The Spin Foam Lectures 1: Introduction and Spin Networks

John Barrett

School of Mathematical Sciences University of Nottingham

v2

Spin foam models

- Quantum gravity without matter
- Not realistic physics
- Models quantum space-time (technology, concepts)
- Observables
- ► Planck scale structure

Planck scale

- ▶ Planck area = $G\hbar$ is only scale
- Discrete structure at Planck scale (superpositions)
- Discreteness compatible with symmetries (c.f. angular momentum)
- ▶ General relativity in $G\hbar \rightarrow 0$ limit
- Continuum quantum picture?

3d QG: History

- ► Ponzano, Regge 1968 (3d gravity state sum model, SU(2))
- Penrose 1970 (Spin networks, SU(2))
- Witten 1989 (3d gravity functional integral)
- ▶ Turaev, Viro 1991 (3d gravity $\Lambda > 0$ ssm, $U_q sl2$)
- ▶ JWB 2002 (3d gravity with observables)

Spin networks

Representations of a group/Hopf algebra G

$$X, Y, \ldots, X \otimes Y, \ldots$$

Intertwiners

$$\alpha: X \to Y$$

$$\alpha(gx) = g\alpha(x), \qquad g \in G, x \in X.$$

Diagrams

Equivalence of diagrams... see later

Duals

Data: for any X, a dual representation X^* , and maps

$$X\otimes X^* o \mathbb{C}$$

$$\mathbb{C} \to X \otimes X^*$$

Always, $X^{**} = X$.

Examples

- $X^* = \text{canonical dual}$
- $X = X^*$, = inner product

Spherical symmetry

Symmetries: diffeomorphisms of S^2 . Examples:

$$\frac{1}{x}$$
 $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$

Equivalence of diagrams

if
$$Tr(\beta\alpha) = Tr(\beta\alpha')$$
 for all $\beta: Y \to X$.

- Diagrams are equivalence classes of intertwiners
- ▶ A diagram is 0 if any closed diagram containing it is 0.
- Equivalence clear if only closed diagrams used

Semisimple condition

There is a list of irreducible representations j_1, j_2, \ldots For any X,

$$X\cong \bigoplus_{i=1}^n j_i$$

Example: for $X = a \otimes b$, and $a, b \in Irrep$,

Quantum group: semsimple after equivalence

Exercises

1. If $X = X^* = \mathbb{C}^2$, with basis u and d. Suppose is $1 \to Au \otimes d - A^{-1}d \otimes u$, for a constant $A \in \mathbb{C}$.

Calculate χ and the number χ

2. Denote the space of intertwiners between $X \otimes X$ and X by $\text{Hom}(X \otimes X, X)$. Define a linear map

 $\phi \colon \mathsf{Hom}(X \otimes X, X) \to \mathsf{Hom}(X^* \otimes X, X^*)$ by

Why is ϕ invertible? If in addition $X = X^*$, what are the possible eigenvalues of ϕ ?

Exercises

3. Suppose $X = \mathbb{C}^2$, and the set of all intertwiners $X \to X$ is

$$\left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right\}$$

and the trace is equal to the matrix trace. Which diagrams $X \rightarrow X$ are equivalent to zero?

4. Prove that

$$\operatorname{Tr}(\operatorname{id}_X) = \operatorname{Tr}(\operatorname{id}_{X^*}).$$

This number is called the *quantum dimension* of X, and is written $\dim_q X$.

Spin Network References

- ► Penrose: Angular momentum: an approach to combinatorial space-time
- ► Moussouris: PhD thesis, Oxford University 1983
- Major: A spin network primer
- Kauffman: Spin networks and the bracket polynomial