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1 Introduction

Books: W. Rudin, Real and Complex Analysis ; H.L. Royden, Real Analysis (QA331).

Lecturer: Prof. J.K. Langley (jkl@maths, room C6c, 95 14964).
Lectures: Wed 11 C29; Th 1 C4; Th 5 C29.
There will be NO lectures in the week commencing Feb 9th.

Office hours: none specified but my door is open most of the time and you’re free to con-
sult me.

Assessment: 2.5 hour written examination. 5 questions, best 4 count.

PLEASE NOTE: G1CMIN is a “traditional” pure mathematics theory module along the fa-
miliar “definition, theorem, proof” structure; in particular there isn’t much scope for calculations
and the module is more like G12RAN or G13MTS than G12CAN.

Contents: review of real analysis, Lebesgue measure, Lebesgue integration.

Outline: there are two main themes to the module. The idea of measure is concerned with
the size of sets. The first distinction we meet between sets is usually between finite and infinite
sets. We then refine the idea of an infinite set to distinguish between the countable and the
uncountable (we’ll review this concept). When we discuss the Lebesgue measure of a subset of
R, it will give us an indication of how much of the line is filled up by our set. Thus we will be
able to distinguish “big” uncountable sets from smaller ones.

The second main theme involves integration. G12RAN introduces the Riemann integral, which
has advantages in that it is relatively easy to define, and displays well the link between integration
and differentiation. Its main drawbacks are: (i) the class of Riemann integrable functions is too
small; (ii) it has technical problems, particularly with regard to whether

lim
n→∞

(

∫
fn) =

∫
( lim
n→∞

fn). (1)

Also, Riemann’s integral is difficult to generalize to other settings.
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Lebesgue measure gives a means for comparing the size of sets and leads to Lebesgue inte-
gration, which is used widely in pure maths, probability, mathematical physics, PDEs etc. This
module will go as far as the main theorems concerning when (1) holds. More advanced topics
will only be covered if time permits.

Aims and Learning Outcomes:

Aims: to teach the elements of measure theory and Lebesgue integration.

Learning Outcomes: a successful student will:

1. be able to state, and apply in the investigation of examples, the principal theorems as treated;
2. be able to prove simple propositions concerning sets, measure spaces, Lebesgue measure and
integrable functions.

Coursework: is not part of the assessment for G1CMIN, but the questions should be helpful
practice for the exam. There will be a short assignment each week, for handing in the week after.

For anyone taking this module for G13ES1 (Supplementary Maths), the assessment will con-
sist of a separate coursework assignment handed out by the end of Week 6 of the semester. It
will be due for handing in on the last day of the Spring term and will be based on material from
the first half of the module. You need only attend enough lectures to cover this material.

Web notes: you can find printed notes at

www.maths.nott.ac.uk/personal/jkl/min03.pdf

The lectures will, however, cover all of the material (except for some proofs given in previ-
ous modules such as G1ALIM) so you may prefer to use the Web notes either not at all or just
as backup. These notes may contain errors, omissions or obscure parts: these will be amended
as and when I find them.

2



2 Sets

2.1 Countability

This is an important idea when deciding how “big” infinite sets are compared to each other. We
shall see that R is a “bigger” set than Q. We say that a set A is countable if either A is empty
or there is a sequence (an), n = 1, 2, 3, . . . , which “uses up” A, by which we mean that each
an ∈ A and each member of A appears at least once in the sequence. This is the same as saying
that there is a surjective (onto) function f : N → A (via an = f(n)).

FACT 1: Any finite set is countable.
Indeed, if A = {x1, . . . , xN}, just put an = xn if n ≤ N , and an = xN if n > N .

FACT 2: If B ⊆ A and A is countable, then B is countable.
If B is finite, this is obvious. If B is not finite, then nor is A, so take a sequence which uses
up A, and delete all entries in the sequence which don’t belong to B. We then get an infinite
sequence which uses up B.

FACT 3: Suppose that A is an infinite, countable set. Then there is a sequence (bn), n = 1, 2, . . .,
of members of A in which each member of of A appears exactly once.

To see this, suppose that (an), n = 1, 2, . . . uses up A. Go through the list, deleting any
entry which has previously occurred. So if an = aj for some j < n, we delete an. The resulting
subsequence includes each member of A exactly once. We have thus arranged A into a sequence
- first element, second element etc. - hence the name “countable” .

FACT 4: Suppose that A1, A2, A3, . . . are countably many countable sets. Then the union
U =

⋃∞
n=1An, which is the set of all x which each belong to at least one An, is countable.

Proof: delete any Aj which are empty, and re-label the rest. Now suppose that the j’th set
Aj is used up by the sequence (aj,n), n = 1, 2, . . .. Write out these sequences as follows:

a1,1 a1,2 a1,3 a1,4 . . . . . . . . . . . . . . .

a2,1 a2,2 a2,3 a2,4 . . . . . . . . . . . . . . .

a3,1 a3,2 a3,3 a3,4 . . . . . . . . . . . . . . .

etc. Now the following sequence uses up all of U . We take

a1,1 a1,2 a2,1 a1,3 a2,2 a3,1 a1,4 a2,3 . . .

FACT 5: The set of positive rational numbers is countable. The reason is that this set is the
union of the sets Am = {p/m : p ∈ N}, each of which is countable. Similarly, the set of negative
rational numbers is countable, and so is Q (the union of these two sets and {0}).

FACT 6: If A and B are countable sets, then so is the Cartesian product A × B, which is
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the set of all ordered pairs (a, b), with a ∈ A and B ∈ B.

Here “ordered” means that (a, b) 6= (b, a) unless a = b.

Fact 6 is obvious if A or B is empty. Otherwise, if (an) uses up A and (bn) uses up B, then
A×B is the union of the sets Cn = {(an, bm) : m = 1, 2, 3, . . .}, each of which is countable.

FACT 7: the interval (0, 1) is not countable, and therefore nor are R,C.

Proof: We prove the following stronger assertion. Consider the collection T of all real num-
bers x = 0 · d1d2d3d4 . . . . . . in which each digit dj is either 4 or 5. Then T is uncountable.

Suppose that the sequence (an), n = 1, 2, . . ., uses up T . Write out each aj as a decimal
expansion

a1 = 0 · b1,1b1,2b1,3 . . . . . .

a2 = 0 · b2,1b2,2b2,3 . . . . . .

a3 = 0 · b3,1b3,2b3,3 . . . . . .

etc. Here each digit bj,k is 4 or 5. We make a new number x = 0 · c1c2c3c4 . . . as follows.

We look at bn,n. If bn,n = 4, we put cn = 5, while if bn,n = 5, we put cn = 4. Now x
cannot belong to the list above, for if we had x = am, then we’d have cm = bm,m, which isn’t
true.

Example

Let S be the collection of all sequences a1, a2, . . . with each entry a positive integer. Then
S is uncountable: take the subset of S for which each aj is 4 or 5 and use the above proof.

2.2 The real numbers R
The key idea about R which we need is the existence of least upper bounds.

Let E be a non-empty subset of R. We say that a real number M is an upper bound for
E if x ≤M for all x in E, and E is called bounded above. Among all upper bounds for E there
is one which is the least, called the sup or l.u.b. of E.

We adopt the convention that if E is a subset of R which is not bounded above, then the
sup of E is +∞.

For example sup((0, 1) ∩Q) = 1 and sup N = ∞.

The greatest lower bound of E (denoted glb or inf) is defined similarly: it is the greatest real
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number which is less than or equal to every member of E. If E is not bounded below the glb is
−∞.

2.3 Real sequences

Let (xn), n = 1, 2, . . . be a sequence of real numbers.

We say limn→∞ xn = L ∈ R if to each positive real number ε corresponds an integer n0

such that |xn − L| < ε for all n ≥ n0.

We say limn→∞ xn = +∞ if to each positive real number M corresponds an integer n0 such
that xn > M for all n ≥ n0.

We say limn→∞ xn = −∞ if limn→∞(−xn) = +∞. Thus every negative real M has n0 with
xn < M for all n ≥ n0.

2.4 The monotone sequence theorem

If the real sequence (xn) is non-decreasing (i.e. xn ≤ xn+1) for n ≥ N then xn tends to a limit
(finite or +∞).

We recall the proof. Let s be the supremum of the set {xn : n ≥ N} = A. Suppose first
that A is not bounded above, so that supA = +∞ by our convention. This means that if we are
given some positive number M , then no matter how large M might be, we can find some member
of the set A, say xn1 , such that xn1 > M . But then, because the sequence is non-decreasing,
we have xn > M for all n ≥ n1, and this is precisely what we need in order to be able to say
that limn→∞ xn = +∞.

Now suppose that A is bounded above, and let s be the sup. Suppose we are given some
positive ε. Then we need to show that |xn− s| < ε for all sufficiently large n. But we know that
xn ≤ s for all n, so we just have to show that xn > s− ε for all large enough n.

This we do as follows. The number s − ε is less than s and so is not an upper bound for
A, and so there must be some n2 such that xn2 > s − ε. But then xn > s − ε for all n ≥ n2,
and the proof is complete.

2.5 Lemma

Every real sequence (xn), n = 1, 2, . . . , has a monotone subsequence.

Proof: For each n consider the set En = {xm : m ≥ n}. We look at two cases.

Suppose first that for every n the set En has a maximum element i.e. there is some m ≥ n such
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that xp ≤ xm for all p ≥ n.

To form our subsequence choose n1 ≥ 1 such that xn1 is the maximum element of E1. Then
choose n2 ≥ n1 + 1 such that xn2 is the maximum element of En1+1. Since En1+1 ⊆ E1 we get
xn2 ≤ xn1 . Now take the maximum element of En2+1: this will be xn3 for some n3 > n2 and we
have xn3 ≤ xn2 . Repeating this we get a non-increasing subsequence (xnk

).

Suppose now that some EN has no maximum element. Let n1 = N and choose n2 > n1

such that xn2 > xn1 . Since EN has no maximum element, there is an element greater than all of
xn1 , xn1+1, . . . , xn2 , and this is xn3 for some n3 > n2. Carrying on in this way, we get a strictly
increasing subsequence.

2.6 Corollary (Bolzano-Weierstrass theorem)

Every bounded real sequence has a bounded monotone subsequence and hence a convergent
subsequence.

2.7 Nested intervals

Let Ik = [ak, bk] be closed intervals in R such that Ik+1 ⊆ Ik. Then ak ≤ ak+1 ≤ bk+1 ≤ b1
and a1 ≤ ak+1 ≤ bk+1 ≤ bk so ak converges, to A say, and bk converges, to B say. We have
ak ≤ A ≤ B ≤ bk for all k, so [A,B] is contained in all of the Ik. Thus the intersection of the
Ik is non-empty.

The example In = (0, 1/n) shows that open intervals do not in general have this property.

2.8 Open sets

A subset U of R is called open if the following is true. To each x in U corresponds δx > 0 such
that (x − δx, x + δx) ⊆ U . It is easy to check that if Wt is open for each t in some set T then
the set

⋃
t∈T Wt, which is the set of all y each belonging to at least one Wt, is open. Also the

intersection of finitely many open sets is open.

2.9 Open intervals

By an open interval in R we mean any of the following: (a, b), (a,+∞), (−∞, b),R. All are open
sets.

A subset E of R is called closed if R \ E is open. Obviously a closed interval [a, b] (where
−∞ < a ≤ b < ∞) is closed, since the complement is (−∞, a) ∪ (b,∞), a union of two open
sets.
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Since every (non-empty) open interval contains a rational number and an irrational number,
neither Q nor R \Q is open.

2.10 Lemma

Let x ∈ R. For each t in some non-empty set T let Wt be an open interval containing x. Then
V =

⋃
t∈T Wt is an open interval containing x.

Proof.
Let A be the inf of V and B the sup. We claim first that A and B are not in V . If B
is in V then B is in some Wt. Since Wt is an open subset of R there is a b > B in Wt, and
b is in V , which is a contradiction. Thus A and B are not in V and clearly V is a subset of (A,B).

We claim that (A,B) is a subset of V . Let y ∈ (A,B). Obviously if y = x then y is in
V . Suppose that x < y < B. Then (since B is the sup of V ) there is some w with x < y < w
such that w lies in some Ws. Since x and w lie in the open interval Ws, so does y, and y is in
V . The same proof works if A < y < x.

2.11 Theorem

Let V be a non-empty open subset of R. Then V is the union of countably many pairwise disjoint
open intervals.

Proof: let x ∈ V , and let Cx be the union of all open intervals W such that x ∈ W ⊆ V .
Then Cx is well-defined (since V is open there is at least one such W ) and open, and by Lemma
2.10 this Cx is an open interval.

We claim that if y is in Cx then Cx = Cy. To see this, note that Cx and Cy are both open
intervals containing y and contained in V , and so is Cx∪Cy, by Lemma 2.10. Since x ∈ Cx∪Cy

we get Cx ∪ Cy ⊆ Cx, as Cx is the union of all open intervals containing x and contained in V .
Since y ∈ Cx ∪ Cy, the same argument gives Cx ∪ Cy ⊆ Cy.

It follows that if Cx and Cy have non-empty intersection, with t belonging to both, then both
equal Ct and so Cx = Cy.

Now let dn be a sequence using up all the rational numbers in V , and put Dn = Cdn . The
set of Dn is countable. Since each Cx contains a rational number, every Cx, for x in V , is one
of the Dn. So V is the union of the Dn. Now we go along our sequence Dn, and delete any Dn

which is equal to one which has occurred previously.

2.12 Lemma (Special case of the Heine-Borel theorem)

Let I = [a, b] be a closed interval, and suppose that we have open subsets V1, V2, V3, . . . of R
such that I is contained in the union of the Vj. Then I is contained in the union of finitely many
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of the Vj.

We remark that this is related to the concept of compactness (G13MTS), but we do not need
this concept here.

To prove the lemma, suppose the conclusion is false. Then we can find x1 ∈ I \ V1, x2 ∈
I \ (V1 ∪ V2), and, in general, xn ∈ I \ (V1 ∪ . . . ∪ Vn). Since a ≤ xn ≤ b, the sequence
(xn) is bounded, and so has a convergent subsequence xnk

, with limit α ∈ [a, b]. But then α
is is some VN , and there is some u > 0 with (α − u, α + u) ⊆ VN , since VN is open. Since
xnk

→ α, we see that for large k we have xnk
∈ (α − u, α + u) ⊆ VN . But nk → ∞ so that

for large k we have nk > N and xnk
6∈ VN ⊆ V1∪ . . .∪Vnk

. This contradiction proves the lemma.

Again, this is a property of closed intervals [a, b] not shared by other intervals. For example
(0, 1] is contained in the union of the open intervals (1/n, 2), n ∈ N, and [0,∞) is contained
in the union of the open intervals (−1, n), n ∈ N. In neither case will finitely many of those
intervals suffice to cover the set.

3 Continuous functions

3.1 Basic facts

Let E be a subset of R and let f : E → R be a function. We say f is continuous on E if
the following is true. To each x0 in E and each real ε > 0 corresponds a real δ > 0 such that
|f(x)− f(x0)| < ε for all x in E with |x− x0| < δ.

Fact 1: if tn is a sequence in E converging to x0 then f(tn) converges to f(x0). To see
this, if ε > 0 take δ > 0 as above. We have some n0 such that |tn − x0| < δ for all n ≥ n0,
giving |f(tn)− f(x0)| < ε for all n ≥ n0.

Fact 2: if E is a closed interval [a, b] and f : E → R is continuous then f has a maxi-
mum and minimum on [a, b] and in particular is bounded.

To see this, let M be the supremum of the set f(E) = {f(x) : x ∈ E}. Take a strictly
increasing sequence (yn) (thus yn < yn+1) with limit M . No yn is an upper bound for f(E), so
we can find sn in f(E) with yn < sn ≤ M . Thus sn tends to M . So there exist tn in E such
that f(tn) →M . By the Bolzano-Weierstrass theorem we can assume WLOG that the sequence
(tn), being bounded, converges, to x0 say, and x0 is in the interval [a, b], since a ≤ tn ≤ b. Thus
f(x0) = M . Hence M is in f(E) (and M is the max of f(E)). In particular M is finite.

3.2 Pointwise convergence

Let E be a subset of R and let fn, n ∈ N and f be functions from E to R. We say that fn

converges pointwise to f on E if for each x in E,

lim
n→∞

fn(x) = f(x).
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Thus for each ε > 0 and for each x in E, there is an integer N(x) such that |fn(x)− f(x)| < ε
for all n ≥ N(x).

If the fn are continuous, does it follow that f is continuous? The answer is no.

Example
Let gn(x) be defined on [0, 1] for n ∈ N by gn(x) = 1− nx for 0 ≤ x ≤ 1/n and gn(x) = 0 for
x > 1/n. Then gn is continuous on [0, 1]. Set g(x) to be 1 for x = 0 and 0 otherwise. Then g
is not continuous, but gn → g pointwise on [0, 1].

Notice here also that

lim
n→+∞

( lim
x→0+

gn(x)) = 1 6= lim
x→0+

( lim
n→+∞

gn(x)) = 0.

A second example displaying the same phenomenon comes from hn(x) = e−nx on [0, 1]. Then
again hn → g pointwise on [0, 1].

So we need a stronger condition which will force the limit function to be continuous. The
idea is to make N(x) independent of x.

3.3 Uniform convergence

If fn and f are functions from E to R we say that fn converges uniformly to f on E if the
following is true. To each real ε > 0 corresponds an integer N such that |fn(x)− f(x)| < ε for
all n ≥ N and for all x ∈ E.

The example gn above does not converge uniformly to g on [0, 1]. To see this, take ε = 1/4 and
x = 1/2n. Then g(x) = 0 but gn(x) = 1/2. No matter how large we take N , we can choose
n ≥ N with |gn(1/2n)− g(1/2n)| > ε.

3.4 Theorem

If the real-valued functions fn are continuous on E and converge uniformly to f : E → R then
f is continuous on E.

Proof: take x0 in E and ε > 0. Take N so large that |fN(x) − f(x)| < ε/3 for all x in
E. Take δ > 0 so that |fN(x)− fN(x0)| < ε/3 for all x in E with |x− x0| < δ. For such x we
get

|f(x)− f(x0)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(x0)|+ |fN(x0)− f(x0)| < 3ε/3.

4 Riemann Integration

The Riemann integral will be defined for continuous and some other functions. It is relatively
easy to define and use, and displays the interplay between integration and differentiation well,
but it has certain disadvantages.
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4.1 Basic definitions for the Riemann integral

Let f be a bounded real-valued function on the closed interval [a, b] = I. Henceforth a < b
unless otherwise explicitly stated. Assume that |f(x)| ≤M for all x in I.

A PARTITION P of I is a finite set x0, . . . , xn such that a = x0 < x1 < . . . < xn = b.
The points xj are called the vertices of P . We say that partition Q of I is a refinement of
partition P of I if every vertex of P is a vertex of Q (i.e. P is a subset of Q). For P as above,
we define

Mk(f) = sup{f(x) : xk−1 ≤ x ≤ xk} ≤M, mk(f) = inf{f(x) : xk−1 ≤ x ≤ xk} ≥ −M.

Next, we define the UPPER SUM U(P, f) and LOWER SUM L(P, f) by

U(P, f) =
n∑

k=1

Mk(f)(xk − xk−1), L(P, f) =
n∑

k=1

mk(f)(xk − xk−1).

Notice that L(P, f) ≤ U(P, f). The reason we require f to be bounded is so that all the mk

and Mk are finite and the sums exist. Notice also that −M ≤ mk ≤ Mk ≤ M for each k, and
so

−M(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a).

Suppose that f is positive on I and that the area A under the curve exists. It is not hard to see
that L(P, f) ≤ A ≤ U(P, f) for every partition P of I.

Further, if you draw for yourself a simple curve, it is not hard to convince yourself that re-
fining P tends to increase L(P, f) and decrease U(P, f). We prove this last statement as a
lemma.

4.2 Lemma

Let f be a bounded real-valued function on I = [a, b].

(i) If P,Q are partitions of I and Q is a refinement of P , then

L(P, f) ≤ L(Q, f), U(P, f) ≥ U(Q, f).

(ii) If P1 and P2 are any partitions of I, then L(P1, f) ≤ U(P2, f). Thus any lower sum is ≤
any upper sum.

Proof:
(i) We first prove this for the case where Q is P plus one extra point. The general case then
follows by adding points one at a time. So suppose that Q is the same as P , except that it has
one extra vertex c, where xk−1 < c < xk. Then U(Q, f)− U(P, f) is

(sup{f(x) : xk−1 ≤ x ≤ c})(c− xk−1) + (sup{f(x) : c ≤ x ≤ xk})(xk − c)

−(sup{f(x) : xk−1 ≤ x ≤ xk})(xk − xk−1).
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This is using the fact that all other terms cancel. But the first two sups above are less than or
equal to the third. Since c−xk−1, xk−c, xk−xk−1 are all positive, we get U(Q, f)−U(P, f) ≤ 0.
The proof for the lower sums uses the same idea, or can be proved by noting that L(P, f) =
−U(P,−f).

(ii) Here we just set P to be the partition obtained by taking all the vertices of P1 and all
those of P2. We arrange these vertices in order, and P is a refinement of P1 and of P2. Now we
can write

L(P1, f) ≤ L(P, f) ≤ U(P, f) ≤ U(P2, f).

4.3 Definition of the Riemann integral

Let f be bounded, real-valued on I = [a, b] as before, with |f(x)| ≤ M there. We define the
UPPER INTEGRAL of f from a to b as∫ b

a

f(x)dx = inf
P
{U(P, f)}

where the supremum is taken over all partitions P of I. This exists and is finite, because all the
upper sums are bounded below by −M(b− a). Similarly we define the LOWER INTEGRAL∫ b

a

f(x)dx = sup
P
{L(P, f)}

taking the sup over all partitions P of I. Again this exists and is finite, because all the lower
sums are bounded above by M(b− a).

Now we define f to be Riemann integrable on I if the upper integral equals the lower inte-
gral, in which case we denote the common value by

∫ b

a
f(x)dx.

Notice that the lower integral is always ≤ the upper integral, because of Lemma 4.2, part (ii).
Also, if f is Riemann integrable and positive on I and the area A under the curve exists, then the
fact that L(P, f) ≤ A ≤ U(P, f) for every partition P of I implies that the lower integral is ≤ A

and the upper integral is ≥ A, which means that A equals
∫ b

a
f(x)dx. As usual in integration, it

does not matter whether you write f(x)dx or f(t)dt etc.

4.4 Example

Define f on I = [0, 1] by f(x) = 1 if x is rational and f(x) = 0 otherwise. Let P = {x0, . . . , xn}
be any partition of I. Then clearly Mk(f) = 1 for each k, since in each sub-interval [xk−1, xk]
there is a rational number. Thus U(P, f) =

∑n
k=1(xk − xk−1) = 1 and so the upper integral is

1. Similarly, we have mk(f) = 0 for each k, all lower sums are 0, and the lower integral is 0.

Before proving that continuous functions are Riemann integrable, we first deal with the rather
easier case of monotone functions (non-decreasing or non-increasing).
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4.5 Theorem

Suppose that f is a monotone function on I = [a, b]. Then f is Riemann integrable on I.

Proof: we only deal with the case where f is non-decreasing (i.e. f(x) ≤ f(y) for x ≤ y).
The non-increasing case is similar. Now if f(b) = f(a) then f is constant on I and so the result
follows trivially (all upper and lower sums are the same).

Assume henceforth that f(b) > f(a). Let ε > 0. We choose a partition P = {x0, . . . , xn}
such that for each k we have xk − xk−1 < ε/(f(b)− f(a)). Now, since f is non-decreasing we
have Mk(f) = f(xk) and mk(f) = f(xk−1). Thus

U(P, f)− L(P, f) =
n∑

k=1

(Mk(f)−mk(f))(xk − xk−1) =
n∑

k=1

(f(xk)− f(xk−1))(xk − xk−1) <

<
n∑

k=1

(f(xk)− f(xk−1))ε/(f(b)− f(a)) = (f(xn)− f(x0))ε/(f(b)− f(a)) = ε.

Therefore U(P, f) ≤ L(P, f)+ε. So the upper integral of f (which is the inf of the upper sums)
is at most L(P, f) + ε. But L(P, f) is at most the lower integral (sup of the lower sums). Thus
the upper and lower integrals differ by at most ε and, since ε is arbitrary, must be equal.

To handle the case of continuous functions, we need the following.

4.6 Uniform continuity

Let f be a real-valued function on the closed interval I = [a, b]. We say that f is uniformly contin-
uous on I if the following is true. To each ε > 0 corresponds a δ > 0 such that |f(x)−f(y)| < ε
for all x and y in I such that |x− y| < δ.

4.7 Theorem

If f is continuous on [a, b] then f is uniformly continuous on [a, b].

Proof: suppose that ε > 0 and that NO positive δ exists with the property in the statement.
Then 1/n, for n ∈ N, is not such a δ. Thus there are points xn and yn in I with |xn−yn| < 1/n,
but with |f(xn)− f(yn)| ≥ ε.

Now (xn) is a sequence in the closed interval I, and so is a bounded sequence, and there-
fore we can find a convergent subsequence (xkn), with limit B, say. Since a ≤ xkn ≤ b for each
n, we have B ∈ I. Now |xkn − ykn| → 0 as n→∞, and so (ykn) also converges to B. Since f
is continuous on I, we have f(xkn) → f(B) as n→∞ and f(ykn) → f(B) as n→∞, which
contradicts the fact that |f(xkn)−f(ykn)| is always ≥ ε. This contradiction proves the theorem.
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Remark: the name UNIFORM continuity arises because the δ does not depend on the par-
ticular choice of x or y. The theorem is NOT true for open intervals, as the example h(x) = 1/x,
I = (0, 1) shows. To see this, just note that h(1/n) − h(1/(n − 1)) = 1 for all n ∈ N, but
|1/n− 1/(n− 1)| = 1/n(n− 1), which we can make as small as we like.

4.8 Theorem

Let f be continuous, real-valued, on I = [a, b] (a < b). Then f is Riemann integrable on I.

Proof: let ε > 0 be given. We choose a δ > 0 such that for all x and y in I with |x− y| < δ we
have |f(x)−f(y)| < ε/(b−a). We choose a partition P = {x0, . . . , xn} of I such that, for each
k, we have xk − xk−1 < δ. Now take a sub-interval J = [xk−1, xk]. We know that there exist c
and d in J such that for all x in J we have f(c) ≤ f(x) ≤ f(d). This means that Mk(f) = f(d)
and mk(f) = f(c). But |c − d| < δ and so Mk(f) −mk(f) = f(d) − f(c) < ε/(b − a). This
holds for each k. Thus

U(P, f)− L(P, f) =
n∑

k=1

(Mk(f)−mk(f))(xk − xk−1) < (ε/(b− a))
n∑

k=1

(xk − xk−1) = ε.

The same argument as used for non-decreasing functions now applies.

4.9 Theorem

Let f and g be Riemann integrable functions on I. Let c, d be real numbers. Then cf + dg is
Riemann integrable on I and

∫ b

a
cf(x) + dg(x)dx = c

∫ b

a
f(x)dx+ d

∫ b

a
g(x)dx.

Proof:
First consider cf , when c > 0. Obviously L(P, cf) = cL(P, f) and U(P, cf) = cU(P, f)

and so
∫ b

a
cf(x)dx = c

∫ b

a
f(x)dx. It is also easy to see that U(P,−f) = −L(P, f) and

L(P,−f) = −U(P, f), so
∫ b

a
−f(x)dx = −

∫ b

a
f(x)dx. This leaves only f + g to consider.

Take ε > 0 and partitions P1, P2 of I such that L(P1, f) and U(P2, f) are both within ε of∫ b

a
f(x)dx. Note that we also have L(P1, f) ≤

∫ b

a
f(x)dx ≤ U(P2, f). We can assume that

P1 = P2, because otherwise we can replace both by P1 ∪ P2, and refinements can only push the
lower and upper sums closer to the integral. Similarly, take Q such that L(Q, g) and U(Q, g) are

both within ε of
∫ b

a
g(x)dx.

We can assume that P = Q, because otherwise we can replace both by P ∪Q. Now

L(P, f) + L(P, g) ≤ L(P, f + g) ≤ U(P, f + g) ≤ U(P, f) + U(P, g).

Thus L(P, f + g) and U(P, f + g) both lie within 2ε of
∫ b

a
f(x)dx+

∫ b

a
g(x)dx. Therefore so do

the upper and lower integrals of f + g and, since ε is arbitrary, the result follows.
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4.10 The fundamental theorem of the calculus

Suppose that F, f are real-valued functions on [a, b], that F is continuous and f is Riemann

integrable on [a, b], and that F ′(x) = f(x) for all x in (a, b). Then
∫ b

a
f(x)dx = F (b)− F (a).

Proof.
The proof is based on the mean value theorem. Let P = {x0, . . . , xn} be any partition of [a, b].
Then by the mean value theorem there exist points tk satisfying xk−1 < tk < xk such that

F (b)− F (a) =
n∑

k=1

(F (xk)− F (xk−1)) =
n∑

k=1

f(tk)(xk − xk−1).

But this means that L(P, f) ≤ F (b) − F (a) ≤ U(P, f). Hence the lower integral of f is at
most F (b)−F (a), and the upper integral of f is at least F (b)−F (a). But the lower and upper
integrals of f are, by assumption, the same.

4.11 Examples

(i) The limit of a sequence of Riemann integrable functions need not be Riemann integrable.
Let E be the countable set Q ∩ [0, 1], and let (rn) be a sequence in E, in which each element
of E appears exactly once. Define gn as follows. Set gN(x) = 1 if x is one of the N points
r1, . . . , rN , and gN(x) = 0 otherwise. Obviously all lower sums for gN are 0. Take the partition
P = {x0, . . . , xn} with xk = k/n, 0 ≤ k ≤ n, and n > 2N an integer. Then at most 2N

intervals [xk−1, xk] contain a point where gN(x) 6= 0, so U(P, gN) ≤ 2N/n. So
∫ 1

0
gN(x)dx = 0.

But as N →∞ we see that gN converges pointwise to the function of Example 4.4, which is not
Riemann integrable.

(ii) Define hn on [0, 1], for integer n > 2, by hn(x) = n2x if 0 ≤ x ≤ 1/n and hn(x) =
n2(2/n− x) if 1/n ≤ x ≤ 2/n and hn(x) = 0 if x ≥ 2/n. Then hn is continuous on [0, 1] with
Riemann integral 1. But hn → 0 pointwise on [0, 1], and 0 has Riemann integral 0.

5 Series

5.1 The extended real numbers

We define R∗ = R ∪ {−∞,∞}. Later we will define some products involving ∞, but for now
we just define

∞+∞ = ∞, x+∞ = ∞
for all x ∈ R. Note that ∞+ (−∞) is not defined.

We can extend < to R∗ in the obvious way by saying that −∞ < x < ∞ for every x in
R.
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Note that if we say a subset A of R is bounded above this will continue to mean that there
is some M ∈ R such that x ≤M for all x ∈ A: of course all x are also ≤ ∞.

If A is any non-empty subset of R∗, then A has a least upper bound (sup) and an inf. Note that
supA is ∞ if A has no upper bound in R. In particular this is true if ∞ ∈ A.

We can define limits of sequences in R∗ exactly as in R. In particular xn → L ∈ R means
that given positive real ε we have |xn − L| < ε (and so xn ∈ R) for all n ≥ n0(ε).

The monotone sequence theorem remains true: if xn is a non-decreasing sequence in R∗ then xn

tends to sup{xn}.

5.2 Series

We consider here only series with terms ak in [0,∞]. Given such ak for k ≥ p ∈ N, the partial
sums

sn =
n∑

k=p

ak

form a non-decreasing sequence in R∗, and we set

S =
∞∑

k=p

ak = lim
n→∞

sn.

This will be ∞ if any ak is ∞, but of course

∞∑
k=1

1/k = ∞.

Note that sn ≤ S for each n.

5.3 Re-arrangements

Suppose that ak ∈ [0,∞] for each k ∈ N. Suppose that φ : N → N is a bijection, and set
bk = aφ(k) for each k. Then

S1 =
∞∑

k=1

bk = aφ(1) + aφ(2) + . . . . . . . . .

is called a RE-ARRANGEMENT of

S2 =
∞∑

k=1

ak,

and the sums S1, S2 are equal.
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To see this, just note that if n ∈ N, then we can find m such that φ(j) ≤ m for 1 ≤ j ≤ n, and
so

n∑
k=1

bk =
n∑

k=1

aφ(k) ≤
m∑

p=1

ap ≤ S2.

Letting n→∞ we get S1 ≤ S2. Now just reverse the roles of the two series.

Surprisingly, this fails if we allow negative terms. The alternating series

S = ln 2 = 1/1− 1/2 + 1/3− 1/4 + . . . . . . . . . . . .

re-arranges (one odd, followed by two evens) to

1/1− 1/2− 1/4 + 1/3− 1/6− 1/8 + 1/5− 1/10− 1/12 + . . . . . . .

which has sum S/2.

5.4 Double series

Suppose that m and p are (finite) integers and m ≤ n ≤ ∞ and p ≤ q ≤ ∞ and aj,k ∈ [0,∞]
for all integers j, k with m ≤ j ≤ n, p ≤ k ≤ q. N.B. j, k do not take the value ∞. Then

n∑
j=m

(
q∑

k=p

aj,k

)
= S1

and
q∑

k=p

(
n∑

j=m

aj,k

)
= S2

are equal.

Proof: this is clearly true if n and q are both finite. Also if N ≤ n is finite and q = ∞,

N∑
j=m

(
∞∑

k=p

aj,k

)
=

N∑
j=m

(
lim

M→∞

M∑
k=p

aj,k

)
=

= lim
M→∞

N∑
j=m

(
M∑

k=p

aj,k

)
= lim

M→∞

M∑
k=p

(
N∑

j=m

aj,k

)
=

∞∑
k=p

(
N∑

j=m

aj,k

)
.

Setting N = n, this proves the result when n is finite. Now if n and q are both ∞, take any
finite N ≥ m to get

N∑
j=m

(
∞∑

k=p

aj,k

)
=

∞∑
k=p

(
N∑

j=m

aj,k

)
≤

∞∑
k=p

(
∞∑

j=m

aj,k

)
.

Letting N →∞ we get S1 ≤ S2, and the reverse inequality is proved the same way.
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Note that if we take any sum of finitely many aj,k this will be at most the sum of finitely
many rows, and so at most the double sum.

Again, examples show that this property of independence of order of summation fails if we
allow terms of mixed sign.

5.5 Generalized series

If T is a countably infinite set, and at ∈ [0,∞] for every t in T , we can define∑
t∈T

at

as follows. Let tn be any sequence using up T , with every t in T appearing exactly once, set
bn = atn and put ∑

t∈T

at =
∞∑

n=1

bn.

It does not matter which particular sequence we take, because if we use a different sequence the
series we get will be a re-arrangement of

∑
bn and so have the same sum.

For example, ∑
t∈Z

2t = 20 + 21 + 2−1 + 22 + . . . . . . . . . = ∞.

6 Measures

We first need:

6.1 σ-algebras

Let X be a set, and let Π be a collection of subsets of X. Then Π is called a σ-algebra if Π is
non-empty and the following two conditions are satisfied:

(i) for every A in Π, the complement X\A is in Π;
(ii) if we have countably many Aj, say A1, A2, . . ., all in Π, then their union

⋃
j Aj is in Π.

In particular, the union of finitely many elements of Π is an element of Π.

By taking A ∪ (X \ A), we see that X is always in Π, and so is the empty set.
It follows from (i) and (ii) that the intersection of countably many elements of Π is an element

of Π (see problem sheet).

The simplest example of a σ-algebra is the power set P (X), the collection of all subsets of
X.

Note that some books omit the requirement that Π be non-empty: however, an empty
collection of subsets of X is not very interesting. Also it is easy to check (optional) that this
definition is equivalent to what Dr. Feinstein calls a σ-field in his G1CMIN lecture notes and
exam papers.
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6.2 Lemma

Let X be a set. If for every t in some set T , the collection Πt is a σ-algebra of subsets of X,
then the intersection

⋂
t Πt, which is the collection of all subsets of X each belonging to all of

the Πt, is itself a σ-algebra of subsets of X.

The proof is trivial: since X ∈ Πt for every t, the intersection is non-empty, and conditions
(i) and (ii) are obviously satisfied.

It follows that every non-empty collection H of subsets of X is a sub-collection of a ‘mini-
mal’ σ-algebra of subsets of X. To do this, take the intersection of all σ-algebras of subsets of
X each of which contain H. This is not a vacuous definition, as there is always at least one,
namely P (X). This is called the σ-algebra ‘generated’ by H.

The σ-algebra generated by the open sets is called the σ-algebra of Borel sets. We shall see
that not every subset of R is a Borel set.

6.3 Measures

Let X be a non-empty set, and let Π be a (N.B. non-empty) σ-algebra of subsets of X. By a
measure µ on Π we mean a function µ : Π → [0,+∞] which satisfies the conditions µ(∅) = 0
and

µ(E) =
∑

j

µ(Ej)

whenever we have a countable family of pairwise disjoints sets Ej (all in Π) whose union is E.
The elements of Π will be called µ-measurable (or just measurable) sets, and we will often talk
about µ as a measure on X (with the existence of Π taken for granted).

6.4 Examples

Let X be a set and let µ(U) be the number of elements of each subset U of X. Then µ is a
measure on P (X), called the counting measure.

If we have a measure µ on a set X and µ(X) = 1, then µ is called a probability measure.
Measurable sets correspond to events. The countable additivity corresponds to the probabilities
of pairwise mutually disjoint events. In particular, µ(X\U) = 1− µ(U).

Let X be a set, let x ∈ X, and let µ(U) be 1 if x ∈ U , and 0 otherwise. Then µ is a measure
on P (X) (point mass at x).

Let X be an uncountable set and, for U ⊆ X, let µ(U) be 0 if U is countable and ∞ if U is
uncountable.

6.5 Some properties of measures µ

(i) If A ⊆ B then µ(A) ≤ µ(B).

To see this, write C = B\A = B ∩ Ac. Then B = A ∪ C and A,C are disjoint, and

µ(B) = µ(A) + µ(C) ≥ µ(A).
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(ii) µ(A ∪B) = µ(A) + µ(B \ A) ≤ µ(A) + µ(B) (using (i)).

(iii) µ(
⋃n

j=1Gj) ≤
∑n

j=1 µ(Gj). (By induction, using (ii)).

(iv) If Bj ⊆ Bj+1 and B is the union of the (countably many) Bj then µ(Bj) → µ(B) as
j →∞.

To prove (iv), write E1 = B1 and Ej+1 = Bj+1\Bj. Then Bj is the union of E1, . . . , Ej (by
induction on j) and B is the union of all the Ej and the Ej are disjoint. (If m < n we have
Em ⊆ Bm ⊆ Bn−1 and En = Bn \ Bn−1 and so Em ∩ En = ∅. Also if m is the smallest j for
which x ∈ Bj then x ∈ Em). We now get

µ(Bj) =

j∑
m=1

µ(Em) →
∞∑

m=1

µ(Em) = µ(B).

(v) It follows from (iv) that if the Fj are all µ-measurable then µ(
⋃∞

j=1 Fj) = limn→∞ µ(
⋃n

j=1 Fj).

(vi) We then have, using (iii) and (v), subadditivity:

µ(
∞⋃

j=1

Gj) = lim
n→∞

µ(
n⋃

j=1

Gj) ≤ lim
n→∞

n∑
j=1

µ(Gj) =
∑

j

µ(Gj).

(vii) Note that some books omit the condition µ(∅) = 0. However µ(∅) = µ(∅) + µ(∅) and so
the only possible values for µ(∅) are 0 and ∞. If µ(∅) = ∞ then µ(A) = ∞ for every A ∈ Π.

7 Lebesgue outer measure

We are going to construct the Lebesgue measure λ on a σ-algebra of subsets of R, which may
be thought of as a generalization of the idea of the length of an interval.

Now the idea of length makes sense for an interval, so that the length of (a, b) is b− a (and
is ∞ if b = ∞ or a = −∞). However, for other sets such as Q the idea of length isn’t defined
in any “obvious” way. So we start by constructing the Lebesgue outer measure, which is defined
for every subset A of R. The idea is to “minimize” the total length of open intervals which
together cover A. We will then prove some properties, including the fact that for intervals the
outer measure equals the length.

7.1 Definition

Let A ⊆ R. It is always possible to choose countably many open intervals which together cover
A i.e. whose union contains A: in fact we can do this with one interval (−∞,∞).

So we define the outer measure λ∗(A) as follows. Consider all countable collections C of open
intervals (ak, bk) such that A ⊆

⋃
(ak, bk): these intervals have total length L(C) =

∑
k(bk−ak).
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We do this for all such countable collections C of open sets covering A, and take the inf of L(C)
over all possible C. In particular, since A ⊂ (−∞,+∞), this is always defined. Formally,

λ∗(A) = inf

{∑
k

(bk − ak) : A ⊆
⋃
k

(ak, bk)

}
,

in which we consider only covering of A by countably many open intervals.

Another way to express this is that λ∗(A) is the infimum of those positive t such that there
exist countably many open intervals (ak, bk) of total length

∑
k(bk−ak) = t with A ⊆

⋃
k(ak, bk).

Obviously, if A ⊆ B ⊆ R then any collection of open intervals covering B also covers A,
and so λ∗(A) ≤ λ∗(B).

Also {x} ⊆ (x − 1/n, x + 1/n) for n ∈ N, so λ∗({x}) ≤ 2/n and so λ∗({x}) = 0. Thus
we have λ∗(∅) = 0.

7.2 Theorem

λ∗ is countably sub-additive, which means the following. If we have countably many subsets
E1, E2, . . . of R, and E =

⋃
nEn is their union, then λ∗(E) ≤

∑
n λ

∗(En).

Proof. This is obvious if any λ∗(En) is infinite. Now assume that all λ∗(En) are finite. Let
∞ > δ > 0. For each n, we have λ∗(En) + δ2−n > λ∗(En) and so we can choose a countable
family of open intervals Ij,n of length Lj,n, such that

En ⊆
⋃
j

Ij,n,
∑

j

Lj,n < λ∗(En) + δ2−n.

Then E is contained in the union of all the Ij,n. There are countably many of these intervals Ij,n
and together they cover E.

Consider the sum of the lengths of all the Ij,n. A partial sum s for this series is the sum of
finitely many Lj,n. So if N is large enough we get

s ≤
N∑

n=1

∑
j

Lj,n ≤
∑

n

(λ∗(En) + δ2−n) ≤
∑

n

λ∗(En) +
∞∑

n=1

δ2−n = δ +
∑

n

λ∗(En).

Since we’re taking an arbitrary partial sum, the sum of all the Lj,n is at most δ +
∑

n λ
∗(En).

Since δ is arbitrary we get λ∗(E) ≤
∑

n λ
∗(En).

7.3 Examples

We have λ∗(Q) = 0, while λ∗([0, 1]\Q) = 1.
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7.4 Lemma

Let A ⊆ R, let x ∈ R, and let A+ x = {y + x : y ∈ A}. Then λ∗(A) = λ∗(A+ x).

To prove this, let s > λ∗(A). Then s is not a lower bound for the set of t ∈ (0,∞] such
that A can be covered by the union of countably many open intervals of total length t. So there
exists t with t < s such that A is contained in the union of the (ak, bk), where

∑
k(bk − ak) = t.

But then A + x is contained in the union of the countably many intervals (ak + x, bk + x),
and these have total length t. So λ∗(A + x) ≤ λ∗(A). The reverse inequality holds, because
A = (A+ x) + (−x).

7.5 Theorem

If A is an interval then λ∗(A) is the length of A.

Proof. Suppose that the interval A has finite end-points a, b. Then for n ∈ N we have
A ⊆ (a − 1/n, b + 1/n) so λ∗(A) ≤ b − a + 2/n. Since n is arbitrary we get λ∗(A) ≤ b − a.
Thus for a finite interval A, we have λ∗(A) not more than the length of A, and this is obviously
also true for an interval of infinite length. So we need to show that λ∗(A) is at least the length
of A.

To prove this, we assume first that A = [a, b], with a, b finite, a < b. Suppose that we
have a countable family of open intervals (ak, bk) (k ∈ T ⊆ N) which together cover A, and∑

k(bk − ak) < b− a. By Lemma 2.12 we can assume that there are only finitely many of these
intervals. Thus A is contained in the union of N open intervals (ak, bk). Let n be large and
partition A into n closed intervals I1, . . . , In of equal length s = (b− a)/n, with vertices in the
set {xp = a+ps : p ∈ Z}. For each k, the total length of those Ij which meet (ak, bk) is at most
bk − ak + 2s (it is at most the difference between the least xp which is ≥ bk and the greatest xq

which is ≤ bk).

Since every Ij is contained in [a, b] and so meets at least one (ak, bk), we see that the total
length of the Ij is

(b− a) = ns ≤
∑

k

((bk − ak) + 2s) ≤ 2Ns+
∑

k

(bk − ak).

Since n can be chosen arbitrarily large, with s consequently arbitrarily small, we get

b− a = ns ≤
∑

k

(bk − ak).

So λ∗(A) is at least the length of A when A is a closed interval with finite end-points. The
general case follows, because if A is an interval and t is positive but less than the length of A,
we can choose a closed interval B contained in A, of length t, to get λ∗(A) ≥ λ∗(B) ≥ t.

This idea and proof are easily generalized to higher dimensions. In R2 we take the infimum
of the sum

∑
(area of Bj), over all coverings of A by open rectangles Bj (open means no
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boundary points included). Consider e.g. the straight line A from (0, 0) to (1, 1). The part with
j/n ≤ x, y ≤ (j + 1)/n lies in the open rectangle (j − 1)/n < x, y < (j + 2)/n, which has
area 9n−2. So λ∗(A) ≤ 9n−1 and, since n can be arbitrarily large, A has two-dimensional outer
measure 0.

8 Lebesgue measure

The outer measure λ∗ of the last section turns out not to be a measure on the whole power set
P (R). However, we can find a σ-algebra of subsets of R on which it is a measure. The idea is
the following. If λ∗ were a measure on the power set of R then we’d have

λ∗(A) = λ∗(A ∩ E) + λ∗(A\E)

for every A,E, by disjointness. So we consider those E for which this is true for every A.

8.1 Definition

A subset E of R is said to be Lebesgue measurable if we have

λ∗(A) = λ∗(A ∩ E) + λ∗(A\E)

for every subset A of R. Note that

λ∗(A) ≤ λ∗(A ∩ E) + λ∗(A\E)

always holds, so that to show that some set E is Lebesgue measurable it suffices to prove that

λ∗(A) ≥ λ∗(A ∩ E) + λ∗(A\E)

for every A.

We will sometimes write Ec for R \ E.

8.2 Some basic facts

(i) R and the empty set are Lebesgue measurable.

(ii) Any set E with λ∗(E) = 0 is Lebesgue measurable.

(iii) If E is Lebesgue measurable, so is R\E.

(iv) If E is Lebesgue measurable, so is x+ E for every x ∈ R.

Property (iii) is obvious. To prove (ii), assume λ∗(E) = 0. Then λ∗(A ∩ E) will be 0 for all A,
which gives

λ∗(A ∩ E) + λ∗(A \ E) = λ∗(A \ E) ≤ λ∗(A)
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as required. Property (i) now follows from (ii) and (iii).

Now we prove (iv). Let E ⊆ R be Lebesgue measurable, and note that for A ⊆ R we have

A ∩ (E + x) = {y : y ∈ A, y − x ∈ E} = {z + x : z + x ∈ A, z ∈ E} =

= x+ {z : z ∈ A− x, z ∈ E} = x+ ((A− x) ∩ E)

and hence λ∗(A ∩ (E + x)) = λ∗((A− x) ∩ E), using Lemma 7.4.

Next, note that (E + x)c = Ec + x. This gives

A \ (E + x) = A ∩ (E + x)c = A ∩ (Ec + x) = x+ ((A− x) ∩ Ec)

which gives λ∗(A \ (E + x)) = λ∗((A− x) ∩ Ec).

Since E is Lebesgue measurable we now get

λ∗(A) = λ∗(A−x) = λ∗((A−x)∩E)+λ∗((A−x)∩Ec) = λ∗(A∩ (E+x))+λ∗(A\ (E+x)).

8.3 Theorem

The union or intersection of finitely many Lebesgue measurable sets is Lebesgue measurable.

We first prove that if E and F are Lebesgue measurable subsets of R, then so is G = E ∪F .
Write Ec for R\E. We have

λ∗(A) = λ∗(A∩E)+λ∗(A∩Ec) = λ∗(A∩E∩F )+λ∗(A∩E∩F c)+λ∗(A∩Ec∩F )+λ∗(A∩Ec∩F c) =

= λ∗(A∩E ∩F ) +λ∗(A∩E ∩F c) +λ∗(A∩Ec ∩F ) +λ∗(A∩Gc) ≥ λ∗(A∩G) +λ∗(A∩Gc),

since λ∗ is sub-additive and

G = E ∪ F = (E ∩ F ) ∪ (E ∩ F c) ∪ (Ec ∩ F ).

Now, if we are given n ≥ 3 and Lebesgue measurable sets F1, . . . Fn, we write

n⋃
j=1

Fj = Fn ∪
n−1⋃
j=1

Fj

and so the assertion about unions of finitely many sets follows by induction. Intersections work
as well, because

n⋂
j=1

Fj

is the complement of
n⋃

j=1

F c
j

and each F c
j is Lebesgue measurable.
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8.4 Theorem

(i) Suppose that F1, F2, . . . are countably many pairwise disjoint Lebesgue measurable sets with
union F . Then F is Lebesgue measurable, and λ∗(F ) =

∑
j λ

∗(Fj).

(ii) The union of countably many Lebesgue measurable sets is Lebesgue measurable.

Proof. (i) We may assume that there are infinitely many Fj, by making them all empty from
some j on, if necessary. Let Gn =

⋃n
j=1 Fj. The Gn are Lebesgue measurable.

We claim that for every n ∈ N, and for every A ⊆ R,

λ∗(A ∩Gn) =
n∑

j=1

λ∗(A ∩ Fj).

This is clearly true for n = 1. Assuming it true for n and using the Lebesgue measurability of
Fn+1, we get

λ∗(A∩Gn+1) = λ∗(A∩Gn+1∩Fn+1)+λ
∗(A∩Gn+1∩F c

n+1) = λ∗(A∩Fn+1)+λ
∗(A∩Gn) =

n+1∑
j=1

λ∗(A∩Fj)

and the result follows.
Now, by the previous claim, if A is any subset of R,

λ∗(A) = λ∗(A∩Gn)+λ∗(A∩Gc
n) ≥ λ∗(A∩Gn)+λ∗(A∩F c) =

n∑
j=1

λ∗(A∩Fj)+λ∗(A∩F c).

Since n is arbitrary,

λ∗(A) ≥
∑

j

λ∗(A ∩ Fj) + λ∗(A ∩ F c). (2)

Since λ∗ is countably sub-additive, we get, from (2),

λ∗(A) ≥ λ∗(A ∩ F ) + λ∗(A ∩ F c),

which proves that F is Lebesgue measurable. Now choosing A = F in (2) and using sub-additivity
again gives

λ∗(F ) ≥
∑

j

λ∗(Fj) ≥ λ∗(F ).

To prove (ii), just note that if we have E1, E2, . . . with union E, then settingH1 = E1, Hn+1 =
En+1\(

⋃n
j=1Ej), the Hj are Lebesgue measurable and pairwise disjoint, and their union is E.

(If m < n then Hm ⊆ Em and Hn ∩ Em is empty).

8.5 Corollary

For Lebesgue measurable F we define λ(F ) = λ∗(F ). The Lebesgue measurable sets form a
σ-algebra Π of subsets of R, and λ is a measure on Π.
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8.6 Theorem

Let a ∈ R. Then the open interval (a,+∞) is Lebesgue measurable.

Proof. Let A be any subset of R, and let A1 = A ∩ (a,+∞), A2 = A ∩ (−∞, a]. We only
need to show that λ∗(A) ≥ λ∗(A1) + λ∗(A2), which is obvious if λ∗(A) = ∞. Assume now that
λ∗(A) is finite. Take a real δ > 0 and choose a countable collection of open intervals Ij which
cover A, such that ∑

j

|Ij| < λ∗(A) + δ,

using |I| for the length. Let

Pj = Ij ∩ (a,+∞), Qj = Ij ∩ (−∞, a].

Then A1 ⊆
⋃

j Pj so

λ∗(A1) ≤
∑

j

λ∗(Pj) =
∑

j

|Pj|

since Pj is an interval. Doing the same for A2,

λ∗(A1) + λ∗(A2) ≤
∑

j

|Pj|+
∑

j

|Qj| =
∑

j

|Ij| < λ∗(A) + δ.

Since δ is arbitrary the theorem is proved.

8.7 Corollary

All Borel sets (in particular, all open sets) are Lebesgue measurable.

8.8 Theorem

Let E ⊆ R. The following statements are equivalent.

(i) E is Lebesgue measurable.
(ii) For every real ε > 0 there exists an open set U with E ⊆ U and λ∗(U \ E) < ε.
(iii) There exists a set V , such that:
V is the intersection of countably many open sets;
V contains E;
λ∗(V \ E) = 0.

Thus Lebesgue measurable sets may in a certain sense be “well-approximated” by open sets.

Proof. (ii) implies (iii): for each n ∈ N take an open set Vn containing E, such that λ∗(Vn\E) <
1/n. Now let V be the intersection of the Vn. Then E ⊆ V , and for each n we have
λ∗(V \ E) ≤ λ∗(Vn \ E) < 1/n.

(iii) implies (i): take V as in (iii), and set W = R\V . Then W ⊆ F = R\E, and F \W = V \E.
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Since V is the intersection of open Uj, say, then W = R\
⋂
Uj =

⋃
(R\Uj) is a union of closed

sets, and so is Lebesgue measurable. Hence we can write F as the union of a closed set W and
a set F \W which has outer measure 0. Thus F is Lebesgue measurable and so is E.

(i) implies (ii). First set En = E ∩ [−n, n], n ∈ N. Each En is Lebesgue measurable. For
each n ∈ N choose, directly from the definition of outer measure, a countable union Un of open
intervals containing En and having sum of lengths less than λ(En) + ε2−n. Then An = Un \En

has λ(En) + λ(An) = λ(Un) and so λ(An) = λ∗(An) < ε2−n. Let U be the union of the
Un, n ∈ N. Then U is open, and U \E = (

⋃
Un) \E =

⋃
(Un \E) ⊆

⋃
(Un \En) =

⋃
An has,

by the subadditivity of λ∗, outer measure at most
∑

n∈N λ
∗(An) < ε(1/2 + 1/4 + . . .) = ε.

9 A set which is not Lebesgue measurable

9.1 The Axiom of Choice

The version of this axiom which we will use is the following:

Suppose that we have a set T , and that At is a non-empty set, for each t ∈ T , and that
At ∩ As = ∅, for s, t ∈ T, s 6= t. Then we can form a set B = {ct : t ∈ T} by choosing one ct
from each At.

9.2 Theorem

There exists a subset E of [0, 1] such that E is not Lebesgue measurable.

Proof. We define a relation ∼ on [0, 1] by x ∼ y iff x−y is rational. Then ∼ is an equivalence
relation. To see this, obviously x ∼ x (so ∼ is reflexive) and x ∼ y iff y ∼ x (symmetric) and
x ∼ y and y ∼ z imply that y − x and z − y are rational, so that z − x is rational (transitive).

For each x ∈ I = [0, 1] we form the equivalence class

[x] = {y ∈ I : y ∼ x}.

Then either [x] ∩ [y] is empty, or [x] = [y]. Thus I is the union of these disjoint equivalence
classes. We have a set of pairwise disjoint equivalence classes, whose union is I.

(To see that we have a set T of these, use the mapping φ : I → T given by φ(x) = [x],
so that T is just the image φ(I).)

Using the Axiom of Choice, we form a set E which contains precisely one element of each
equivalence class. So for each x in [0, 1] there is a unique y in E such that x − y is rational.
Note that −1 ≤ x− y ≤ 1.

Now use the fact that H = Q ∩ [−1, 1] is countable, and write this set as {r1, r2, r3, . . .},
with the rj distinct rational numbers, using up H. Then every x in [0, 1] belongs to one of the
Ej defined by Ej = E + rj. Also, if j 6= k then Ej ∩ Ek = ∅. For if u lies in both then u− rj

and u− rk are both in E. But (u− rj) 6= (u− rk) and (u− rj) ∼ (u− rk), and E contains just
one element of each equivalence class.
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Suppose that E is Lebesgue measurable. Then so is each Ej. Now, [0, 1] is contained in the
countable union of the pairwise disjoint Ej, so

1 = λ([0, 1]) = λ∗([0, 1]) ≤
∑
j∈N

λ∗(Ej) =
∑
j∈N

λ(Ej) =
∑
j∈N

λ(E).

So λ(E) > 0. But the Ej are disjoint and each is a subset of [−1, 2], so

∞ =
∑
j∈N

λ(E) =
∑
j∈N

λ(Ej) ≤ λ([−1, 2]) = 3,

which is impossible.
Hence it is not always true that

λ∗(A) = λ∗(A ∩ E) + λ∗(A ∩ Ec),

so the Lebesgue outer measure described earlier is not additive on the whole power set of R, and
so is not a measure on the power set of R.

We also see that not every subset of R is a Borel set.

Not all mathematicians accept the Axiom of Choice. It can be shown to imply that every set
C has an ordering <∗ with the properties that, for all a, b, c in C,

(i) either a <∗ b or b <∗ a or b = a, and a <∗ b and b <∗ c implies a <∗ c, as well as
(ii) every non-empty subset D of C has a least element i.e. there exists d ∈ D such that

d <∗ c for all c in D with c 6= d.

Such an ordering is called a well-ordering. N is well-ordered by ordinary <, but R is not.
Every countable set A has an obvious well-ordering. Write A as {aj} without repetition, and
order by a1 <

∗ a2 <
∗ a3 <

∗ . . ..

10 Measurable functions

We have constructed Lebesgue measure for (some) subsets of R, and we now return to a general
measure space. So assume we have a non-empty set X, a (non-empty) σ-algebra Π of subsets of
X, and a measure µ : Π → [0,∞]. We will sometimes refer to the elements of Π as µ-measurable
sets.

The aim is to construct the integral
∫

E
fdµ for measurable E, and to develop its properties,

and in this chapter we determine which functions can be used. Since we occasionally need
products of functions, we define some products involving ∞.

10.1 Products involving infinity

We now define
x.∞ = ∞

if x > 0 and
0.∞ = 0.

The purpose of the latter is to make certain integrals take their expected values.
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10.2 Lemma

Let E ⊆ X with E in Π, and let f be a function from E to R∗. The following four conditions
are equivalent:

(i) For each real y, the set A = {x ∈ E : f(x) > y} is in Π.

(ii) For each real y, the set B = {x ∈ E : f(x) ≤ y} is in Π.

(iii) For each real y, the set {x ∈ E : f(x) ≥ y} is in Π.

(iv) For each real y, the set {x ∈ E : f(x) < y} is in Π.

Each of these conditions implies that:

(v) for each extended real number y, the set {x ∈ E : f(x) = y} is in Π.

Proof. (i) and (ii) are equivalent, because B = E\A = E ∩ Ac. If A is in Π then so are Ac

and B. Similarly, (iii) and (iv) are equivalent. Also, (i) and (iii) are equivalent, because

{x ∈ E : f(x) > y} =
⋃
n∈N

{x ∈ E : f(x) ≥ y + 1/n}

and
{x ∈ E : f(x) ≥ y} =

⋂
n∈N

{x ∈ E : f(x) > y − 1/n}.

When y is finite, (v) clearly follows, since the intersection of elements of Π is in Π. Finally

{x ∈ E : f(x) = +∞} =
⋂
n∈N

{x ∈ E : f(x) > n}

and
{x ∈ E : f(x) = −∞} =

⋂
n∈N

{x ∈ E : f(x) < −n}.

We define f to be µ-measurable (on E) if f satisfies any of (i) to (iv).

10.3 Lemma

If f is µ-measurable then so are −f and f 2 and |f | and cf , for any constant c > 0.

Proof. Take y ∈ R. Then {x ∈ E : −f(x) > y} = {x ∈ E : f(x) < −y} ∈ Π. Also
{x ∈ E : cf(x) > y} = {x ∈ E : f(x) > y/c}. For y < 0 we clearly have |f(x)| > y and
f(x)2 > y on all of E, while for y ≥ 0,

{x ∈ E : f(x)2 > y} = {x ∈ E : f(x) > y1/2} ∪ {x ∈ E : f(x) < −y1/2}

and the idea for |f | is the same.

Sums and products are only difficult insofar as f+g is undefined where f = +∞ and g = −∞
and vice versa.
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10.4 Theorem

If f, g are µ-measurable functions on E ∈ Π, taking values in R, then f + g and fg are µ-
measurable.

Proof. Suppose that f(u) + g(u) > y ∈ R. Then f(u) > y − g(u) and there is a rational
number r such that f(u) > r > y − g(u) and so g(u) > y − r. The set {x ∈ E : f(x) >
r, g(x) > y − r} is the intersection of µ-measurable sets and so µ-measurable. Then

{x ∈ E : f(x) + g(x) > y} =
⋃
r∈Q

{x ∈ E : f(x) > r, g(x) > y − r}.

Now fg is also µ-measurable, since

fg =
1

2
((f + g)2 − f 2 − g2).

Remark: we can modify the same proof for f + g and fg if f, g are measurable on E taking
values in [0,∞]. Let M = {x ∈ E : f(x) = ∞} and N = {x ∈ E : g(x) = ∞} and
D = E\(M ∪N). Then M,N and D are in Π, and f, g are µ-measurable on D (we always get
the intersection of D with an element of Π). So for all y ∈ R we have

{x ∈ E : f(x) + g(x) > y} = {x ∈ D : f(x) + g(x) > y} ∪M ∪N,

which is in Π.
Similarly if y < 0 then f(x)g(x) > y for all x in E, while if y ≥ 0 then

{x ∈ E : f(x)g(x) > y} = {x ∈ D : f(x)g(x) > y} ∪ V ∪W,

where V is the set on which f = ∞ and g > 0 (an intersection of measurable sets) and W is
the set on which g = ∞ and f > 0.

10.5 Lemma

Let f1, f2, . . . be countably many µ-measurable extended real-valued functions on E ∈ Π. We
can assume that fn is defined for each n ∈ N by making all of them the same from some point
on, if necessary. Then the functions g, h defined by

g(x) = inf{fn(x) : n ∈ N}, h(x) = sup{fn(x) : n ∈ N}

are µ-measurable.

If fn → f pointwise on E, then f is µ-measurable on E.

Proof. If y ∈ R then

{x ∈ E : h(x) > y} =
∞⋃

n=1

{x ∈ E : fn(x) > y}
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and this is in E. Similarly for g (take the set of x where g(x) < y).

Now suppose that fn → f . For each n ∈ N define gn by

gn(x) = sup{fk(x) : k ≥ n}.

Then each gn is µ-measurable, by the first part. We claim that for each x ∈ E we have

f(x) = lim
n→∞

gn(x).

If y < f(x) then for large n we have gn(x) ≥ fn(x) > y. Now suppose y > f(x). Then for large
n we have fk(x) < y for k ≥ n and so gn(x) ≤ y. So gn(x) → f(x) as n → ∞ and our claim
is proved.

But we clearly have gn+1(x) ≤ gn(x) (sup of a subset), and so for each x ∈ E we get

lim
n→∞

gn(x) = inf{gn(x) : n ∈ N}.

So f is an infimum of measurable functions and so measurable.

We saw in the chapter on Riemann integration that continuous and monotone functions are
Riemann integrable. Here we show that they are measurable with respect to Lebesgue measure.

10.6 Theorem

Let f : R → R be continuous, and let g : R → R be non-decreasing. Then f and g are
measurable with respect to Lebesgue measure.

Proof. Take y in R. The set {x ∈ R : f(x) > y} is open, so Lebesgue measurable.

If g(x) > y for all x ∈ R then obviously {x ∈ R : g(x) > y} = R, which is Lebesgue
measurable. Now let a be the sup of x such that g(x) ≤ y, assuming henceforth that there exists
at least one such x. Then g(x) > y for x > a by definition. Next, if x < a then (again by
definition) there exists x′ with x < x′ ≤ a and g(x′) ≤ y, so that since g is non-decreasing we
have g(x) ≤ y for x < a. So the set {x ∈ R : g(x) > y} is either ∅ or R or (a,∞) or [a,∞)
and all of these are Lebesgue measurable.

10.7 The characteristic function

Let (X,Π, µ) be a measure space. Let A ⊆ X, and define the characteristic function χA by
χA(x) = 1 if x ∈ A and 0 if x 6∈ A. It is clear that this function is µ-measurable if and only if
A is in Π.

10.8 Simple functions

Lt (X,Π, µ) be a measure space. A simple function is a function s : X → R which takes only
finitely many different values (all in R and so finite). We restrict simple functions to taking only
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finite values so that, for example, the sum of two simple functions is always defined (we avoid
∞−∞). There are therefore finitely many disjoint sets Aj, 1 ≤ j ≤ n, whose union is X, and
pairwise distinct real numbers αj, such that we have

s(x) =
n∑

j=1

αjχAj
(x).

Note that since Aj = {x ∈ X : s(x) = αj}, it follows that s is µ-measurable if and only if all
the Aj are in Π.

10.9 Theorem

Let (X,Π, µ) be a measure space and let f : X → [0,∞] be a non-negative extended real-valued
function on X. Then f is µ-measurable if and only if there are µ-measurable simple functions
sn such that 0 ≤ s1 ≤ s2 ≤ s3 ≤ . . . ≤ f on X and sn → f pointwise on X.

Proof. The ‘if’ part follows at one from Lemma 10.5. Now suppose that f is µ-measurable.
For n ∈ N divide the interval [0, 2n] into 4n closed intervals of length 2−n, their end-points
forming the set

Tn = {0, 1/2n, 2/2n, 3/2n, . . . , 2n − 1/2n, 2n}.

For x ∈ X and n ∈ N let sn(x) be the largest element of Tn which is ≤ f(x). Clearly
0 ≤ sn(x) ≤ sn+1(x) since Tn ⊆ Tn+1. If f(x) = ∞ then we have sn(x) = 2n → f(x). If f(x) is
finite then for large n we have f(x) < 2n and sn(x) ≤ f(x) < sn(x)+1/2n, and so sn(x) → f(x).
Finally sn is measurable because the sets {x : f(x) ≥ 2n} and {x : j/2n ≤ f(x) < (j + 1)/2n}
are all measurable.

11 The Lebesgue integral of a non-negative simple func-

tion

Throughout this section we assume that X is a set, and that µ is a (non-negative) measure
defined on a σ-algebra of subsets of X. When we write measurable for a set or function we will
always mean with respect to µ.

11.1 The integral of a simple function

To motivate this idea, consider the function s given by

s(x) = 0 (x < 0), s(x) = −1 (0 ≤ x < 1), s(x) = 2 (1 ≤ x ≤ 2), s(x) = 0 (x > 2).

Then s is a Lebesgue measurable non-negative simple function. The area under the curve y = s(x)
is obviously −1 + 2 = 1. Let

α0 = 0, A0 = (−∞, 0) ∪ (2,∞), α1 = −1, A1 = [0, 1), α2 = 2, A2 = [1, 2].
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Then

s(x) =
2∑

j=0

αjχAj
(x)

and the area under the curve is α0λ(A0) + α1λ(A1) + α2λ(A2).

In the general case suppose that s : X → [0,∞) is a non-negative simple function which
is µ-measurable. Note that s doesn’t take the value ∞. Hence there are distinct real numbers
αj ≥ 0 and pairwise disjoint measurable sets Aj for 1 ≤ j ≤ n such that X is the union of the
Aj and

s(x) =
n∑

j=1

αjχAj
(x)

on X. We define ∫
X

sdµ =
n∑

j=1

αjµ(Aj).

Note that it suffices to sum over those j such that αj 6= 0.

For example, letX = R and letA = Q. Then χA is a simple function and
∫

R χAdλ = 1.λ(Q) = 0.

Similarly,
∫

R 0dλ = 0. This is the reason why we define 0.∞ = 0. We restrict attention
(at least for now) to s ≥ 0 because we need to avoid ∞−∞.

Clearly ∫
X

csdµ = c

∫
X

sdµ

if c is a non-negative real constant.

Note also that if s is a non-negative µ-measurable simple function, then∫
X

sdµ = 0

iff the set {x ∈ X : s(x) > 0} has µ measure 0.

11.2 The integral over a subset

If s is a non-negative µ-measurable simple function and E is a measurable subset of X then χEs
is a non-negative measurable simple function and we define∫

E

sdµ =

∫
X

χEsdµ.

In fact we can write
s =

∑
αjχAj

,
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in which we just sum over those j with αj 6= 0, and

χEs =
∑

αjχAj∩E.

Thus ∫
E

sdµ =
∑

αjµ(Aj ∩ E) =
∑
αj 6=0

αjµ(Aj ∩ E) =
∑
αj 6=0

αjµ({x ∈ E : s(x) = αj}).

In effect we are just restricting s to E and taking the measure of the portion of each set which
lies in E.

For example, ∫
[0,1]

χQdλ = 1.λ([0, 1] ∩Q) = 0.

This integral is very easily computed, whereas the Riemann integrable of this function over [0, 1]
does not exist.

11.3 Lemma

Suppose that s, t are non-negative µ-measurable simple functions on X and 0 ≤ s ≤ t on E ∈ Π.
Then

∫
E
sdµ ≤

∫
E
tdµ.

Proof. Suppose first that E = X and

s =
∑

j

αjχAj
, t =

∑
k

βkχBk
.

Here χH means the characteristic function of H. The Aj are disjoint and their union is X, and
the αj are distinct, and the same thing is true for Bk, βk. Let s = cj,k, t = dj,k on Aj ∩ Bk. So
cj,k = αj, dj,k = βk. Then∫

X

sdµ =
∑

j

αjµ(Aj) =
∑

j

αj

∑
k

µ(Aj ∩Bk) =
∑

j

∑
k

cj,kµ(Aj ∩Bk) ≤

≤
∑

j

∑
k

dj,kµ(Aj ∩Bk) =
∑

k

∑
j

dj,kµ(Aj ∩Bk) =

=
∑

k

βk

∑
j

µ(Aj ∩Bk) =
∑

k

βkµ(Bk) =

∫
X

tdµ.

In the general case we just note that χEs ≤ χEt. Lemma 11.3 is proved.
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11.4 Lemma

Let s be a non-negative µ-measurable simple function on X. For each µ-measurable E ⊆ X (i.e.
each E ∈ Π), set ψ(E) =

∫
E
sdµ =

∫
X
χEsdµ. Then ψ is a measure.

Obviously ψ(∅) =
∫

X
0dµ = 0. Suppose that E is a countable union of pairwise disjoint sets

Ek ∈ Π. Suppose s =
∑

j αjχAj
. Then

ψ(E) =
∑

j

αjµ(Aj ∩ E) =
∑

j

αj

∑
k

µ(Aj ∩ Ek) =
∑

j

∑
k

αjµ(Aj ∩ Ek) =

=
∑

k

∑
j

αjµ(Aj ∩ Ek) =
∑

k

∫
Ek

sdµ =
∑

k

ψ(Ek).

We can change the order of summation since all terms are non-negative.

11.5 Lemma

Let s, t be non-negative µ-measurable simple functions on X, and let E be a µ-measurable subset
of X. Then ∫

E

(s+ t)dµ =

∫
E

sdµ+

∫
E

tdµ.

Proof. We only need prove this when E = X, since χEs, χEt are simple. Let (as before)

s =
∑

j

αjχAj
, t =

∑
k

βkχBk
, Ej,k = Aj ∩Bk.

Then ∫
Ej,k

(s+ t)dµ = (αj + βk)µ(Ej,k) =

∫
Ej,k

sdµ+

∫
Ej,k

tdµ.

But then, by the previous lemma, since s+ t is simple,∫
X

(s+ t)dµ =
∑
j,k

∫
Ej,k

(s+ t)dµ =
∑
j,k

∫
Ej,k

sdµ+
∑
j,k

∫
Ej,k

tdµ =

∫
X

sdµ+

∫
X

tdµ.

12 The Lebesgue integral of a general non-negative

function

Note first that if s is a non-negative µ-measurable simple function on X then Lemma 11.3 gives∫
X

sdµ = sup

∫
X

tdµ

in which the sup is taken over all non-negative µ-measurable simple t such that 0 ≤ t ≤ s on X.
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Motivated partly by this fact, partly by lower sums for the Riemann integral and partly by
Theorem 10.9, we do the following. If f is any non-negative µ-measurable function on X, taking
values in [0,∞], we define ∫

X

fdµ = sup

∫
X

sdµ,

in which the sup is taken over all measurable simple functions s such that 0 ≤ s ≤ f on X. Note
that if f is itself a simple function, then the sup is a max.

For example, we show that ∫
R
|x|dλ = ∞.

To see this, let s(x) be 0 if x < 1, with s(x) = 1 if x ≥ 1. Then s is a non-negative Lebesgue
measurable simple function, with 0 ≤ s(x) ≤ |x| on R. Hence∫

R
|x|dλ ≥

∫
R
sdλ = 1.λ([1,∞)) = ∞.

(i) If c is a positive real number then
∫

X
cfdµ = c

∫
X
fdµ for every non-negative measurable f .

We just write∫
X

cfdµ = sup
0≤s≤cf

∫
X

sdµ = sup
0≤ct≤cf

∫
X

ctdµ = sup
0≤t≤f

c

∫
X

tdµ = c

∫
X

fdµ,

in which each s is µ-measurable and simple and we write s = ct, and use the obvious fact that
ct ≤ cf iff t ≤ f .

(ii) If f = 0 on X then f is simple and
∫

X
fdµ = 0 (even if µ(X) = ∞).

12.1 The integral over a subset

Let E be a µ-measurable subset ofX. Let f be a non-negative µ-measurable extended real-valued
function on X. Then g = χE.f is a µ-measurable function.

We define ∫
E

fdµ =

∫
X

χE.fdµ.

Note that this agrees with our earlier definition when f is simple.
If f is not defined on all of X, but only on some measurable F with E ⊆ F ⊆ X, we extend

f to X by making it 0 off F . Then χE.f is the same regardless of which F we have.
We list some properties of the integral so defined.

(i) If f ≤ g on E apart from on a set of µ-measure 0, then
∫

E
fdµ ≤

∫
E
gdµ.

To see this, suppose first that E = X, and that we can write X = F ∪ G, where G has
measure 0, F ∩ G = ∅, and f ≤ g on F . Then for non-negative µ-measurable simple s, taking
values αj on pairwise disjoint µ-measurable sets Aj,∫

X

sdµ =
∑

αjµ(Aj) =
∑

αjµ(Aj ∩ F ) +
∑

αjµ(Aj ∩G) =

∫
X

χF .sdµ.
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So if 0 ≤ s ≤ f on X then χF s ≤ χFf ≤ χFg ≤ g and so∫
X

sdµ =

∫
X

χF sdµ ≤
∫

X

gdµ.

Taking the sup over all s with 0 ≤ s ≤ f we get∫
X

fdµ ≤
∫

X

gdµ.

In the general case we just note that χE.f ≤ χE.g on all of X apart from a set of measure 0.

Note that is is standard to say that a property holds “almost everywhere” (or a.e.) on E if
it holds on E \G, where G has µ-measure 0. This is a very useful concept but it is important to
remember that where G has 0 measure will in general depend on which measure we are using.

(ii) If f = g a.e. on E (i.e. apart from on a set of measure 0) then
∫

E
fdµ =

∫
E
gdµ.

This is easy, by (i), but is useful, and implies for example that we can change f to be, say
0, on a set of measure 0 without changing any integral.

(iii) If µ(E) = 0 then f = 0 a.e. on E and so
∫

E
fdµ =

∫
E

0dµ = 0.

(iv) If A ⊆ B and A,B are µ-measurable subsets of X then
∫

A
fdµ =

∫
X
χAfdµ ≤

∫
X
χBfdµ =∫

B
fdµ.

(v) Suppose that
∫

E
fdµ is finite. Then the set F = {x ∈ E : f(x) = +∞} has measure

zero.

To see this, put sn(x) = nχF (x), n ∈ N. Then sn ≤ χE.f on X so nµ(F ) =
∫

X
sndµ ≤

∫
E
fdµ.

We can express this conveniently by saying that f is finite a.e. on E.

(vi) Suppose that
∫

E
fdµ = 0. Then the set F = {x ∈ E : f(x) > 0} has measure 0.

If not, the set Fn = {x ∈ E : f(x) > 1/n} has positive measure for some n ∈ N, and we
put s = (1/n)χFn . Then 0 ≤ s ≤ χE.f on X and 0 < (1/n)µ(Fn) =

∫
X
sdµ ≤

∫
E
fdµ = 0.

Combining (ii) and (vi) we see that for a µ-measurable non-negative function f on E we have∫
E
fdµ = 0 if and only if f vanishes a.e. on E.

12.2 Monotone convergence theorem

Let fn be non-negative measurable functions on a measurable subset E of X, such that
(i) 0 ≤ f1 ≤ f2 ≤ . . . a.e. on E, and
(ii) fn → f pointwise a.e. on E
i.e. 0 ≤ f1 ≤ f2 ≤ . . . ≤ f and fn → f pointwise on F = E \G, where µ(G) = 0.
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Then ∫
E

fndµ→
∫

E

fdµ, n→∞.

Proof. Strictly speaking f is not defined a priori on all of E. However, f is measurable on F ,
by 10.5. If we change fn and f to all be 0 on G then (i) is still satisfied and fn → f pointwise on
all of E, the function f is measurable on E, and we have not changed the values of any integrals.
Assume for now that E = X. Now clearly, by the monotone sequence theorem,∫

X

fn−1dµ ≤
∫

X

fndµ→ y ∈ [0,+∞]

as n→∞. Since fn ≤ f , we have y ≤
∫

X
fdµ.

The proof will be completed for the case E = X if we can show that y ≥
∫

X
fdµ. Sup-

pose that s is µ-measurable and simple, with 0 ≤ s ≤ f on X, and set ψ(U) =
∫

U
sdµ for each

U ∈ Π. This is a measure, as shown in the last chapter.

Let 0 < c < 1. Let En = {x ∈ X : fn(x) ≥ cs(x)}. Then En ⊂ En+1 (obvious). We
claim that every x ∈ X is in the union of the En, which is obvious if s(x) = 0, because then
x is in E1. If s(x) > 0 then f(x) > 0 and cs(x) < s(x) ≤ f(x) so x ∈ En for large n, since
fn(x) → f(x) ≥ s(x). Now∫

X

fndµ ≥
∫

En

fndµ ≥ c

∫
En

sdµ = cψ(En) → cψ(X),

since X is the union of the expanding sets En. Thus y ≥ cψ(X) = c
∫

X
sdµ so y ≥

∫
X
sdµ

since c is arbitrary, and so since s is arbitrary we get y ≥
∫

X
fdµ.

For the general case in which we have E ∈ Π we just extend each fn and f to be 0 on X \ E,
and we get ∫

E

fndµ =

∫
X

χEfndµ→
∫

X

χEfdµ =

∫
E

fdµ.

This is by applying the result for X to χE.fn and χE.f .

12.3 Examples and remarks

(i) We will later see that this result is not true without the condition that f1 ≥ 0. Let sn(x) = 0
for x ≤ n and sn(x) = −1 for x > n. Then sn is simple, sn ≤ sn+1 and sn → 0 pointwise. But
we’ll see that −∞ =

∫
R sndλ 6→ 0 =

∫
R 0dλ.

(ii) We also cannot drop the hypothesis that f1 ≤ f2 etc. If we set fn(x) = nχ[0,1/n](x)
then

∫
R fndλ = 1 but fn converges pointwise to the function which is ∞ at 0 and 0 everywhgere

else, and this function has integral 0.
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(iii) If f is a non-negative measurable function and we choose a choose a non-decreasing se-
quence of non-negative simple functions sn tending to f pointwise (as in Theorem 10.9), then∫

X
sndµ→

∫
X
fdµ.

(iv) If am ∈ [0,∞] for each m ∈ N and we set f(m) = am then
∫

N fdµ =
∑∞

m=1 am, in
which µ is the counting measure on N. To see this, let fn(m) = am for 1 ≤ m ≤ n, with
fn(m) = 0 for m > n. Assume first that all am are finite. Then each fn is a simple function and
fn, f satisfy the hypotheses of the MCT and so∫

N
fdµ = lim

n→∞

∫
N
fndµ = lim

n→∞

n∑
m=1

am =
∞∑

m=1

am.

If any am is infinite then so is the integral of f (since f is infinite on a set of non-zero µ-measure),
and so is the sum of the series (look at partial sums).

12.4 Theorem

Let fn be non-negative measurable functions on a measurable subset E ofX and let f =
∑∞

n=1 fn.
Then

∫
E
fdµ =

∑∞
n=1

∫
E
fndµ.

Proof. As usual we can assume E = X because otherwise we can extend the fn and f to X
by making them 0 on X \E. We first prove the theorem for finite sums. Let sn be non-negative
µ-measurable simple functions such that sn ≤ sn+1 ≤ f1 and sn → f1 pointwise, and let tn → f2

in the same fashion. Then 0 ≤ sn + tn ≤ sn+1 + tn+1 and so, by the MCT,∫
X

sndµ+

∫
X

tndµ =

∫
X

sn + tndµ→
∫

X

f1 + f2dµ.

Here we’ve used the result, already proved, that the integral of the sum of two simple functions is
the sum of the integrals. But

∫
X
sndµ→

∫
X
f1dµ and

∫
X
tndµ→

∫
X
f2dµ. The theorem is thus

proved for the sum of two functions and, by induction, for the sum of finitely many functions.
Now by the MCT ∫

X

fdµ = lim
n→∞

∫
X

n∑
j=1

fjdµ = lim
n→∞

n∑
j=1

∫
X

fjdµ.

12.5 Theorem

Let f be a non-negative measurable function on X. Define ψ(E) =
∫

E
fdµ. Then ψ is a measure

and
∫

E
gdψ =

∫
E
gfdµ for non-negative µ-measurable g.

Proof. Let E be a countable union of pairwise disjoint measurable Ej. Then

ψ(E) =

∫
X

χEfdµ =

∫
X

∑
j

χEj
fdµ =

∑
j

∫
X

χEj
fdµ =

∑
j

ψ(Ej).

Thus ψ is a measure (obviously ψ(∅) = 0). Now if g = χE for some E then∫
X

gfdµ =

∫
E

fdµ = ψ(E) =

∫
X

χEdψ =

∫
X

gdψ.
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Suppose now that g is non-negative, measurable and simple. Write

g =
∑

j

αjχAj

as usual (a finite sum, with αj ∈ [0,∞), Aj ∈ Π). Then Theorem 12.4 gives∫
X

gfdµ =
∑

j

αj

∫
X

χAj
fdµ =

∑
j

αj

∫
Aj

fdµ =
∑

j

αjψ(Aj) =

∫
X

gdψ.

For a general non-negative measurable g, take simple sn with limit g and 0 ≤ s1 ≤ s2 ≤ . . . ≤ g.
Then ∫

X

gdψ = lim

∫
X

sndψ = lim

∫
X

snfdµ =

∫
X

gfdµ

by the MCT.

13 The integral of a general measurable function

Suppose now that f is any measurable function on a measurable subset E of X, taking values
in R∗. Then f+ = max{f, 0} and f− = max{−f, 0} are measurable, and f = f+− f−, and we
can define ∫

E

fdµ =

∫
E

f+dµ−
∫

E

f−dµ

provided this is not ∞−∞ i.e. at least one of
∫

E
f+dµ,

∫
E
f−dµ is finite.

Example: let s(x) = 0 for x ≤ a ∈ R, with s(x) = −1 for x > a. Then s+ = 0, s− = χ(a,∞) and∫
R
sdλ = 0− λ((a,∞)) = −∞.

13.1 Integrable functions

We say that a µ-measurable function f : E → [−∞,∞] is integrable if both
∫

E
f+dµ and∫

E
f−dµ are finite, in which case∫

E

fdµ =

∫
E

f+dµ−
∫

E

f−dµ

definitely exists. Note that in this case f+ and f− are finite a.e., and so by changing f on a set
of measure 0 we can assume that in fact f maps E into R.

We list some easy properties of integrable f . We have∫
E

fdµ ≤
∫

E

f+dµ ≤
∫

E

|f |dµ.
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Since we also have, obviously,

−
∫

E

fdµ =

∫
E

−fdµ ≤
∫

E

|f |dµ,

we get the standard inequality ∣∣∣∣∫
E

fdµ

∣∣∣∣ ≤ ∫
E

|f |dµ.

Finally, if f and g are integrable functions and f ≤ g then f+ ≤ g+ and g− ≤ f− and so∫
E
fdµ ≤

∫
E
gdµ.

13.2 Lemma

Suppose that f, g are integrable functions and that α is a real number. Then f + g and αf are
integrable and ∫

E

αfdµ = α

∫
E

fdµ,

∫
E

f + gdµ =

∫
E

fdµ+

∫
E

gdµ.

Proof. Since f and g are integrable we can assume that both take values in R, and so f + g
and αf are certainly measurable. It remains only to prove the assertion about h = f + g. We
have

h+ − h− = h = f + g = f+ − f− + g+ − g−

and so h+ + f− + g− = h− + f+ + g+. Now Theorem 12.4 gives∫
E

h+dµ+

∫
E

f−dµ+

∫
E

g−dµ =

∫
E

h− +

∫
E

f+dµ+

∫
E

g+

and re-arranging gives the result.

13.3 The dominated convergence theorem

Suppose that fn and g are measurable functions from a measurable subset E of X to R∗, with
|fn| ≤ g a.e. on E, and

∫
E
gdµ < +∞. Suppose that fn → f pointwise a.e. on E. Then f is

integrable and
∫

E
|fn − f |dµ→ 0 and

∫
E
fndµ→

∫
E
fdµ as n→ +∞.

Proof. As usual we can assume that E = X, by extending the functions to be 0 off E. We can
also assume that |fn| ≤ g and fn → f pointwise on all of X, by changing the functions to all be 0
on the set of measure 0 where this may fail. Doing this does not change the value of any integrals.

We know that f is measurable. But |f | ≤ g, so f+ ≤ g, f− ≤ g, and so f is integrable.

Since
∫

X
gdµ is finite, g is finite off a set F of measure 0, and again we can change fn and

g to be 0 on F without changing the value of any integrals.

For each n ∈ N, define hn by

hn(x) = sup{|fk(x)− f(x)| : k ≥ n}.
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Then, since fn(x) → f(x) ∈ R, we see that hn → 0 pointwise on X. We also have hn+1 ≤ hn.
Moreover, hn ≤ 2g, since |fk(x)− f(x)| ≤ 2g(x) for all k ≥ n and for all x ∈ X.

Put gn = 2g − hn. Then 0 ≤ g1 ≤ g2 ≤ . . . ≤ 2g, and gn → 2g pointwise. Hence the MCT
tells us that ∫

X

gndµ→
∫

X

2gdµ.

This gives ∫
X

hndµ =

∫
X

2gdµ−
∫

X

gndµ→ 0,

using the fact that g is integrable. Hence∫
X

|fn − f |dµ ≤
∫

X

hndµ→ 0

as n→ +∞. Thus ∫
X

fn − fdµ→ 0,

and ∫
X

fndµ =

∫
X

fn − fdµ+

∫
X

fdµ→
∫

X

fdµ.

13.4 Remark

The existence of g is necessary for the theorem to work. Let fn(x) = n2 for 0 < x ≤ 1/n, and
let fn(x) = 0 otherwise. Then fn → 0 pointwise, but

∫
R fndλ = n→∞.

13.5 Theorem

Let the bounded real-valued function f be Riemann integrable on I = [a, b], with |f | ≤M <∞
there. Then f is measurable with respect to Lebesgue measure on I and the Riemann integral
J1 =

∫ b

a
f(x)dx equals the Lebesgue integral J2 =

∫
I
fdλ.

Proof. Suppose first that f ≥ 0 on [a, b], say 0 ≤ f ≤ N . Let P be a partition of I. Then
L(P, f) is equal to

∫
I
sdλ for some simple function s with 0 ≤ s ≤ f . Also U(P, f) equals∫

I
Sdλ for some simple S with N ≥ S ≥ f .

We first show that, assuming f is measurable, we have J1 = J2.

We have L(P, f) =
∫

I
sdλ ≤

∫
I
fdλ = J2, and taking the supremum over all P we get J1 ≤ J2.

Similarly J2 ≤
∫

I
Sdλ = U(P, f), and taking the inf over P we get J2 ≤ J1.

We now prove that f is a Lebesgue measurable function. Since f is Riemann integrable, we
can take partitions Pn with Pn+1 a refinement of Pn and L(Pn, f) → J1, U(Pn, f) → J1 as
n→∞. This gives us simple functions sn, Sn with

0 ≤ sn ≤ sn+1 ≤ f ≤ Sn+1 ≤ Sn ≤ N
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such that ∫
I

Sn − sndλ =

∫
I

Sndλ−
∫

I

sndλ = U(Pn, f)− L(Pn, f) → 0

as n→∞. Let S∗(x) = infn Sn(x), s∗(x) = supn sn(x) on I = [a, b]. Then

s∗ ≤ f ≤ S∗, |Sn − sn| ≤ N,

and Sn − sn → S∗ − s∗ pointwise on I. So the DCT tells us that∫
I

S∗ − s∗dλ = 0, S∗ − s∗ = 0 a.e.

So we get S∗ = s∗ = f a.e. on I, say on F = I \ G, where λ(G) = 0. Since S∗ is measurable
(an infimum of measurable functions) we deduce that f is measurable on F . We then have, for
y ∈ R,

{x ∈ I : f(x) > y} = {x ∈ F : f(x) > y} ∪ {x ∈ G : f(x) > y},
which is the union of a Lebesgue measurable set and a set of measure 0, and so Lebesgue mea-
surable.

It remains only to consider the case where f : I → [−M,M ] is Riemann integrable. Here
we just apply the above proof to f + M , and note that adding M to f just increases the
Lebesgue and Riemann integrals by M(b− a).

14 Pointwise and uniform convergence revisited

14.1 Example

Let hn(x) = e−nx on I = [0, 1], and let

h(0) = 1, h(x) = 0 (0 < x ≤ 1).

Then hn → h pointwise on I.

It is not true that hn → h uniformly on I: take ε = 1
4

and set

xn =
ln 2

n
.

Then

hn(xn) =
1

2
, |hn (xn)− h(xn)| = 1

2
> ε.

So there is no N such that |hn(x)− h(x)| < ε for all n ≥ N and all x ∈ I.

However, it is true that if we fix δ > 0 then hn → h uniformly on [δ, 1]. In fact, on this
set, we have

|hn(x)− h(x)| = hn(x) ≤ e−nδ < ε

provided n is large enough.
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14.2 Lemma

Let E be a subset of R with finite Lebesgue measure m(E). Let fn : E → R∗ be measurable
functions converging pointwise on E to a function f : E → R. Let ε, δ be positive. Then there
exist N and a subset A of E such that λ(A) < δ and |fn(x)− f(x)| < ε for all n ≥ N and all
x ∈ E\A.

Proof. We know that f is also measurable, by Lemma 10.5. Let EN be the set of all x ∈ E
for which there exists n ≥ N with |fn(x)− f(x)| ≥ ε. In fact this set is

E ∩
⋃

n≥N

{x : |fn(x)− f(x)| ≥ ε}

and so is Lebesgue measurable. Then EN+1 ⊆ EN and the intersection P of the EN is empty.
Since

λ(E) = λ(E\P ) = limλ(E\EN),

there exists N such that A = EN has λ(A) < δ.

14.3 Egorov’s theorem

Let E be a subset of R of finite Lebesgue measure λ(E). Let fn : E → R∗ converge pointwise
on E to f : E → R. Let η > 0. Then there exists a subset A of E, with λ(A) < η, such that
fn → f uniformly on E\A.

Proof. For each n ∈ N use Lemma 14.2 to choose An ⊆ E and pn such that λ(An) < η/2n

and |fm(x)−f(x)| < 1/n for allm ≥ pn and all x ∈ E\An. Let A =
⋃
An. Then E\A ⊆ E\An,

and so m ≥ pn implies that |fm(x)− f(x)| < 1/n for all x ∈ E\A.

Note that no such theorem holds for E of infinite measure. Let fn = χ[n,∞), for n ∈ N. Then
fn → 0 pointwise, but not uniformly on the complement of any set of finite measure.
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