The following is Hayman's version of Fuchs' small arcs lemma, rewritten for the meromorphic,
rather than delta-subharmonic, case. !

Theorem 0.1 Let the function f be meromorphic in |z| < R with f(0) = 1 and Nevanlinna
characteristic T(R). Let
m >0, m>0, m+n<l (1)

Then there exists E C [0, (1 —n,)R], of measure greater than R(1 —n, —n2), with the following
property. If r € E and F' is a measurable subset of |0, 2x] or [—m, 7] of measure at most § then
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Proof (Fuchs-Hayman). Let
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In the same way, since f(0) =1,
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the zeros and poles of f in |z| < Ry, repeated according to multiplicity. Since
m(Ry, ) +m(R,1/f) <2T(Ry, f) < 2T(R),

a standard estimate (e.g. from the book of Jank and Volkmann) gives, for |z| = r < Ry,
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Apply the method of Cartan’s lemma (as in Hayman, Subharmonic Functions I, p.366) to
the positive numbers |c;|, with repetition as appropriate, and with
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This gives a union Ej of open intervals having sum of lengths less than 2Ah = ny R, with the
following property. If r & Ej and ¢ > 0 then the number p(r,t) of the moduli |¢;| lying in the
open interval (r — t,r + t) satisfies

i) < < LR (10)
using (7) and (9). Hence the set
E=[0,R(1—n)]\ Eo (11)
has measure
|E| > R(1—m) —n2R = R(1 —m — ). (12)

Let » € F and let F' be a union of finitely many pairwise disjoint open subintervals of [0, 27]
or [—m, | having sum of lengths at most §, and estimate I as defined by (2). Now (8) gives
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To estimate J, write
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where F” is a union of finitely many pairwise disjoint open intervals having sum of lengths at
most J. It may be assumed that F” is contained in [—m,7]. If 0 < ¢ < 7/2 then
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while if 7/2 < ¢ < 7 then |re®® — p| > r. Thus, for any ¢ € [—m, 7],
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in which the right-hand side is evidently maximised if F' = (—4/2,d/2). This gives
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Now substitute (17) into (14). Here t = |p — r| < R, since r,p € [0, R). Moreover, the
number pi(r,t) of |¢;| lying in the open interval (r —t,r +t) satisfies (10) for 0 < ¢ < R, and is
M for t > R. This gives
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On recalling (1), (7) and (13) this gives
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This proves (3) when F'is a union of finitely many pairwise disjoint open intervals, and by the
monotone (or dominated) convergence theorem the inequality extends immediately to the case
of a countable union of pairwise disjoint open intervals. Since a set of measure ¢ is contained in
an open set of measure arbitrarily close to 9, the result follows for measurable F'.



