Further Number Theory G13FNT cw '11

1 Prime Numbers and Arithmetic

Definition. A prime number is a positive integer p who has exactly two positive divisors, namely 1
and p.

Notation. For m,n € Z write m | n to mean m divides n, i.e. n = am for some a € Z.
Definition. Let p be a prime number. Given an integer n # 0, we write ord,(n) for the largest

power of p dividing n. So p°*d»(™ divides n, but p°*d»("+1 does not.

Fundamental theorem of Arithmetic 1.1. Every nonzero n € Z has a factorisation

+1 ifn >0,

— . ordy, (n) h : _
n = sign(n) H P where sign(n) {1 ifn <0,

primes p

This factorisation is unique. Each n has only a finite number of prime divisors, so the product is
really finite: for each n, the exponent ord,(n) = 0 for all but a finite number of primes p.

Definition. The greatest common divisor of m,n € Z is the largest integer which divides both m
and n. Notation: ged(m,n).

Euclidean algorithm can be used to find g = ged(m, n) and also integers x, y such that g = maz+ny.
Notation. For m > 1 write a = b (mod m), read as “a is congruent to b modulo m”, to mean

m | (a—0).

Chinese Remainder Theorem 1.2. Let my, ms, ... m, be pairwise coprime integers and let a1,
as, ...a, beintegers. Then solving the congruences x = a; (mod m;) for all1 < i < r is equivalent
to solving a congruence © =b (mod my - mg---m,.) for some integer b.

Theorem 1.3. There are infinitely many primes.

Proof. Suppose that there are only finitely many primes, say p1, p2, ..., px. Thenn =1+ Hle i
must have a prime factor not in {p1,...,px}. O
Definition. An integer a is square-free if it has no square divisors greater than 1; alternatively, if

ordy(a) € {0,1} for all primes p.

Lemma 1.4. If n € Z is nonzero then n = a - b* with a square-free.

Proof. Take b? to be the largest divisor of |n| which is a square and set a = n/b?. If a square c?

divides a, then ¢2b? divides n. So by the maximality of b, we have ¢ = 1 and a is square-free. [
Arithmetic Functions and the Mo6bius inversion theorem

Definition. An arithmetic function is any function f: N — C.

Ezamples. Functions that you have seen in G12ALN like 7(n), counting the number of divisors of
n, or o(n), the sum of all divisors of n. More generally we set o (n) = Ed‘n dk, so that 7 = oy
and o = 1. And there is Euler’s totient function ¢(n) counting the number of integers 1 < m < n
that are coprime to n.
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n |1 2 3 4 5 6 7 8 9 10 11 12 ... pprime
n) |1 2 2 3 2 4 2 4 3 4 2 6 2
on) |1 3 4 7 6 12 8 15 13 18 12 28 p+1
oa(n) |1 5 10 21 26 50 50 8 91 130 122 210 p?+1
en) |1 1 2 2 4 2 6 4 6 4 10 4 p—1

Definition. The Mo6bius function p: N — {—1,0,1} is defined by

1 ifn=1
win) =<0 if n is not square-free
(=1)" if n=pipa...p, with p; distinct primes.
n‘1234 5 6 7T 8 9 10 11 12 ... 30
wu(n) ‘ 1 -1 -1 0 -1 1 -1 0 O 1 -1 0 -1

Lemma 1.5. If n > 1 then }_,;,, p(d) = 0.

Ezample. 1(12) + u(6) + pu(4) + p(3) + u(2) + p(1) =0+14+0+ (1) + (-1)+1=0.

Proof. Write n = p{* ---pr. Then in the sum },  x(d) we can neglect all terms for which d is
not square-free:

dould) = D )
d|n

d|n
square-free

(1) 4+ p(pr) + p(p2) + - + plpr)+
+ pu(pip2) + p(p1p3) + - - + ppr—1pr)+
+ pu(pipaps) + -+ p(pip2 - - pr)

v 0 () e+ (e (D) e

= (1+(-1)" =0 O

Definition. The convolution of two arithmetic functions f and g is f * g, defined by

(frg)n) =D f(d)-g(2) = f(d)-gle).
d|n

de=n

The arithmetic functions I and ¢ are defined by I(n) =1 for all n and

E(n):{1 ifn=1;

0 ifn>1.

Properties of convolution 1.6. For all f, g, h:
(i). (f =I)(n) =3 gp, f(d)

(ii). frg=gx*f

(iii). fx(gxh)=(fxg)*h

(iv). [«xp=pxl=c
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(v). fre=exf=Ff

Proof. The first property is by definition, the second follows from the symetry of the formula
(fxg)(n) =3 .4, f(e)g(d). The second property is shown as follows:

(70 xm) ) = 3 £0)- (g =)@

=3 1@ Y gl
ec=n ab=e

= Y f(0)-g(a)-h(b)
abc=n

which is symetric again so it equals (( fxg)=* h) (n) for all n. Propertiy iv) is easy for n = 1 and
is exactly what the previous lemma says for n > 1. The last property is easy again. O

Mébius Inversion Theorem 1.7. If f is an arithmetic function and F(n) = ., f(d) then
Fn) =g ld) - F ().
Proof. F=f*x] = puxF=pux*x(f«l)=f*x(uxl)=f*xe=f. O

Ezample. By definition, we have o(n) = >_,, d. So the Mébius inversion theorem for f(n) = n
and F(n) = o(n) yields the formula

n= Z u(d)a(%).

d|n

For instance

12 = (12)0(1) + 1(6)0(2) + p(4)a(3) + (3)0 (4) + u(2)a(6) + (1) (12)
=0-1+(+1)-3+0-4+(=-1)-7+(=1)-12+ (+1) - 28.

Theorem 1.8. Let [ be an arithmetic function such that f(1) = 1. Then there exists a unique
arithmetic function g such that fxg = €. The arithmetic function g is called the Dirichlet inverse

of f.

Proof. For n = 1, we have g(1) = (f % g)(1) = (1) = 1. Let n > 1. By induction, assume that
g(k) was constructed for all k¥ < n. Then (f * g)(n) = e(n) = 0 gives

n#d|n

Corollary 1.9. Let f and h be arithmetic functions such that f(1) = h(1) = 1. Then there exists
a unique arithmetic function g such that f+g = h.

Proof. Take g = g1 * h where fx g =¢. O
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Ezample. The Dirichlet inverse of I is p, of course. What is Dirichlet inverse of 7 7 We are looking
for a function g such that 7% g = . We can write 7 = I x I and solve the equation on g:

IxIxg=¢ now * by p on the left
prxlxITxg=pxe
exIxg=p
Ixg=p and do it once more
prlsg=p+p
EXxg=H*H
g =% p

Primitive elements

Recall that the Euler function ¢(m) counts the number of integer in 1 < a < m that are coprime
to m.

Theorem 1.10. Let m > 1. For all a coprime to m, we have a®™ =1 (mod m).

The proof was given in G12ALN 5.4.6. In the problem sheet we will prove that ¢ = u * id where
id(n) = n.

Definition. Let m > 1 be an integer and a an integer coprime to m. The multiplicative order
r(a) of a modulo m is the smallest integer k > 0 such that a* =1 (mod m).

The multiplicative order of elements modulo 13 are listed in the following table.

a (1 2 3 4 5 6 7 8 9 10 11 12
re) |1 12 3 6 4 12 12 4 3 6 12 2

Lemma 1.11. The multiplicative order r(a) divides o(m) for all ged(a, m) = 1.

Proof. Let k = ged(r(a), ¢(m)). There are integers & and y such that k = zr(a) + y ¢(m). So
afF = grr(@tye(m) _ (ar(a))w . (asﬁ(m))y =1"-1Y =1 (mod m)

and the minimality of r(a) imply that k = r(a). O

Definition. An integer g is called a primitive element modulo m if it has multiplicative order
equal to ¢(m).

Sometimes they are also called primitive root modulo m.
Primitive elements do not exist for all integers m, for instance for m = 12 and m = 15 there are
no primitive elements:

a 1 5 7 11 a 1 2 4 7 8 11 13 14
ra) |1 2 2 2 ra) |1 4 2 4 4 2 4 2
Multiplicative order modulo 12 Multiplicative order modulo 15

Theorem 1.12. Let p be a prime. Then there exist a primitive element g modulo p.
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Proof. By Fermat’s Little Theorem a?~! = 1 (mod p) for p { a, so X — a divides XP~! — 1 in
2/,2[X]. Hence
X0 = (X - (X - 2)(X ) (X - (p- 1)

Let d | (p— 1). The solutions a of X¢ — 1 are exactly the elements with r(a) dividing d. Writing
p—1=dm, we get
(X4 = 1) (14 X+ X2 4 Xm0y = XL,

So X9 — 1 also factors into linear factors and there are d solutions to it.

Let 1(d) be the number of elements 1 < a < p with multiplicative order d. We have shown that
d=73",4%(c). In other words id = ¢ x I. Hence 1) = id u = ¢. So there are exactly p(p—1) >0
elements of multiplicative order p — 1 modulo p. O

Corollary 1.13. Let p be a prime and let a be an integer coprime to p. Given a primitive element
g there exists exactly one 0 < k < p — 1 such that a = g* (mod p).

Proof. The list {g°,g*, 9%, ..., 972} does not contain two elements that are congruent modulo p;
otherwise g* = ¢/ (mod p) and so g would have order |j —i| < p—1. Since there are p—1 elements,
every non-zero residue class modulo p must appear exactly once in this list. O

Note though, that there is no obvious choice for a primitive element. Often a small integer like 2,
3, 5, or 6 will be a primitive element. There are important open question on primitive elements
like Artin’s conjecture which asks if any integer @ > 1 is a primitive element for infinitely many
primes p, unless a is a square. In fact, it should happen roughly for 37.396% of all primes p.
Primitive elements are also crucial for cryptography, like Elgamal’s cipher (see GI3CCR).


http://en.wikipedia.org/wiki/Artin's_conjecture_on_primitive_roots
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