
Further Number Theory G13FNT cw ’11

1 Prime Numbers and Arithmetic

Definition. A prime number is a positive integer p who has exactly two positive divisors, namely 1
and p.

Notation. For m,n ∈ Z write m | n to mean m divides n, i.e. n = am for some a ∈ Z.

Definition. Let p be a prime number. Given an integer n 6= 0, we write ordp(n) for the largest
power of p dividing n. So pordp(n) divides n, but pordp(n)+1 does not.

Fundamental theorem of Arithmetic 1.1. Every nonzero n ∈ Z has a factorisation

n = sign(n) ·
∏

primes p

pordp(n) where sign(n) =

{
+1 if n > 0,
−1 if n < 0.

This factorisation is unique. Each n has only a finite number of prime divisors, so the product is
really finite: for each n, the exponent ordp(n) = 0 for all but a finite number of primes p.

Definition. The greatest common divisor of m,n ∈ Z is the largest integer which divides both m
and n. Notation: gcd(m,n).

Euclidean algorithm can be used to find g = gcd(m,n) and also integers x, y such that g = mx+ny.

Notation. For m > 1 write a ≡ b (mod m), read as “a is congruent to b modulo m”, to mean
m | (a− b).

Chinese Remainder Theorem 1.2. Let m1, m2, . . .mr be pairwise coprime integers and let a1,
a2, . . .ar be integers. Then solving the congruences x ≡ ai (mod mi) for all 1 6 i 6 r is equivalent
to solving a congruence x ≡ b (mod m1 ·m2 · · ·mr) for some integer b.

Theorem 1.3. There are infinitely many primes.

Proof. Suppose that there are only finitely many primes, say p1, p2, . . . , pk. Then n = 1+
∏k

i=1 pi

must have a prime factor not in {p1, . . . , pk}.

Definition. An integer a is square-free if it has no square divisors greater than 1; alternatively, if
ordp(a) ∈ {0, 1} for all primes p.

Lemma 1.4. If n ∈ Z is nonzero then n = a · b2 with a square-free.

Proof. Take b2 to be the largest divisor of |n| which is a square and set a = n/b2. If a square c2

divides a, then c2b2 divides n. So by the maximality of b, we have c = 1 and a is square-free.

Arithmetic Functions and the Möbius inversion theorem

Definition. An arithmetic function is any function f : N → C.

Examples. Functions that you have seen in G12ALN like τ(n), counting the number of divisors of
n, or σ(n), the sum of all divisors of n. More generally we set σk(n) =

∑
d|n d

k, so that τ = σ0

and σ = σ1. And there is Euler’s totient function ϕ(n) counting the number of integers 1 6 m 6 n
that are coprime to n.
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n 1 2 3 4 5 6 7 8 9 10 11 12 . . . p prime

τ(n) 1 2 2 3 2 4 2 4 3 4 2 6 2
σ(n) 1 3 4 7 6 12 8 15 13 18 12 28 p+ 1
σ2(n) 1 5 10 21 26 50 50 85 91 130 122 210 p2 + 1
ϕ(n) 1 1 2 2 4 2 6 4 6 4 10 4 p− 1

Definition. The Möbius function µ : N → {−1, 0, 1} is defined by

µ(n) =


1 if n = 1
0 if n is not square-free
(−1)r if n = p1p2 . . . pr with pi distinct primes.

n 1 2 3 4 5 6 7 8 9 10 11 12 . . . 30

µ(n) 1 −1 −1 0 −1 1 −1 0 0 1 −1 0 −1

Lemma 1.5. If n > 1 then
∑

d|n µ(d) = 0.

Example. µ(12) + µ(6) + µ(4) + µ(3) + µ(2) + µ(1) = 0 + 1 + 0 + (−1) + (−1) + 1 = 0.

Proof. Write n = pa1
1 · · · par

r . Then in the sum
∑

d|n µ(d) we can neglect all terms for which d is
not square-free:∑

d|n

µ(d) =
∑
d|n

square-free

µ(d)

= µ(1) + µ(p1) + µ(p2) + · · ·+ µ(pr)+
+ µ(p1p2) + µ(p1p3) + · · ·+ µ(pr−1pr)+
+ µ(p1p2p3) + · · ·+ µ(p1p2 · · · pr)

= 1 + r · (−1)1 +
(
r

2

)
(−1)2 +

(
r

3

)
(−1)3 + · · ·+

(
r

r

)
(−1)r

= (1 + (−1))r = 0

Definition. The convolution of two arithmetic functions f and g is f ∗ g, defined by

(f ∗ g)(n) =
∑
d|n

f(d) · g
(

n
d

)
=

∑
de=n

f(d) · g(e).

The arithmetic functions I and ε are defined by I(n) = 1 for all n and

ε(n) =

{
1 if n = 1;
0 if n > 1.

Properties of convolution 1.6. For all f , g, h:

(i). (f ∗ I)(n) =
∑

d|n f(d)

(ii). f ∗ g = g ∗ f

(iii). f ∗ (g ∗ h) = (f ∗ g) ∗ h

(iv). I ∗ µ = µ ∗ I = ε
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(v). f ∗ ε = ε ∗ f = f

Proof. The first property is by definition, the second follows from the symetry of the formula
(f ∗ g)(n) =

∑
ed=n f(e)g(d). The second property is shown as follows:(

f ∗ (g ∗ h)
)
(n) =

∑
ec=n

f(c) · (g ∗ h)(e)

=
∑
ec=n

f(c) ·
∑
ab=e

g(a)h(b)

=
∑

abc=n

f(c) · g(a) · h(b)

which is symetric again so it equals
(
(f ∗ g) ∗ h

)
(n) for all n. Propertiy iv) is easy for n = 1 and

is exactly what the previous lemma says for n > 1. The last property is easy again.

Möbius Inversion Theorem 1.7. If f is an arithmetic function and F (n) =
∑

d|n f(d) then
f(n) =

∑
d|n µ(d) · F

(
n
d

)
.

Proof. F = f ∗ I =⇒ µ ∗ F = µ ∗ (f ∗ I) = f ∗ (µ ∗ I) = f ∗ ε = f .

Example. By definition, we have σ(n) =
∑

d|n d. So the Möbius inversion theorem for f(n) = n

and F (n) = σ(n) yields the formula

n =
∑
d|n

µ(d)σ
(n
d

)
.

For instance

12 = µ(12)σ(1) + µ(6)σ(2) + µ(4)σ(3) + µ(3)σ(4) + µ(2)σ(6) + µ(1)σ(12)
= 0 · 1 + (+1) · 3 + 0 · 4 + (−1) · 7 + (−1) · 12 + (+1) · 28.

Theorem 1.8. Let f be an arithmetic function such that f(1) = 1. Then there exists a unique
arithmetic function g such that f∗g = ε. The arithmetic function g is called the Dirichlet inverse
of f .

Proof. For n = 1, we have g(1) = (f ∗ g)(1) = ε(1) = 1. Let n > 1. By induction, assume that
g(k) was constructed for all k < n. Then (f ∗ g)(n) = ε(n) = 0 gives

g(n) = −
∑

n 6=d|n

g(d) · f
(n
d

)
.

Corollary 1.9. Let f and h be arithmetic functions such that f(1) = h(1) = 1. Then there exists
a unique arithmetic function g such that f ∗ g = h.

Proof. Take g = g1 ∗ h where f ∗ g1 = ε.
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Example. The Dirichlet inverse of I is µ, of course. What is Dirichlet inverse of τ ? We are looking
for a function g such that τ ∗ g = ε. We can write τ = I ∗ I and solve the equation on g:

I ∗ I ∗ g = ε now ∗ by µ on the left
µ ∗ I ∗ I ∗ g = µ ∗ ε

ε ∗ I ∗ g = µ

I ∗ g = µ and do it once more
µ ∗ I ∗ g = µ ∗ µ

ε ∗ g = µ ∗ µ
g = µ ∗ µ.

Primitive elements

Recall that the Euler function ϕ(m) counts the number of integer in 1 6 a 6 m that are coprime
to m.

Theorem 1.10. Let m > 1. For all a coprime to m, we have aϕ(m) ≡ 1 (mod m).

The proof was given in G12ALN 5.4.6. In the problem sheet we will prove that ϕ = µ ∗ id where
id(n) = n.

Definition. Let m > 1 be an integer and a an integer coprime to m. The multiplicative order
r(a) of a modulo m is the smallest integer k > 0 such that ak ≡ 1 (mod m).

The multiplicative order of elements modulo 13 are listed in the following table.

a 1 2 3 4 5 6 7 8 9 10 11 12
r(a) 1 12 3 6 4 12 12 4 3 6 12 2

Lemma 1.11. The multiplicative order r(a) divides ϕ(m) for all gcd(a,m) = 1.

Proof. Let k = gcd
(
r(a), ϕ(m)

)
. There are integers x and y such that k = x r(a) + y ϕ(m). So

ak = ax r(a)+y ϕ(m) =
(
ar(a)

)x ·
(
aϕ(m)

)y ≡ 1x · 1y = 1 (mod m)

and the minimality of r(a) imply that k = r(a).

Definition. An integer g is called a primitive element modulo m if it has multiplicative order
equal to ϕ(m).

Sometimes they are also called primitive root modulo m.
Primitive elements do not exist for all integers m, for instance for m = 12 and m = 15 there are
no primitive elements:

a 1 5 7 11
r(a) 1 2 2 2

Multiplicative order modulo 12

a 1 2 4 7 8 11 13 14
r(a) 1 4 2 4 4 2 4 2

Multiplicative order modulo 15

Theorem 1.12. Let p be a prime. Then there exist a primitive element g modulo p.
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Proof. By Fermat’s Little Theorem ap−1 ≡ 1 (mod p) for p - a, so X − a divides Xp−1 − 1 in
Z/pZ[X]. Hence

Xp−1 − 1 = (X − 1)(X − 2)(X − 3) · · · (X − (p− 1))

Let d | (p− 1). The solutions a of Xd − 1 are exactly the elements with r(a) dividing d. Writing
p− 1 = dm, we get (

Xd − 1
)(

1 +Xd +X2d + · · ·+X(m−1)d
)

= Xp−1 − 1.

So Xd − 1 also factors into linear factors and there are d solutions to it.
Let ψ(d) be the number of elements 1 6 a < p with multiplicative order d. We have shown that
d =

∑
c|d ψ(c). In other words id = ψ ∗ I. Hence ψ = id ∗µ = ϕ. So there are exactly ϕ(p− 1) > 0

elements of multiplicative order p− 1 modulo p.

Corollary 1.13. Let p be a prime and let a be an integer coprime to p. Given a primitive element
g there exists exactly one 0 6 k < p− 1 such that a ≡ gk (mod p).

Proof. The list {g0, g1, g2, . . . , gp−2} does not contain two elements that are congruent modulo p;
otherwise gi ≡ gj (mod p) and so g would have order |j− i| < p−1. Since there are p−1 elements,
every non-zero residue class modulo p must appear exactly once in this list.

Note though, that there is no obvious choice for a primitive element. Often a small integer like 2,
3, 5, or 6 will be a primitive element. There are important open question on primitive elements
like Artin’s conjecture which asks if any integer a > 1 is a primitive element for infinitely many
primes p, unless a is a square. In fact, it should happen roughly for 37.396% of all primes p.
Primitive elements are also crucial for cryptography, like Elgamal’s cipher (see G13CCR).

http://en.wikipedia.org/wiki/Artin's_conjecture_on_primitive_roots
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