Some topics in measure theory

1 The Egorov and Lusin theorems

1.1 Lemma

Let E be a subset of \mathbf{R}^k with finite Lebesgue measure m(E). Let $f_n : E \to \mathbf{R}^*$ be measurable functions converging a.e. on E to a function $f : E \to \mathbf{R}$. Let ε, δ be positive. Then there exist N and a subset A of E such that $m(A) < \delta$ and $|f_n(x) - f(x)| < \varepsilon$ for all $n \ge N$ and all $x \in E \setminus A$.

Proof. Since $\limsup f_n$ and $\liminf f_n$ are measurable, we can ensure that f is measurable by changing it to be 0 on the set of measure 0 on which f_n fails to tend to f. Let E_N be the set of all $x \in E$ for which there exists $n \ge N$ with $|f_n(x) - f(x)| \ge \varepsilon$. Then $E_{N+1} \subseteq E_N$ and the intersection P of the E_N has measure 0. Since

$$m(E) = m(E \backslash P) = \lim m(E \backslash E_N),$$

there exists N such that $A = E_N$ has $m(A) < \delta$.

1.2 Egorov's theorem

Let E be a subset of \mathbf{R}^k of finite Lebesgue measure m(E). Let $f_n : E \to \mathbf{R}^*$ converge a.e. on E to $f : E \to \mathbf{R}$. Let $\eta > 0$. Then there exists a subset A of E, with $m(A) < \eta$, such that $f_n \to f$ uniformly on $E \setminus A$.

Proof. Choose $A_n \subseteq E$ and p_n such that $m(A_n) < \eta/2^n$ and $|f_m(x) - f(x)| < 1/n$ for all $m \ge p_n$ and all $x \in E \backslash A_n$. Let $A = \bigcup A_n$. Then $E \backslash A \subseteq E \backslash A_n$, and so $m \ge p_n$ implies that $|f_m(x) - f(x)| < 1/n$ for all $x \in E \backslash A$.

Note that no such theorem holds for E of infinite measure. Let $f_n = \chi_{[n,\infty)}$, for $n \in \mathbb{N}$. Then $f_n \to 0$ pointwise, but not uniformly on the complement of any set of finite measure.

1.3 Definition

Let X be a Hausdorff space and let $f: X \to \mathbf{R}$ be a function. The support of f is the closure C of the set $\{x \in X : f(x) \neq 0\}$. We say f has compact support if this set is compact.

Note that if there exists a compact set F such that f = 0 off F then $X \setminus F$ is open and does not meet C. Thus C is a closed subset of F and so compact.

1.4 Urysohn's lemma

Let K be a compact subset of an open subset V of the metric space X. Then there exists a continuous $f: X \to [0,1]$ such that f=1 on K and f=0 off V. If X is locally compact then f can be chosen to have compact support.

Proof. Define f(x) by

$$1 - f(x) = \frac{d(x, K)}{d(x, K) + d(x, V^c)}.$$

Alternatively, take $d(K, V^c) > \delta > 0$ and put

$$f(x) = \delta^{-1} \min\{\delta, d(x, V^c)\}.$$

Now suppose that X is locally compact. This means that every x lies in an open set with compact closure. Hence B(x,r) has compact closure for all sufficiently small r. Cover K by finitely many open V_j whose compact closures are contained in V, and apply the above construction with V replaced by the union of the V_j .

1.5 Lusin's theorem

Suppose that f is a measurable real-valued function on \mathbf{R}^k and that E is a subset of \mathbf{R}^k with $m(E) < \infty$ and f(x) = 0 off E. Suppose that $\varepsilon > 0$. Then there exists a function $g: \mathbf{R}^k \to \mathbf{R}$ such that g is uniformly continuous on \mathbf{R}^k and vanishes outside a compact set, and $m(\{x: f(x) \neq g(x)\}) < \varepsilon$. If $|f| \leq M$ on \mathbf{R}^k , we can choose g so that $|g| \leq M$ on \mathbf{R}^k .

Proof. Assume first that $0 \le f < 1$ on E and E is compact. Choose measurable simple functions with $0 \le s_n \le s_{n+1} \le f$ such that $s_n \to f$ pointwise. Here s_n is formed in such a way that it takes only values $m/2^n$ with $m \in \mathbf{Z}$. In fact $s_n(x)$ is the largest $m/2^n$ which is $\le f(x)$. So $s_0(x) = 0$ and $t_n(x) = s_n(x) - s_{n-1}(x)$ is always 0 or 2^{-n} . So $2^n t_n(x)$ is χ_{T_n} for some T_n . Finally, we have $f(x) = \sum_{n \in \mathbf{N}} t_n(x)$.

Fix a bounded open set V containing E. Choose compact K_n and open V_n such that

$$K_n \subseteq T_n \subseteq V_n \subseteq V$$
, $m(V_n \setminus T_n) < 2^{-n} \varepsilon$.

Using Urysohn's lemma, choose a continuous h_n which is 1 on K_n and 0 off V_n . Let $H = \bigcup_n (V_n \setminus T_n)$. Then $m(H) < \varepsilon$. Let $g(x) = \sum_n 2^{-n} h_n(x)$. Then g is continuous and so uniformly continuous on \mathbf{R}^k , since it vanishes off a compact set. For x not in H we have either $x \notin V_n$, in which case $h_n(x) = 0 = t_n(x)$, or $x \in T_n$, in which case $h_n(x) = t_n(x) = 1$. So g(x) = f(x) off H.

If E is not compact, choose compact $A \subseteq E$ with $m(E \setminus A) < \varepsilon/2$ and apply the above with ε replaced by $\varepsilon/2$.

For bounded f, say $|f| \leq M$, look at (f+M)/3M.

For a general measurable f, just note that since $\bigcap_n \{x : |f(x)| > n\} = \emptyset$ and $m(E) < \infty$, we have $|f| \le n$ off a set of measure $\rho_n \to 0$.

Finally, to show that if $|f| \leq M$ then g can be chosen so that the same is true of g, let $\phi(y) = y$ for $|y| \leq M$, with $\phi(y) = yM/|y|$ for |y| > M. Then $\phi(g)$ is continuous, bounded in modulus by M, and $x \notin H$ gives $f(x) = g(x) = \phi(g(x))$.

1.6 Corollary

Let f be a measurable real-valued function on \mathbf{R}^k such that $\{x: f(x) \neq 0\}$ has finite measure. Then there exist continuous functions g_n , each vanishing off a compact set L_n , such that $g_n(x) \to f(x)$ for almost every x.

To prove this, choose g_n as in Lusin's theorem, such that $g_n = f$ off a set P_n of measure at most 2^{-n} . Then $Q_n = \bigcup_{m=n}^{\infty} P_m$ has measure at most 2^{1-n} . For almost all x we have x not in the intersection of the Q_n . Thus for large n we have $x \notin Q_n$ and $g_n(x) = f(x)$.

1.7 Lemma: partitions of unity

Let K be a compact subset of a locally compact metric space (X,d), and let $K \subseteq V_1 \cup ... \cup V_n$, with the V_j open. Then there exist functions $h_j : X \to [0,1]$, with compact support and with $h_j = 0$ off V_j , such that $h_1 + ... + h_n = 1$ on K.

Proof. For each $x \in K$ choose open W_x with compact closure $\overline{W_x} \subseteq V_m$ for some m. Choose x_q such that $K \subseteq \bigcup_{q=1}^M W_{x_q}$. Let H_m be the union of those $\overline{W_{x_q}}$ which satisfy $\overline{W_{x_q}} \subseteq V_m$. Choose $g_m: X \to [0,1]$, with compact support, such that $g_m = 1$ on H_m and $g_m = 0$ off V_m . Define

$$h_1 = g_1, \quad h_2 = (1 - g_1)g_2, \dots, \quad h_n = (1 - g_1)(1 - g_2)\dots(1 - g_{n-1})g_n.$$

Then $h_m = 0$ off V_m . We have

$$h_1 + \ldots + h_n = 1 - (1 - g_1) \ldots (1 - g_n).$$

This is true for n = 1 and is verified by induction on n, using

$$h_1 + \ldots + h_m + h_{m+1} = 1 - (1 - g_1) \ldots (1 - g_m) + (1 - g_1) \ldots (1 - g_m)g_{m+1}.$$

Now for $x \in K$ we have $x \in H_m$ and so $g_m(x) = 1$ for at least one m.

2 Fubini's theorem

2.1 Lemma

Let K be a compact subset of \mathbf{R}^N . Then $g = \chi_K$ is upper semi-continuous and there exists a sequence g_n of uniformly bounded continuous functions such that $g_1 \geq g_2 \geq \ldots \geq g$ and $g_n \to g$ pointwise on \mathbf{R}^N . If S is large enough we can choose the g_n to be zero outside the ball of centre the origin, radius S.

Proof. Suppose first that $g(x_0) < t$. If t > 1 then g < t everywhere. If $t \le 1$ then x_0 is in the open complement of K and so g < t near to x_0 .

Choose very large S and take $n \in \mathbb{N}$. Let E_n be the (closed) set of x whose distance from K is at least 1/n. Set

$$g_n(x) = 1 - \frac{\operatorname{dist}\{x, K\}}{\operatorname{dist}\{x, E_n\} + \operatorname{dist}\{x, K\}}.$$

Then g = 0 on E_n and g = 1 on K and, if $x \notin K$ then $x \in E_n$ for large enough n. Since $E_n \subseteq E_{n+1}$, the denominators on the RHS decrease and so does $g_n(x)$.

2.2 Lemma

Let J be a closed interval in \mathbb{R}^N . Let g be continuous, real-valued on the closed interval $[a,b] \times J$ in \mathbb{R}^{N+1} . Then

$$\int_{[a,b]\times J} g(x,y)dxdy = \int_a^b \left(\int_J g(x,y)dy\right)dx.$$

Proof. Here we are using y to denote an N-tuple (y_1, \ldots, y_N) . Let $a < X_0 < b$ and let

$$H(X) = \int_{[a,X]\times J} g(x,y) dx dy, \quad L(X) = \int_a^X \left(\int_J g(x,y) dy \right) dx.$$

Let $\varepsilon > 0$. Then there exists $\delta > 0$ such that $|(x,y)-(x',y')| < 4\delta$ implies that $|g(x,y)-g(x',y')| < \varepsilon$, for any $(x,y),(x',y') \in [a,b] \times J$. Let $X_0 - \delta < X_1 < X_2 < X_0 + \delta$. Take a partition Q_0 of J so fine that for any refinement Q of Q_0 the following is true. If J_m are the closed intervals into which Q partitions J, then for any choice of $t_m \in J_m$ we have

$$\left| \sum_{m} g(X_0, t_m) |J_m| - \int_{J} g(X_0, y) dy \right| < \varepsilon.$$

Here $|J_m|$ denotes the N-dimensional volume. Assume also that Q_0 is so fine that, for every refinement Q of Q_0 , each $[X_0 - \delta, X_0 + \delta] \times J_m$ has diameter less than 4δ . We form a partition P_0 of $[X_1, X_2] \times J$ by taking the product of $[X_1, X_2]$ with each closed interval of Q_0 . Now let P be any refinement of P_0 . The closed intervals of P_0 are then just $K_{m,k} = [x_{k-1}, x_k] \times J_m$, in which $X_1 = x_0 < x_1 < \ldots < x_n = X_2$ is a partition of $[X_1, X_2]$ and the J_m are the closed intervals corresponding to some refinement Q of Q_0 . Fix $y_m \in J_m$. If $(x_{m,k}, y_{m,k}) \in K_{m,k}$ we get a Riemann sum

$$\sum_{m,k} g(x_{m,k}, y_{m,k})|K_{m,k}| = \sum_{m,k} g(x_{m,k}, y_{m,k})|x_k - x_{k-1}||J_m|$$

and this is within $\rho = \varepsilon(X_2 - X_1)|J|$ of

$$\sum_{m,k} g(X_0, y_m)|x_k - x_{k-1}||J_m| = (X_2 - X_1) \sum_m g(X_0, y_m)|J_m|,$$

which is within $(X_2 - X_1)\varepsilon$ of $(X_2 - X_1)\int_J g(X_0, y)dy$. Thus as $H_2 - H_1 \to 0+$,

$$\frac{H(X_2) - H(X_1)}{X_2 - X_1} \to \int_J g(X_0, y) dy.$$

Hence H'(X) = L'(X).

2.3 Fubini-Tonelli theorem: first step

Let I be a closed interval in \mathbf{R} and J a closed interval in \mathbf{R}^N . Denote p-dimensional Lebesgue measure by λ_p . Let K be a closed subset of the interval $I \times J$ in \mathbf{R}^{N+1} . Take uniformly bounded continuous g_n decreasing to $g = \chi_K$ as in Lemma 2.1 above. For fixed x, the function $g_x(y) = g(x,y)$ is a limit of continuous functions and so measurable. Also the DCT gives

$$\phi(x) = \int_J g(x, y) d\lambda_N(y) = \lim \phi_n(x), \quad \phi_n(x) = \int_J g_n(x, y) d\lambda_N(y)$$

so ϕ is again a limit of continuous functions and so measurable. So

$$\int_{I} \left(\int_{J} g(x, y) d\lambda_{N}(y) \right) d\lambda(x) = \int_{I} \lim \phi_{n}(x) d\lambda(x) = \lim \int_{I} \phi_{n}(x) d\lambda(x),$$

using the DCT again, since $\phi_n \to \phi$. The last limit is the same as

$$\lim \int_{I \times I} g_n(x, y) d\lambda_{N+1} = \int_{I \times I} g(x, y) d\lambda_{N+1}$$

by the DCT.

2.4 Corollary

Let E be a compact or relatively open subset of $I \times J$. Let $g(x,y) = \chi_E(x,y)$. Then for each $x \in I$, the function $g_x(y) = g(x,y)$ is a measurable function of y. Also

$$k(x) = \int_{I} g(x, y) d\lambda_{N}(y)$$

is a measurable function of x and we have

$$\int_{I\times J} g(x,y)d\lambda_{N+1} = \int_{I} \left(\int_{J} g(x,y)d\lambda_{N}(y) \right) d\lambda(x).$$

We have already established this for compact E and for relatively open E we just look at the complement in $I \times J$. The fact that k is a measurable function arises since k is a limit of continuous functions.

2.5 Lemma

Let E be a subset of \mathbf{R}^{N+1} , of measure 0. Then for almost all x the set $E_x = \{y \in \mathbf{R}^N : (x,y) \in E\}$ has measure 0.

Proof. Assume WLOG that E is bounded, say $E \subseteq I \times J$, with I, J as above. Let $\delta > 0, \varepsilon > 0$. Enclose E is the union V of open intervals I_m of total volume at most $\delta \varepsilon$. Let $g(x, y) = \chi_V(x, y)$. Then

$$\delta \varepsilon \ge \int_{I \times J} g(x, y) d\lambda_{N+1} = \int_{I} \left(\int_{J} g(x, y) d\lambda_{N}(y) \right) d\lambda(x).$$

Let F be the set of x such that

$$\int_J g(x,y)d\lambda_N(y) \ge \varepsilon.$$

Then F has measure at most δ . Let G be the set of x for which E_x has outer measure at least ε . Then $G \subseteq F$ and so G has outer measure at most δ . Since δ is arbitrary, G has measure 0. Since ε is arbitrary, the set of x for which E_x has positive outer measure has itself 0 outer measure.

2.6 Fubini-Tonelli theorem: second step

Next, let g be a bounded non-negative measurable function on $I \times J$, say $0 \le g \le M$. Then by Lusin's theorem there exists a sequence of continuous functions g_n , with $|g_n| \le M$, such that $g_n \to g$ a.e. on $I \times J$, say on $(I \times J) \setminus E$, where E has measure 0.

So for almost all x we have $g_n(x,y) \to g(x,y)$ a.e. on J. For these x, the function $g_x(y) = g(x,y)$ is thus a measurable function on J, and

$$k_n(x) = \int_I g_n(x, y) d\lambda_N(y) \rightarrow k(x) = \int_I g(x, y) d\lambda_N(y)$$

by the DCT. Since each k_n is a continuous function of x and $k_n \to k$ a.e. on I, we see that k is a measurable function of x. Finally, using the DCT,

$$\int_{I \times J} g(x, y) d\lambda_{N+1} = \lim \int_{I \times J} g_n(x, y) d\lambda_{N+1} =$$

$$= \lim \int_{I} \left(\int_{J} g_n(x, y) d\lambda_{N}(y) \right) d\lambda(x) =$$

$$= \int_{I} \lim \left(\int_{J} g_n(x, y) d\lambda_{N}(y) \right) d\lambda(x) = \int_{I} \left(\int_{J} g(x, y) d\lambda_{N}(y) \right) d\lambda(x).$$

2.7 Fubini-Tonelli theorem

Let $f(x,y): \mathbf{R}^{N+1} \to [0,\infty]$ be Lebesgue measurable. Then for almost all x, the function $f_x(y) = f(x,y)$ is a measurable function of y. Also

$$\int_{\mathbf{R}^N} f(x,y) d\lambda_N(y)$$

is a measurable function of x, and

$$\int_{\mathbf{R}} \left(\int_{\mathbf{R}^N} f(x, y) d\lambda_N(y) \right) d\lambda(x) = \int_{\mathbf{R}^{N+1}} f(x, y) d\lambda_{N+1}.$$

Proof. We know the result is true when f is bounded, non-negative and measurable, and 0 outside a compact interval of \mathbf{R}^{N+1} . In general, write f as the non-decreasing limit of a sequence of non-negative simple functions s_n with compact support. For almost all x, we see that $f_x(y) = \lim s_n(x,y)$ is measurable, and

$$\int_{\mathbf{R}} s_n(x,y) d\lambda_N(y) \to \int_{\mathbf{R}} f(x,y) d\lambda_N(y) \quad a.e.(x), \quad \int_{\mathbf{R}^{N+1}} s_n d\lambda_{N+1} \to \int_{\mathbf{R}^{N+1}} f d\lambda_{N+1}.$$

3 L^p spaces

Let (X, Π, μ) be a measure space, and let 0 . For measurable complex-valued f, define

$$||f||_p = \left(\int_V |f|^p d\mu \right)^{1/p}, \quad 0$$

and let $||f||_{\infty}$ be the infimum of M > 0 such that $|f| \leq M$ a.e. on X. We say that f is in L^p if $||f||_p < \infty$. Note that in this case f has to be finite almost everywhere, and that we identify elements of L^p if they agree a.e.

Since

$$|f+g|^p \le 2^p \max\{|f|^p, |g|^p\} \le 2^p (|f|^p + |g|^p),$$

each L^p is a vector space.

We shall prove that if $p \ge 1$ then L^p is a complete normed space. For $p \ge 1$, define $q = p' \ge 1$ by 1/p + 1/q = 1.

3.1 Lemma

Let $0 \le a, b < \infty$ and let 0 < t < 1. Then

$$a^t b^{1-t} \le ta + (1-t)b,$$

with equality iff a = b.

Proof. If b = 0 this is obvious. Let

$$g(x) = (1-t) + tx - x^t$$
, $g'(x) = t - tx^{t-1}$.

For 0 < x < 1 we have g'(x) < 0 while for x > 1 we have g'(x) > 0. Thus g has a minimum at 1 and

$$g(x) \ge g(1) = 0, \quad x^t \le (1 - t) + tx, \quad x \ge 0.$$

Further, g(x) > 0 for $x \ge 0, x \ne 1$. Now put x = a/b, and multiply through by b.

3.2 Hölder's inequality

If $f \in L^p$ and $g \in L^q$ then $fg \in L^1$ and

$$\int_X |fg| d\mu \le ||f||_p ||g||_q.$$

Equality holds only if either (i) $|f|^p$ is a constant multiple of $|g|^q$ or (ii) g=0, a.e. in μ .

Proof. For $p=1, q=\infty$ this is obvious. Now suppose $\infty > p > 1$. Assume first that

$$||f||_p = ||g||_q = 1.$$

Apply the lemma with $a = |f|^p$, $b = |g|^q$, t = 1/p, 1 - t = 1/q. We get

$$|fg| \le t|f|^p + (1-t)|g|^q$$
 (1)

and so

$$\int_X |fg|d\mu \le t + (1-t) = 1.$$

Equality can only hold if equality holds in (1) a.e. and so only if $|f|^p = |g|^q$ a.e.

To prove the general case, note that the result is obvious if f or g is 0 a.e. Now look at the functions

$$F = f/\|f\|_p, \quad G = g/\|g\|_q.$$

We have $\int_X |FG| d\mu \le 1$, with equality only if $|F|^p = |G|^q$ a.e.

3.3 Minkowski's inequality

For $p \ge 1$ we have

$$||f + g||_p \le ||f||_p + ||g||_p.$$

In particular L^p is a normed space.

Proof. For $p = 1, \infty$ this is easy. Assume $1 . Assume also that <math>f, g \in L^p$ and that f + g is not almost everywhere zero, because otherwise there is nothing to prove. We have $f + g \in L^p$ and

$$|f+g|^p \le |f+g|^{p-1}|f| + |f+g|^{p-1}|g|$$

Also

$$|||f+g|^{p-1}||_q = \left(\int_X |f+g|^{(p-1)q} d\mu\right)^{1/q} = \left(\int_X |f+g|^p d\mu\right)^{1/q} = ||f+g||_p^{p/q},$$

using 1/p + 1/q = 1. Thus Hölder's inequality gives

$$\int_X |f+g|^{p-1}|f|d\mu \leq \|f\|_p \||f+g|^{p-1}\|_q = \|f\|_p \|f+g\|_p^{p/q}.$$

Thus

$$||f + g||_p^p \le (||f||_p + ||g||_p)||f + g||_p^{p/q}.$$

Since p - p/q = 1 the result follows.

3.4 Theorem

Let p > 1. Then L^p is complete.

Proof. Let f_n be a Cauchy sequence in L^p . Thus given $\varepsilon > 0$ there exists N such that $||f_n - f_m||_p < \varepsilon$ for all $n, m \ge N$. We can assume that $f_n(x)$ is finite for all n, x. Choose $n_1 < n_2 < \ldots$ such that $g_k = f_{n_k}$ has $||g_{k+1} - g_k||_p < 2^{-k}$. Set

$$F_n = |g_1| + \sum_{k=1}^{n-1} |g_{k+1} - g_k|.$$

Then F_n converges monotonely to a function F, and the MCT and Minkowski's inequality give $||F||_p < \infty$. Thus F is finite almost everywhere. Hence

$$g(x) = \lim_{n \to \infty} g_n(x)$$

exists and is finite a.e. Since $|g_n| \leq F_n \leq F$ we have $|g| \leq F$ and so $g \in L^p$. Further,

$$||g_n - g||_p \le ||g_n||_p + ||g||_p \le ||F||_p + ||g||_p < \infty,$$

and since $g_n \to g$ a.e. we have, using the DCT,

$$||g_n - g||_p \to 0.$$

Thus

$$||f_n - g||_p \le ||g_n - g||_p + ||f_n - g_n||_p \to 0$$

and $f_n \to g$ in L^p .

4 Some Hilbert space facts

4.1 Lemma

Let H be a Hilbert space i.e. a vector space with an inner product $\langle x, y \rangle = \overline{\langle y, x \rangle}$ such that H, with norm $||x|| = \langle x, x \rangle^{1/2}$, is complete. Let E be a non-empty closed convex subset of H. Then E has a unique element x of smallest norm.

Proof. Since

$$||x + y||^2 + ||x - y||^2 = \langle x + y, x + y \rangle + \langle x - y, x - y \rangle = 2||x||^2 + 2||y||^2$$

we get

$$||x - y||^2 = 2||x||^2 + 2||y||^2 - ||x + y||^2.$$

Let δ be the infimum of ||u|| for $u \in E$, and take $x_n \in E, ||x_n|| \to \delta$. The limit x has norm δ , and is the only element of E of norm δ , since if $y \in E$ has norm δ , we have by convexity

$$(x+y)/2 \in E, \quad \|(x+y)\| \ge 2\delta$$

and so

$$||x - y||^2 \le 2\delta^2 + 2\delta^2 - 4\delta^2 = 0.$$

4.2 Fact

Let M be a closed subspace of H. Then

$$M^{\perp} = \{ y \in H : \langle x, y \rangle = 0 \quad \forall x \in M \}$$

is closed.

This is because M^{\perp} is an intersection of closed sets, as $\{y: \langle x,y \rangle = 0\}$ is closed for each x.

4.3 Fact

Let M be a closed subspace of H and let $x \in H$. Then $x = P_x + Q_x$, where $P_x \in M, Q_x \in M^{\perp}$.

Proof. The set $x + M = \{x + y : y \in M\}$ is closed and convex. Let $Q_x = x + q$ be the element of smallest norm in x + M, and let $P_x = x - Q_x$.

We assert that $z = Q_x \in M^{\perp}$ (this is obvious if $M = \{0\}$). Let y be an element of M of norm 1. Let $\alpha \in \mathbb{C}$. Then $z - \alpha y = x + q - \alpha y \in x + M$ so, by the choice of z,

$$< z, z > \le < z - \alpha y, z - \alpha y >,$$

which gives

$$0 \le -\alpha < y, z > -\overline{\alpha} < z, y > +|\alpha|^2.$$

Choose $\alpha = \langle z, y \rangle$. We get

$$0 \le -|\alpha|^2$$

and so < z, y >= 0.

So $Q_x \in M^{\perp}$ and $P_x \in M$ since $Q_x \in x + M$.

4.4 Theorem

Let L be a continuous linear functional on the Hilbert space H. Then there exists a unique $y \in H$ such that $L(x) = \langle x, y \rangle$ for all $x \in H$.

Proof. Let $M = \{x : L(x) = 0\}$. If M = H, set y = 0. If $M \neq H$, take $z \in H \setminus M$ and write $z = z_1 + z_2, z_1 \in M, z_2 \in M^{\perp}$. So $L(z) = L(z_2) \neq 0$, so we can choose $w \in M^{\perp}$ with norm 1. Put

$$u = L(x)w - L(w)x.$$

Then

$$< u, w > = L(x) < w, w > -L(w) < x, w > .$$

Also L(u) = 0, so $u \in M$. Hence $u \perp w$ so $\langle u, w \rangle = 0$. Thus

$$L(x) = L(x) < w, w > = L(w) < x, w > = < x, y >, \quad y = \overline{L(w)}w.$$

5 Complex measures

Let Π be a σ -algebra of subsets of X. A complex measure is just a function $\mu: \Pi \to \mathbf{C}$ such that $\mu(E) = \sum \mu(E_j)$ whenever E is the countable union of pairwise disjoint elements E_j of Π . Note that since the sum has to be independent of the order of the terms it is implicit here that the series has to always be absolutely convergent.

Define

$$|\mu|(E) = \sup\{\sum |\mu(E_j)|\}$$

the sup taken over all partitions of E into countably many pairwise disjoint elements E_j of Π .

5.1 Theorem

 $|\mu|$ is a measure.

Proof. Let E be the union of countably many pairwise disjoint elements E_j of Π . Take real t_j with $t_j < |\mu|(E_j)$. Then E_j can be written as the disjoint union of elements $A_{j,k}$ of Π , such that

$$t_j < \sum_{k} |\mu(A_{j,k})|.$$

Then the union of the (pairwise disjoint) $A_{j,k}$ is E so, by definition of $|\mu|$,

$$\sum_{j} t_j < \sum_{j,k} |\mu(A_{j,k})| \le |\mu|(E).$$

Thus

$$\sum_{j} |\mu|(E_j) \le |\mu|(E).$$

To get an inequality in the opposite direction let E be the pairwise disjoint union of elements A_k of Π . Then

$$\sum_{k} |\mu(A_k)| = \sum_{k} |\sum_{j} \mu(A_k \cap E_j)| \le \sum_{k} \sum_{j} |\mu(A_k \cap E_j)| = \sum_{j} \sum_{k} |\mu(A_k \cap E_j)| \le \sum_{j} |\mu(E_j)|.$$

5.2 Signed measures

Given a real measure μ , we can put

$$\mu^{+} = \frac{1}{2}(|\mu| + \mu), \quad \mu^{-} = \frac{1}{2}(|\mu| - \mu),$$

so that μ^+, μ^- are measures and $\mu = \mu^+ - \mu^-, |\mu| = \mu^+ + \mu^-$. This is the Jordan decomposition.

6 Absolute continuity of measures

Let μ be a measure (i.e. taking values in $[0, \infty]$ in the usual way) and let λ be a measure or a complex measure. We say that λ is absolutely continuous with respect to μ , written $\lambda \ll \mu$, if $\mu(E) = 0$ implies $\lambda(E) = 0$.

We say that λ is concentrated on A if $\lambda(E) = \lambda(A \cap E)$ for every E. This is true iff $\lambda(F) = 0$ whenever $F \cap A = \emptyset$.

Finally λ_1, λ_2 are mutually singular, written $\lambda_1 \perp \lambda_2$, if there exist disjoint A_1, A_2 such that λ_j is concentrated on A_j .

6.1 Elementary properties

We have:

- (a) If λ is concentrated on A, so is $|\lambda|$. For if $F \cap A = \emptyset$ and $F = \bigcup F_i$ then $|\lambda(F_i)| = 0$.
- (b) If $\lambda_1 \perp \lambda_2$ then $|\lambda_1| \perp |\lambda_2|$, by (a).
- (c) If $\lambda_1 \perp \mu$ and $\lambda_2 \perp \mu$ then $\lambda_1 + \lambda_2 \perp \mu$. To see this, take A_j, B_j (disjoint for each j) such that λ_j is concentrated on A_j , while μ is concentrated on B_j . Then $\lambda_1 + \lambda_2$ is concentrated on $A_1 \cup A_2$, while μ is concentrated on $B_1 \cap B_2$.
 - (d) If $\lambda_1 \ll \mu$ and $\lambda_2 \ll \mu$ then $\lambda_1 + \lambda_2 \ll \mu$. This is obvious.
- (e) If $\lambda \ll \mu$ then $|\lambda| \ll \mu$. Suppose $\mu(E) = 0$ and $E = \bigcup E_j$. Then $\mu(E_j) = 0$ so $\lambda(E_j) = 0$ so $|\lambda|(E) = 0$.
- (f) If $\lambda_1 \ll \mu$ and $\lambda_2 \perp \mu$ then $\lambda_1 \perp \lambda_2$. To see this, we have λ_2 concentrated on a set A such that $\mu(A) = 0$ and hence $\lambda_1(A) = 0$ so that λ_1 is concentrated on the complement of A.
 - (g) If $\lambda \ll \mu$ and $\lambda \perp \mu$ then $\lambda \perp \lambda$ so clearly $\lambda = 0$.

6.2 Lemma

Let μ be a σ -finite measure on X (this means that $X = \bigcup E_n$ with $\mu(E_n) < \infty$). Then there exists $w: X \to (0,1)$ with $w \in L^1(\mu)$.

Proof. Define w_n by

$$w_n(x) = \frac{1}{2^n(1 + \mu(E_n))}, \quad x \in E_n,$$

with $w_n = 0$ off E_n . Then put $w = \sum_n w_n$.

Note that here

$$\tilde{\mu}(E) = \int_{E} w d\mu$$

is a measure, and $\tilde{\mu}(E) = 0$ iff $\mu(E) = 0$, since if $\tilde{\mu}(E) = 0$ we get $\tilde{\mu}(E \cap E_n) = 0$ and so $\mu(E \cap E_n) = 0$ since w is constant on E_n .

6.3 The Lebesgue-Radon-Nikodym theorem

Let μ be a measure on a σ -algebra Π of subsets of X, and let λ be a complex measure on Π (N.B. it is then implicit that $\lambda(X) \in \mathbb{C}$ is finite).

Then there exist unique (complex) measures $\lambda_a \ll \mu, \lambda_s \perp \mu$, such that $\lambda = \lambda_a + \lambda_s$. If $\lambda \geq 0$, the same is true of λ_a, λ_s . Also there exists a unique $h \in L^1(\mu)$ such that

$$\lambda_a(E) = \int_E h d\mu, \quad E \in \Pi.$$

Proof. First we check the uniqueness. Given another such pair λ'_a, λ'_s , we have

$$\lambda_a' - \lambda_a = \lambda_s - \lambda_s', \quad \lambda_a' - \lambda_a \ll \mu, \quad \lambda_s - \lambda_s' \perp \mu,$$

and so $\lambda_a - \lambda'_a = 0$.

To prove the existence, assume first that λ is a non-negative measure with $\lambda(X) < \infty$. Choose an $L^1(\mu)$ function $w: X \to (0,1)$ as in the lemma above. Then

$$\phi(E) = \lambda(E) + \int_{E} w d\mu$$

defines a measure on Π , with $\phi(X)$ finite since $w \in L^1$, and

$$\int_{X} f d\phi = \int_{X} f d\lambda + \int_{X} f w d\mu \tag{2}$$

for every non-negative μ -measurable f on X (the formula is true for $f = \chi_E$ and so for simple functions and hence in general). We then have (2) for $f \in L^1(\phi)$.

Let $f \in L^2(\phi)$. Then Cauchy-Schwarz gives

$$|\int_X f d\lambda| \leq \int_X |f| d\lambda \leq \int_X |f| d\phi \leq (\int_X |f|^2 d\phi)^{1/2} \phi(X)^{1/2}$$

and so

$$f \to \int_{Y} f d\lambda$$

is a bounded linear functional on $L^2(\phi)$. Now, $L^2(\phi)$ is a Hilbert space, with

$$\langle f, g \rangle = \int_X f \overline{g} d\phi,$$

and so there exists $g \in L^2(\phi)$ (unique up to changing g on a set of ϕ -measure 0) such that

$$\int_{X} f d\lambda = \int_{X} f g d\phi \tag{3}$$

for all $f \in L^2(\phi)$.

Now let $\phi(E) > 0$, and put $f = \chi_E$. We get

$$\lambda(E) = \int_X f d\lambda = \int_X f g d\phi = \int_E g d\phi.$$

So

$$\frac{1}{\phi(E)}\int_E g d\phi = \frac{\lambda(E)}{\phi(E)} \in [0,1]$$

by the definition of ϕ . So g is real a.e. and ≥ 0 a.e. (both w.r.t. ϕ). Also, since

$$0 \le \phi(E) - \lambda(E) = \int_{E} (1 - g) d\phi$$

we have $0 \le g \le 1$ a.e. w.r.t. ϕ . We may therefore change g, if necessary, to be in [0,1] everywhere, and we still have (3).

Put

$$A = \{x : 0 \le g(x) < 1\}, \quad B = \{x : g(x) = 1\}.$$

Let

$$\lambda_a(E) = \lambda(A \cap E), \quad \lambda_s(E) = \lambda(B \cap E).$$

These are measures. Now applying (2) to fg and using (3) give

$$\int_{X} f(1-g)d\lambda = \int_{X} fgwd\mu, \quad f \in L^{2}(\phi). \tag{4}$$

Choose $f = \chi_B$. Then since g = 1 on B we get

$$0 = \int_{B} w d\mu$$

and so $\mu(B) = 0$. Since λ_s is concentrated on B we have $\lambda_s \perp \mu$.

Next choose $f = (1 + g + ... + g^n)\chi_E$. Then (4) gives

$$\int_{E} (1 - g^{n+1}) d\lambda = \int_{E} g(1 + g + \dots + g^{n}) w d\mu.$$
 (5)

If $x \in B$ then g(x) = 1 and so $1 - g(x)^{n+1} = 0$. If $x \in A$ then $1 - g(x)^{n+1} \to 1$. So the integrand on the LHS of (5) tends pointwise and non-decreasingly to $\chi_A(x)$, while that on the RHS tends pointwise to some non-negative h(x). The MCT then gives

$$\lambda_a(E) = \lambda(A \cap E) = \int_E \chi_A d\lambda = \int_E h d\mu.$$

In particular $\int_X h d\mu = \lambda_a(X) \le \lambda(X) < \infty$, so $h \in L^1(\mu)$.

In the general case we just write $\lambda = \rho + i\tau$ and consider separately the positive and negative parts of ρ, τ .

6.4 Remarks

We note:

(i) The theorem can be extended to the case where λ is a non-negative σ -finite measure, although h may not be in $L^1(\mu)$. To see this, write $X = \bigcup X_n$, where $X_n \subseteq X_{n+1}$ and $\lambda(X_n), \mu(X_n)$ are finite (take such sequences X'_n, X''_n for λ, μ respectively and put $X_n = X'_n \cap X''_n$). Now put

 $H_1 = X_1, H_n = X_n \setminus X_{n+1}$. Put $\lambda_n(E) = \lambda(H_n \cap E)$ and write $\lambda_n = \alpha_n + \beta_n$ where $\alpha_n \ll \mu$ is given by

$$\alpha_n(E) = \int_{E \cap H_n} h_n d\mu$$

for some h_n defined on H_n , with

$$\int_{H_n} h_n d\mu < \infty,$$

and β_n is concentrated on a set B_n of zero μ -measure. Finally, put

$$\lambda_a(E) = \sum_n \alpha_n(E \cap H_n) = \int_E h d\mu, \quad \lambda_s(E) = \sum_n \beta_n(E \cap H_n).$$

Here $h = h_n$ on H_n . Clearly λ_s is concentrated on the union of the B_n , which has zero μ -measure.

(ii) The theorem is not true for μ Lebesgue measure and λ the counting measure on (0,1). For λ_s would be concentrated on a set A of Lebesgue measure 0. If $B \subseteq (0,1) \backslash A$ has Lebesgue measure 0 we'd then get

$$\lambda(B) = \lambda_a(B) = 0$$

which is clearly not always true.

7 Non-decreasing functions

7.1 Vitali covering lemma

Let E be a subset of **R** of finite outer measure, and let H be a collection of intervals, each of positive length, which cover E in the sense of Vitali i.e. for every $\delta > 0$ and every $x \in E$ there exists $I_x \in H$ such that $x \in I_x$ and $m(I_x) < \delta$.

Then given $\delta > 0$ we can find pairwise disjoint $I_1, \ldots, I_N \in H$ such that

$$m^*(E\setminus(\bigcup_{j=1}^N I_j))<\delta.$$

Proof. Assume WLOG that the intervals I of H are all closed. Enclose E in an open set U of finite measure. Assume WLOG that all $I \in H$ satisfy $I \subseteq U$ (we can discard those which do not, and still cover E).

We choose disjoint $I_j \in H$ as follows. Take any $I_1 \in H$. Now, assuming that I_1, \ldots, I_n have been chosen, let k_n be the supremum of the lengths of intervals of H which do not meet I_1, \ldots, I_n (if there are no such intervals, then $E \subseteq \bigcup_{j=1}^n I_j$ and we are finished). Certainly $k_n \leq m(U) < \infty$. So we choose $I_{n+1} \in H$, disjoint from I_1, \ldots, I_n , of length $> \frac{1}{2}k_n$.

This gives a sequence of disjoint $I_j \in H$, and since $I_j \subseteq U$ we get

$$\sum_{j=1}^{\infty} m(I_j) < \infty.$$

Choose N so that

$$\sum_{j=N+1}^{\infty} m(I_j) < \delta/5.$$

For each I_n , let J_n be the closed interval with the same mid-point as I_n , but with length $5m(I_n)$. Let $R = E \setminus (\bigcup_{j=1}^N I_j)$. We need to show that $m^*(R) < \delta$. Let $x \in R$. Since the union of I_1, \ldots, I_N is closed, we can find $I \in H$ with $x \in I$ such that I does not meet any of I_1, \ldots, I_N .

We claim that I meets some I_n . This holds, because if I fails to meet I_1, \ldots, I_n then $0 < m(I) \le k_n < 2m(I_{n+1}) \to 0$ as $n \to \infty$. So let n be the smallest integer such that I meets I_n . Then n > N and $m(I) \le k_{n-1} < 2m(I_n)$. Hence $x \in I \subseteq J_n$ (because if we attach two copies of I_n at each end, we enclose I and get J_n).

So

$$R \subseteq \bigcup_{j=N+1}^{\infty} J_n, \quad m^*(R) \le \sum_{j=N+1}^{\infty} m(J_n) < \delta.$$

7.2 Derivates

Let $f: \mathbf{R} \to \mathbf{R}$ be non-decreasing. For each x define

$$D^{R}f(x) = \limsup_{h \to 0+} \frac{f(x+h) - f(x)}{h},$$

$$D_{R}f(x) = \liminf_{h \to 0+} \frac{f(x+h) - f(x)}{h},$$

$$D^{L}f(x) = \limsup_{h \to 0+} \frac{f(x) - f(x-h)}{h},$$

$$D_{L}f(x) = \liminf_{h \to 0+} \frac{f(x) - f(x-h)}{h}.$$

Obviously all of these are ≥ 0 .

Note that if g(x) = -f(-x) then g is non-decreasing and

$$D^L f(x) = D^R g(-x), \quad D_R f(x) = D_L g(-x).$$

7.3 Theorem

Let $f:[a,b]\to \mathbf{R}$ be non-decreasing. Then f is differentiable a.e.

Proof. It suffices to show that $D^R f, D^L f, D_R f, D_L f$ are equal a.e. on (a, b). Let u, v be positive rational numbers, with u > v, and let

$$E = \{x \in (a,b) : D^R f(x) > u > v > D_L f(x)\}.$$

Let $s = m^*(E)$. Take $\delta > 0$ and enclose E in an open U of measure $m(U) < s + \delta$. For each $x \in E$ we can find $[x - h, x] \subseteq U$ with h arbitrarily small and positive, and

$$f(x) - f(x - h) < vh.$$

By Vitali's lemma there exist $I_n = [x_n - h_n, x_n], n = 1, ..., N$, whose disjoint interiors cover a subset A of E, with $m^*(A) > s - \delta$ (here we use the sub-additivity of m^*). Further,

$$\sum_{j=1}^{N} (f(x_n) - f(x_n - h_n)) < v \sum_{j=1}^{n} h_n < vm(U) < v(s + \delta).$$

Let $y \in A$. Then we can find n and k > 0 such that $[y, y + k] \subseteq (x_n - h_n, x_n)$ and

$$f(y+k) - f(y) > uk.$$

By Vitali again, there exist such intervals $J_p = [y_p, y_p + k_p], p = 1, ..., M$, whose union covers a subset B of A with $m^*(B) > s - 2\delta$. We have

$$\sum_{p=1}^{M} (f(y_p + k_p) - f(y_p)) > u \sum_{p=1}^{M} k_p > u(s - 2\delta).$$

Now each J_p is a subset of some I_n . Further,

$$\sum_{J_p \subseteq I_j} (f(y_p + k_p) - f(y_p)) \le f(x_j) - f(x_j - h_j)$$

since f is non-decreasing. Summing over j we get

$$v(s+\delta) > \sum_{j=1}^{N} (f(x_j) - f(x_j - h_j)) \ge \sum_{p=1}^{M} (f(y_p + k_p) - f(y_p)) > u(s-2\delta).$$

Thus $vs \ge us$ since δ is arbitrary, and this forces s = 0.

We have thus shown that a.e. $D_L f \geq D^R f$ and so

$$D^L f(x) \ge D_L f(x) \ge D^R f(x) \ge D_R f(x)$$
.

The same argument applied to -f(-x) gives $D_R f(x) \ge D^L f(x)$ a.e. and the theorem is proved.

7.4 Theorem

Let $f:[a,b]\to \mathbf{R}$ be non-decreasing. Then f' is measurable and $\int_{[a,b]}f'dm\leq f(b)-f(a)$.

Proof. Extend f to a non-decreasing function on \mathbf{R} by making it constant on $(-\infty, a], [b, \infty)$. Let $f_n(x) = n(f(x+1/n) - f(x))$ for $n \in \mathbf{N}$. Then $f_n \to f'$ a.e., so f' is measurable. Also $f_n \ge 0$ and

$$\int_{[a,b]} f_n dm = n \int_{[b,b+1/n]} f dm - n \int_{[a,a+1/n]} f dm \le f(b) - f(a).$$

The result now follows from the DCT.

8 Absolutely continuous and BV functions

A function $f: I = [a, b] \to \mathbf{R}^N$ is called absolutely continuous (AC) if the following is true: to each $\varepsilon > 0$ corresponds $\delta > 0$ such that

$$\sum_{j=1}^{n} |f(b_j) - f(a_j)| < \varepsilon$$

whenever we have pairwise disjoint (a_j, b_j) (with $a_j, b_j \in I$) of total length $\sum_{j=1}^n (b_j - a_j) < \delta$.

8.1 Theorem

Let $f \in L^1(I)$, I = [a, b]. Then $F(x) = \int_{[a, x]} f(t) dt$ is absolutely continuous.

Proof. Assume WLOG that $f \geq 0$. Since f is finite a.e., the functions $f_n(x) = \min\{f(x), n\}$ converge a.e. to f(x). Let $\varepsilon > 0$. Choose n so large that

$$\int_{I} (f(x) - f_n(x)) dm < \varepsilon/2.$$

Since $0 \le f_n \le n$ there exists $\delta > 0$ such that if $E \subseteq I$ has measure $< \delta$ then $\int_E f_n(x) dm < \varepsilon/2$. Hence

$$\int_{E} f(x)dm \le \int_{E} f_{n}(x)dm + \int_{I} (f(x) + f_{n}(x))dm < \varepsilon.$$

8.2 The total variation

Let $f : [a, b] \to \mathbf{R}^k$. Let $P = \{x_j\}$ be a partition of [a, b] with vertices $a = x_0 < x_1 < \ldots < x_n < b$. Define

$$L(P, f) = \sum_{j=1}^{n} |f(t_j) - f(t_{j-1})|.$$

Set

$$v_f(a,b) = \sup L(P,f)$$

over all such partitions P. Obviously, $v_f(a,b) \ge |f(b) - f(a)|$.

8.3 Lemma

If a < c < b we have

$$v_f(a,b) = v_f(a,c) + v_f(c,b).$$

Also $v_{f+q}(a,b) \le v_f(a,b) + v_q(a,b)$.

Proof. Since adjoining an extra point to P can only increase L(P, f) we have $v_f(a, b) = \sup L(P, f)$ with the sup over all partitions P of [a, b] having c as a vertex. Such a P can be decomposed into a partition P_1 of [a, c] and a partition P_2 of [c, b] and

$$L(P, f) = L(P_1, f) + L(P_2, f).$$

Conversely, any such P_1 , P_2 can be combined to make a partition of [a, b].

The second assertion is easy since

$$L(P, f + g) \le L(P, f) + L(P, g).$$

8.4 Bounded variation (BV)

We say that f has BV on [a, b] if $v_f(a, b) < \infty$.

8.5 Lemma

Let $f:[a,b]\to \mathbf{R}^N$ have BV. Then $F(x)=v_f(a,x)$ is non-decreasing on [a,b]. If N=1 then so is f+F.

Proof. The assertion for F is obvious. Take $a \le x < y \le b$. Take a partition P of [a, x]. Then

$$F(y) \ge |f(y) - f(x)| + L(P, f).$$

Thus

$$F(y) \ge |f(y) - f(x)| + F(x) \ge f(x) + F(x) - f(y).$$

8.6 Corollary

 $f:[a,b]\to\mathbf{R}$ has BV iff $f=f_1-f_2$, where the f_j are non-decreasing on [a,b].

8.7 Lemma

Let $f: I = [a, b] \to \mathbf{R}^N$ be AC. Then f has BV. Also $F(x) = v_f(a, x)$ and (if N = 1) f + F are AC on I.

Proof. We first show that f has BV. Take $\delta_1 > 0$ corresponding to $\varepsilon = 1$ in the definition of AC.

Take any partition $P = \{t_0, \ldots, t_n\}$ of [a, b]. Refine P if necessary so that each $t_k - t_{k-1}$ is less than $\delta_1/4$. We can divide the sub-intervals $[t_{k-1}, t_k]$ into blocks each of length $< \delta_1$ but, apart possibly from the last block, of length at least $\frac{3}{4}\delta_1$. The number Q of blocks satisfies

$$b - a \ge Q \frac{3}{4} \delta_1.$$

Thus $L(P) \le (Q+1) \le 1 + \frac{4}{3}(b-a)/\delta_1$.

Now we show that F is AC. Take $\varepsilon > 0$ and choose a corresponding δ for f. Let (a_q, b_q) be pairwise disjoint subintervals of I, of total length less than δ . Form a partition $Q_q = \{t_{j,q}\}$ of $[a_q, b_q]$. Then

$$\sum_{q} L(Q_q) < \varepsilon,$$

because the intervals $(t_{j-1,q}, t_{j,q})$ are pairwise disjoint subintervals of I, of total length $< \delta$. Thus

$$\sum_{q} (F(b_q) - F(a_q)) = \sum_{q} v_f(a_q, b_q) \le \varepsilon.$$

8.8 Corollary

An absolutely continuous function f on [a,b] can be written the difference of absolutely continuous non-decreasing functions, and f is differentiable a.e.

8.9 Theorem

Suppose that f is AC on [a,b] and f'=0 a.e. Then f is constant on [a,b].

Proof. Take $c \in (a, b]$. Let E be the subset of (a, c) on which f' = 0, so that m(E) = c - a, and let $\varepsilon > 0$, $\eta > 0$. Let $\delta > 0$ correspond to ε in the definition of absolute continuity of f.

For each $x \in E$ we can find an interval $[x, x + h] \subseteq (a, c)$ with

$$|f(x+h) - f(x)| < \eta h.$$

By Vitali we can find finitely many such intervals $I_k = [x_k, y_k], y_k = x_k + h_k$, such that the interiors of the I_k are disjoint and cover all of E bar a set of measure less than δ . We can order x_k so that

$$y_0 = a \le x_1 < y_1 \le x_2 < \ldots < y_n \le c = x_{n+1}$$
.

Now

$$\sum_{k=0}^{n} (x_{k+1} - y_k) < \delta.$$

So

$$\sum_{k=0}^{n} |f(x_{k+1}) - f(y_k)| < \varepsilon,$$

by the definition of AC. But

$$\sum_{k=1}^{n} |f(y_k) - f(x_k)| \le \eta \sum_{k=1}^{n} (y_k - x_k) \le \eta(c - a).$$

Thus

$$|f(c) - f(a)| = \left| \sum_{k=0}^{n} (f(x_{k+1}) - f(y_k)) + \sum_{k=1}^{n} (f(y_k) - f(x_k)) \right| \le \varepsilon + \eta(c - a).$$

Hence f(c) = f(a).

8.10 Theorem

Let
$$f: I = [a, b] \to \mathbf{R}$$
 be AC. Then $f(b) - f(a) = \int_{[a, b]} f'(t) dm$.

Proof. It suffices to prove this when f is non-decreasing (otherwise write f as the difference of non-decreasing AC functions). Now

$$f(b) - f(a) \ge \int_{[a,b]} f'dm,$$

so f' (which is non-negative) is in L^1 on [a, b]. Thus

$$g(x) = f(a) + \int_{[a,x]} f'dm$$

is AC on [a, b] and, since (f - g)' = 0 a.e., we get f = g.

8.11 Change of variables theorem

Let g be non-decreasing and AC on [a,b]. Let c = g(a), d = g(b). Let f be a non-negative measurable function on [c,d]. Then f(g)g' is measurable on [a,b] and

$$\int_{[c,d]} f dm = \int_{[a,b]} f(g)g' dm.$$

Proof.

Let U be an open set. Then $V = g^{-1}(U \cap [c, d])$ is a relatively open subset of [a, b] and can be written as a union of pairwise disjoint intervals I_j (all open, bar two, which are half-open). The $g(I_j)$ are disjoint, apart possibly from their end-points, and so

$$m(U \cap [c,d]) = m(g(V)) = \sum m(g(I_j)) = \sum \int_{I_j} g'(x)dm(x).$$

Thus

$$m(E) = \int_{g^{-1}(E)} g'(x)dm(x)$$

for every relatively open subset E of [c,d].

Let $H = \{x : g'(x) \neq 0\}$ (note that g' is measurable). Let F be a measurable subset of [c, d] with measure 0. Then we claim that the set $g^{-1}(F) \cap H$ has measure 0. Take $\delta, \varepsilon > 0$. Let U be a relatively open subset of [c, d] of measure less than δ . Then

$$\int_{q^{-1}(U)} g'(x) dm(x) < \delta$$

and so the set $\{x: g(x) \in U, g'(x) > \varepsilon\}$ has measure at most δ/ε . Since δ is arbitrary, $\{x: g(x) \in F, g'(x) > \varepsilon\}$ has measure 0 and since ε is arbitrary our assertion is proved.

Next, let E be any measurable subset of [c,d]. Take relatively open V_n , with $E \subseteq V_n \subseteq [c,d]$ and $m(V_n) \to m(E)$. Let V be the intersection of the V_n . Then the DCT gives

$$m(E) = \lim m(V_n) = \lim \int_{[a,b]} \chi_{V_n}(g)g'(x)dm(x) = \int_{[a,b]} \chi_{V}(g)g'(x)dm(x).$$

But $\chi_E(g)g' = \chi_V(g)g'$ if g' = 0, and the set of x such that $g'(x) \neq 0$ and $g(x) \in V \setminus E$ has measure 0. Thus $\chi_E(g)g'$ is measurable, in the sense that it agrees a.e. with a measurable function, and we get

$$m(E) = \int_{[a,b]} \chi_E(g) g'(x) dm(x).$$

Now let f be a non-negative measurable function on [c, d]. We can write $f = \lim s_n$, in which s_n are non-negative measurable simple functions. We have $f(g)g' = \lim s_n(g)g'$ and so f(g)g' is a measurable function and

$$\int_{[c,d]} f(y) dm(y) = \lim_{x \to \infty} \int_{[c,d]} s_n(y) dm(y) = \lim_{x \to \infty} \int_{[a,b]} s_n(g) g'(x) dm(x) = \int_{[a,b]} f(g) g'(x) dm(x)$$

by the MCT (note that $g' \geq 0$).

9 Differentiation of measures and set functions

Throughout this section we work in k dimensional real space \mathbf{R}^k , and we denote the k dimensional Lebesgue measure by m.

9.1Lemma

Let $B_j = B(x_j, r_j)$ and let $W = \bigcup_{i=1}^N B_i$. Then there exists a subset S of $\{1, \ldots, N\}$ such that:

- (i) the $B_j, j \in S$, are pairwise disjoint;
- (ii) $W \subseteq \bigcup_{j \in S} B(x_j, 3r_j)$;
- (iii) $m(W) \leq 3^k \sum_{i \in S} m(B_i)$.

Proof. We assume WLOG that $r_1 \geq r_2 \geq \ldots \geq r_N$. Put $j_1 = 1$ and discard all B_j which meet B_{j_1} . Let j_2 be the least remaining $j > j_1$ (if any)remaining. Then B_{j_2} fails to meet B_{j_1} . Discard all B_j which meet B_{j_2} , and let j_3 be the least remaining $j > j_2$ (if any). Again, B_{j_3} fails to meet B_{j_2} . Carrying on like this, S is the set of j_m . If $j > j_m$ and B_j meets B_{j_m} then, since $r_j \leq r_{j_m}$, we have $B_j \subseteq B(x_{j_m}, 3r_{j_m})$, and (ii) and (iii) follow. (i) is obvious, since we discard all B_j which meet B_{j_m} .

9.2Lemma

Let μ be a measure on \mathbb{R}^k , and let $t \in (0, \infty)$. Let

$$\|\mu\| = \mu(\mathbf{R}^k) < \infty, \quad M_{\mu}(x) = \sup_{0 < r < \infty} \frac{\mu(B(x, r))}{m(B(x, r))}.$$

Then $m(\lbrace x : M_{\mu}(x) > t \rbrace) \le 3^{-k} t^{-1} ||\mu||.$

Proof. Let K be a compact subset of the set $\Omega = \{x : M_{\mu}(x) > t\}$. Note that Ω is open because we can choose r with $\mu(B(x,r)) > tm(B(x,r))$ and s < r but close to r with $\mu(B(x,s)) > tm(B(x,s))$ tm(B(x,r)). For x' close to x we have $\mu(B(x',r)) \ge \mu(B(x,s)) > tm(B(x,r)) = tm(B(x',r))$.

Now the compact set K may be covered by finitely many $B(x_i, r_i)$ each with $\mu(B(x_i, r_i)) >$ $tm(B(x_j,r_j))$. Choose a set S as in the previous lemma such that the $B(x_j,r_j), j \in S$ are disjoint and

$$m(K) \le m(\bigcup_{j=1}^{n} B(x_j, r_j)) \le 3^k \sum_{j \in S} m(B(x_j, r_j)) \le 3^k t^{-1} \sum_{j \in S} \mu(B(x_j, r_j)) \le 3^k t^{-1} \|\mu\|.$$

9.3Theorem

Let f be in $L^1(m)$. Set

$$T(x,r,f) = \frac{1}{m(B(x,r))} \int_{B(x,r)} |f - f(x)| dm, \quad T(x) = T_f(x) = \limsup_{r \to 0+} T(x,r,f).$$

Then T(x) = 0 a.e. in \mathbf{R}^k .

Proof. It suffices to prove this when f has compact support. For $p \in \mathbb{N}$, set $f_p(x) = f(x)$ if $|f(x)| \leq p$, with $f_p(x) = 0$ otherwise. Since $|f_p|$ tends a.e. increasingly to f, we have $\int_{\{x:|f(x)|>p\}} |f|dm \to 0$ and $\int_{\mathbf{R}^k} |f-f_p|dm \to 0$. Let y>0. Let $n\in\mathbf{N}$. Choose p large, and a continuous g such that $g=f_p$ off a set of small

measure. This can be done by Lusin's theorem, with $|g| \leq p$, and so we can ensure that

$$\int_{\mathbf{R}^k} |f - g| dm < 1/n.$$

Put h = f - g. Since g is continuous we have $T_g(x) = 0$. Since

$$T(x,r,h) \le \frac{1}{m(B(x,r))} \int_{B(x,r)} |h| dm + |h(x)|$$

we get

$$T_f(x) = T_h(x) \le M_\sigma(x) + |h(x)|,\tag{6}$$

in which σ is the measure given by

$$\sigma(E) = \int_{E} |h| dm.$$

Thus if $T_f(x) > 2y$ then at least one of the terms on the RHS of (6) must exceed y. But

$$\|\sigma\| = \int_{\mathbf{R}^k} |h| dm \le 1/n,$$

so

$$m({x: M_{\sigma}(x) > y}) \le 3^k (yn)^{-1}$$

by the previous lemma. Also,

$$m({x: |h(x)| > y}) \le 1/yn.$$

So

$$E(y, n) = \{x : M_{\sigma}(x) > y \text{ or } |h(x)| > y\}$$

has

$$m(E(y,n)) \le (3^k + 1)(yn)^{-1}$$
.

But if $T_f(x) > 2y$ then x is in every E(y, n), so the set $\{x : T_f(x) > 2y\}$ has measure 0. This is true for every y > 0, and so the theorem is proved.

9.4 Definition

We say that a sequence of Borel sets B_n shrink nicely to x if there exist $t \in (0, \infty)$ and $r_n \to 0+$ such that $E_n \subseteq B(x, r_n)$ and $m(B_n) \ge tm(B(x, r_n))$ for all n. It is not required that $x \in B_n$.

9.5 Theorem

Let $f \in L^1(m)$ on \mathbf{R}^k . Then for almost every x in \mathbf{R}^k the following is true. If B_n shrinks nicely to x then

$$\lim_{n \to \infty} \frac{1}{m(B_n)} \int_{B_n} f dm = f(x).$$

It is not required that the t associated with B_n be independent of x.

Proof. We have

$$\left|\frac{1}{m(B_n)}\int_{B_n} f dm - f(x)\right| = \left|\frac{1}{m(B_n)}\int_{B_n} f - f(x) dm\right| \le \frac{1}{m(B_n)}\int_{B_n} |f - f(x)| dm.$$

But

$$\frac{1}{m(B_n)} \int_{B_n} |f - f(x)| dm \le \frac{1}{tm(B(x, r_n))} \int_{B(x, r_n)} |f - f(x)| dm \to 0$$

for almost every x, independent of t.

9.6 Set functions

Let A, B be open subsets of \mathbf{R}^k and let $f: A \to B$ be a homeomorphism. For a Borel subset E of A, set

$$\mu(E) = m(f(E)).$$

Then μ is a σ -finite measure. We may write

$$\mu(E) = \int_{E} h dm + \mu_s(E),$$

in which h is a non-negative measurable function, finite a.e., and μ_s is a measure, singular w.r.t. Lebesgue measure. Note that h is finite a.e. since we can write A as the union of compact sets H, for each of which m(H) and $\mu(H)$ are finite.

Claim: For Borel $E \subseteq A$ such that E and f(E) have finite Lebesgue measure, $\mu_s(E)$ is the supremum of $\mu_s(H)$ over all compact subsets H of A.

To prove this, take compact $F_n \subseteq F_{n+1} \subseteq f(E)$ such that $m(F_n) \to m(f(E))$, and compact $E_n \subseteq E_{n+1} \subseteq E$ such that $m(E_n) \to m(E)$. Let $H_n = E_n \cup f^{-1}(F_n)$. Then $m(F_n) \le m(f(H_n)) \le m(f(E))$, so $m(f(H_n)) \to m(f(E))$ i.e. $\mu(H_n) \to \mu(E)$. Also $m(E_n) \le m(H_n) \le m(E)$, so $m(H_n) \to m(E)$. Thus $H^* = \bigcup_n H_n$ has $m(E \setminus H^*) = 0$, so the MCT gives

$$\int_{H_n} h dm \to \int_{H^*} h dm = \int_E h dm.$$

Thus $\mu_s(H_n) \to \mu_s(E)$.

9.7 Theorem

Let f, μ, μ_s be as in the previous subsection. For almost all $x \in \mathbf{R}^k$, if B_n shrinks nicely to x then

$$\frac{m(f(B_n))}{m(B_n)} \to h(x).$$

Proof. Reducing A if necessary we can assume that $\mu(A)$ and m(A) are finite. Define $\nu(E) = \mu_s(E \cap A)$ so that ν is a measure on \mathbf{R}^k , with $\|\nu\| = \nu(\mathbf{R}^k)$ finite, and ν is concentrated on a set C of Lebesgue measure 0. Take $\delta > 0$ and a compact subset K of C such that $\nu(K) > \nu(C) - \delta$. Let $\tau(E) = \nu(E) - \nu(K \cap E)$ so that $\|\tau\| < \delta$.

For a measure λ let

$$D_{\lambda}(x) = \lim_{n \to \infty} \left(\sup_{0 < r < 1/n} \frac{\lambda(B(x, r))}{m(B(x, r))} \right).$$

For $x \notin K$ we have $D_{\nu}(x) = D_{\tau}(x)$ and so $D_{\nu}(x) \leq M_{\tau}(x)$. But, if t > 0, the set $R_t = \{x : M_{\tau}(x) > t\}$ has measure at most $3^k t^{-1} \|\tau\| < 3^k t^{-1} \delta$. But $S_t = \{x : D_{\nu}(x) > t\} \subseteq K \cup R_t$, so $m(S_t) < 3^k t^{-1} \delta$. Since δ is arbitrary we get $m(S_t) = 0$ and so $D_{\nu}(x) = 0$ a.e., which gives

$$\lim_{r \to 0+} \frac{\mu_s(B(x,r))}{m(B(x,r))} = 0$$

for almost every x in A.

9.8 Theorem

Let A, B be open subsets of \mathbf{R}^k , and let $f: A \to B$ be a homeomorphism. Define a measure μ by $\mu(E) = m(f(A \cap E))$. Then there exist a non-negative function h and a measure ν , singular with respect to m, such that

$$\mu(E) = \int_E h dm + \nu(E).$$

The function h is finite a.e. Also, for almost every x we have

$$\frac{\mu(B_n)}{m(B_n)} \to h(x)$$

if B_n shrinks nicely to x. If f maps sets of measure zero to sets of measure zero then $\nu = 0$.

Proof. Taking compact X_n which expand to fill A, we see that μ is σ -finite. This gives h and ν as in the Lebesgue-Radon-Nikodym theorem. Since

$$\int_{X_n} h dm \le \mu(X_n) < \infty,$$

we get h finite a.e.

9.9 Lemma

Let f, A, B be as in the previous theorem. If f is differentiable a.e. then $h = |J_f|$ a.e., in which J_f in the Jacobian determinant. If, in addition, f maps sets of measure zero to sets of measure zero, we have

$$\int_{B} g(y)dm(y) = \int_{A} g(f(x))|J_f|dm(x)$$

for every non-negative measurable g.

Proof. Suppose that f is differentiable at x. Then

$$f(x+t) = f(x) + Mt + o(|t|), \quad t \to 0,$$

in which M is a matrix with determinant J_f . If $J_f = 0$ then $m(f(B(x,r)))/m(B(x,r)) \to 0$ as $r \to 0$. If M is non-singular and $\delta > 0$ we have

$$f(B(x,r)) \subseteq (1+\delta)M(B(x,r))$$

for sufficiently small r. Thus $h \leq |J_f|$. To get the reverse inequality, write $y = f(x), y + k = f(x+h), G = f^{-1}$, to get

$$G(y+k) = G(y) + M^{-1}y + o(|y|), \quad y \to 0.$$

Thus for small r, we get

$$G((1 - \delta)M(B(x, r))) \subseteq M^{-1}M((B(x, r))) = B(x, r)$$

and so

$$(1 - \delta)M(B(x, r)) \subseteq f(B(x, r)).$$

10 The Riesz representation theorem

10.1 Theorem

Let X be a locally compact metric space, and let L be a positive $(f \ge 0 \text{ implies } L(f) \ge 0)$ linear functional on the space $C_0 = C_0(X)$ of continuous real-valued functions with compact support. Then there exist a σ -algebra Π and a non-negative measure μ such that:

- (i) $L(f) = \int_X f d\mu$ for every $f \in C_0$;
- (ii) every Borel set of X is an element of Π ;
- (iii) $\mu(K) < \infty$ for every compact subset K of X;
- (iv) if $E \in \Pi$ then $\mu(E)$ is the infimum of $\mu(V)$ over all open V containing E;
- (v) if E is open or $\mu(E)$ is finite, then $\mu(E)$ is the supremum of $\mu(K)$ over all compact $K \subseteq E$;
- (vi) if $A \subseteq B$ and $\mu(B) = 0$ then $A \in \Pi$ and $\mu(A) = 0$;
- (vii) the μ satisfying (i) to (vi) is unique;
- (viii) if V is open then $\mu(V)$ is the supremum of L(f) over all C_0 functions $f: X \to [0,1]$ such that f = 0 off V.

Note that simplifications (and a simpler proof!) arise if X is compact. In this case the function which is identically 1 is C_0 , and $\mu(X) = L(1) < \infty$.

Proof. We first prove (vii). So assume that μ_1 and μ_2 both satisfy (i) to (vi). Let K be compact. Let $\delta > 0$. Using (iv), choose open V with $K \subseteq V$ and $\mu_2(V) < \mu_2(K) + \delta$. Using Urysohn's lemma, choose $f \in C_0$ with f = 1 on K and f = 0 off V. Then by (i),

$$\mu_1(K) \le \int_X f d\mu_1 = \int_X f d\mu_2 \le \mu_2(V) \le \mu_2(K) + \delta.$$

Thus $\mu_1(K) \leq \mu_2(K)$ and hence they are equal. By (v) we have $\mu_1(E) = \mu_2(E)$ for every open E and by (iv) this holds for all E.

10.1.1 Construction of μ and Π

For open V define $\mu(V)$ to be the supremum of L(f) over all $f \in C_0$ such that $0 \le f \le 1$ and f = 0 off V. Obviously, for open V_j , if $V_1 \subseteq V_2$ this gives $\mu(V_1) \le \mu(V_2)$.

For any E we now define $\mu(E)$ to be the infimum of $\mu(V)$ over all open V with $E \subseteq V$. If E is open this agrees with the previous definition, and property (iv) is immediate.

Obviously if $A \subseteq B$ then $\mu(A) \leq \mu(B)$.

Next, let Π_1 be the set of all $E \subseteq X$ such that $\mu(E) < \infty$ and $\mu(E)$ is the supremum of $\mu(K)$ over all compact $K \subseteq E$.

Finally, let Π be the set of all $E \subseteq X$ such that $E \cap L \in \Pi_1$ for every compact L.

Clearly if $\mu(E) = 0$ then $\mu(E \cap K) = 0$ for every compact K. Thus $E \cap K \in \Pi_1$ and $E \in \Pi$.

Note that if $f \geq g$ and $f, g \in C_0$ then $L(f) = L(g) + L(f - g) \geq L(g)$.

10.1.2 Step I

For any $E_j \subseteq X$ we have $\mu(\bigcup_i E_j) \leq \sum_i \mu(E_j)$.

We first show that $\mu(V_1 \cup V_2) \leq \mu(V_1) + \mu(V_2)$ for open V_j . Let $g \in C_0$ with $0 \leq g \leq 1$ and g = 0 off $V_1 \cup V_2$. By the lemma on partitions of unity we can find C_0 functions $h_j : X \to [0, 1]$ such that $h_j = 0$ off V_j and $h_1 + h_2 = 1$ on the compact support of g. Thus $g \leq h_1 + h_2$ and

$$L(q) \le L(h_1 + h_2) = L(h_1) + L(h_2) \le \mu(V_1) + \mu(V_2).$$

To prove Step I, note that the result is obvious if $\mu(E_j) = \infty$ for some j. Assuming all $\mu(E_j)$ are finite, take $\delta > 0$ and open V_j such that

$$E_j \subseteq V_j, \quad \mu(V_j) < \mu(E_j) + \delta 2^{-j}.$$

Let V be the union of the V_j . Then V is open. If $f: X \to [0,1]$ is in C_0 with f = 0 off V, then the compact support of f is a subset of $V_1 \cup V_2 \cup \ldots V_n$ for some n. So

$$L(f) \le \mu(V_1 \cup \ldots \cup V_n) \le \sum_{j=1}^n \mu(V_j).$$

Thus $\mu(V) \leq \sum_{j} \mu(V_j) \leq \delta + \sum_{j} \mu(E_j)$. Hence $\mu(\bigcup_{j} E_j) \leq \mu(V) \leq \delta + \sum_{j} \mu(E_j)$.

10.1.3 Step II

If K is compact then $\mu(K)$ is the infimum of L(f) over all C_0 functions $f: X \to [0,1]$ such that f = 1 on K. Thus $\mu(K) < \infty$, proving (iii). Also (obviously, by monotonicity) $K \in \Pi_1$.

Take f as in the statement, and $t \in (0,1)$. Then the set $V = \{x : f(x) > t\}$ is open, and $K \subseteq V$. Thus

$$\mu(K) \le \mu(V) \le t^{-1}L(f).$$

This gives $\mu(K) \leq L(f)$.

Now let $\varepsilon > 0$ and take open V with $\mu(V) < \mu(K) + \varepsilon$. Choose a C_0 function $h: X \to [0,1]$ such that h = 1 on K and h = 0 off V. Then

$$L(h) \le \mu(V) < \mu(K) + \varepsilon.$$

This proves Step II.

10.1.4 Step III

If V is open then $\mu(V)$ is the supremum of $\mu(K)$ over all compact $K \subseteq V$. If, in addition, $\mu(V)$ is finite then $V \in \Pi_1$.

Proof. By monotonicity, we only need exhibit compact $K \subseteq V$ with $\mu(K)$ arbitrarily close to $\mu(V)$. Let $t < \mu(V)$. Then there exists a C_0 function $f: X \to [0,1]$ such that $t < L(f) \le \mu(V)$. Let K be the compact support of f. If W is open and $K \subseteq W$ we have f = 0 off W and so $L(f) \le L(W)$. This is true for every such W so $L(f) \le \mu(K)$. Hence $\mu(K) > t$.

10.1.5 Step IV

Let E_j be pairwise disjoint elements of Π_1 , with union E. Then $\mu(E) = \sum_j \mu(E_j)$. If $\mu(E) < \infty$ then $E \in \Pi_1$.

Proof. We show first that if K_1, K_2 are compact and disjoint then $\mu(K_1 \cup K_2) = \mu(K_1) + \mu(K_2)$. Since X is Hausdorff, K_2 is closed, so there is a C_0 function f such that $f: X \to [0,1]$ with f=1 on K_1 and f=0 on K_2 . Take $\delta>0$. Then we know by Step II that there is a C_0 function $g: X \to [0,1]$ with g=1 on $K_1 \cup K_2$ and $L(g) < \mu(K_1 \cup K_2) + \delta$. But fg=1 on K_1 and (1-f)g=1 on K_2 . Using Step II again,

$$\mu(K_1 \cup K_2) + \delta > L(g) = L(fg) + L((1-f)g) \ge \mu(K_1) + \mu(K_2).$$

Using Step I and the fact that δ is arbitrary, we get $\mu(\bigcup K_j) = \sum \mu(K_j)$ for any finite collection of pairwise disjoint compact K_j .

To prove Step IV, note that by definition of Π_1 we know that $\mu(E_j)$ is finite for every j. Since $E_j \in \Pi_1$ we can take compact $H_j \subseteq E_j$ with $\mu(H_j) > \mu(E_j) - \delta 2^{-j}$. Thus

$$\mu(E) \ge \mu(\bigcup_{j=1}^{n} H_j) = \sum_{j=1}^{n} \mu(H_j) \ge -\delta + \sum_{j=1}^{n} \mu(E_j).$$

Using Step I again, we get the first assertion of Step IV.

Now suppose that $\mu(E) < \infty$. Take $\delta > 0$ and form H_j as before. We have $\mu(E) = \sum_j \mu(E_j)$ and so, for some N,

$$\mu(E) \le \delta + \sum_{j=1}^{N} \mu(E_j) \le 2\delta + \sum_{j=1}^{N} \mu(H_j) = 2\delta + \mu(\bigcup_{j=1}^{N} H_j).$$

Thus $E \in \Pi_1$.

10.1.6 Step V

Let $E \in \Pi_1$ and $\delta > 0$. Then there exist compact K and open V such that $\mu(V \setminus K) < \delta$ and $K \subseteq E \subseteq V$.

Proof. Choose compact K, open V with $K \subseteq E \subseteq V$ such that

$$\mu(V) - \delta/2 < \mu(E) < \mu(K) + \delta/2.$$

(The first is by definition of μ , the second by definition of Π_1). Now $V \setminus K$ is in Π_1 , by Step III, and so is K, by Step II. So Step IV gives

$$\mu(K) + \mu(V \setminus K) = \mu(V) < \mu(K) + \delta.$$

10.1.7 Step VI

Let $A, B \in \Pi_1$. Then $A \setminus B, A \cup B, A \cap B$ are all in Π_1 .

Proof. Take $\delta > 0$ and open V_j , compact K_j , such that $K_1 \subseteq A \subseteq V_1$ and $K_2 \subseteq B \subseteq V_2$ and $\mu(V_j \setminus K_j) < \delta$. But

$$A \backslash B \subseteq V_1 \backslash K_2 \subseteq (V_1 \backslash K_1) \cup (K_1 \backslash V_2) \cup (V_2 \backslash K_2).$$

To see this, suppose $x \in V_1 \backslash K_2$. If x is in V_2 or not in K_1 then it is in the third or first set of the last three. Otherwise it is in $K_1 \backslash V_2$.

Since $K = K_1 \setminus V_2 = K_1 \cap V_2^c \subseteq A \cap B^c = A \setminus B$ is compact and $\mu(A \setminus B) < \mu(K) + 2\delta$ we get $A \setminus B \in \Pi_1$.

Since $A \cup B$ is the disjoint union of $A \setminus B$ and B, we get $A \cup B \in \Pi_1$, by Step IV. Also $A \setminus (A \setminus B) = A \setminus (A \cap B^c) = A \cap (A^c \cup B) = A \cap B$ is in Π , by the first part.

10.1.8 Step VII

 Π is a σ -algebra containing all Borel subsets of X.

Proof. Let K be compact and let $A \in \Pi$. Then $A \cap K \in \Pi_1$, by definition of Π . But $K \cap A^c = K \cap (A^c \cup K^c) = K \setminus (A \cap K)$ and this is in Π_1 , by Step VI. So $A^c \in \Pi$.

Now suppose that A_j are all in Π , with union A. Then $B_j = A_j \cap K \in \Pi_1$. Define

$$C_1 = B_1, \quad C_{n+1} = B_{n+1} \backslash B_n.$$

Then each C_n is in Π_1 , by Step VI. So the union of the C_j is in Π_1 , by Step IV. But $\bigcup C_j = \bigcup B_j = A \cap K$. So $A \in \Pi$.

Now note that if C is closed then $C \cap K$ is compact and in Π_1 , by Step II. So $C \in \Pi$.

10.1.9 Step VIII

If $E \in \Pi$ and $\mu(E) < \infty$ then $E \in \Pi_1$. The converse is also true.

Note that together with Step III this proves (v).

Proof. If $E \in \Pi_1$ then $\mu(E) < \infty$ by definition and by II and VI we have $E \cap K \in \Pi_1$ for every compact K, so $E \in \Pi$.

Now suppose $E \in \Pi$ and $\mu(E) < \infty$. Take $\delta > 0$ and open V with $E \subseteq V$ and $\mu(V) < \infty$. Thus $V \in \Pi_1$, by III. Take compact $K \subseteq V$ with $\mu(V \setminus K) < \delta$. Since $E \in \Pi$ we have $E \cap K \in \Pi_1$ and so there is a compact $H \subseteq E \cap K$ with

$$\mu(E \cap K) < \mu(H) + \delta$$
.

Thus, using Step I,

$$\mu(E) \le \mu(E \setminus K) + \mu(E \cap K) \le \mu(V \setminus K) + \mu(E \cap K) \le 2\delta + \mu(H).$$

Thus $E \in \Pi_1$.

10.1.10 Step IX

 μ is a measure on Π .

Proof. Suppose that E is the union of pairwise disjoint elements of Π . We need to show that $\mu(E) = \sum \mu(E_j)$. This is obvious if $\mu(E_j) = \infty$ for any j. If all $\mu(E_j)$ are finite, then each E_j is in Π_1 and the result follows from Step IV.

10.1.11 Step X

We have $L(f) = \int_X f d\mu$ for every $f \in C_0$.

Proof. It suffices to show that $L(f) \leq \int_X f d\mu$, because then we get $-L(f) = L(-f) \leq \int_X -f d\mu = -\int_X f d\mu$.

Let $f \in C_0$ have compact support K. Let $f(K) \subseteq [a,b]$. Choose y_j with $y_0 < a < y_1 < \ldots < y_n = b$ and $y_n - y_{n-1} < \delta$. Then $E_j = \{x \in K : y_{j-1} < f(x) \le y_j\}$ is a Borel set.

Choose open V_j with $E_j \subseteq V_j$ and $\mu(V_j) < \mu(E_j) + \delta/n$. Since $f(x) < y_j + \delta$ on an open set containing E_j we can do this so that $f(x) < y_j + \delta$ on V_j . By the lemma on partitions of unity there exist C_0 functions h_j such that $h_j = 0$ off V_j and $h_1 + \ldots h_n = 1$ on K. Then $f = f \sum_{j=1}^n h_j$ and

$$\mu(K) \le L(\sum_{j=1}^{n} h_j) = \sum_{j=1}^{n} L(h_j),$$

using Step II. Now

$$L(f) = \sum_{j=1}^{n} L(h_j f) \le \sum_{j=1}^{n} L((y_j + \delta)h_j) =$$

$$= \sum_{j=1}^{n} (|a| + y_j + \delta)L(h_j) - |a| \sum_{j=1}^{n} L(h_j) \le$$

$$\le -|a|\mu(K) + \sum_{j=1}^{n} (|a| + y_j + \delta)L(h_j),$$

since $f < y_j + \delta$ on V_j . This gives, since $|a| + y_j \ge 0$ for $j \ge 1$ and $L(h_j) \le \mu(V_j)$,

$$L(f) \le -|a|\mu(K) + \sum_{j=1}^{n} (|a| + y_j + \delta)(\mu(E_j) + \delta/n) = \sum_{j=1}^{n} (y_j + \delta)\mu(E_j) + \delta|a| + \delta^2 + \sum_{j=1}^{n} y_j \delta/n.$$

But

$$\sum_{j=1}^{n} (y_j + \delta)\mu(E_j) \le \sum_{j=1}^{n} \int_{E_j} f + 2\delta d\mu = \int_X f d\mu + 2\delta \mu(K),$$

since $f > y_j - \delta$ on E_j . Also,

$$\sum_{j=1}^{n} y_j \delta/n \le b\delta,$$

and so the result follows since δ is arbitrary.