The Eremenko-Lyubich class and differential equations

Jim Langley, Nottingham, January 2019

All functions f in this talk assumed meromorphic in \mathbb{C} (and transcendental unless stated otherwise).

Singular values of the inverse f^{-1} are: critical values (values taken at multiple points); asymptotic values (α s.t. $f(z) \to \alpha$ on a path $\gamma_{\alpha} \to \infty$).

Speiser class S: finitely many singular values (e.g. e^z-1).

Eremenko-Lyubich class \mathcal{B} : the set of finite singular values is bounded (e.g. $(e^z-1)/z$).

This talk describes two problems in DEs in which ${\cal B}$ plays a role.

Part I: escaping to infinity in finite time

For the DE $\dot{z}=\frac{dz}{dt}=f(z)$, trajectories are paths $z(t),\quad z'(t)=f(z(t))\neq\infty,$

for t in some maximal interval $(\alpha, \beta) \subseteq \mathbb{R}$.

Example 1:

If
$$f(z)=cz$$
, $c\in\mathbb{C}\setminus\{0\}$, $z(0)\neq0$ then $z(t)=z(0)e^{ct}$.

 $\operatorname{Re} c>0$ implies $z(t)\to\infty$ as $t\to\beta=+\infty$; $\operatorname{Re} c<0$ implies $z(t)\to0$ as $t\to\beta=+\infty$; if $\operatorname{Re} c=0$ then trajectories are circles, with period $2\pi i/c$.

Example 2:

if $f(z) = e^z$ then $e^{-z(t)} = e^{-z(0)} - t$.

(a) If
$$T = e^{-z(0)} \in \mathbb{R}^+$$
 (i.e. $\operatorname{Im} z(0)/2\pi \in \mathbb{Z}$)

then $t \to \beta = T$ gives $e^{-z(t)} \to 0$ and $z(t) \to \infty$.

(b) If $T \not\in \mathbb{R}^+$ then $\beta = +\infty$ and $e^{-z(t)} \to \infty$ as $t \to +\infty$.

Example 3:

if $f(z) = z^2$ and $z(0) \neq 0$ then

$$\frac{1}{z(t)} = \frac{1}{z(0)} - t = T - t.$$

- (a) If $z(0) \in \mathbb{R}^+$ then $z(t) \to \infty$ as $t \to \beta = T = 1/z(0)$, following \mathbb{R}^+ outwards towards ∞ .
- (b) If $z(0) \notin \mathbb{R}^+$ then $z(t) \to 0$ as $t \to \beta = +\infty$.

Theorem 1 (King and Needham 1994) If f is a rational function with a pole of order $n \geq 2$ at ∞ then $\dot{z} = f(z)$ has n-1 trajectories tending to infinity in finite time (i.e. $z(t) \to \infty$ as $t \to \beta < +\infty$).

Proof. As $z \to \infty$ write $f(z) = c_1 z^n + \ldots$ and

$$\int_{\infty}^{z} \frac{1-n}{f(t)} dt = c_2 z^{1-n} + \ldots = \phi(z)^{1-n},$$

$$w = \phi(z) = c_3 z + \ldots \quad \text{(univalent near } \infty\text{)},$$

$$\dot{w} = w^n.$$

Question: what happens if f is transcendental? Must there be trajectories tending to infinity in finite time?

Theorem 2 (JKL ca. 2015) Let f be transcendental with finitely many poles. Then $\dot{z} = f(z)$ has infinitely many (pairwise disjoint) trajectories tending to infinity in finite time.

Proof uses Wiman-Valiron theory.

Sketch of method. Wiman-Valiron gives large r and z_r with $|z_r|=r, |f(z_r)|=M(r,f)$, such that

$$f(z) \sim (z/z_r)^{N_r} f(z_r), \quad N_r \to +\infty,$$

on a small neighbourhood A_r of z_r . A change of variables

$$w = F(z) = \int^{z} \frac{dt}{f(t)} \sim c_r z^{1-N_r},$$

maps small logarithmic "rectangles" V_r in A_r onto $S_r < |w| < T_r, 0 < \arg w < 2\pi$, where T_r and S_r/T_r are small.

 $\dot{z}=f(z)$ becomes locally $\dot{w}=1$, with horizontal trajectories. A "bifurcation" argument gives $z(0)\in\partial V_r$ such that z(t) tend to a limit (∞ or a pole) as $t\to\beta\leq 2S_r$.

When f has infinitely many poles, it is possible for all trajectories to be bounded e.g.

let g be transcendental entire of order

$$\rho(g) = \limsup_{r \to \infty} \frac{\log T(r, g)}{\log r} < \frac{1}{2}.$$

Then $\dot{z} = f(z) = -ig(z)/g'(z)$ gives, for each trajectory,

$$i \log g(z(t)) = t + C$$
, $\log |g(z(t))| = \operatorname{Im} C$.

But $\rho(g) < 1/2$ implies that $\min\{|g(z)| : |z| = r\}$ is unbounded as $r \to \infty$, so no trajectory tends to infinity.

However, suppose f is meromorphic and f^{-1} has a logarithmic singularity over ∞ .

This means there exist M>0 and a component U_M of $\{z\in\mathbb{C}:|f(z)|>M\}$ such that $v=\log f(z)$ maps U_M conformally onto $\operatorname{Re} v>\log M$.

This will automatically hold if $f \in \mathcal{B}$ and ∞ is an asymptotic value (Nevanlinna).

Example: $f(z) = e^{-z^2} \tan z$ in the upper half-plane.

Theorem 3 (JKL ca. 2012) Let f be transcendental meromorphic such that f^{-1} has a logarithmic singularity over ∞ . Then $\dot{z} = f(z)$ has infinitely many trajectories tending to infinity in finite time.

Sketch of method.

 $v = \log f(z)$ maps U_M to $\operatorname{Re} v > \log M$.

Let $z=\phi(v)$ be the inverse. Then $\dot{z}=f(z)$ becomes $\dot{v}=e^v\phi'(v)^{-1},$

in which $\phi'(v)$ varies slowly on the half-plane. Find trajectories on which $\operatorname{Re} v(t)$ and $e^{v(t)}=f(z(t))$ tend to infinity in finite time.

Open question: suppose f is transcendental meromorphic and f^{-1} has a *direct* singularity over ∞ .

This means there exist M>0 and a component U_M of $\{z\in\mathbb{C}:|f(z)|>M\}$ on which $f(z)\neq\infty$.

Must $\dot{z}=f(z)$ have infinitely many trajectories tending to infinity in finite time?

Wiman-Valiron is available (Bergweiler-Rippon-Stallard 2008). The method for entire f gives trajectories each tending to a limit as t tends to some $\beta<+\infty$.

But could these limits all be poles of f outside U_M ?

Part II: the (former) Bank-Laine conjecture

This involves zeros of of solutions of

$$y'' + A(z)y = 0$$

where A is entire.

Let f_1, f_2 be linearly independent solutions and set

$$E = f_1 f_2, \quad \lambda(E) = \limsup_{r \to +\infty} \frac{\log^+ N(r, 1/E)}{\log r}$$

(measures the frequency of zeros z_k of f_1f_2). $\lambda(E)$ is called the *exponent of convergence*: indeed

$$\lambda(E) = \inf \left\{ \lambda > 0 : \sum_{z_k \neq 0} |z_k|^{-\lambda} < +\infty \right\}.$$

Theorem 4 (Bank and Laine 1982) Let A be entire.

- (i) If A is a polynomial of degree n>0 then $\lambda(E)=\rho(E)=(n+2)/2$.
- (ii) If $\lambda(E) < \rho(A) < +\infty$ then $\rho(A) \in \mathbb{N} = \{1, 2, \ldots\}$.
- (iii) If A is transcendental and $\rho(A) < 1/2$ then $\lambda(E) = +\infty$.

Used the Bank-Laine equation (WLOG $W(f_1, f_2) = 1$)

$$4A = \left(\frac{E'}{E}\right)^2 - 2\frac{E''}{E} - \frac{1}{E^2}.$$

(iii) was extended to $\rho(A) \leq 1/2$ (Rossi/Shen 1985).

Examples:

$$E = e^{P}, \quad 4A = -P'^{2} - 2P'' - E^{-2},$$

$$E(z) = \frac{1}{\pi} \exp(2\pi i z^{2}) \sin(\pi z).$$

Scarcity of examples plus Theorem 4(ii)

$$\left(\lambda(E) < \rho(A) < +\infty \Rightarrow \rho(A) \in \mathbb{N} = \{1,2,\ldots\} \right)$$
 led to

Conjecture 1 (The Bank-Laine conjecture 1980s)

Let A be a transcendental entire function of order $\rho(A)$ and let f_1, f_2 be linearly independent solutions of

$$y'' + A(z)y = 0.$$

If $E = f_1 f_2$ and $\lambda(E)$ is finite then $\rho(A) \in \mathbb{N} \cup \{\infty\}$.

Theorem 5 (Bergweiler and Eremenko 2015) The Bank-Laine conjecture is false: for every $\rho > 1/2$ there exists an entire A with $\rho(A) = \rho$ such that

$$y'' + A(z)y = 0$$

has LI solutions f_1, f_2 with $\lambda(E) < +\infty$, $E = f_1 f_2$.

Highly complicated method constructs $U=\frac{f_1}{f_2}$ by combining functions of form $P_m(e^z)e^{e^z}$ via quasiconformal surgery.

Before stating the next theorem we look at one approach to Theorem 4(i).

Suppose A is a non-constant polynomial,

$$A(z) = a_n z^n (1 + o(1))$$
 as $z \to \infty$.

The following shows that $\lambda(E)=(n+2)/2$ (proved by Bank-Laine 1982, via a different method).

The n+2 critical rays are given by $\arg z=\theta^*$, where $a_n e^{i(n+2)\theta^*} \in \mathbb{R}^+$.

Apply the Liouville transformation

$$Y(Z) = A(z)^{1/4}y(z),$$

$$Z = \int_{z_1}^{z} A(t)^{1/2} dt \sim \frac{2a_n^{1/2}z^{(n+2)/2}}{n+2},$$

in sectors symmetric about each critical ray.

The equation

$$y'' + A(z)y = 0, (1)$$

reduces to a sine-type equation

$$\frac{d^2Y}{dZ^2} + \left(1 + \frac{O(1)}{Z^2}\right)Y = 0,$$

with solutions asymptotic to $e^{\pm iZ}$ (Einar Hille 1920s).

This gives solutions $U^{\pm}(z) = A(z)^{-1/4}e^{\pm iZ}(1+o(1))$ of

(1) in a sector straddling the critical ray.

Any linear combination $CU^+ + DU^-$ ($CD \neq 0$) has a lot of zeros in the sector.

So if $\lambda(E) < (n+2)/2$ then, in *every* sector,

$$E(z) = f_1(z)f_2(z) \sim c_1 A(z)^{-1/4} e^{iZ} c_2 A(z)^{-1/4} e^{-iZ}$$

 $\sim c_1 c_2 A(z)^{-1/2} \to 0$ contradiction!

Now suppose $A \in \mathcal{B}$ is transcendental entire.

Then f^{-1} has a logarithmic singularity over ∞

i.e. there exist M>0 and a component U_M of the set $\{z\in\mathbb{C}:|f(z)|>M\}$ such that $v=\log f(z)$ maps U_M conformally onto $H_M=\{v\in\mathbb{C}:\operatorname{Re} v>\log M\}.$ Let $z=\phi(v)$ be the inverse.

Then the Liouville transformation

$$Z = \int^{z} A(t)^{1/2} dt = \int^{v} e^{u/2} \phi'(u) du$$

can be defined on subdomains of H_M . Since ϕ' varies slowly, this leads to: **Theorem 6 (JKL 2018)** The Bank-Laine conjecture is true for A in class \mathcal{B} . In fact, let $A \in \mathcal{B}$ be transcendental entire. Let $E = f_1 f_2$, where f_1, f_2 are LI solutions of

$$y'' + A(z)y = 0.$$

Then exactly one of the following holds.

- (I) The functions A and E satisfy $\rho(A) = \rho(E) = 1$.
- (II) There exists d > 0 such that the zeros of E satisfy

$$n(r, 1/E) > \exp\left(dr^{1/2}\right)$$
 as $r \to +\infty$,

and in particular $\rho(E) = \lambda(E) = +\infty$.

 $A(z) = \cos \sqrt{z}$ shows that 1/2 is sharp in (II).

The same example shows that (I) and (II) can occur. Let $A(z) = -e^{2z} - 1/4$. Then we get solutions

$$f_1(z) = e^{-z/2} \exp(-e^z), \quad f_2(z) = e^{-z/2} \exp(e^z),$$

 $f_1(z)f_2(z) = e^{-z}, \quad \rho(f_1f_2) = \rho(A) = 1,$

as well as solutions

$$g_1(z)=e^{-z/2}\sinh\left(e^z
ight), \quad g_2(z)=e^{-z/2}\cosh\left(e^z
ight),$$
 with $\lambda(g_1g_2)=+\infty$.