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The n-simplex

An n-simplex ¢" is the convex hull of n+ 1 independent points
in Euclidean space RY, d > n.
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A face of a simplex: 0% C " determined by a proper subset of
the vertices.



Triangulated n-manifold

Triangulated n-manifold: n-simplexes glued together on a face
of each to form a manifold M.
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Orientation

Orientation of a simplex: (ordering of the vertices, +), up to
permutation. Each simplex has two orientations.
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State sum model data: states

Requirements for a state sum model on an oriented
triangulated manifold of dimension n: states and weights.
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States:
» The n — 2 simplex has a set of states S.

» An oriented n — 1 simplex +(1,2,3,...) has a vector
space H(ay, ay, a3, . . .), depending on a; € S.
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Write H(ay, as, a3, ...) = H(1,2,3,...) when labelling is given.



State sum model data: weights
Consider n-simplex (1,2, 3,...), labelled with

a2, ai3, a3, ... € S,
3
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» The oriented n simplex +(1,2,3,...) has a weight

W(o") € v S dudd ve
H(2,3,4,..)® H(1,3,4,.. ¥ H(1,2,4,.. ) ..
» The oriented n simplex (1 2,3,...) has a weight
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W(o") €

H(2,3,4,.. @ H(1,3,4,..)® H(1,2,4,.. ¥o ...
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State sum model
Given:
» M an oriented, triangulated n-manifold with an ordering
of the vertices.
» |: set of n — 2 simplexes — S
Then the partition function is

zm =Y Qw(") e H(O(M, I)).
interior ¢"
n — 1 states

o>t (M) = g w(+(.zz)§ww(-aza))



Example
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State sum models

v

Other geometrical shapes can be used (e.g. cubes).
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Some of the data may be trivial.
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There are generalisations where lower-dimensional
simplexes are also labelled.

v

State sum models occur in statistical mechanics, lattice
gauge theory, mathematics,. ..
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In some cases, H(OM) is a Hilbert space.



Simple 2d model

Let S = {e}. Then

Co- W(+(123)) e HO H* @ H

is a product.

W(—(123)) e H* @ H ® H*
is a @product.



3d model from spin networks... a A
K
M: 3-manifold A @ \/
. . a \ A
S = set of irreducibles n 3 I
H(31,32,a3) = Hom(a27al ®a3)- | 0, g
There is a pairing (nondegenerate after equivalence!)

Hom(ay, a; ® a3) X Hom(a; ® a3, a,) — C
C
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So that H(ai, a2, a3) = Hom(a; ® as, az)¥



3-simplex (1234) labelled with aj5, a3, ass, - - . & )
3
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W(+(1234)) € H(234) ® H(134)" © H(124) © H(123)"
= Hom(312 X aia, 313)* (9 Hom(3237 ap & 324)*

® Hom(ap3, a13 ® a14)" ® Hom(az, a1s @ a34)”
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Spherical symmetry

Spherical symmetry for spin networks = Z(M, /) is
independent of the ordering of the vertices.



Triangulation dependence

General relativity is independent of the triangulation. Thus
two possibilities:
» A quantum gravity model is independent of the
triangulation.
» A quantum gravity model becomes independent of the
triangulation in the GR limit.



Pachner moves. . .

In dimension n,
do"™ =aUp

Pachner move: replace o with
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Triangulation independence

Theorem (Pachner)

Any two triangulations of a compact manifold are related by a
finite sequence of Pachner moves.

The lower-dimensional simplexes o*, k < n — 2 can also be

given a weight, W(o*) € C. \\/(g-““"-) o\n(nr\]s on Q(\g
Define
Z(M) = > Z(M, ) II W(o*)
interior ok k<n—2

n — 2 states /

Then there exists a choice of W(o*) € C such that Z(M) is
independent of the triangulation. Proof: semisimplicity.

& SZ:- ‘L?.'A n?"\.-f"‘f MOA?\J



Diffeomorphism invariance

Any diffeomorphism M — N can be approximated by a
simplicial map ®: M’ — N’ (vertices to vertices), for some
triangulations M’ and N of M and N.
Thus for a triangulation-independent model
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Z(M) = Z(M') = Z(N') =

i.e., the partition function is invariant under diffeomorphisms.

Observables transform covariantly.



Exercises

1. Explain why a 1d state sum model is determined by a
linear map L: H — H. What is the partition function of a
circle triangulated as a polygon with N sides? What
property does L have if the model is invariant under
Pachner moves?

2. Consider the simple 2d model where there is only one
label for vertices. Use a suitable choice of ordering and
orientation and the 2-2 Pachner move to show that for a
triangulation-independent model, the product on the
vector space H is an associative product.

3. Draw the 2-3 and 1-4 Pachner moves in three dimensions.
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