < U(Py,f).
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14.3 The Riemann integral

» Let f be bounded, real-valued on | = [a, b] as before, with
|f(x)] < M < oo there. We define the UPPER INTEGRAL of
f from a to b as

b
/ f(x)dx =inf{U(P,f): P is a partition of /| }.
a

This exists and is finite, because all the upper sums are
bounded below by —M(b — a).
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14.3 The Riemann integral

» Let f be bounded, real-valued on | = [a, b] as before, with
|f(x)] < M < oo there. We define the UPPER INTEGRAL of
f from a to b as

b
/ f(x)dx =inf{U(P,f): P is a partition of /| }.
a

This exists and is finite, because all the upper sums are
bounded below by —M(b — a).

» Similarly we define the LOWER INTEGRAL
b
/ f(x) dx = sup{L(P,f) : P is a partition of / }.
Ja_

Again this exists and is finite, because all the lower sums are
bounded above by M(b — a).
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14.3 The Riemann integral

» Since U(P,f) < M(b — a) for every P we get

/b F(x) dx < M(b — a).
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14.3 The Riemann integral

» Since U(P,f) < M(b — a) for every P we get

/— )dx < M(b — a).
>

» Similarly, L(Q, ) > —M(b — a) for every Q, so

/ F(x) dx > —M(b — a).

Ja
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14.3 The Riemann integral

» Since U(P,f) < M(b — a) for every P we get

b
/ F(x) dx < M(b — a).
» Similarly, L(Q, ) > —M(b — a) for every Q, so
b
/ F(x) dx > —M(b — a).

» The lower integral is never greater than the upper integral,
since L(P,f) < U(Q, ) for partitions P, Q.
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14.4 The Riemann integral

» We say that f is Riemann integrable on [ if

/ab f(x)dx = /ab f(x) dx,

and, if so, we denote their common value by fab f(x) dx.
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14.4 The Riemann integral

» We say that f is Riemann integrable on [ if

/ab f(x)dx = /ab f(x) dx,

and, if so, we denote their common value by fab f(x) dx.

/ab f(x) dx

» Note that we then get

_M(b—3) < /bf(x) dx < M(b—a), < M(b—23).
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14.4 The Riemann integral

» We say that f is Riemann integrable on [ if

/ab f(x)dx = /ab f(x) dx,

and, if so, we denote their common value by fab f(x) dx.

» Note that we then get
b
/ f(x) dx
a

» As usual in integration, it does not matter whether you write
f(x) dx or f(t)dt etc.

_M(b—3) < /bf(x) dx < M(b—a), < M(b—23).
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14.5 The Riemann integral

» Define f on | = [0, 1] as follows. Let H(x) =1if x is a
rational number of form p/109 with p and g non-negative
integers, and H(x) = 0 otherwise.

Is H Riemann integrable?
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14.5 The Riemann integral

» Define f on | = [0, 1] as follows. Let H(x) =1if x is a
rational number of form p/109 with p and g non-negative
integers, and H(x) = 0 otherwise.

Is H Riemann integrable?

» Let P = {xo,...., xn} be any partition of /. So

O=xp<x1 <...<xp=1
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14.5 The Riemann integral

» Define f on | = [0, 1] as follows. Let H(x) =1if x is a
rational number of form p/109 with p and g non-negative
integers, and H(x) = 0 otherwise.

Is H Riemann integrable?

» Let P = {xo,...., xn} be any partition of /. So
O=xp<x1 <...<xp=1

» Clearly each sub-interval [xx_1, xx] contains a point where
H(x) =1, and so My(H) = 1.

This gives U(P,H) = }_;1(xk — xk—1) = 1 and so the upper
integral is 1.
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14.5 The Riemann integral

>

Define f on | = [0, 1] as follows. Let H(x) =1if x is a
rational number of form p/109 with p and g non-negative
integers, and H(x) = 0 otherwise.

Is H Riemann integrable?

Let P = {xo,...., xn} be any partition of /. So

O=xp<x1 <...<xp=1

Clearly each sub-interval [xx_1, xx] contains a point where
H(x) =1, and so My(H) = 1.

This gives U(P,H) = }_;1(xk — xk—1) = 1 and so the upper
integral is 1.

Similarly, each [xx_1,xx] contains a point where H(x) = 0.
So we have my(H) =0, all lower sums are 0, and the lower
integral is 0.
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14.5 The Riemann integral

>

>

Define f on | = [0, 1] as follows. Let H(x) =1if x is a
rational number of form p/109 with p and g non-negative
integers, and H(x) = 0 otherwise.

Is H Riemann integrable?

Let P = {xo,...., xn} be any partition of /. So

O=xp<x1 <...<xp=1

Clearly each sub-interval [xx_1, xx] contains a point where
H(x) =1, and so My(H) = 1.

This gives U(P,H) = }_;1(xk — xk—1) = 1 and so the upper
integral is 1.

Similarly, each [xx_1,xx] contains a point where H(x) = 0.
So we have my(H) =0, all lower sums are 0, and the lower
integral is 0.

So fol H(x) dx does not exist.
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14.5 The Riemann integral

» In the other direction, suppose that G : [0,1] — [0, M] is a
bounded non-negative function which is 0 except at finitely
many points. Is G Riemann integrable?
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14.5 The Riemann integral

» In the other direction, suppose that G : [0,1] — [0, M] is a
bounded non-negative function which is 0 except at finitely
many points. Is G Riemann integrable?

» Clearly any partition Q gives my(G) =0 and L(Q, G) =0. So
the lower integral is 0.
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14.5 The Riemann integral

» In the other direction, suppose that G : [0,1] — [0, M] is a
bounded non-negative function which is 0 except at finitely
many points. Is G Riemann integrable?

» Clearly any partition Q gives my(G) =0 and L(Q, G) =0. So
the lower integral is 0.

» Now let n be a positive integer and let
P=1{0,1/n,.....,(n —1)/n,1}.
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14.5 The Riemann integral

» In the other direction, suppose that G : [0,1] — [0, M] is a
bounded non-negative function which is 0 except at finitely
many points. Is G Riemann integrable?

» Clearly any partition Q gives my(G) =0 and L(Q, G) =0. So
the lower integral is 0.

» Now let n be a positive integer and let
P=1{0,1/n,.....,(n —1)/n,1}.

» There are at most N < oo points at which G # 0, and each of
these belongs to at most 2 of the intervals of P, each of
which has length 1/n.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



14.5 The Riemann integral

>

In the other direction, suppose that G : [0,1] — [0, M] is a
bounded non-negative function which is 0 except at finitely
many points. Is G Riemann integrable?

Clearly any partition Q gives m,(G) =0 and L(Q, G) = 0. So
the lower integral is 0.

Now let n be a positive integer and let

P=1{0,1/n,.....,(n —1)/n,1}.

There are at most N < oo points at which G # 0, and each of

these belongs to at most 2 of the intervals of P, each of
which has length 1/n.

So U(P,G) <2NM/n and since N and M do not depend on
n we can make this as small as we like.
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14.5 The Riemann integral

>

In the other direction, suppose that G : [0,1] — [0, M] is a
bounded non-negative function which is 0 except at finitely
many points. Is G Riemann integrable?

Clearly any partition Q gives m,(G) =0 and L(Q, G) = 0. So
the lower integral is 0.

Now let n be a positive integer and let

P=1{0,1/n,.....,(n —1)/n,1}.

There are at most N < oo points at which G # 0, and each of
these belongs to at most 2 of the intervals of P, each of
which has length 1/n.

So U(P,G) <2NM/n and since N and M do not depend on
n we can make this as small as we like.

» So the upper integral (infimum of the upper sums) is 0, and

J3 G(x)dx = 0.
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14.6 The Riemann integral

» Suppose f is a non-decreasing real function on | = [a, b].
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14.6 The Riemann integral

» Suppose f is a non-decreasing real function on | = [a, b].
» Let £ > 0 and choose a partition P = {xo, ..., x,} such that
for each k we have x, — xx_1 < €.
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14.6 The Riemann integral

» Suppose f is a non-decreasing real function on | = [a, b].

» Let £ > 0 and choose a partition P = {xo, ..., x,} such that
for each k we have x, — xx_1 < €.

» Since f is non-decreasing we have M(f) = f(xx) and
mk(f) = f(Xk_]_).
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14.6 The Riemann integral

» Suppose f is a non-decreasing real function on | = [a, b].

» Let £ > 0 and choose a partition P = {xo, ..., x,} such that
for each k we have x, — xx_1 < €.

» Since f is non-decreasing we have M(f) = f(xx) and
mk(f) = f(Xk_]_).

» Thus

U(P,f) = L(P,f) = > (M(f) — mic(£))(xk — x—1)
k=1

= D (FO%) — Fxe1)) Ok — Xe1)
k=1

< Y (Fl) = flaon)) e
k=1
= (f(xn) = f(x0))e = (f(b) — f(a))e-
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14.6 The Riemann integral

» Thus
b
/ f(x)dx
a

f(x)dx < U(P,f)

IA
]

IN

L

—~~

P,f)+ (f(b) — f(a))e

IA
o
o

f(x)dx + (f(b) — f(a))e.
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14.6 The Riemann integral

» Thus

/ab f(x)dx < /ab f(x) dx < U(P, f)

< L(P,f)+(f(b) —f(a))e

b
< / F(x) dx + (F(b) — £(a))e.

> Since € can be chosen arbitrarily small we have

/a i F(x) dx = / ’ F(x) dx.
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14.6 The Riemann integral

» Thus

/ab f(x)dx < /ab f(x) dx < U(P, f)

< L(P,f)+(f(b) —f(a))e

b
< / F(x) dx + (F(b) — £(a))e.

> Since € can be chosen arbitrarily small we have

/a i F(x) dx = / ’ F(x) dx.

» An almost identical argument works for a non-increasing
function f.
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14.6 The Riemann integral

» Thus

/ab f(x)dx < /ab f(x)dx < U(P,f)

A

< L(P,f)+(f(b) —f(a))e

b
< / F(x) dx + (F(b) — £(a))e.

> Since € can be chosen arbitrarily small we have

/a i F(x) dx = / ’ F(x) dx.

» An almost identical argument works for a non-increasing
function f.

» Theorem 14.1: Every monotone real function on |[a, b] is
Riemann integrable on [a, b].
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14.7 The Riemann integral

» What happens if f : [a, b] — R is continuous?

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



14.7 The Riemann integral

» What happens if f : [a, b] — R is continuous?
» Suppose that f : [a, b] — R is continuous but NOT Riemann
integrable. Then
b
a

C:ff(x)dx—/ f(x)dx > 0.
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14.7 The Riemann integral

» What happens if f : [a, b] — R is continuous?
» Suppose that f : [a, b] — R is continuous but NOT Riemann
integrable. Then

C= / dx—/bf(x)dx>0.

» | claim that for every m € N there exist s, tm € [a, b] with

C

1
|Sm - tm| < E and |f($m) - f(tm)‘ > D= m
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14.7 The Riemann integral

» What happens if f : [a, b] — R is continuous?
» Suppose that f : [a, b] — R is continuous but NOT Riemann
integrable. Then

C= / dx—/bf(x)dx>0.

» | claim that for every m € N there exist s, tm € [a, b] with

C
2(b—a)
» If | can prove this claim, then by the Bolzano-Weierstrass

theorem there exists a convergent subsequence (Sp, ) of (5m),
tending as k — oo to u € [a, b]. But then t, — u also and

C
:7< — — — =
D= 55y = s~ Ftn)] = IF0) ~ F() =0,
a contradiction.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14
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|Sm — tm| < po and |f(sm) — f(tm)| > D =



14.7 The Riemann integral

» To prove the claim take a partition P = {xo,...,x,} of [a, b]
with xx — xxk—1 < 1/m for every k. Then we get:
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14.7 The Riemann integral

» To prove the claim take a partition P = {xo,...,x,} of [a, b]
with xx — xxk—1 < 1/m for every k. Then we get:

>

/ab f(x)dx—/ab f(x) dx

n

0<C

< UPF) = L(P,F) =) (Mi(F) — mi(F))(xk — Xe—1)
k=1
< (Z(Xk - Xk—l)) me{Mk(f) — m(f)}
k=1

= (b—a) ml?x{Mk(f) — mi(f)}.
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14.7 The Riemann integral

» To prove the claim take a partition P = {xo,...,x,} of [a, b]
with xx — xxk—1 < 1/m for every k. Then we get:

>

/ab f(x)dx—/ab f(x) dx

0<C

n

< UPF) = L(P,F) =) (Mi(F) — mi(F))(xk — Xe—1)
k=1
< (Z(Xk - Xk—l)) me{Mk(f) — m(f)}
k=1

= (b—a) ml?x{Mk(f) — mi(f)}.

» So there must be some k with
My (f) — my(f) > C/(b—a) = 2D.
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14.7 The Riemann integral

» We have some k with Mg(f) — my(f) > C/(b— a) = 2D.
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14.7 The Riemann integral

» We have some k with Mg(f) — my(f) > C/(b— a) = 2D.
» We choose s, tm € [xk—_1, xk] with f(sy,) close to m(f) and
f(tm) close to Mi(f). This gives

1
[sm = tm| < Xk = X1 < [f(sm) — f(tm)| = D,

as asserted.
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14.7 The Riemann integral

» We have some k with Mg(f) — my(f) > C/(b— a) = 2D.

» We choose s, tm € [xk—_1, xk] with f(sy,) close to m(f) and
f(tm) close to Mi(f). This gives

1
[sm = tm| < Xk = X1 < [f(sm) — f(tm)| = D,

as asserted.

» Theorem 14.2: Every continuous real-valued function on
[a, b] is Riemann integrable on |a, b].
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14.8 The Riemann integral

» Theorem 14.3: Leta<c<bandletf:[a,b] >R bea
bounded function which is Riemann integrable on [a, c] and
[c, b]. Then f is Riemann integrable on [a, b] and

/ab F(x) dx = / £(x) dx—i—/cb F(x) d.
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14.8 The Riemann integral

» Theorem 14.3: Leta<c<bandletf:[a,b] >R bea
bounded function which is Riemann integrable on [a, c] and
[c, b]. Then f is Riemann integrable on [a, b] and

/ab F(x) dx = / f(x)dx—i—/cb F(x) d.

» The proof is not hard, but is OPTIONAL.
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14.8 The Riemann integral

» Similarly, we have
Theorem 14.4: Leta<c<bandletf :[a,b] — R bea
bounded function which is Riemann integrable on [a, b]. Then
f is Riemann integrable on [a, c] and [c, b].
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14.8 The Riemann integral

» Similarly, we have

Theorem 14.4: Leta<c<bandletf :[a,b] — R bea
bounded function which is Riemann integrable on [a, b]. Then
f is Riemann integrable on [a, c] and [c, b].

» Again the proof is not hard, but is OPTIONAL.
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14.9 The Riemann integral

» Suppose that f : [a, b] — R is a bounded real function and
that f is Riemann integrable on [a, b].

For a < x < bset F(x) = [, f(t)dt. What kind of a function
is F(x)?
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14.9 The Riemann integral

» Suppose that f : [a, b] — R is a bounded real function and
that f is Riemann integrable on [a, b].

For a < x < bset F(x) = [, f(t)dt. What kind of a function
is F(x)?

» Since f is bounded we have, say, |f(t)] < M < oo for all
t € [a, b
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14.9 The Riemann integral

» Suppose that f : [a, b] — R is a bounded real function and
that f is Riemann integrable on [a, b].
For a < x < bset F(x) = [, f(t)dt. What kind of a function
is F(x)?

» Since f is bounded we have, say, |f(t)] < M < oo for all
t € [a, b

> Sofor a < x <y < bwe get

/Xy f(t)dt

|F(y) = F(x)| = < M(y — x).
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14.9 The Riemann integral

» Suppose that f : [a, b] — R is a bounded real function and
that f is Riemann integrable on [a, b].
For a < x < bset F(x) = [, f(t)dt. What kind of a function
is F(x)?

» Since f is bounded we have, say, |f(t)] < M < oo for all
t € [a, b

> Sofor a < x <y < bwe get

/Xy f(t)dt

» So F is certainly continuous.

|F(y) = F(x)| = < M(y — x).
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14.9 The Riemann integral

> Is F(x) = [ f(t) dt differentiable?
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14.9 The Riemann integral

> Is F(x) = [ f(t) dt differentiable?

» Not necessarily: see the problem sheets.
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14.9 The Riemann integral

> Is F(x) = [ f(t) dt differentiable?
» Not necessarily: see the problem sheets.

» But suppose that f is continuous at ¢ € (a, b).
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14.9 The Riemann integral

Is F(x) = [ f(t)dt differentiable?

Not necessarily: see the problem sheets.

But suppose that f is continuous at ¢ € (a, b).
Let a < x <y < b: then

vV v v Yy

/y F(t) dt < sup{F(t): x < t <y} (y —x),

/y f(t)dt >inf{f(t) : x <t <y}(y —x).

X

Now divide by y — x.

Professor J K Langley G12MAN Mathematical Analysis: Chapters 12-14



14.9 The Riemann integral

> We get v
inf{f(t): X<t<y}<f S x
_Fly) - F)

x <sup{f(t): x <t <y}
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14.9 The Riemann integral

> We get
fy

inf{f(t): x<t<y}p<=X—"— S x

_Fly) -~ F(x)
y—Xx

» If | let x and y tend to ¢ with x < y then the first and last
terms tend to f(c). Thus F'(c) = f(c¢).

<sup{f(t): x <t <y}
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14.9 The Riemann integral

> We get
fy

inf{f(t): x<t<y}p<=X—"— S x

_ F(y) - F(x)
y —x
» If | let x and y tend to ¢ with x < y then the first and last
terms tend to f(c). Thus F'(c) = f(c¢).

» Theorem 14.5 Suppose that f : [a, b] — R is a bounded real
function and is Riemann integrable on [a,b]. Fora<x <b
set F(x) = [7f(t
If f is continuous at c € (a, b) then F'(c) = f(c).

<sup{f(t): x <t <y}
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14.9 The Riemann integral

> We get
fy

inf{f(t): x<t<y}p<=X—"— S x

_Fy) — F)
y — X

» If | let x and y tend to ¢ with x < y then the first and last
terms tend to f(c). Thus F'(c) = f(c¢).

» Theorem 14.5 Suppose that f : [a, b] — R is a bounded real
function and is Riemann integrable on [a,b]. Fora<x <b
set F(x) = [7f(t
If f is continuous at c € (a, b) then F'(c) = f(c).

» This is usually called the first fundamental theorem of the
calculus.

<sup{f(t): x <t <y}
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14.10 The Riemann integral

» The second fundamental theorem of the calculus is better
known, since it is the key to integration by antiderivatives.
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14.10 The Riemann integral

» The second fundamental theorem of the calculus is better
known, since it is the key to integration by antiderivatives.
» Suppose that F, f are real-valued functions on [a, b], that F is

continuous and f is Riemann integrable on [a, b], and that
F'(x) = f(x) for all x in (a, b).
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14.10 The Riemann integral

» The second fundamental theorem of the calculus is better
known, since it is the key to integration by antiderivatives.

» Suppose that F, f are real-valued functions on [a, b], that F is
continuous and f is Riemann integrable on [a, b], and that
F'(x) = f(x) for all x in (a, b).

» Take any partition P = {xp,...,xn} of [a, b].
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14.10 The Riemann integral

» The second fundamental theorem of the calculus is better
known, since it is the key to integration by antiderivatives.

» Suppose that F,f are real-valued functions on [a, b], that F is
continuous and f is Riemann integrable on [a, b], and that
F'(x) = f(x) for all x in (a, b).

» Take any partition P = {xp,...,xn} of [a, b].

» Then the mean value theorem gives points ¢, with

F(b) = F(a) = D> (F(x)— F(xk-1))

fla)(xe — xk—1)  (xk—1 < ¢k < Xxk)-
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14.10 The Riemann integral

> But mi(f) < f(ck) < Mi(f). So we get

F(b) — F(a) <> Mi(f)(xk — xk—1) = U(P, f),
k=1

F(b) — F(a) = > mi(F)(xk — xu-1) = L(P, ).
k=1
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14.10 The Riemann integral

> But mi(f) < f(ck) < Mi(f). So we get

F(b) — F(a) <> Mi(f)(xk — xk—1) = U(P, f),
k=1

F(b) — F(a) = > mi(F)(xk — xu-1) = L(P, ).
k=1

» Taking the inf over upper sums U(P, f) gives
F(b) — F(a) < [P F(t) dt.
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14.10 The Riemann integral

> But mi(f) < f(ck) < Mi(f). So we get

F(b) — F(a) <> Mi(f)(xk — xk—1) = U(P, f),
k=1

F(b) — F(a) = > mi(F)(xk — xu-1) = L(P, ).
k=1

» Taking the inf over upper sums U(P, f) gives
F(b) — F(a) < [P F(t) dt.

» Taking the sup over lower sums L(P, f) gives
F(b) — F(a) > [P F(t) dt.
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14.10 The Riemann integral

> But mi(f) < f(ck) < Mi(f). So we get

F(b) — F(a) <> Mi(f)(xk — xk—1) = U(P, f),
k=1

F(b) — F(a) = > mi(F)(xk — xu-1) = L(P, ).
k=1

» Taking the inf over upper sums U(P, f) gives
F(b) — F(a) < [P F(t) dt.

» Taking the sup over lower sums L(P, f) gives
F(b) — F(a) > [P F(t) dt.

» This proves the last (but most important) theorem of this
chapter.
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14.10 The Riemann integral

» Theorem 14.6 (second fundamental theorem of the
calculus): Suppose that F and f are real-valued functions on
[a, b], that F is continuous and f is Riemann integrable on
[a, b], and that F'(x) = f(x) for all x in (a,b). Then

b
/a £(x) dx = F(b) — F(a).
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