The Spin Foam Lectures 1b: Spherical categories

John Barrett

School of Mathematical Sciences University of Nottingham

Categories

A category C is a set of 'objects' C_0 and a set of 'morphisms' C_1 . There are two maps $s, t: C_1 \to C_0$ giving the source and target objects $A = s\phi$, $B = t\phi$ for each morphism ϕ ,

$$A \stackrel{\phi}{\rightarrow} B$$
.

There is a composition $\phi \cdot \psi$ on \mathcal{C}_1 defined if

$$A \xrightarrow{\phi} B \xrightarrow{\psi} C$$

This is associative and each object has a unit morphism,

$$1_{\mathsf{A}} \cdot \phi = \phi, \qquad \qquad \phi \cdot 1_{\mathsf{B}} = \phi.$$

Functors and natural transformations

A functor $\mathcal{C} \to \mathcal{D}$ is a pair of maps

$$\mathcal{C}_0 o \mathcal{D}_0 \qquad ext{ and } \qquad \mathcal{C}_1 o \mathcal{D}_1$$

which commute with $s, t, \cdot, 1_{\bullet}$.

A natural transformation between two functors $F_1, F_2 \colon \mathcal{C} \to \mathcal{D}$ is a map

$$\nu \colon \mathcal{C}_0 \to \mathcal{D}_1$$

such that

$$F_{1}(A) \xrightarrow{F_{1}(b)} F_{1}(B)$$

$$V(A) \downarrow \qquad \qquad \downarrow \qquad V(B)$$

$$F_{2}(A) \xrightarrow{F_{2}(b)} F_{2}(B)$$

commutes, for all $\phi: A \to B$ in \mathcal{C} . cf. Homotopy

Monoidal category with duals

A strict monoidal category with duals is a category $\mathcal C$ with functors

$$\otimes: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$$
 $*: \mathcal{C}^{op} \to \mathcal{C}$
 $e: \mathbb{I} \to \mathcal{C}$ one do, one morph.

satisfying axioms

Non-strict version

A non-strict monoidal category with duals has natural transformations instead of =. These obey 9 axioms.

Example of an axiom:

$$A \otimes B \longrightarrow (A \otimes B)^{**}$$

$$A^{**} \otimes B^{**} \longrightarrow (B^{*} \otimes A^{*})^{*}$$

Theorem (Coherence)

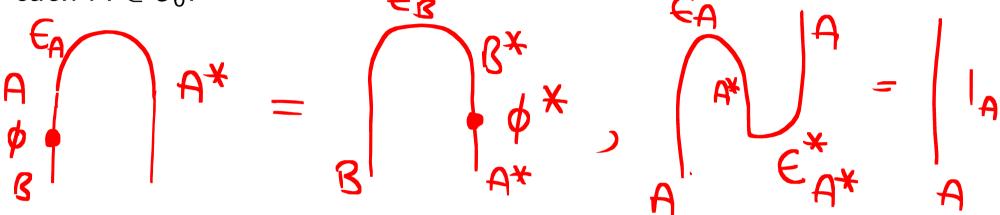
All diagrams using the natural transformations commute.

The category is equivalent to a strict one. Canonical isomorphisms.

Pivotal category

A pivotal category also has a morphism $\epsilon_A \colon e \to A \otimes A^*$ for

each $A \in \mathcal{C}_0$.



and compatibility with e and \otimes .

Example

A Hopf algebra H with a group-like element w such that

$$s^2(a) = waw^{-1}$$

$$s^2(a) = \sqrt{a}$$

$$s^2(a)$$

determines a pivotal category. Define $\epsilon_A = \sum_i \xi_i \otimes \xi^i$, $\epsilon_{A^*} = \sum_i \xi^i \otimes w \xi_i$.

Spherical category

A spherical category is a pivotal category for which

$$\int_{A^{*}} \phi = \phi$$

$$\int_{A^{*}} for all$$

$$\phi : A \rightarrow A$$

Theorem

Closed diagrams are invariant under diffeomorphisms of S^2 .

Examples

- ▶ Let $H=U_q\mathfrak{g}$ for q a root of unity. Take the category of tilting modules.
- ► $H = \mathbb{C}[G]$, $w \in Z(G)$, $w^2 = 1$.
- ► A ribbon category.

Spherical functors

 $F: \mathcal{C} \to \mathcal{D}$ is a spherical functor if it commutes with \otimes , e, * and ϵ .

e.g
$$F(AUB) = F(A) Ø F(B)$$

 $F(E_A) = E_{F(A)}$

Examples

- ▶ $(H, w) \rightarrow (K, w')$ induces $Rep(K) \rightarrow Rep(H)$.
- ▶ Quotient by equivalence $\alpha \mapsto [\alpha]$

Exercises

- 1. Let \mathcal{G} be the category with one object and the morphisms forming a group. Show that a functor $\mathcal{G} \to \text{Vect}$, the category of vector spaces, determines a representation of the group. What is the interpretation of a natural transformation between two such functors in terms of group representations?
- 2. Which of the following objects of a strict spherical category are equal?

$$e^* \otimes X^* \otimes Y$$
 $Y^* \otimes e \otimes X$ $(Y^* \otimes X)^*$ $(Y^* \otimes X)^*$

3. Prove that in a spherical category, $\operatorname{Tr} f = \operatorname{Tr} f^*$ for all morphisms $f: X \to X$.

Exercises

- 4. Explain why the pivotal condition (Lecture 1) holds in a spherical category.
- 5. Let X be an object of a strict spherical category. If there is an isomorphism $\mu \colon X \to X^*$, what is the coherence condition for μ which guarantees the consistency for identifying $X = X^*$?
- 6. Show that a spherical functor preserves quantum dimension, i.e., if $F: \mathcal{C} \to \mathcal{D}$ is a spherical functor, then for all $X \in \mathcal{C}_0$, $\mathrm{Tr} 1_X = \mathrm{Tr} 1_{F(X)}$.

References for spherical categories

- MacLane: Categories for the Working Mathematician (book)
- ► JWB and Westbury: Spherical categories
- Andersen and Paradowski: Fusion categories arising from semisimple Lie algebras
- Selinger: A survey of graphical languages for monoidal categories (book)