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Abstract

This thesis is concerned with a particular question in the arithmetic of elliptic curves
related to Iwasawa theory. Let E/K be an elliptic curve over a number field and
let p be any odd prime. The p-primary Selmer group S(£/K) is then defined to be a
certain subgroup of the first Galois cohomology group H! (K, E(p)) with values in the
p-primary torsion group of £. From Kummer theory, we know that it contains the
image of the Mordell-Weil group E(K) ® Q,/Z,. If certain standard conjectures are
valid then the image has finite index in §(F/K). The Iwasawa-theory of the Selmer
group 8(E/.K) over a Z,-extension . K of K is well understood if the reduction of
E at p is good and ordinary. Via its Euler characteristic formula, it provides some
information on the growth of the rank of the Mordell-Weil group in the Z,-extension.

We propose here the study of a certain subgroup R(E/K) of the Selmer group,
called the fine Selmer group, which is obtained by imposing stronger conditions at
the places above p. On this subgroup, one can construct a p-adic height pairing
that can be computed using p-adic sigma function. Assuming the non-degeneracy of
this pairing, we deduce a formula for the Euler characteristic of R(E/,.K) and many
interesting results on the behaviour of the fine Selmer group in Z,-extensions. One
of the advantages of the fine version of the Selmer group is that we do not have
to make any assumptions on the type of reduction. Many numerical examples are
included.
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Introduction

Some miracles never cease to amaze me. One of them is certainly Weil’s idea that
the number of points defined over any finite field on an algebraic variety can be cal-
culated once it is known for a few small extensions of its field of definition. The idea
behind it is the zeta-function of the variety, which turns out to be a rational func-
tion. Tate considered a finer question in his Bourbaki talk [Tat66 | on the conjecture
of Birch and Swinnerton-Dyer. In order to motivate and illustrate the idea of Iwa-
sawa theory in the arithmetic of elliptic curves over number fields we are going to
describe quickly how Tate was able to prove a large part of the geometric analogue
of the famous conjecture.

Let K be a function field of a curve over a finite field with ¢ elements and let /K
be an elliptic curve. Geometrically this yields an elliptic surface £ defined over the
finite field. Suppose that p is a prime number different from the characteristic of K.
Denote by P,(7T') the characteristic polynomial of the action of the Frobenius endo-
morphism on the group HZ(€,Q,). This polynomial is one of the factors appearing
in the zeta-function of €. Tate starts by reformulating the conjecture of Birch and
Swinnerton-Dyer in terms of the polynomial P, (7)) and the geometric invariants of
€. A part of the reformulated statement is that, the Brauer group Br & = HZ (€, G,,),
which is the analogue of the Tate-Shafarevich group, is finite. Assuming that the
p-primary part of Br € is finite, Tate is able to show that the order of vanishing of
Py(T) at T = q~! is equal to the rank of the Néron-Severi group NS(€) and the leading

coefficient is equal to
det(Di.Dj) . # Bré

(NS(€)tors)?
where the first factor in the numerator is the determinant of the intersection form

+ qsome power |

on the Néron-Severi group. For the proof of this formula one can restrict one’s

attention to the p-primary parts. Tate then analyses the kernels and cokernels of



6 Introduction

the maps in the following diagram (5.12 in [Tat66 ).

NS(€) @ Z, —'- Hom(NS(£),Z,) =  Hom(NS(€) & Qy/Zy, Qy/Z)

| ) T

HE(&. Top)" —— HE (€, Tp)r —— Hom(HE(E, u(p))", Qp/Zy)
Here u(p) are the p-power roots of unity and I' is the absolute Galois group of the
finite field of constants of K. The map # is the non-degenerate intersection pairing
on NS(€&), while the vertical maps come from the Hochschild-Serre spectral sequence
and the natural map from NS(€) into the second étale cohomology. On the bottom,
we have the natural map induced by the identity, followed by the isomorphism de-
fined via Poincaré duality.

Since the work of Iwasawa on the growth of the class group of a number field
in a Z,-extension, we know how to use similar ideas when working over number
fields. Now, let E be an elliptic curve over a number field K and let p be an odd
prime number. Let I" be the Galois group of a Z,-extension . K of K. Suppose that
the Tate-Shafarevich group 11I(E/K) is finite. Rather than studying the number of
points on a variety, we want to look at the growth of the Mordell-Weil group. In
Iwasawa theory one is able to define in certain circumstances a power series with
coefficients in Z, which encodes this information similar to how the zeta-function
does for varieties over finite fields.

In the now classical approach one finds an arithmetic analogue to the geometric
situation; the Néron-Severi group is replaced by the Mordell-Weil group F(K), and
the Selmer group S(E/K) (see section 1.1 for the detailed definitions) takes the place
of the second étale cohomology group. Poincaré duality can be substituted by global
duality as explained in Tate’s article. Schneider [Sch85] and Perrin-Riou [PR82]
were the first to find a pairing, called the p-adic height pairing, that would replace
the geometric intersection form but only under the restriction that the reduction of
E at all places above p is good and ordinary. Also the map b will have finite kernel
and cokernel only if one assumes this additional hypothesis; this is called the control
theorem of Mazur. Let Reg be the p-adic regulator defined to be the determinant
of the p-adic height pairing. It is conjectured, but unknown execpt for very special
cases, that the pairing is non-degenerate if the Z,-extension is cyclotomic.

The beautiful result that can be deduced following the ideas of Tate is that the
characteristic power series f; € Z,[1] of the dual of the Selmer group 8§(E/..K) over
. has a zero of order at least the rank r of E(K). If the p-adic height is non-
degenerate and the Tate-Shafarevich group is known to be finite then the order of

vanishing is equal to r and that the first coefficient (up to a unit in Z)) of f; is given
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by
" (#E(K)tors)2
The notation N, stands for the number of points in the reduction of the curve E

at a place v above p and []¢, is the product of the Tamagawa numbers. Hence
the first coefficient and so an important part of the information on the growth of
the Mordell-Weil group can be computed with only the invariants from F over K.
It is truly miraculous to me, even after three years of Ph.D. on the subject, that
one can deduce very often the full structure of §(F/.K), at least up to something
finite. For the classical results on the Selmer group, we refer the reader to [CoSu00],
[cetraro99 ], [Gre99 ] and [PR92].

Although, just as for Tate’s theorem, the finiteness of I1I(£/K) can not be deduced
in this way but has to be assumed. Unlike for the geometric case, the character-
istic power series can not be linked so easily to the L-function; in fact the “main

conjecture” states that fs is equal to the p-adic L-function.

The fine Selmer group

In this thesis, we consider a subgroup of the Selmer group S(£/K) and of the Mor-
dell-Weil group E(K)® Q,/Z,. Following the terminology in [CoSu], we call! it the
fine Selmer group R(E/K) and the fine Mordell-Weil group M(E/K), respectively.
They are defined by imposing more restrictive conditions on the elements of S(E/K)
at all places above p. In particular M(E/K) is the kernel of the localisation map from
E(K)®Q,/Z, to the product of E(K,,)®Q,/Z, for all places v dividing p. Itis a rather
small subgroup. For elliptic curves over Q, the fine Mordell-Weil group is non-trivial
only if the rank of F(Q) is strictly larger than one. We propose the fine Mordell-
Weil group as another analogue of the Néron-Severi group and the fine Selmer group
R(E/K) might replace the étale cohomology groups mentioned above. It is striking
that the analogy works much better and we can drop all conditions on the reduction
of E at the places above p. E.g. it is known that the Néron-Severi group NS(€)
is still a finitely generated group, while it is known that the Mordell-Weil group
E(..K) can very well have infinitely many generator if for instance the reduction at p
is supersingular, unlike for the fine Mordell-Weil group M(E/..K) where we expect
that it is still cofinitely generated according to the widely believed weak Leopoldt
conjecture VI1.9. This goes even further. We also know from étale cohomology that
the group HéQt(E, Zy) is of finite Z,-rank. In our case it is a conjecture of Coates and

lother names found in the literature include “strict” or “restricted Selmer group” or even “a certain
subgroup”
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Sujatha [CoSu] that R(E/_K) is cofinitely generated, at least if . K is the cyclotomic
Zy-extension of K. See conjecture VI.12.

We shall give now an overview of the structure of this thesis. A first result is the
control theorem 1.15 for the fine Selmer group which provides us with a pseudo-
isomorphism b from R(E/K) to R(E/.K)'. In section 1.5, a p-adic height pairing is
constructed on the fine Selmer group via extensions of the Tate-module 7,F by T,u.
It is a generalisation of the canonical p-adic height as constructed in [PR92] and
it was previously used in [PR95] and [PR93b]. Its non-degeneracy is conjectured
if the Z,-extension is cyclotomic. Next we show in proposition 1.23 that there is a
diagram completely analogous to the diagram in Tate’s article.

Several consequences can be deduced under the hypothesis that the pairing is non-
degenerate. First of all, in section 1.7, the dual of R(E/_K) is shown to be a torsion
module over the Iwasawa algebra A(I') = A and its characteristic series f; has a
zero of order equal to the rank of R(E/K). We proceed in theorem 1.33 to compute
the first coefficient of f;, the so-called Euler characteristic of the dual of R(E/.K).
This formula will be simplified substantially in theorem 11.4 under the assumption
that the fine Tate-Shafarevich group, the fine analogue of III(E/K), is finite. The
fine Tate-Shafarevich group, denoted by /K(E/K), is a subgroup of I1I(E/K) and the
difference is discussed in the second chapter, where some numerical computations
and examples are also presented.

In order to compute explicitely the Euler characteristic of the fine Selmer group,
we need to link the algebraically defined height to an analytic height using sigma
functions. In chapters I1I and IV we derive the analytic formula for the p-adic height
pairing on the fine Mordell-Weil group; first for a general abelian variety and then
for an elliptic curve. We then show that it is the limit of naive p-adic heights in
theorem IV.8, involving only the logarithms of numerators of the z-coordinate on £
in a Weierstrass equation.

In chapter V, we look at the variation of the p-adic height on the fine Selmer as a
point varies in a family of elliptic curves. It turns out that the variation is p-adically
analytic; see theorem V.7. This can be used to prove the non-degeneracy of the
p-adic height on the fine Selmer group on many curves at once.

The final chapter is devoted to explanations and presentations of the numerical
computations. In the detailed description of some examples of elliptic curves E
defined over Q, we show how the formula for the Euler characteristic can be used
to determine the characteristic power series for many primes p. In fact, it is often
the case that one can prove that f; is a unit, and hence R(E/K) has finite index in
R(E/.K). According to the conjecture VI.15, this should actually be true for all but a
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finite number of primes. But f; is not always a unit; in proposition V1.8 we present
an example in which f; is divisible by the distinguished polynomial 3 + 37 + T2.
Before the table with the complete numerical results, we present in section V1.4

some conjectures and conclusions.
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Chapter I
Iwasawa theory of the fine Selmer group

I owe the discovery of Ugbar to the conjunc-
tion of a mirror and an encyclopedia.
Tlon, Ugbar, Orbis Tertius; Jorge Luis Borges.

1.1 Definition and notations

I.1.1 Notations

Let us fix first of all some notation and the general setting we are working in. During
the whole chapter, A will be an abelian variety defined over a fixed number field K,
with its origin O. Everything we consider is always relative to a prime number p
which we will assume to be odd; but no condition on the type of reduction of A at
p is made. The dual variety is written A. The ring of integers of K is O and Oy, the
ring of Y-integers.

As usual in this situation, a set X of places of K is chosen. It must contain all
places where A has bad reduction, all places at infinity, as well as all places above
p. The symbol @ will frequently denote the sum over all places v in ¥. Many things
will depend on the choice of this set, but the end results, of course, should be inde-
pendent. The set of places above p is denoted by ¥(p) and the remaining places in
by X(fp). When talking about an extension L of K, we keep the notation ¥ for the
places in L lying above K.

For the notation of Galois cohomology, we use the following symbols. Let L be any
extension of K. The Galois group of the maximal extension of L that is unramified at
all places outside ¥ is written Gy, (L). If M is a G;(L)-module, we write Hi(L, M) for
the ith restricted Galois cohomology group H'(Gs (L), M). If L = K, the abbreviation
Hi(M) = HY(K,M) is used. If w is a place of L, then L, is the completion of L at
w; if L is an infinite extension of K, it is understood to be the union of completions
of all finite subextension of L. For the local fields, H*(L,, M) is the cohomology
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with respect to the absolute Galois group of L,,. Suppose v is a place in K, the
abbreviation
H'(Ly, M) = @H Ly, M)
wlv
is used whenever M is a module over the absolute Galois group of K,,. All notations
for Galois cohomology are as close as possible to the ones used in [ NeScWi00]. We
will also use the same conventions on the sign of connecting maps.

Often, we will work with a fixed Z,-extension (see 1.2.2). It will be denoted by
K : K and its Galois group by I'. The field ,K is the subextension of degree p"
over K. The Galois groups Gal(,.K : ,K) and Gal(,K : K) are denoted by ,[' and ,G,
respectively. We try to be consistent and to write all indices indicating the layer in
the Z,-extension on the left. In this way we should be able to avoid things like Qs 3.

Finally, the Pontryagin dual of M is denoted! by M = Hom(M,Q/Z). A map
between two Z,-modules, or between duals of Z,-modules, is called a pseudo-
isomorphism if both, kernel and cokernel, are finite. Given an abelian group, a group
scheme or a Gy(K)-module M, we use M[m] to denote the m-torsion and M /m for
the quotient M/mM; e.g. K*/m is the quotient of K* by (K*)™. The following
limits are used frequently: The p-primary torsion part? M(p) = lim M [p"], the Tate-
module, T,M = lim M[p*], the p-adic completion, M* = lim M/p*M and finally the
limit M ® Q,/Z;, = lim M /pkM The notation G,, is reserved for the multiplicative
group and p[m]| for the mt roots of unity.

1.1.2 The fine Selmer group

Let k be a positive integer. Kummer theory for the abelian variety A provides us with
an injection of A(K)/p* A(K) into the first cohomology group H.!(A[p¥]). The classical
Selmer group S* is then defined to be the subgroup of cocycles whose restrictions to
H'(K,, A[p*]) are contained in the image of the local Kummer map for all places v in
Y. So it is the following kernel

0 — 5" — HY(APF) — @ H'(K., )]
veEY
In this way, A(K)/p*A(K) maps into S* and the latter can be calculated (at least in
principle) in order to find an upper bound on the rank of the Mordell-Weil group
A(K).

Except for the formal group E of an elliptic curve.
2This should not lead to confusions because we never use twists.
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We will consider in this thesis a smaller group, the fine Selmer group. At the finite
level, it is defined as the following kernel

0 RF — " — P H' (K., APY)).
p

If we emphasise the dependence on A or K, we will write R*(A/K). The notation
RF stands for the fine Selmer group R¥(A/K) for the dual abelian variety.

Most of the time, we actually consider the limit versions. First, take the limit
8 = lim Sk of the classical Selmer group S* with respect to the maps induced by the
inclusions A[p*] = A[p"*!]. The fine discrete Selmer group is the group R = lim R*.
It can be defined directly as the kernel of

0 —~ R — H(A(p) — P H'(K,, Alp)).
veS

The reason why we were allowed to replace the sum to be over all places in X rather
than over only the places above p is the following. We have to show that the kernel
of HY(K,, A(p)) —= H'(K,, A)(p) is trivial. This kernel is equal to A(K,) ® Q,/Z,
by Kummer theory. The claim follows now from the fact that A(K,) ® Q,/Z, is
trivial if v does not divide p because A(K,) contains a subgroup of finite index that
is isomorphic to a product of O,,.

The compact fine Selmer group is defined to be the projective limit R = liLan
where the limit follows the multiplication by p from A[p**!] to A[p*]. Here we can
define an even smaller group by

0 —= Ry —= HY(L,A) —~ (P H (K., T,A).

vEX
It turns out that
Lemma 1.1. R, has finite index in *R.
Proof. Indeed, there is a sequence
00— Ry —= R P H' (K. TA).
vEX(1p)

Note that the group 7, H!(K,, A) is dual to the group A(K,)®Q,/Z, under local Tate
duality (see [Tat58] and [NeScWi00, Theorem 7.2.6]). If v does not lie above p this
group is trivial and so we conclude that the local term on the right of the sequence
is equal to p-adic completion A(K,)*. This is a finite group by the same argument

as before, namely that there is a subgroup isomorphic to a product of O,,. O
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When these groups are considered over an extension L of K, they are always de-
fined as a direct limit ranging over all finite subextensions, e.g.
0 — My(A/L) — H} (L, [,A) — P H' (L., TA)
vEX

with the convention on the notation previously made.

1.2 Tools

Before we can start to work we need to put the tools in place that we are going to
use later. So this section is simply a collection of facts that will be useful. It contains
hardly any proofs but references to the relevant literature.

1.2.1 Global duality

As explained in Tate’s article [Tat66 |, the arithmetic analogue of the Poincaré duality
in étale cohomology is the “global duality”. It was first discovered by Cassels in the
special case of an elliptic curve (see [Cas64]) and it was announced in full generality
by Tate in [Tat63]. A full proof is presented in the book [NeScWi00, VII1.6]. A good
explanation for the case of an elliptic curve is given in [Fis03].

The starting point is the

Proposition 1.2. Let M be a finite p-torsion Gs,(K)-module. Let M’ = Hom(M, u(p))
be the Cartier dual. Then the kernels of the localisation maps

HY (M) — @HY(K,, M)

HZ(M') — eH*(K,,M')

are dual to each other.

Remember that © denotes the sum over all places v in 3. The construction of the
duality and the proof of the proposition can be found in [ NeScWi00, Theorem 8.6.8].
The explicit description of the isomorphism will be used in 1.6.2 and is the starting
point for many pairings such as Flach’s generalisation [Fla90].

We deduce for our case the following first corollary.

Corollary 1.3. The compact group Ry = R.(A/K) is dual to H2(A(p)), i.e. there is
an isomorphism
f: Ry — HZ(A(p)) (I.1)

and the discrete fine Selmer group fits into the exact sequence

o —

0 — A(K)(p) —= @® A(K,)(p) — H2(T)A) — R —=0 (1.2)
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Proof. Note that A[p*]’ = A[p*] via the Weil-pairing. The surjectivity in (I1.1) follows
from the fact that the local cohomology groups H?(K,, A(p)) vanish since they are
dual to 7,A(K,) = 0 by local Tate duality. The first part of the second sequence will
be a consequence of the more general duality of Poitou-Tate (I1.4). O

Another part of the global duality is the following sequence found by Cassels.

Proposition 1.4. There is an exact sequence of discrete p-torsion groups of finite
corank

o —

0+ R —> HY(A(p) — @ H' (Ko, A(p)) —> HY(T,A) —> Ry —> 0. (1.3)

Proof. This is easily deduced from the explicit sequence of Cassels in his original
article [Cas64] or from the formulation in [Rub00, Therem 1.7.3]. Otherwise one

can view it as a special case of (I.4). O

The general formulation of Tate is the statement that, for any finite p-primary
Gy, (K)-module, the following 9-term sequence is exact.

00— HYM) — &H (K,, M) — H2(M')

—

— H}(M) — oHY(K,, M) —~ H}(M') ————— (1.4)

v HEX(M) — ®H*(Ky, M) — HI(M') —— 0

In particular, when applied to the module u[p*], we get a sequence (see [NeScWi00,
page 539])

H (ulp*)) —= @ H'(K,, plp"]) —= HI(Z/p*) —= Cl(0:)/p" —=0  (L5)

where Cl1(Oy) is the class group of the X-integers Oy in K. We may pass to the limit
sequences

—

H (u(p) —+ H (Ko, p(p)) — B (Zy) ———— 0
(1.6)
HY (L) — &H (Ko, Typ) —2= Guo(K)7 —— CL(05)(p) ——— 0
Here Gy (K)P2P is the Galois group of the maximal abelian p-extension of K that
is unramified outside . If the Leopoldt conjecture holds for the field K, then the
kernel of the first sequence above is finite, while the kernel of the second, equal to

HZ2(Q,/Z,), is zero. This is part of theorem X.3.6 in [NeScWi00].
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1.2.2 7Z,-extensions

Let A\ be a non-trivial continuous homomorphism from the absolute Galois group
Gal(K : K) to Z,. Its kernel has a fixed field .K such that X induces a map from
I' = Gal(.K : K) to Z, which is an isomorphism onto its image. So . K is a Z,-
extension of K.

Composed with the Artin reciprocity map, we obtain a continuous map from the
idele group Ix of the field K to Z,. This gives a continuous map A, from K} to
Z, for every place v in K. If the place v is at infinity, the map A, has to be trivial
because Z, has no 2-torsion and is totally disconnected. If the place v does not
divide p, then the group of units O;f must lie in the kernel because it has a subgroup
of finite index isomorphic to O,,. We see that A and the Z,-extension are unramified
outside the places above p. In particular ) factors through Gy (K) and so it belongs
to H}(Z,) = Hom(Gs(K),Zy).

Furthermore the product-formula must hold, so >  \,(xz) = 0 if  belongs to K*
and the sum runs over all places in K.

If the Leopoldt conjecture is known to hold for the field K, then the space H!(Z,)
parametrising all A has rank r; + 1, where r; stands for the number of complex places
of K (see [NeScWi00, Proposition X.3.20]).

The most important example is the cyclotomic Z,-extension. Define the cyclotomic
character (o) € Z) by o(¢) = ¢+ for & in the Galois group Gal(K : K') and  in
p(p)- Then (A = log, oycx is a non-trivial homomorphism as required. Here log, is
the p-adic logarithm of Iwasawa.

By the explicit description of the Artin reciprocity map for cyclotomic extensions,
we find the following formulae. If v is at infinity, then .\, = 0. Denote by ¢, the
number of elements in the residue field F,, at a finite place v. If v is above ¢ # p,
then

g () = log,(qy) - ordy(z) = —log, |Nk,.q,(7)[, and otherwise

cyc)‘U(‘T) = - 1ng(NKviQp (‘T))

As a consequence, we see that

D adu(@) == gdo(z) =log, (Nkg(r)) if z € K. (1.7)
p

utp

1.2.3 Galois cohomology over Z,-extensions

Let K : K be a Z,-extension of Galois-group I'. Let M be a finite p-torsion G-

module. The most important fact about T" is that it is a group of cohomological



16 1.2 Tools

dimension 1. Once again we introduce an abbreviation in notations, namely the
often occurring Galois-cohomology groups H*(Gx(..K), M) = Hi(. K, M) will also be
denoted by . H:(M).

Hochschild-Serre

The spectral sequence of Hochschild-Serre (see [ NeScWi00, Theorem 11.1.5]) degen-
erates and gives

Lemma 1.5. For all i > 1, there is an exact sequence
0 —= H'(T, JHI (M) — Hi(M) == _HI(M)T — 0. (1.8)
In particular, taking limits, we find the useful sequence
0 — H'(T, LH(A(p) —= H(A(p) —~ HI(A(p)" —= 0 (1.9)

An explicit description of the injection will be given later in 1.6.1.

Tate’s spectral sequence

Let me introduce yet another shorthand, namely for the projective limits of global

cohomology groups as we walk up the tower to . K:
(M) = lim H (K, M)

where the projective limit is taken with respect to the corestriction maps. They are

sometimes denoted by Hy .

Lemma 1.6. Let M be a finite G (K)-module. We have the following sequences and
isomorphisms
1 2 cor 2
H (Fv ooﬁz:(M)) ?’ Hz: (M)
1 1 cor 1 2 r
0 — H (', . H:(M)) —= H; (M) — . H5(M)" ——0
cor

0 ———= H(L, . H3(M)) — HJ(M) —= $H3(M)" ———0

HUM)T —— 0

Proof. According to [ NeScWi00, Theorem 2.1.11] there is a spectral sequence due
to Tate. We spell it out for G = Go(K), H = G5(.K) and A = M:

By = 17 (1, (lm 20K, M) ) = B PI(K. M)
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Since I' has cohomological dimension 1, this collapses and we can extract short exact
sequences

0— H' (0, .55 (M)) —= HY(M)" —= H° (T, H5(M)") —=0.  (1.10)

The fact that the edge morphism is the corestriction map is proven in [ NeScWi00,
theorem 2.1.12]. m

Corollary 1.7. In particular, we have the following exact sequence

0 — HY(I, HL(TA) = HN (T A) — H3(TA)F — 0. (1.11)

Proof. We will take the inductive limit over & of the sequence (1.10) for M = A[p¥]
and 7 = 1. In the first and last term, we end up with things like

i (@H;w«,mﬂ)) .
in the second argument of the I'-cohomology groups. We can swap these projective

limits and, using Tate’s argument, we can insert the projective limit over k& in the
cohomology group. O

Over local fields

Suppose K, : K, is a Z,-extension with Galois group I',. The above exact se-
quences (I1.9) and (I.11) have local analogues, but because of local Tate duality, they

are actually dual to each other:
0 — HY Ty, H* (. Ky, A(p))) — HYK,, A(p)) =——— H'(. Ky, A(p))'* —0

0 ) ) (1.12)

0 <— lim H?(,Ky, T,A)™ ~—— H'(K,, T,A) <~— H' (T, lim H' (,K,, T,A)) <— 0

Global duality

For fine Selmer groups over __K, we will use the above abbreviation, namely _ R for
R(A/.K). By taking limits on the global duality over the finite layers ,,K, one gets
the following three statements.

limRy(A/,K)  isdualto HZ(A(p)) (1.13)

There are exact sequences (the symbol @ continues to stand for the direct sum over

all places above )

o —

00— A(K)(p) —= ALK (p) —= P2GA) —= R—=0  (1.14)
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0 = ok = oy (A(p))

' (Ko, A(p))  (1.15)

—

0 <— HZ(A(p)) = HL(GA)

1.2.4 A homological lemma

The lemma that is proved here is probably standard and need not be explained.
Nevertheless I could not find any reference to it in basic textbooks on homological
algebra such as [Wei94]. The moment has also come to introduce the notation o— .
It will always mean a map in a cochain complex, while —~ will be used only if the

complex is exact at the source of the arrow.

Lemma 1.8. Let F': € — D be a left exact functor between two abelian categories
with enough injectives. Write G = R'F for its first right derived functor and assume
that all higher derived functors vanish. Then, given an exact sequence

0 X' X X" —+0

in C, there are two cochain complexes in D

0— > FX' s FX? —s FX30 cei o FX"o—30

00— GX'o—>GX?0—+ - o—>GX" ! ——GX" ——0.

Moreover we have canonical isomorphisms H'~'(G X*) = H'T'(F X*) for all i.

Proof. First we split up the exact sequence in short exact sequences

0 - X! - X2 - 73 0
0 . 73 - X3 . 74 > 0
0 — zn s xnl -~ X7 ~ 0

And now we can read the cochain complexes out of a big diagram in figure 1.1 on
the following page. For the statement on the cohomology groups, note first that
the kernel of the map F X! o— F X2 equals F Z¢, so the group H'"(F X*)
is isomorphic to the image of FZ! — G Z~!. On the other side, the image of
G X2 o—+ G X" is the same as the image of G Z" "2 — G X"~! and so the
cohomology group H'~!(G X*) is the kernel of G Zi~! — G X".

Alternatively, one can use the hyper-cohomology spectral sequence degenerating
at the second page, with trivial limit because the starting complex X* is exact. [
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0 0
FX! GX!
O
0—>FX1—>FX2/>FZ3 - G X! GXQ/GZ3—>0
O

00— FZ73 " s FX? s F7* VA GX? —GZ7*—0

o/

o/

0—=FZ"! > X" » PX" »GZ"! =GX" ! -=GX" —+0
(@]
Y Y
FX" G X"
(@]
0 0

Figure 1.1: The complexes appear in a diagram

The main purpose of this lemma are the two corollaries deduced from it. Once we
apply it to the functor 7, and then to the functor H°(T,-).

Corollary 1.9. Let 0 -~ X! — X" 0 be an exact sequence of co-

finitely generated, abelian p-primary groups. Then

0—LX' —=TX* —— T,X?0 o TX" o— 0
04>—(X1)*O%- (XQ)*O s ..o (anl)*%_(Xn)*%_O

are complexes. The first one is a complex of finitely generated Z,-free modules and

has finite cohomology. The second complex is finite.

Proof. Note first that the first derived functor of X —— X[p*] is X —— X/pFX.
Since all X [p"] are finite groups, the functor lim is exact (see [Wei94, Exercise 3.5.2]).
Now the statement that H*"1(7,X*) = H~1((X*)*) and the finiteness of (X*)*, which

equals the quotient of X by its maximal divisible group, proves the corollary. [

Corollary 1.10. Let T" be a pro-p-group of cohomological dimension 1 and let

0 )(1 I Xn ro
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be an exact sequence of I'-module, then we have two cochain complexes
0— (XH — (X)) =— (X%’ o 0 (X" o——0
0 — HYT, XY o > .0 HYT, X" Y — HY(T,X") —=0

1.3 The structure of the fine Selmer group

We start by analysing the compact fine Selmer group R and its subgroup Ry. The
main results of this section are the fact that they are Z,-free and that there is a

construction of a Cassels-Tate pairing on R*.

1.3.1 Construction of a diagram

Consider the multiplication by p* on A(p) and T, A as k varies. This can be summed

up in the following diagrams.

0 ——— AP —— A(p) LR A(p) =0
0 —— A" ——— A(p) ~ A(p) =0
; PN )
0<——— AP =———T,A T,A 0
Foowl
0 <——— A" =— T, A T,A 0

In the usual manner, we deduce short exact sequences of cohomology groups over a
field F containing K.

0 ——— A(F)(p)/p" —— H'(F, A]p*]) — H'(F, A(p))[p"] —— 0
0 <—— HY(F, T,A)[p*] =<— HY(F, A]p*)) =— HY(F, T,A)/p* <——0
If Fis a local field K, then the two exact sequences are dual to each other via Tate
duality. Using the multiplication by [p] as in the diagrams above, we can pass to the
limits.
0 ——— A(F)(p) — HY(F,T,A) — T,H'(F, A(p)) ——— 0(1 16)
0 ~—— H*(F,T,A)(p) <~ H'(F, A(p)) < H'(F,T,A) © Q,/Z, ~——0
The corollary 1.9 applied to the sequence (1.2), we get a complex of finite groups

— %

0 o—+ A(K)(p)* o—= @ A(K,)(p)* o—= H2(T)A) —= R* — 0.
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We can rewrite this as
0 —= A(K)(p) —= @ A(Ky)(p) o— HI(T,A)(p)" —= R* —= 0 (1.17)

and we see that the complex is exact everywhere but at the second non-zero term.
This follows from the corollary 1.9 and the injectivity of the global p-torsion into the
local p-torsion.

Again by the same corollary 1.9, but applied to the sequence (I.3), we get a complex

0—— LR - LHNAP)

)

_ ®TH (K, Alp))  (1.18)
0 <—o T (%) ~——— B (H(BA)

~

Note also that 7,,(X) = Hom(X, Z,) for the last two terms.

Now we can build a huge diagram. We align the short exact sequences found
in (I.16) vertically. In the middle appears Cassels sequence (I.3), while the top is
a part of the complex (I.17) and the bottom is a part of (I.18). We define there-
fore three complexes in an short exact sequence by the following nine terms and
zero outside. We fix the middle (local) column to be the 0-th term of the cochain

complexes.

0 0 0

)

Yiop A(K)(p) o= SA(K,)(p) o= HZ(T,A)(p)"

v r ¢
Yo HNT,A) o0—— ©H (K, T)A) o0—— Hi (A(p))" (1.19)
v r v

Yoo  LHI(A(p) o——= &T, H' (Ky, A(p)) o= Hom(H (T, A), Z,)

a a a

0 0 0 0

Although each vertical sequence is split (the top complex is made out of finite groups
and the bottom contains only Z,-free modules), there is, in general, no splitting that

makes the diagram commutative.

1.3.2 The compact fine Selmer group is Z,-free

We define L to be the finite group H O(Yt:,p). Now we apply the long exact sequence
for short exact sequences of cochain complexes as in [Wei94, Theorem 1.3.1]. This
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splits into two parts because H°(Y,%;) = 0 by (1.3). The first part is

0 ———= H '(Yiop) —= H ' (Ypy) — H ™ '(Ygo) —+ H(Yigp) —— 0
| | | | 0.20
0 - Ry ~ T,R L 0

The third equality comes from the exactness of the first two terms in (1.18).

Instead of summing over all places in X, one could look at the first two rows of
the above huge diagram (1.19) even if the middle term consists of the sum over all
places above p only. It is easy to check that everything just works the same and we
end up with a sequence

0 KER I;:R KIO

Y
=]

(1.21)

where j is a finite group inside the cokernel of the map from A(K)(p) to @ A(K,)(p),
where this time, the sum is over all places above p. This proves

Proposition 1.11. The groups Ry, (A/K) and R(A/K) are free Z,-module. The canon-
ical embedding R(A/K) into T,R(A/K) has finite cokernel of order #I, bounded

by
[1., #A(Ku)(p)

#A(K)(p)

We add here the definition of the map a that we will use later.

#1p <

a: Hom(R,Q,/Z,) — Hom(Rgiy, Qp/Z))

(1.22)

Homgz, (1R, Z,) =————— Homgz, (Ry, Zy)

It has kernel of order #XR* and the cokernel has order #L, = [R : Ry| - #1).

1.3.3 The Cassels-Tate pairing

Now, we look at the second part of the long exact sequence coming from the short
exact sequence of complexes (1.19).

00— HYY) —= HY(Yy) —= H' (Ymi) —= H' (V) —— 0

| U H

0 —— ker(ct) — R* R = H'(Yp,) — 0

Since R* is finite, the image of the middle map must lie in R* and so there is a
sequence
0 — ker(ct) —= R* L R coker(ct) — 0.
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From the diagram (1.19) we immediately see that this map here is the same as the
one in proposition 1.2. So it must be the restriction of the Cassels-Tate pairing to
the fine Selmer group. Using the relation between the cohomologies of the two

complexes again, we can describe the kernel as

*

0 — ker(ct) —= R* — H(A(p))

In other words, the kernel consists of elements in R that become divisible in the
group H!(A(p)). This pairing is nothing new, it is in fact a special case of the non-
degenerate pairing of Flach [Fla90], namely

R(A/K)* x Hg (A(p)* —= Qp/Zyp.

If the abelian variety is principally polarised, the pairing is alternating.

1.4 The control theorem

I believe the first “control theorem” was discovered in [Maz72] for the classical
Selmer group if the reduction is good and ordinary. Ever since, there is hardly an
Iwasawa-theoretic article on abelian varieties that does not contain the statement
of the control theorem or even a proof of it. It is without any doubt a very crucial
step for analysing the growth of the Selmer group in Z,-extensions.

We will consider everything related to a fixed Z,-extension . K : K with Galois
group I'.

1.4.1 Preliminary lemmata on the torsion

Define the following two groups

Ty = H'(T, A(K)(p))
7jloc = @ Hl (P7 Ho(ooKv7 A(p)))

veEY
which fit into the short exact sequence coming from the inf-res-sequence (or the
Hochschild-Serre spectral sequence (1.8)):

0 — Ty — HL(A(p)) ——— - Hl(A(p)T ——— 0

(1.23)
res
0 — Tioe — ®H'(K,, A(p)) —= GH (T, H' (K, A(p))) —> 0
Our aim is to prove that both, Ty and Tj,, are finite groups. There is one case that
is slightly easier to treat; even if it can be deduced from what follows, we prove the

finiteness first in this case.
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Lemma 1.12. Suppose that the Z,-extension . K is the cyclotomic extension of K and
that A has potential good reduction at all places above p, then the above groups are
finite of order

#Tg=H#AK)(p)  and  #Tjoc = [[#AK) () [[ ¥,

vlp vip

where cLP ) is the highest power of p dividing the Tamagawa number c,, of A.

Proof. Choose a topological generator v in I'. Write M = A(.K)(p). Imai’s re-
sult [CoSu00, remark on page 91] or [Ima75] shows that M is finite under the hy-
potheses made in the statement. Now,

(v=1)

00— M' — M 1% M — My —>0

shows that #H(I', M) = #Mr = #H'(I', M). The same reasoning applies to the
group M = HO(T, A(.K,)(p)), if v divides p. The case v { p will be treated in
lemma 1.14. O

Without the assumption made in the previous lemma, it is still possible to bound
the order of the two groups. First the global case:

Lemma 1.13. The group Ty is a finite group of order bounded by #A(K)(p).

Proof. Let D be the maximal divisible subgroup of M = A(_.K)(p). Hence M/D is

finite. Consider the I'-cohomology of the exact sequence

0 — T,D V,D — D 0,

where V,D = T,D ® Q,. Since HY(I',V,,D) = 0, the group H(T',7,D) is finite, for D"
is a subgroup of M = A(K)(p). By Tate’s argument [ NeScWi00, Corollary 11.2.3.5],
we have

H*(T',T,D) = lim H*(T', D[p*]) = 0.

Therefore H(I', D) = 0 and, similarly, H?(I', D) = 0. Consider now the long exact

sequence
0 — D' — A(K)(p) = (M/D)" —~ 0 —= HY(T, M) — H (T, M/D) — 0.
It shows that
#Tq = #H' (I, M) = #H" (T, M/D) = #H"(I, M/D) = #A(K)(p)/#D",

by the argument already used in the proof of the previous lemma for the finite group
M/D. O
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In other words, our group 7} counts the p-power torsion points that will not be-
come divisible in A(_K).

Lemma 1.14. Let v be a finite place of K. The group T, = H*(I', H*(_ K, A(p))) is a
finite group of order bounded by #A(K,)(p). If v does not divide p, T,, has order
equal to the highest power of p dividing the Tamagawa number c,. In particular,

Tioc = ®uvex T, is a finite group.

Proof. First Shapiro’s lemma [NeScWi00, Proposition 1.6.3] gives us isomorphisms
H'(T, HY (Ko, A(p))) — H' (Tw, H (o, A()))

for any chosen place w above v. If v | p splits completely, then T, is trivial, otherwise
it is isomorphic to Z, and the bound on the order of 7;, follows as in the previous
lemma.
Suppose v { p. Either we use lemma 3.4 in [CoSu00] or we proceed as follows.
Write «/° /T, for the special fibre of the Néron model .« of A and ®/K,, for its group
of components. Since v { p, the kernel of the specialisation from the connected
component «7°(K,,) to 427"(15‘1)) has no p-torsion (see [HiSi00, Proposition C.2.5]).

Hence we have
0 —+ /°(F)(p) — A(K,)(p) — ®(K,)(p) — 0.

Since Néron models are stable under étale base changes (see [BoLiiRa90] or [Sil94,
Proposition 5.2]), the group of components of A over ,K,, is still the same, because
K K, is unramified. Write ,,G for the Galois group of the non-ramified extension

Ko :K,. Applying H'(,G, ) to the sequence above, but over ,K,, gives
0= Hl(an/Fv,J(an)(p)) — Hl(nGa A(Kv)(p)) — Hl(nGa (I)(an)(p)) —0

where the first equality comes from Lang’s theorem [Lan56]. Hence, in the limit we

obtain

#1,, = #Hl(r,q)(w[(w)(p)) =#P(K,)(p) = Cg)p)'

1.4.2 Building another huge diagram

Let us fix a topological generator + of I', in order to have an isomorphism from
HY(T', M) to Mr. We build up a short exact sequence of cochain complexes in a similar
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manner to (I1.19). Apply corollary 1.10 to the global duality over . K as in (I.15) to
get a complex

0 —— R = oy (AT

—_ T
0 <o HXAP) <o HLULA) <

OH' (Ko, Alp))"  (1.24)

We use corollary 1.10 a second time for the global duality as in (I.14).

—

0 — (A(K)(P))r o—+ (BA(K) (P))r o—+ HE(LA)p — Rr — (0
By definition, the first two terms are the groups 7j,c and 7. So the complex becomes
0 — Ty o Tioc o (HR(LA)) —+ Rp —=0 (1.25)

Once again, we form a short exact sequence of complexes by glueing together three
exact sequences, namely (1.23) and the dual of (I.11).

0 0 0 0

y y L y
Zop H(AP)' o—— aH' (K, A(p)" o— (A5 (L A)r)"

y
Zmi H; (A(p)) o——— @H'(K,, A(p)) o0—— Hy (T,A)" (1.26)
Zho Ty o > Toc © -~ (@%(EA)F)A

y
0 0 0 0

The middle complex is part of Cassels sequence (1.3) and so H°(Z%,;) = 0.

1.4.3 The control theorem

The first part of the long exact sequence is
0—= H ' (Z3y) —= H ' (Zmi) — H ' (Zgyp) —+ H"(Z3,) — 0

H I H (1.27)

I,
0 — ker(b) - R - RI > coker(b) —= 0

From the finiteness results in lemma .13 and lemma 1.14 we conclude

Control Theorem 1.15.

The mapb: R(A/K) —= R(A/..K)" induced by the restriction is a pseudo-isomorph-
ism. The kernel has less elements than A(K)(p) while the size of the cokernel is
bounded by [],, #A(K.)(®) - I, P,
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Although it is less important we add a second version of the control theorem, but
without proof.

Proposition 1.16. The restriction induces a pseudo-isomorphism from R;,(A/K) to
%E(A/NK)Gal(n,K:K)_

1.5 The height pairing

We come to the construction of the p-adic height on the fine Selmer group. It is a
simplification of the construction by Perrin-Riou in 1.2 of [PR92] (for the ordinary
case), 2.3.2 in [PR93b] (for an elliptic curve over Q) and 3.1.2 in [PR95]. The dif-
ference is that we are only interested in constructing the pairing on the fine Selmer
group while she is constructing pairings on the Selmer groups. Her pairing depends
on the choice of a complement N to the space of invariant differentials in the space
of differential of the second kind modulo exact differentials. Perrin-Riou notes that
the restriction to the fine Selmer group is independent of the choice of N and she
makes the conjecture that the pairing affiliated with the cyclotomic extension is non-
degenerate on the fine Selmer group (see [PR93b, Conjecture 3.3.7 Bi] and [ PR03a,
Conjecture 2.5]).

Our pairing will first be constructed for the finite fine Selmer group R*. Afterwards
we can pass to the limit to obtain simultaneously a pairing on R, x R with values in
Q,/Z, and a Z,-valued pairing Ry, x Ry which are compatible.

Although we are not explaining this here further, it would be possible to construct
the finite height on R* x R* with values in Z/p* using only finite levels ,K : K of a

Z,-extension if n > k.

1.5.1 Extensions

The p-adic height pairing on the fine Selmer group will be defined using extensions
of A[p*] by u[p"]; in other words, we use Ext-pairings. But instead of the abstract
definition (see paragraph 0 of [Mil86]), we do everything explicitely for we will need
it anyway when proving that the pairing defined over K equals another pairing ob-
tained from Iwasawa theory.

The symbol @ will still mean the sum over all places v in 3. All G (K)-modules
will be written additively. This applies also to u[p*] and T,u.

Let k be a positive integer. Let ¢ be a 1-cocycle representing a class in RE(A/K),
so it belongs to H!(A[p*]) and has trivial restriction to H'(K,, A[p*]) at all places v
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in X.
Let W* be a Gy, (K)-module that is isomorphic to u[p"] @ A[p*] as an abelian group
and o € Gy(K) acts on it by

(€ Q) = (" +(%,Q%),Q%)  forall ¢ € pfp*] and Q € A[p"].

Here (-,-) denotes the Weil-pairing A[p*] x A[p*] — u[p¥]. In particular, we have

an exact sequence of Gy (K)-modules:

0 — plp"] — WF — Ap*] — 0. (1.28)

Now we come to a few boring lemmata which will give an explicit construction of

the height pairing, later.
Lemma 1.17. The sequence (1.28) is split exact as a sequence of G,,-modules for any

place v in X.

Proof. Since res,(¢) is trivial in H'(K,, A[p*]) by definition of R:(A/K), there is a p*-
torsion point ¢/ in A(K,)[p*] suchthat ¢/ 7—¢! = ¢,. Nowthe map s(P) = ((—¢/,Q), Q)
is a section of (I1.28). Indeed, it is a G,,-morphism, because

s(Q)7 = ((=€,7,Q7) + (&, Q7), Q%) = ((-&,, Q7). Q") = s(Q”).

Lemma 1.18. The connecting homomorphisms in the long exact sequence
b b
- A(K) M — Hy (ulp") —= HE (W) —= HI(APY]) —= HZ(p[p*])---  (1.29)
are obtained as cup-pairings with &.
Proof. This is the “compatibility of Ext- and cup-pairings” with its beautiful proof

on page 12 in [Mil86]. We only show it for the two maps in (I.29). First, let Q be
an element of A(K)[p¥]. Then 6(Q) = £ U Q because

(5(Q)Ua 0) = (Oa Q)J - (07 Q) - <<§07 Q)? O)

holds for any o € G(K). Now, let ¢ represent an element in H! (A[p*]). By definition

we can compute, for any o and 7 in Gy (K),

((5C)0,Ta O) = d(Ov C)O’,T = _(07 CO'T) + (Oa CU) + (Oa CT)U = (<€m <7(—7>7 O)

Hence 6(¢) = UC. O
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Lemma 1.19. We have the following diagram
A(K)[p") —— Hi(ulp"]) —— Hi (W) ———= HJ(Ap"]) —— 0

| | | (1.30)

0 ——= @HY Ky, p[p*) —= GH (K, W) — GH' (K, Ap*]) — 0

Proof. Everything is obvious from lemma 1.17, except the upper right zero. We
would expect instead the commutative diagram

Hy (A[p"]) ———= HZ(ulp"])

| ]

O (Ky, Alp*]) — 0H* (Ko, pp"))
but since the arrow on the bottom is trivial and the arrow on the right is injective
by global class field theory, the top arrow is trivial as well. O

Let n be an element of RE(A/K). By the previous lemma, there is a 1-cochain w
with values in u[p¥] such that dw = ¢ U7. For every v in X, choose a p*-torsion point
7., such that res, (n) = dn.,.

Lemma 1.20. The snake map in diagram (1.30) maps 7 to an element of H' (K, u[p*])
that can be represented by the 1-cocycle

wy = —resy (W) — (resy(§) U 77;)

Proof. First we prove that w, is a 1-cocycle:

—dw, = res,(dw) + (res, (d€) Un.) — (res, (€) Udnl)
= res, (£ Un) — (resy(§) Ures,(n)) = 0.
Now choose a p*-torsion point ¢ as in the proof of lemma 1.17, i.e. such that
d,, = resy,(§). Then d(&, Un,,) = (res,(§) Un),) + (&, Ures,(n)) shows us that the class

of w, can also be represented by w!, = —res,(w) + (£, Ures,(n)).-

The map o — (—w,,7,) is a cocycle, since

d(=w,Mo,r = —(~Wor, Nor) + (~Wo, M) + (—wr, nr)”
= (Wor —wo — w7 + (6,17), 0) = (=(&,17) + (£5,717), O) = 0
and it is therefore a lifting of n to HQ(VI@’“). The restriction of this 1-cocycle to
HY(K,, Wg’“) differs from the image of the image of w/, by

/

(w!,0) —resy(—w,n) = (&) Ures,(n), —resy(n)).

In the proof of lemma 1.17, we showed that this is —s(res, (7)) which is, by assump-
tion on 7, a coboundary. O
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1.5.2 Definition of the height

It is exactly the snake-map in diagram (I.30) that gives us the desired height pairing
at finite level. This is, for every ¢ € RE(A/K), a map

He: RE(AJK) —= HL(Z/p).

because, in fact, the cokernel of the first vertical arrow in diagram (1.30) lies in the
dual of H!(Z/p"*) by the exact sequence of Poitou-Tate (I.5). Differently formulated,
this is a pairing
RE(A/K) x RE(A/K) —— Z/p"7Z
(&m) F——= (& = He(n)(A)
for every \ in H!(Z/p*) = Hom(Gx(K),Z/p*7Z).
Explicitly, if we choose a 1-cochain w, with values in u[p*] as in lemma 1.20, then
we can calculate the map g in (1.6) as
=g (Do wn) () = 3 imvw, UA).
veY
Here the cup-product is

inv,,

HY Ky, p[p")) UH' (K, Z/p*) —= H*(Ky, plp")) — Z/p"Z.

From the description of w, in lemma 1.20, it is immediate that the pairing is bilinear.

1.5.3 The p-divisible height pairing

Let ¢ be in R (A/K). This is a sequence of elements in R:(A/K) giving each an
extensions WZ“ They are compatible in the sense that we can define W; = lim Wg’“ as
an extension of A(p) by u(p). By taking inductive limits on the diagram (I1.30), the

i
|

following diagram is obtained.

A(K)(p) —= Hy (u(p)) —— Hg(Wg) —— Hy(A(p)) —— 0

} }

0 — &H Ky, u(p)) — @HY (K, We) — ©@HY(K,, A(p)) — 0

. g
3
— > Hy(Z,)"

(1.31)

This is the p-divisible pairing associated to \; for every X in H}(Z,), that is a homo-
morphism from Gy (K) to Z,, we obtain a pairing

Ry(A/K) x R(A/K) — Q,/Z,
(57 77) P <€7 n>>\
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1.5.4 The p-adic height pairing

Let ¢ be in Ry (A/K). The ng in the sequence of extensions are also compatible with
respect to the [p]-maps, hence there is a Gy (K)-module 7; which is an extension of

T,A by T,;.. Again, we get a diagram with a snake map:

Ry

|

0 —— HA(Tn) —— HL(T) —— HY(TA) —— 0

| | |

0 — ®HY(K,, Typ) — oH (K, ) — ®H'(K,, [,A) —=0  (1.32)

g
Hy - b
———— Gy (K)P?

;
Cl(0x)(p)

Here we have a map H;: Ry (A/K) — Gs(K)P 3 which actually takes values in

Gs(H)P3> where H is the p-Hilbert class field of K. Given a \ in H!(Z,) as before,

we can construct the p-adic pairing associated to \ as follows

Re(A/K) x Re(A/K) —— 7,
(&n) ——— (& nh = A(He(n))

which can be written explicitly as

(E;mh=Aog (H%;) = Z Ao(ay) = Zinvv(wv U

VEY vEX

with «,, € (K)* corresponding to w, € H'(K,,T,u) via the Kummer map. Here the
map ), is the composition of \ with Artin’s reciprocity map as explained in 1.2.2.

By the fact that the group R has finite index in 93, we can extend the Z,-valued
pairing to a pairing between RR(A/K) and R(A/K) with values in Q, with small de-
nominators.

The p-adic regulator associated to X is the value in Q, of the determinant of this
pairing. Itis well-defined up to a unitin Z;. We say that the p-adic height associated
to ) is non-degenerate on the fine Selmer group if the regulator is not zero. Of
course, we should mention here the very important conjecture due to Perrin-Riou

mentioned in the beginning of this section.

Conjecture 1.21. If X defines the cyclotomic Z,-extension, then the pairing (-, ). is
non-degenerate on the fine Selmer groups R(A/K) x R(A/K).
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Moreover the pairing can be extended. In fact, the local conditions on the cocycle
¢ are not needed. Hence there is a natural pairing

HNK,T,A) x Re(A/K) — Z. (1.33)

Lemma 1.22. The map a: Hom(R(A/K),Q,/Z,) — Homg, (R:(A/K),Z,) in (1.22)
maps the p-divisible pairing (¢,-), to the corresponding p-adic pairing for all \ €
HMK,7,) and ¢ € Rs(A/K).

This is clear from the way we passed simultaneously to the limits. In the case
that the abelian variety A is principally polarised, then the induced bilinear form
on Ry (A/K) with values in Z, is symmetric. This can be verified directly on the
cocycles. For elliptic curves, it will be apparent anyway from the formula using

sigma functions.

1.6 Iwasawa theoretic height

In the article [Sch85], Schneider defines an analytic and an algebraic height for the
classical Selmer group of an abelian varieties with ordinary reduction at all places
above p. The algebraic height uses Iwasawa theory and is closely modelled on the
use of the intersection form on the Néron-Severi group in the function field case
(see [Tat66]). We follow here the description of Perrin-Riou in [PR92] (and the
easier explanation in [PR93a]).

We fix a Z,-extension . K via a non-trivial character A € H!(Z,) and we choose a
generator v in the Galois group T'.

1.6.1 The map e

There is a map coming from the Hochschild-Serre spectral sequence, see (1.34). An
explicit construction, depending on the choice of v, is given here:

e HL(A(p))r —= H2(A(p)). (1.34)

Suppose 7 is a 1-cocycle with values in A(p) representing an element in the source
of e. It can be written as a sequence of cocycles (,,n) representing elements of
H} (K, A(p)) with ,,res(,n) = ,omn for n large enough. (Here and it what follows,
the notation ,res and ,cor denote the restriction and corestriction to H:(,.K,-).)

Next, ) gives rise to an element [ in .$%(Z,), that is a sequence ,l € H}(,.K,7Z,)
defined by that ,l = p™ - ,res()\). Indeed,

nCOT (piml) = p™ "™ - pcor o pypmres(A) =p T p™ - res(A) =l
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Let us look at ,n U ,l € H2(,K, A(p)). The following calculation

0COT (1 mM U ntml) = ocor 0,01 (imres(nn) U niml) = ocor (1 U ncor(npml))

= ocor (nn U pl)

shows that its corestriction to K does not depend on n for sufficiently large n and
that so it does not depend on the chosen limit sequence for . We define e(n) =
A(y) L geor (U Rl).

In particular, if n is the restriction of an element in H!(A(p)) it can be written
simply as A(y)~! - (nU ).

This is the map “ag,” in [PR92, paragraph 4.4.7]. It is injective and the cokernel
is JH2(A(p))''. The factor ()~ ! is introduced here, so that e becomes injective and
does not depend on )\ but only on . K. Note that since v is a generator of I", the
cocycle A(y)~! -, still has integral values and is actually surjective onto Z,.

1.6.2 The map f

The first global duality statement in corollary 1.3 gave us an isomorphism
f: Re(A/K) —= HZ(A(p))". (1.35)

According to [ NeScWi00, page 423], we can explicitly calculate it the following way.
Let ¢ represent an element in R, and let ¢ represent something in H2(A(p)). Since
£U¢ belongs to H32(T,u) = 0, there is a cochain ¢ with values in 7,1 such that dy) = £UC.
For every place v in X, we choose a cochain ¢/, with values in 1;;/1 and a cochain ¢/,
with values in A(p) such that d¢], = res, (§) and d(¢/, = res,(¢). Then the cochains

—resy (1)) + (§, Uresy(¢)) and  —resy (1)) — (resy(§) U (/)

are both cocycles and represent the same element in H!(K,,Tyu). The map f is
defined by
FOQ) == invy, (resy (1) + (res, (€) UC)) -

vEX

1.6.3 The other maps
Moreover, we have the following maps

b: R — RV

c: R — Rp

d: Rr —= Hy (A(p))r
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The map b comes from the control theorem 1.15, the map c is induced by the identity
and the map d is induced from the inclusion.
If n represents an element of R, then ,res(n) represents d o cob(n).

1.6.4 The decomposition of the height

We prove now that the composition of the described maps gives a multiple of the
height map. We arrange things in a big diagram that resembles the diagram (5.12)
in Tate’s article [Tat66]. We could equally well draw a picture like in proposition
6.2 in [Sch85].

Proposition 1.23. With the above notations the p-divisible pairing satisfies

A& = f(€)(eodocob(n))
for all ¢ € Ry (A/K) and ) € R(A/K). Similarly, the p-adic pairing
hy: Re(A/K) — Hom(Rs(A/K),Z,)
can be calculated as the composition of maps in the commutative diagram

. 1
R(A/K) < Hom(Re(A/K),Z,) —L 2 ;o (A/K)"

bl fT (I1.36)

R(AJ KT — e ROAS K — L HI(A))r — s H2(A(p))

Proof. As explained above in the descriptions of the maps b, ¢, d and e, the cocycle
A(y)7!- (nU ) represents ( = eodocob(n). We can specify the choice of 1 in the
description of f as A(y)~! - (wU \) using lemma 1.20. Similarly ¢/, can be chosen to
be A(7)~! - (1], Ures,(A)). Then

FOQ) == invy (A7) ™" - resy(w UX) + A7) 7" - (vesy (§) Ui, U N))

veEY
=AY vy (we UA) = M) (6,

veEY
using the definition —w, = res,(w) + res,(§) U n), in lemma 1.20. This proves the
statement for the p-divisible pairing and the compatibility in .22 finishes the proof.
]
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1.7 The weak Leopoldt conjecture

We start to deduce results from our p-adic height pairing. From now on, all re-
sults will depend on the non-degeneracy of the pairing. The first result, proposi-
tion 1.26, is a widely believed conjecture, called the weak Leopoldt conjecture. That
it can be deduced and numerically verified from the non-degeneracy of the height on
the fine Selmer group was also noted by Perrin-Riou in corollaire 3.4.3 in [PR95].
For the general formulation of the weak Leopoldt conjecture due to Greenberg and
Schneider, we refer to [ PR92, Conjecture 3.2.2] and appendix B in [PR95]. See also

section VI.4 for more heuristic information on the conjecture.

Lemma 1.24. If the p-adic height pairing between Ry and Ry with values in 7, is
non-degenerate, then . HZ2(A(p))' = 0.

Proof. The map \(y)"!-h = foeodocoboa isa pseudo-isomorphism under the
hypothesis. Since f is an isomorphism, the cokernel of e is a quotient of the cokernel
of the pseudo-isomorphism ». Hence the cokernel of the map e is finite and this is
precisely the dual of the group we would like to see disappear by the remark at the
end of the definition of ¢. But on the other hand, this dual is a subgroup of a free
Z,-module Ry, by proposition 1.11, hence zero. O

An old trick in Iwasawa theory is the following

Lemma 1.25. Let M be a discrete p-divisible abelian I'-module of finite corank with
M" =0. Then M = 0.

Proof. Let o € M. Since M is the union of M~ as ,I' runs through the open sub-
groups of T', we find a p-primary N = M~ to which o belongs with an action of
G =T/, = 7Z/p"Z such that N¢ = 0. Let X be the set of elements of exact order p
in N. As N is of finite type, X contains p* — 1 elements for some k > 0. Next, X is
the reunion of orbits which must have a cardinality dividing #G = p™ and 1 = p° is
excluded because N¢ = (0. Whence X = (), N =0 and o = 0. O

We know that the I'-module . H2(A(p)) is divisible, since Gx(..K) is of cohomolog-
ical dimension 2. The two lemmata together give

Proposition 1.26. If the p-adic height pairing is non-degenerate on the fine Selmer
group, then H?(Gs(.K), A(p)) = 0.

As a consequence we can simplify the last term in the global duality over . K.
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Corollary 1.27. If the p-adic height pairing is non-degenerate on the fine Selmer
group, then

o —

0 —+ R — Hi(A(p)) — & H' (K, Alp)) —= HLLA) —= 0. (1.37)

1.8 The fine Selmer group as a A-module

The Iwasawa-algebra associated to the Z,-extension . K is denoted by A = Z,[I'].
Our choice of a topological generator v provides us with an isomorphism between
A and Z,[T], where T is a indeterminate corresponding to v — 1. For all matters on
A-modules, the reader is referred to [NeScWi00, Chapter V].

In this section, the structure of ;,\CR as a A-module is considered. After a lemma
on the characteristic power-series of a A-module, two results on this module are
deduced. The first is the analogue of a conjecture of Mazur for the classical Selmer
group.

As in Tate’s article [Tat66 |, we define

A(f) = |# coker(f)], __#tker(f)
|# ker(f)],, # coker(f)

for any pseudo-isomorphism f between Z,-modules. Here is a reformulation of his

(1.38)

lemma z.4.
Lemma 1.28. Let X be a finitely generated A-module.
i). The A-rank of X equals

rankp (X) = rankz, (Xr) — rankz, (xh.

ii). If X is A-torsion, then the order of vanishing of the characteristic power series
fx at T =0 is greater or equal to rankz, (X").

iii). The map g: X' —— Xt induced by the identity, is a pseudo-isomorphism
if and only if X is A-torsion and the cokernel of g is finite. In this case the

characteristic power series looks like

fX(T) — Z(g>_1 . TrankZp(XF) + e (mod Z;;)

Proof. First note that




1.8 The fine Selmer group as a A-module 37

If X = A, then X" = 0 and Xp = Z,, so rankg, (Xr) — rankz, (X") = 1. Next if
X = A/(p*) = Z/p*Z[T] for some integer p > 0, then X' = 0 and X = Z/p"Z. So
in this case g is a pseudo-isomorphism and z(g) = p™#. If X = A/(f) = Z,[T]/(f) for
some polynomial f not divisible by 7, then X' = 0 and Xr = A/(T\ f) = Z,/(f(0)).
Hence g is a pseudo-isomorphism and z(g) = p~ /(O If X is finite then z(g) = 1
by the argument used in the proof of lemma 1.12.

Now if X = A/(T") for n > 1, then both X' and Xt are isomorphic to Z, and the
map g is the zero map if » > 1 and the identity if n = 1.

The lemma follows from the structure theorem for finitely generated A-modules
(see [NeScWi00, Theorem V.3.8]). O

The following is the analogue of a conjecture of Mazur for the classical Selmer
group. Inthe ordinary case, it follows from the non-degeneracy of the height pairing.
In our case it is even easier because it is actually equivalent to the weak Leopoldt
conjecture. See [PR95, Proposition 1.3.2].

Proposition 1.29. If the p-adic height on the fine Selmer group is non-degenerate,
then the dual of R(A/.K) is A-torsion.

Proof. We follow the proof of lemma 3.1 in [CoSu]. In the sequence (I.14), we saw
that the dual of R is contained in .$2(7,A). It is therefore enough to show that the
latter is A-torsion.

To achieve this, we will use a spectral sequence due to Jannsen (see [Jan94]):
Ey? = Ext} (H(A(p)",A) = HE(GA)

Thanks to proposition 1.26, we have that . HZ2(A(p)) = 0, so corollary 2 of [Jan94]

gives an exact sequence
Ext} (A(K) ()", A) — HZ(THA) —= Exty (H; (A(p)", A) (1.39)

Now by proposition 5.5.3 in [NeScWi00], we have that the first term is finite and
the last term is A-torsion. O

A little bit more is contained in the following statement that the non-degeneracy
of the height pairing implies the “semi-simplicity at 7' = 0”. In case the height is
degenerate, one still expects the fine Selmer group to be A-torsion, but it might not
be a semi-simple module anymore. This question will be treated in 1.11.

Proposition 1.30. If the p-adic height on the fine Selmer is non-degenerate, then the
map c¢: . R' — _ Ry is a pseudo-isomorphism.
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Proof. From the assumption that 4 is a pseudo-isomorphism, and the knowledge
that both a and b are pseudo-isomorphisms, we can conclude that the kernel of ¢
is finite. Hence the cokernel of ¢ is finite. Now, part iii) of lemma 1.28 proves the

proposition. O

1.9 The Euler characteristic

For a A-torsion module X such that the map ¢ in lemma 1.28 is a pseudo-isomorph-

ism, the value of z(g)~!

= z(g) is often referred to as the Euler-characteristic. It
is the first coefficient of the characteristic power-series. In the classical case, the
calculations are due to Schneider [Sch85] and Perrin-Riou [ PR82] where the result
equals the expected leading term of the p-adic L-function as explained in (1) in the
introduction.

We proceed now to the calculation of the Euler characteristic of the dual of . R.
In the whole section it is assumed that the p-adic height pairing for a fixed X is
non-degenerate on the fine Selmer group.

So all maps but d in the decomposition diagram (I.36) are known to be pseudo-
isomorphisms: a by proposition 1.11, b by proposition 1.15, ¢ by proposition 1.30
and e by lemma 1.24. Therefore d: R(A/..K)r — H!(.K, A(p))r is a pseudo-iso-
morphism as well. Since the target is known, by lemma 1.24, to be isomorphic to
the divisible group H2(A(p)), the cokernel of d must be trivial.

—_ T

Lemma 1.31. The map ®H' (. K., A(p))" —= HL(T,A) is surjective.

Proof. The weak Leopoldt conjecture, proven in proposition 1.26, implies that the
map ©H! (L Ky, A(p)) — HL(T,A) in (1.15) is surjective. Let .C be the kernel of
this map or equally the cokernel of the inclusion of .R in _H!(A(p)). We get the

following exact sequence

0 — RV —— _HA(p))" - CF

(1.40)

d
———— R — H(A(p))r — Cr =0

From the above remark that d is surjective, we can conclude that .Ct = 0 and so

—_ T

0 Neod O H (Ko, A(p))' —= HLULA) — . Cr=0 (1.41)

concludes the proof. O
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We return now to the short exact sequence of complexes (I1.26). The second part
of the long exact sequence is

0 — HO(Zt‘Op) — HY(23,) — H'(Z%) — Hl(zgop) —0

|
0 — ker(d) — Rr — Ry — 0

The last equality comes from the previous lemma; while the first one can be derived
from the proof of the previous lemma: By definition H°(Zy,,) is the cokernel of
HE(A(p))' — .OT because the latter is the kernel of the following map in the
complex as seen in (I.41). By (1.40), this cokernel is ker(d).

We write out the dual of the right hand side of (1.26).

0 0
:

OH (Ko, TyA)r < Hs(LA)r <—0

COI“\ COor - -

OHY(K,, T,A) <— Hi(T,A) Ry 0 (1.42)
v .
0 ~—o Ty < o Tipe <~ H2(HA)" <— Rr < 0
: :
0 0 ker(d)

We can conclude from lemma 1.14 and from the finiteness of ker(d) that there is
an injection of Ry, into the cokernel of corestriction ..$2%(7,A)" with image of finite
index. Denote be Jy, the finite cokernel. Now there is also a map from % to ..H2 (7, A)"
whose restriction to Ry, is the injection; this map is defined as the composition of
the inclusion R into H! (7, A) followed by the quotient by the image from .9 (7, A)r.

Proposition 1.32. Suppose the p-adic height associated to \ on the fine Selmer group
is non-degenerate. Then there is an injection R(A/K) into the cokernel .$2(T,A)"
of the corestriction from . $%(T,A)r to H}(K,T,A) with finite cokernel, say Jy.

Proof. The map must have finite kernel because R, has finite index in 9. But fR is
Zy-free by 1.11. O

We conclude that #J; = [R : Ry] - #Jp. This is so far all we can say about this
index. It turns out in the end that we can often prove via the Euler characteristic
that the cokernel Jj is actually trivial. Numerical calculations are done in the last

chapter VI. See also 1.12 for further information on this proposition.
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Theorem 1.33.

Suppose the p-adic height associated to )\ on the fine Selmer group is non-degene-
rate. If we denote by r the corank of R(A/K), then the characteristic power series
of the dual of R(A/.K) is of the form

_ Regy(R(A/K), R(A/K)) #Tioc - #R(A/K)*
A(y)" #Tg - #Jo - #1o

where Reg, is the p-adic regulator associated to .

fx(T) T

Proof. First, the lower row in the diagram (1.42) yields

#Js = #ker(d) - #im(H2 (AT —= Tioc)
- #Tee  #H'(Z3,)
#HO(Zp,) # 1y
B #Toc  ker(b)
= #her(d)- #Tg " coker (b)
TOC
Z T‘gl - 2(b).

By lemma 1.28, we know that the first coefficient is z(¢)~! = z(c) and that the order of

= #ker(d)

= z(d)

vanishing of f is equal to r, because of proposition 1.30. Thanks to the decomposition
in proposition 1.23 this equals

_ —r > #loe  #R*

=) 'RegA(%&mz) -1 #Tgl TR

Ry (R R RS (R R AT AR
()" #Tg - [R:Re]-#Jo [R:Re]-#1o

1.9.1 Comments

The formula in theorem 1.33 will be substantially simplified in 11.3 under the as-
sumption that the Tate-Shafarevich group of A is finite.

Let me make some remarks on the Euler-characteristic. The first factor is nor-
malised so that it does not depend on the character A anymore, but only on the
Z,-extension it cuts out. The bounds on T} and Tj, are such that they vanish for a
lot of cases. We believe that the index I and the order of R* are very often trivial.
For the cyclotomic extension, the first factor, the normalised regulator, turns out
to be a unit in many case. As a consequence, the Euler-characteristic itself is quite
frequently a unit.
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1.10 Further consequences

Some additional consequences can be derived from the assumption that the height
is non-degenerate on the fine Selmer group. These are all more or less classical
results, all follow actually from the weak Leopoldt conjecture rather than the non-
degeneracy of the p-adic height. For the case when the fine Selmer group of an
elliptic curve over Q vanishes the results and the proofs turn out to be (almost) the
same as in [CoMc94]. This is also part of the article [PR93b].

Once again, the starting point are two versions of global duality, namely

0 — Ry, ~ R

- -
) - P H (Ko AWp))
0 S HI(A(p) ~ vest
0 - R - H (T, A)
— -
P H (K., A(p))
0 R § W

Here we defined actually a new group §'(4/K) as the kernel of the map from HZ (A(p))
to the local conditions H!(K,, A)(p), but only for places v above p. Now, the cor-
responding sequences over . K will contain the projective limit @%(A/nK ) that we
will denote temporarily by Y.

0 - Y ~ D H (K., Ap) — H(A(p) —+ 5 —+ 0
vES(tp) (1.43)
0 —+ .Y —+ HLBA) —= ) HI (K., Alp)) 3 . R—s 0
vlp

The vanishing of the very first term is due to proposition 1.26 and (1.13).

1.10.1 Local calculations

First, we note that the group H'(..K,, A(p))r is trivial. Indeed, by the sequence com-
ing from the Hochschild-Serre spectral sequence (1.9), we know that it is a subgroup
of H?(K,, A(p)) which is dual to 7, A(K,) = 0.

The exact sequence (see (1.23))

0 — T, — HYK,,A(p)) — H'(. K., A(p))l —= 0

shows that, if v does not divide p, then H'(. K, A(p))" is finite and hence the local
term in the top row of (1.43) is A-torsion. Therefore .Y is A-torsion.

Now, if v divides p, then the above sequence proves that H'(. K., A(p))' has Lp-
corank equal to 2 - n, - d, where n,, = [K, : Q] and d = dim A. Together with the
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remark on the vanishing of H'(__K,, A(p))r, this proves that the middle term in the
lower sequence of (1.43) has A-rank equal to 2-n -d with n = [K : Q]. See [PR92,
Proposition 2.1.3].

1.10.2 Global calculations

Proposition 1.34. Assume that the p-adic height on the fine Selmer group associated
to . K is non-degenerate. Then the A-modules S’m), HE(T,A) and wHQA\(p))
all have A-rank equal to [K : Q]-dim A. Moreover the dual of . .H.}(A(p)) cannot have

any non-trivial finite A-submodule.

o —

Proof. To calculate the A-rank of _Hl(A(p)), we use first the formula in part i) of
lemma 1.28, then the sequences (1.8) together with lemma 1.24 and then finally the
global Euler-characteristic calculation by Tate [ NeScWi00, Theorem VIII.6.14].

o —

ranky ! (A(p)) = corankz,, (s (A(p))r) — corankg,, (-Hs (A(p))r)
= coranky,, (o H, (A(p))) — corankg, (Hs(A(p)))
= Z corankz,, A(K,)(p)

v|oo

=ri-d+r9-2-d=n-d

The last part is due to the fact that the corank of A(R)(p) for an abelian variety de-
fined over R is equal to its dimension d and the corank of A(C)(p) is twice the dimen-
sion. Putting this information and the local calculation in the two sequences (1.43)
proves the first part. The fact that the dual of _H! (A(p)) has no non-trivial finite A-
submodules can be shown by proving that . H!(A(p))r is Z,-cofree, see [NeScWi00,
Proposition V.9.13]. But if the weak Leopoldt conjecture is valid, this group is iso-
morphic to the dual of ;.. O

Proposition 1.35. The projective limit lim R(A/,K) is trivial if the height pairing on
the fine Selmer group is non-degenerate.

Proof. Since H'(.K,, A(p))r vanishes, we know that .Y = 0 from the first sequence
in (1.43). Denote the cokernel of the inclusion of .Y in .$%(7,A) by ..D. Since ..D
embeds into the local sum in the second sequence in (1.43), it is true that . D" = 0.
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Look at the following diagram

0— Yy —— HLT A Dp ———— 0

} |
0 okl HY (T A) —— D H'(K,, A(p)) — -+

vlp

So there is an injection from the finite group ..Yr down to the Z,-free ;. Therefore
YT is trivial. From the structure theorem for finitely generated A-modules, we
conclude that .Y is finite. This is only possible if it is trivial, since it is the projective

limit of Z,-free groups. O

This last proposition is the generalisation of theorem 4 in [CoMc94]. We are going
to extend now their theorem 3.

Proposition 1.36. If the height on the fine Selmer group is non-degenerate and if the
Ry (A/K) is equal to R(A/K) then there are no non-trivial finite A-submodules in
the dual of 8'(A/..K).

Proof. The previous proposition implies that there is an exact sequence

0— 8 —~ Hi(Alp)) — P H'(K. Ap)) —=0
veX(1p)

Denote the last group by _JV. We saw that _Wr is trivial and W7 is finite. Let us
look at the following diagram

0 —— 8" —= H(AP) — W = o8t = Hy (A(p))r — 0
0 -8 s HYA(p) — W . R . Ry . 0

where W is the direct sum of the groups H!(K,, A(p)) for all places in X(}p). We
would like to show that .8'r is cofree. Under our assumption the map from H.!(A(p))
to W is surjective and so the map from W' to .$'r is trivial. We conclude that the
group in question is isomorphic to the dual of the Z,-free ;. O

The conclusion of the proposition is still valid if we only assume that the reduction
map from the elements in % with good reduction at all places in X({p) to Aps(F,)(p)
is trivial for all these places. If ¥ is chosen to be very large, then this will not be
possible and we are unable to draw the conclusion in the proposition.
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1.11 Degenerate pairings

Although it in conjectured that the height pairing on the fine Selmer group affiliated
with the cyclotomic Z,-extension is non-degenerate, it is not true for arbitrary Z,-

extensions.

[.11.1 An anti-cyclotomic example

Let £/Q be an elliptic curve and p an odd prime at which £ has good ordinary re-
duction. Let K be an imaginary quadratic field in which all primes dividing the
conductor and p split. Hence the root number of £/K is —1. The (non-generic) case
that £ has complex multiplication by an order in K has to be excluded. Following
the example in 4.2. of [MaRu03], we suppose the Mordell-Weil E(Q) group to have
rank 2 and that the p-primary part of the Tate-Shafarevich group III(E/K)(p) over
K is finite. A theorem of Nekovar [ Nek01] guarantees that the rank of F(K) is odd.
Hence we may further assume that the rank of E(K) is 3. As a concrete example we
could take
P =23 + 2% — 132 + 18

of conductor 655, p = 3 and K = Q(v/—56).

Let . K be the unique Z,-extension of K which is Galois over Q and the complex
conjugation acts as —1 on I'. It is called the anti-cyclotomic Z,-extension.

A theorem of Vatsal and Cornut shows that the A-rank of the dual of the classical
Selmer group .S over . K is 1. This has another consequence, due to Bertolini [ Ber01,
Theorem 5.4], namely that the dual of R is A-torsion, so the weak Leopoldt con-
jecture holds.

The fine Selmer group R(E/K) has rank 1 because F(K) has rank 3 and the local
group €,,, £(K,)* has rank 2. The localisation map has image of rank 2 because not
all points of F(K) are defined over Q. R(E/K) is therefore contained in F(Q)* and
contains R(E/Q) with finite index.

The p-adic height associated to the anti-cyclotomic extension must satisfy that

<P7 Q>anti—cyc = _<P7 Q)antifcyc

if P denotes the complex conjugate of a point P in E(K). Therefore it vanishes on
R(E/Q) and hence on R(E/K). This is the basic example of a degenerate p-adic
height for the fine Selmer group.
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1.11.2 Derived heights

The degeneracy of the canonical p-adic height on the classical Selmer group (in the
ordinary case) is due to the fact that the dual of the Selmer group over . K is not
A-torsion. It contains namely the Heegner module, a certain cyclic A-submodule
generated by Heegner points, giving rise to universal norms in £ (K). A conjecture of
Mazur states for this case that these universal norms lie in £(Q). For some numerical
examples this is verified in 4.4 in [MaRu03].

For the fine Selmer group the situation is different; the universal norms must lie
outside the fine Selmer group, because the weak Leopoldt conjecture holds.

There have been recently several new ways of looking at p-adic height pairings on
the classical Selmer group in the case the reduction is good ordinary at all places
above p. It seems that the only obstacle to extend these definitions to the supersin-
gular case is that the control theorem does not hold.

For the fine Selmer group there is a control theorem 1.15 for all odd primes p. These
fancier versions of the height pairing should therefore give similar constructions for
the fine Selmer groups.

Derived p-adic heights were first introduced by Bertolini and Darmon in [ BeDa94 ]
and [BeDa95]. Their construction can probably be reused for the fine Selmer group.
They only construct the derived heights for the case when the map in the control
theorem is an isomorphism.

In the recent preprint of Howard [How03], another construction of the derived
heights is given. The first part of his paper is in complete generality and we can apply
it to our setting by specifying the “Selmer structure” to be the one that defines the
fine Selmer group.

The following explanation is a sketch of his arguments applied to the fine Selmer
group. Suppose that the weak Leopoldt conjecture holds for simplicity and suppose
that the p-primary torsion groups A(..K,)(p) are finite for all places v above p.

Let I be the augmentation ideal in Z/p*[I'] and let v be a generator of I'. Howard'’s
theorem 1.11 tells us that there is a canonical pairing » between H] (K, A[p*]) and
RE(A/.K) with values in I/I%. It is basically Flach’s generalised Cassels-Tate pair-
ing. He then proceeds to construct the derived height. If M is a Z/p*[I']-module,
let M denote the image of the map

M /Mest — T

induced by multiplication by (y—1)"~!. Here ,I' denotes the Galois group of . K : K.
If ¢ belongs to H!(.K, A[p*])(™, there is an element ¢ in H]} (K, A[p¥])"'" such that
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(y —1)*1.¢ = ¢. For any element 7 in RE(A/,K)™, define an element 1™ (¢, 7)) =
(v — 1)L (¢ n) in I" /1", This is called the n-th derived pairing

R HY (K, A[p)™ x RE(A/ K™ — [/

it is independent of the generator v and the chosen element ¢’. Howard’s lemma
2.3 shows that the right kernel of the pairing is exactly R%(A/. K)"+D.

Next we will take projective limits over k£ with respect to the multiplication by p.
So we are working over the ring A. Note that there is a natural map

lim Hy (K, A[p"]) —== lim H} (K, A(p))[p*]
k k

with finite kernel. Similar the projective limit ¥ = liLnR’;(A/wK) is pseudo-iso-
morphic to 7, (.R).

By our assumption that the weak Leopoldt conjecture holds, we may write the
A-torsion module ;’72, up to pseudo-isomorphism, as

oo (@) (@) oo (am)

for some integers ¢, > 0 and some element f in A which is not divisible by 7". The
A-module Y must have the same A-structure except that the f might be different.

In particular, we see that
rankZp y () — rankzp (Y<"—1>F) — rankzp (Y"F) =ept1+enyat+ - t+en

and so ¢, = rank Y (1) — rank Y (),

Moreover, we have that the part fixed by ,I" of Y is equal to

Y = (lim RE(A/JK))™ = lim RE(A/ K)™ <— lim RE(A/,K) = Ry (A/nK)

= lim
am
k k k
where the map is a pseudo-isomorphism as can be seen from the control theo-
rem 1.16. From (Y @ Q)" <~ Ry (A/K) ® Q, we may therefore induce filtrations

e /™ oy mP - R = R, (A/K)®Q,
R N V(n) c ... cC V(Q) V(l) = H;(K,]},A) ®Qp

of vector spaces and a sequence of pairings

Vi x R — /1" 0 Q,

such that the right kernel is exactly 9%2“”. Note that we have

en = dim BTV — dimm.
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Of course, the pairing on 9%8) should be nothing else but the p-adic height pairing,

divided by A(7).

If the pairing on Ry, x Ry, is non-degenerate, then the right kernel 9%;2) is trivial
and so e; is equal to the rank of R (A/K) and all other ¢; are zero. This implies that
the order of vanishing of fy is equal to the rank of i (A/K). It should be possible to
compute the Euler characteristic via a generalised version of the regulator containing
information from all derived pairings.

Let us turn back to the example of the degenerated p-adic height on the fine
Selmer group for the anti-cyclotomic extension. We expect that the extended pairing
HYT,E) x Ry, — Z, has a trivial right kernel % since a point P on the negative
eigenspace F(K)~ should have a non-zero height with a point in R;,(E/Q). At least
in the ordinary case this is contained in the conjectures of Mazur and is verified for
some cases in [MaRu03]. We could conclude from the above approach that the or-
der of vanishing of f is still equal to the rank of R, (F/K), that is 1, even though the
pairing on Ry, (F/K) x Ry (E/K) is trivial. In which case, we see that the degeneracy
of the height in diagram (I1.36) is not because the map c is not a pseudo-isomorphism,
but rather that the map d fails to be a pseudo-isomorphism.

Nevertheless, we are expecting that the order of vanishing of f;, might be strictly
larger than the rank of the fine Selmer group for some Z,-extensions, namely for
“pathological” cases like the ones discovered by Brattstrom in [ Bra85].

It might be that there is a fine analogue of the pairing constructed in Perrin-Riou’s
article [PRO3b] in the ordinary case. It is a pairing between E and the correspond-
ing group for the dual A with values in the quotient of the fraction field of A by
A. It contains the p-adic height pairing on the classical Selmer group as well as a
generalised version of the Cassels-Tate pairing. If the Leopoldt conjecture holds, it
would have to be constructed starting from the map

R — Ext}(HI(A(p)", A)

induced from Jannsen’s spectral sequence (1.39).

The generalisations that are discussed here should also fit into the description
of Mazur in [MaRu02]. Therefore it might be that there is a “natural” descrip-
tion of the p-adic height on the fine Selmer group via the Selmer complexes of
Nekovar [Nek03].
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1.12 Orthogonality

As mentioned at the end of the construction of the height pairing on s, x Ry, there
is an extension that gives a pairing on H}(7,A) x Ry with values in Z,. The propo-
sition 1.32 can be strengthened to the following statement (see [ PR95, 3.1.4])

Proposition 1.37. The image of the corestriction from .$L(T,A) in H}(T, A) is orthog-
onal to Ry (A/K) under the extended pairing H} (T)A) x Ru(A/K) —= Z,,.

Proof. Let £ be an element in the image of the corestriction. For every n there
is a cocycle ¢ in H!(,K,T,A) whose corestriction is £. By the usual formula for
corestrictions of cup-product, we see that the pairing of ¢ and an arbitrary element
n of Ry, is equal to the corestriction of the pairing of ,,£ and the restriction of 7 to
H}(.K,T,A). But the corestrictions are in the kernel of the maps )\, for all places
v € X by definition. O

This is related, though not exactly the same, as the main result of [Pla91].

1.12.1 Kato’s Euler system

Suppose that A = E is an elliptic curve defined over Q having good? reduction at
p. It is known to be modular. In [Kat00], Kato has constructed an Euler system
for 7,E via Siegel-units on modular curves. Ever since the work of Kolyvagin, we
know that Euler systems provide a link between the analytic and the arithmetic side
and give then many amazing consequences. Kato proves in theorem 12.4 that the
weak Leopoldt conjecture holds, that the A-submodule generated by Kato’s zeta
elements, let us call it _~7, in wﬁé(]},E) has rank 1 and that the A-module mﬁé(]},E)
itself is torsion-free and, if the G;,(Q)-module E[p] is irreducible, it is even A-free.

He also shows half of the main conjecture, namely that the characteristic power
series of .~ is divisible by the characteristic power series of the dual of R, at least
up to a power of p. If the reduction at p is ordinary, there are further results for
the classical Selmer group in his theorem 17.4. The dual of the Selmer group .S
is A-torsion (Mazur’s conjecture) and the quotient of H'(.Q,,7,E) by the image of
-2 must have a characteristic power series dividing the series of ~8, at least up to
some power of p. Via the Coleman map of Perrin-Riou the localisation of the Euler
system is linked to the p-adic L-series of Mazur and Swinnerton-Dyer. See [Rub00,
3.5.15].

31 don’t think this is necessary, but my limited understanding of Kato’s work tells me that I should
be careful.
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The above proposition explains that the corestriction of the Euler system is or-
thogonal to Ry, in H(Q, T,E).

1.13 A higher pairing

So far, the pairing constructed starting from the extension associated to an element
¢ in H}(T,A) were at the level of H'. The question arises of whether there is hope
of getting a new interesting pairing when looking at the same snake map but for
H?. This section is mainly to prove that the pairing obtained in this way is nothing
interesting or, to say, nothing new.

Let ¢ be an element in % and consider the extension

0 Ty T — T,A — 0. (1.44)

Arguments as in the construction of the height pairing show us that there is a diagram

of the form

0 > H2(Tp) —— HA(T) —— H2(T,A) —— 0

} } }

0 —— OH*(Ky, Tp) —— OH(K,, ) — OH*(Ky, [,A) — 0

The first vertical arrow is an injection by global class field theory and it cokernel is
isomorphic to Z, via the invariant map. The snake map is

Ke: R(A/K) — 7,
or formulated differently it is an element of Homg, (R(A/K ),Zp) and this group
equals T,R.

Lemma 1.38. The map K corresponds to the image of ¢ via the embedding of R(A/K)
into ,R(A/K).

Here only a sketch of the proof is given. The Cartier dual of the (I.44) is an exten-
sion
0 — A(p) — W/(p) — Qp/Zp — 0

and by the compatibility of Ext- and cup-pairings, the map from Q,/Z, to H'(F, A(p))
is the map sending a to ¢ ® a in ,R(A/K) ® Q,/Z, = R(A/K)gyy. The dual of the
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above diagram looks as follows (if we use Poitou-Tate in every vertical line)

0 — A(K)(p) ———— W'(K)(p) ———— Qp/Zy

This shows that the dual of K, has the same description as the map before.



Chapter II
The fine Tate-Shafarevich group

It is noted that the literature of Ugbar was one
of fantasy and that its epics and legends never
referred to reality, but to the two imaginary
regions of Mlejnas and Tlon. ..

Tlon, Ugbar, Orbis Tertius; Jorge Luis Borges.

11.1 Definition and comparison

During this and the next section, we will allow for once the prime p to be equal to

2. For the classical Selmer group, there is a short exact sequence
0 — A(K)/p"A(K) — S¥ — mp*] —= 0

where 111(A/K) is defined to be the kernel of localisation from H!(K, A) to the sum
of H'(K,, A), the sum running over all places in . (see [Mil86, Proposition 1.6.6]).
It is conjectured that III is finite.

The fine Selmer group can also be split up in the same fashion. First at finite level,
the intersection of R*¥ with A(K)/p* A(K) inside S* will be called the fine Mordell-
Weil group M*. 1t is therefore the kernel of localisation from A(K)/p* to the sum of
the A(K,)/p" for all places v above p. Similar for the group M%.

On the side of 111, we define the cokernel of the embedding M* into R* as the fine
Tate-Shafarevich, denoted by another beautiful Cyrillic letter K.

Now to the limits. The fine Mordell-Weil group M(A/K) is defined to be the
intersection of A(K)®Q,/Z, and R(A/K) inside H}(A(p)). It is therefore the kernel

0 —= M — A(K) ® Qp/Z, — P A(K,) @ Qy/Z,

vlp
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The compact versions are defined in the same way as the following kernels

0 — M AR —— P AK,)*
vlp

0 - My — A(K)* —— P A(K)*
VEX

On the darker side of things, we have the direct limit 11_rr>1}K’l‘C which will be written
as K(p).

0 -~ M ~ R E(p) —0
0 — M R lim K —— 0
—

Note that the second line is exact because we took projective limits of finite groups.
Furthermore we define & to be the product Hp K(p) where p runs through all primes
p, including 2. The first little, almost obvious result is

Lemma I1.1. The fine Tate-Shafarevich group <" is contained in 111[p*]. For the lim-
its, there are inclusions 7(p) C 1(p) and lim7K* C T/K C T,1TI. Moreover the
inclusion lim ’K* C T,/ has finite index.

Proof. 1t can be read off the diagram

0 — A(K)/pF >~ GF — II[p*] ——— 0
P AK.,)/p* P AK.)/p*
vlp vlp

that there is a injection from /K" into III[p*] with quotient in the cokernel C* of the
first vertical arrow. Some more work is needed for the last statement of the lemma.
If k is large enough so that A(K,)[p*] = A(K,)(p) for all places v above p, then there

is a diagram (the sums are over all places above p)

0 ——= A(K)[p"] —— A(K)/p" —— (A(K) © Qy/Zy)[p"] —— 0

! J } (I1.1)

0 — P AEK) P — P A /0" — P(AKL) © Qp/Zy) ] —= 0

The injectivity of the maps from the p*-torsion follows from the assumption on k,
because none of these torsion points can be divisible by p*. The diagram provides
us with an exact sequence

0 — MF — M[p"] TF — CF — Cp"]
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where C' is the cokernel of the localisation from A(K) ® Q,/Z, to the corresponding
local terms and T is the quotient of the local p*-torsion by the global p* torsion. Of
course, T* is bounded by T, the quotient of @ A(K,)(p) by A(K)(p). The first part
of this proof shows that

0 - KE -~ HI[ph] —— C*

! H J

0 — K[pF] —— Mp*] —— CPp"]

and so the quotient of /K [p*] by ” is contained in the bounded group T*. O

It looks now as if the finiteness of the fine Tate-Shafarevich is not any easier to
prove than the finiteness of the classical Tate-Shafarevich. In the case of an elliptic
curve of positive rank over Q, the cokernel C is finite and so the rank of 7,/X is equal
to the rank of Z,1II. For curves of rank 0 over Q, the rank can differ by at most 1.
Needless to say that we expect /& to be finite in all cases.

Lemma 11.2. If A = F is an elliptic curve defined over Q of positive rank, then

AK(E/Q) = TI(E/Q)

Proof. In the limit we have the diagram

0 ——— E(Q) ® Q/Zy — Hg(B(p)) ——— Hy(E)(p) ————0

} ¢ }

00— BE(Q) ® Qy/Zy, — ®H'(Qu, E(p)) — &H'(Qy, E)(p) ——— 0

with the sum over all places in X. The first vertical arrow is surjective under our
assumption on the rank of £(Q), hence the sequence of kernels reads as

0 —- M(E/Q) —= R(E/Q) — II(E/Q)(p) — 0.
O

The conclusion of the lemma is very specific to this particular case; in general we ex-
pect exactly the opposite, namely that iK(A/K) is very small compared to II1(A/K).
Specially when looking at the behaviour in Z,-extensions, it is often known that
K(A/K)(p) is bounded even if 111(A/,,K)(p) is known to grow quite fast as we will
see in the numerical examples in chapter VI.

For the sake of completeness, we will add here the following lemma. A proof can
be found in corollary 9.6 of [Mil86] or originally in [Cas62].

Lemma I1.3. If A = E is an elliptic curve, then RL(E/K) is trivial.
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This relies on the fact that the group E[p] does not have more than p? elements. It
implies that /KL (E/K) is trivial.

11.2 Numerical examples

We wish to illustrate the definition of the fine Tate-Shafarevich group with some
examples. Let E/Q be an elliptic curve. Of course, non-trivial Tate-Shafarevich
groups are rare. We will look at examples for p = 2. This is exactly the case we
excluded in everything we have done so far. But the reason, we could not work with
p = 2 is mainly because the Iwasawa-theory is more complicated in this case. But
the properties of the fine Tate-Shafarevich /K should not be something special for
this prime.

11.2.1 An example
Let F be the curve given by the equation
E: 4+ a2y =2°— 1200502 — 16020000

of conductor 210. In the tables of Cremona it is called 210E5 and it is the curve of
smallest conductor with rational 2-torsion and non-trivial II1[2].

The torsion of E(Q) is generated by 7y = (400, —200) and T, = (-, —51), both
having order 2. A 3-descent, using the program of Stoll [ScSt04], shows that the
3-primary Selmer group is trivial and hence the curve has rank zero. Now, the com-
plete two-descent as explained in [Sil86, Proposition X.1.4] shows that the 2-Selmer
group S! (from now on p = 2) has dimension 4 over F,. So II1[2] contains 4 elements.

The set ¥ contains {2, 3,5,7} and two chosen representatives of generators in I11[2]
are given by (1, —15) and (1,5) in Q(3,2) x Q(X, 2). Clearly the first element is trivial
in the localisation! QJ /2 x QJ/2, while the second element is not. Hence /&' is
isomorphic to Z/2.

Let us have a closer look at the local group E(Q2). The reduction at 2 is split
multiplicative of type I, and so the group of components ®(Q2) has two elements.
In fact, the point 737 has bad reduction and so it represents the non-trivial element
in ®(Q3). Since 7T} is a 2-torsion point, we see that the map ¢ in the following exact

sequence is trivial for all &£ > 1.
0 —— E(2Z5)[2F] — E(Qy)[2"] —— ®(Qy)

O BOZ) /2 — B(@)/2 — &(Qy) —— 0.

'Remember that our convention Qy /2 stands for the non-zero 2-adic numbers modulo its squares.
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Note that here E(2Z,), the kernel of reduction E°(Q,) — Ens(F2), is equal to
E°(Q5) because Ens(F;) is the trivial group. Next the second layer of the formal
group E(zZZg) is isomorphic to Z, via the elliptic logarithm. So it has no torsion.

The exact sequence

0 —— E(2Z)[2"] ~ 7./2

& o -~
—— F(2%Zy) /2" — E(27,)/2" Z)2 -0

follows from the fact that the quotient of E(2Z,) by E(22Z,) is isomorphic to Z/2.
The point 75 belongs to the first layer of the formal group, but not to the second.
Hence the map ¢’ is trivial as well. We can conclude that

E(Q2)(2) =Z/2x Z/2 = E(Q)[2]
E(Qy)/2¥ =7/2 x 7)2 x 7./2%

forall k > 1.

The localisation of the element (1, —15) is coming from a local point

<1+23 +0(2)* 1+2+2%2423 +0(2)4>
26 ’ 29

which is trivial in £(Q2)/2. On the other hand the element (1,5) is the image of the
point

(1 +2240(2)* 1+22+23+ 0(2)4>
92 ’ 26
under the local Kummer map. This is a non-trivial element of E(Q3)/2.

So far we have shown that 7K' is half of I11[2]. Wishing to enlarge k, we have to
make the assumption that 111(2) = [1[2]. This can be expected because the analytic
order of III is indeed 4. Since the 2-torsion part of £(Q5)/2* has only dimension 3, it
is immediate that the localisation map from S*, still equal to (Z/2)?, is not injective.
Hence 7K* contains at least one non-trivial element. On the other hand, we see that
the trivial element (1,5) above does not map into the torsion part of £(Q2). Hence
it will not map to the trivial element in £(Q,)/2" either. We conclude that

K= =27/2 if 1I(2) =7Z/2xZ/2

11.2.2 Tables

We present three tables. The first table I1.1 contains a list of 100 curves all of rank 0
with E(Q) = Z/2xZ/2 and 111[2] = Z/2xZ/2. We list the dimension of the fine Selmer
group R!, the fine Mordell-Weil group M! and the fine Tate-Shafarevich group &!.
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Moreover the conductor IV, the number of non-singular points N5 in the reduction
at p = 2 and the local Tamagawa number ¢, are given for each curve.

The next table I1.2 contains the same information, but for curves whose Tate-
Shafarevich group is expected to have order 42. Here still all curves have rank 0, the
torsion group has 3 non-trivial 2-torsion points and I11[2] has 4 elements. It would
be interesting to do a second descent for the these curves.

The last of these tables I1.3 contains curves with F(Q) = Z/4 x Z/2 and 1I[2] =
Z]2 x Z/2 of rank 0.

Table I1.1: Fine Tate-Shafarevich groups for curves with four 2-torsion points and a
Tate-Shafarevich group of order 4

N Curve R' M' E!
210 [1,0, 0, 120050, -16020000]
582 [1,0, 0, -194, -1056]

930 [1, 0, 0,-19220,-1027200]
1025 [1, -1, 0, -667, 2616]

1088 [0, 0, 0, -364, ~2640]

1158 [1,0, 0, 772, -8320]

1287 [1, -1, 0, -3861, -91368]

1320 [0, 1, 0, -4840, ~131200]

1521 [1, -1, 0, -6876, 190867]

1640 [0, 0, 0, -547, -4914]

1734 [1,1, 1, -32952, -1912599]
1752 [0, 1, 0, -1752, -28800]

2050 [1,-1,0,-546667, -155435259]
2175 [1,1, 0, 10875, -441000]
2178 [1,-1,1, -23981, -1418799]
2184 [0,-1,0,-176904, -28579716 ]
2190 [1, 0, 0, -5062611, -4384495215]
2205 [1,-1,0,-59544, -5574717]
2280 [0,1,0,-43320, -3484800]
2331 [1,-1,0, -2331, -42728]

2352 [0,1,0,-38432, -2908620]
2379 [1,0,1, -65, -169]

2394 [1,-1,1,-10274, -389347]
2535 [1,0, 1, -87884, -9194443]

3
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Curve

Rl

Ml

5

Q
)

2670
2691
2691
2725
2730
2736
2873
2880
3025
3038
3042
3094
3136
3168
3230
3234
3264
3264
3366
3366
3462
3615
3744
3770
4046
4056
4182
4235
4263
4350
4386
4400
4410

[1,1, 1, -13350, -599265]
[1,-1, 0, -8073, -277160]
[1,-1, 0, -2833623, -1835242920]
[1, -1, 1, -7230, 223772]

[1,1, 1, -688720, -98092255]
[0, 0, 0, -787971, -269220350]
[1,-1, 0, -961, -11088]

[0, 0, 0, -77772, -8343664]
[1,-1, 0, -12667, -324384]

[1, -1, 1, -1014, -12127]

[1, -1, 0, -1976571, -1059322523]
[1, -1, 1, -14439, -664177]

[0, 0, 0, -3724, -82320]

[0, 0, 0, -176421, -28519940]
[1, -1, 1, -7923, -268753]
[1,1, 1, -123334, -16685089]
[0, -1, 0, -7297, -195455]

[0, -1, 0, -110977, -14192255]
[1, -1, 1, -892319, -324184377]
[1, -1, 1, -282596, -50200329]
[1,0, 0, -6924, -222336]

[1,0, 0, -1205, -16200]

[0, 0, 0, -2109, -37100]

[1, -1, 0, -160975, 15880761]
[1,-1,1,-11181, -225199]

[0, 1, 0, -8844, -316224]

[1,1, 1, -10607, 413201]
[1,-1, 0, -77644, -8307117]
[1,0, 0, -626662, -190991725]
[1,0, 0, -6688, -165508]

[1,1, 1, -39474, -3035109]

[0, 0, 0, -126175, -17189250]
[1, -1, 0, -52942059, -148255335887]
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Curve

Rl

Ml

}Kl

5

Q
\o)

4416
4614
4624
4704
4800
4830
4830
4901
5225
5334
5415
5439
5439
5472
5694
5795
5808
5985
5986
6123
6192
6200
6286
6320
6336
6410
6498
6510
6510
6552
6600
6675
6762

[0,1, 0, -737, -7905]

[1,0, 0, -12304, -526336]

[0, 0, 0, -26299, 1621290]

[0, 1, 0, -702, -6840]

[0, 1, 0, -20033, -1091937]

[1,0, 0, -5340, -145908]

[1, 0, 0, -13997340, -20157724800]
[1, -1, 1, -2229, -6652]

[1,-1, 1, -24560355, -46841973478]
[1,0, 0, -5419344, -4856334336]
[1,0, 1, -1813, -29437]

[1,0, 1, -1055, -3139]

[1,0, 0, -12692, -551265]

[0, 0, 0, -1029, -12580]
[1,0, 0, -449, -891]
[1,-1, 1, -1932, -32194]

[0, 1, 0, -42632, -3391500]

[1, -1, 0, -43740270, 110500349575]
[1, -1, 1, -84, 83]

[1,0, 1, -475, -3919]

[0, 0, 0, -49539, -4243070]

[0, 0, 0, -129175, -17865750]
[1,-1, 1, -4191, -103369]

[0, 0, 0, -2107, -37206]

[0, 0, 0, -12684, -548080]

[1,-1, 1, -8547, -301981]

[1,-1, 1, -17778596, -28848405049]
[1,1, 1, -784690, -245901445]

[1, 0, 0, -91270, -3587200]

[0, 0, 0, -1592139, 773244470]

[0, -1, 0, -100508, 5997012]

[1, 1, 0, -3750, -86625]

[1,1, 1, -547772, 155767961]
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N Curve R

Ml

5

Q
\v)

6918 [1,0, 0, -27672, -1774080]

6936 [0, -1, 0, -20904, 125244]

7077 [1,0, 0, -2359, -44296]

7176 [0, 1, 0, -49349352, 133418712960]
7215 [1,0, 1, -98894, -11966749]

7230 [1,1, 1, -940, -6295]

7434 [1, -1, 0, -38537856, 92092628992]
7455 [1, 0, 0, -529305, -148264200]
7470 [1,-1, 1, -8582, -155919]

7600 [0, 0, 0, -3175, -68250]

g N N U U G U O (O TR (O

o

o O ©O O O © © © o

HHNHHHD—‘NN»—\%
h

N = B W R, DD DN =

N DD P DD P DN R, DNNDO

Table I1.2: Fine Tate-Shafarevich groups for curves with four 2-torsion points and a

Tate-Shafarevich group of order 16

N Curve

=

Ml

}Kl

5

Q
\v)

1230

1734

2535

6486

7766
10025
10065
11760
12696
12870
13120
15558
15870
16448
16856
17157
19215

[1,1, 1, -896670, -327184905]

[1,1, 1, -501132, -136748439]

[1,0, 1, -1373129, -619428769]

[1,0, 0, -101614, -12475936]
[1,-1, 1, -2589, -50047]

[1,-1, 0, -83542, -9273009]

[1, 0, 0, -4465505, -3632440200]

[0, 1,0, -94119216, -351482801580]

[0, 1, 0, -97512, -11681280]

[1,-1, 0, -12282194745, -523913041814675]
[0, 0, 0, 1399468, -637222608]

[1,0, 0, 140022, -20178720]

[1,0, 0, -3745331, -2537009955]

[0, 0, 0, -87724, ~10000080]

[0, 0, 0, -1927219, -1029751170]

[1, 0, 0, -288357699, -1884737960136]
[1,-1, 1, -1144643603, -14905451732038]
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Table 11.3: Fine Tate-Shafarevich groups for curves with 8 torsion points and a Tate-

Shafarevich group of order 4
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N Curve RY MY XK' Ny ¢
1230 [1,1,1,-56170, -5105305] 1 0 1 1 4
6486 [1,0, 0, -6394, -192556] 1 0 1 1 4
7440 [0, -1, 0,-307520, 65740800 1 0 1 2 4
8103 [1,0,0, -37074, -2722941 | 1 0 1 4 1

10065 [1, 0, 0, -279380, -56652225 ] 1 0 1 4 1
15792 [0, -1, 0, -1780224, -892394496 | 1 0 1 2 4
17157 [1, 0, 0, -18024654, -29442272301] | 1 0 1 4 1

I1.3 Revising the Euler-characteristic

From now on, we will assume that /X(A/K) is finite.
The first immediate consequence is that 9t equals to 9& and that 7,M is equal to
T,R. Furthermore there is an exact sequence

0 — M —> R* — 3K(p) —= 0 (11.2)

in which we would like to know more about the first term. From the definition of M
and the cokernel C in the proof of the above lemma, we deduce a cochain complex

0 —= LM — L(A(K) ® Qp/Zp) —+ P T(A(Ky) ® Qy/Zp) o—= T,C' — 0.

vlp

The only place where the sequence is not exact is at the local term where the co-
homology equals M*. This is a consequence of the homological lemma 1.9 and the
fact that the groups A(F') ® Q,/Z, are Z,-cofree, for both FF = K and F = K,,. This
provides us with an exact sequence 0 —>~ M* — coker(c) — 7,C — 0 and so
the torsion part of coker(c) equals M*. The limit of the diagram (I1.1) provides us
with an exact sequence

O —M —TM—~T—~D coker(c) —= 0

where D is the cokernel of localisation from A(K)* to the corresponding local group
at all places above p. Remembering the definition of I, in 1.11 and using the as-
sumption of the finiteness of the fine Tate-Shafarevich, we can shorten this to

0—=Ip—T — D(p) —M"—=0 (11.3)
Fortunately, the Euler-characteristic formula in theorem 1.33 can now be simplified.

Theorem I11.4.

Let A/K be an abelian variety over a number field with potentially good reduction
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at an odd prime p, whose fine Tate-Shafarevich group X (A/K)(p) is finite and such
that the p-adic height pairing on the fine Selmer group for the cyclotomic extension
K is non-degenerate.

Then the Euler characteristic of the dual of the fine Selmer group R(A/.K) over
K is equal to
Reg(M(A/K), M(A/K)) #DP) - [Ly, co - #7K ()

P . #Jo

where r is the Z,-rank of M(A/K) and J, is the cokernel of the injection from
9M(A/K) into the cokernel of corestriction from .$HL(T,A) — H}(T,A). Finally
D is the cokernel of localisation A(K)* —~ @, A(K,)*.

X(R) = (T, .R) =

Proof. The exact sequences (I1.2) and (I1.3) show that

* * _ #D(p)#IO#A(K)(p> i
#R* = #M" - #K(p) Lo, #ATK) () #AR(p).

The theorem follows now from the formula in theorem 1.33 and lemma 1.12. O

In the case that the reduction is multiplicative at p, the expression on the right
multiplied with A(K)(p) is still an upper bound for the Euler characteristic. For the
special case of rank 0, the above expression and assumptions can be simplified to

Corollary I1.5. Let A/K be an abelian variety with finite Mordell-Weil group A(K),
potentially good reduction at p and finite Tate-Shafarevich 111(A/K), then

[Top #AK) D) - [Ty et - #K(p)
#A(K)(p) - #Jo

It is interesting to have a look at the special case when the abelian variety A is

X(R) =

an elliptic curve E over Q of rank 1 and p is a good prime greater than 3. From
lemma I1.2, we conclude that the Euler characteristic of ;\CR is equal to

_ #D [P - #11(p)
X®) = FEQk)

According to lemma 9 in [CoMc94] the index D(p) = D can be expressed in terms

(11.4)

of the logarithm of the generator P of the infinite part of £(Q). Or we can express
their results in terms of the index D. The order of the torsion part of the I'-invariant
part of the dual of .8', which was defined in (1.43), equals
43 - #D T - #1U(p) _ #Jo - X(R)
tors (#E(Q)(p))? #E(Q)(p)
In particular, #Jy - x(R) is divisible by #FE(Q)(p). See the table V1.2 for numerical

examples.




Chapter III

Torsors and theta functions

The drop of water still clung to his cheek;
the shadow of the bee did not shift in the
courtyard; the smoke from the cigarette he
had thrown down did not blow away. [... ]
He worked the third act over twice. He
eliminated some rather too-obvious symbols:
the repeated striking of the hour, the music.
There were no circumstances to constrain him.
The Secret Miracle, Jorge Luis Borges.

I111.1 Torsors

We come to the geometric part. It was probably Bloch in [Blo80] who was first to
find a link between the theory of extensions and height pairings. Schneider and
Oesterlé modelled their p-adic version on Bloch’s description of the real-valued
heights. Later, Mazur and Tate [MaTa83] put it in the context of bi-extensions
and explained better the canonical p-adic height that exists in the ordinary case.

We will restrict ourselves to single extensions here. We refer to [Ser84, VII.16],
[Oes82], [Lan83, 11.6] or [Col98, 1.6.3] for a detailed description.

Let A be an abelian variety over a field F' which is either the number field K or
any of its completions K,. Let m = p* for some k > 1. Given a point P in the dual
A(F), we can choose a divisor A representing the divisor class P, defined over F,
whose support, written |A|, is disjoint from A[m]. Cutting out the zero-section of the
line bundle associated to the divisor A gives an extension of commutative I'-group
schemes

0 —> G —Lo Xy "= A 0. (111.1)

As an extension it does not depend on the choice of the divisor A, but only on the
class P. Since A is algebraically equivalent to zero, there exists a function F, on
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A x A defined over F with F,({O} x A) =1 and whose divisor is
div(Fa) = sum*(A) — pi(A) = p3(A)

where sum: A x A — A is the summation-map and p; and p, are the projections
on the factors. According to section 3 in [Oes82], there exists a birational map
V: Gy x A --»= X,, defined over F, such that the addition on X, can be written as

Y(x1, Q1) + ¥(w2, Q2) = Y(w1 - 22 - Fa(Q1,Q2), Q1 + Q2) (111.2)

for all 1, 20 € F~ and Q1, Q2 € A(F) \ |A|. Moreover, the map ¢ is regular above
U=A\|A|
Thanks to the fact that H!(F,G,,) = 0, a short exact sequence

00— F* —= X, (F) — A(F) —0 (111.3)

of abelian groups can be deduced from (I11.1). Taking m-torsion of it yields an ex-
tension of finite F'-group schemes

0 — p[m] —= X\[m] — Alm| —= 0. (111.4)

Proposition I11.1. The extension X,[m] in (I111.4) is isomorphic to the extension ng

constructed in the beginning of section 1.5 for { = (P).

Proof. The proof presented here is analytic, the main reference is [Mum70], espe-
cially the theorem on page 20. Let V be a complex vector space and U a lattice in V'
such that the abelian variety A is isomorphic to U/V . By the description of the dual
abelian variety over C, there is, associated to each element P in A, a homomorphism
ap from U to the unit circle in C. Moreover the space X,(C) can be represented as
the space C* x V quotient by the action of U given by u - (z,v) = (ap(u) - z,u + v) for
allu e U, e Cand v e V. Let P be a chosen element of A such that mP = P. By
the description of the dual, we see that o s(u) = ap(u)™ for allu € U.

A point in X, (C)[m] can be represented by (z,v) such that (™, m - v) = (ap(u),u)
for some u € U. Hence there is an m'™ root of unity ¢ such that z = ¢ - ap(u) and v
maps to a m-torsion point @ in A(C). Therefore we can send (z,v) € X,[m] to (¢,Q)
in VVg’€ This is clearly an isomorphism of groups.

An element o of the Galois group of F' sends (z,v) to (¢? - ap.(u?),u”). Now the
quotient of ap, (u”) by as(u?) is equal to ayp), (u”). The following lemma found on
page 184 in [Mum70] shows then that the action on X, [m] is the same as on ng
This will end the proof of the proposition O
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Lemma I11.2. Let u be an element of U and T be an m-torsion point on A(C). Then
ar(u) equals the Weil pairing of T with the point on A represented by % U.

Proof. Let A be a divisor representing 7. Since mT = O, there are two functions [
on A of divisor nA and g, of divisor [n]*A. Hence ¢7 is a multiple of f; o [n] and the
Weil pairing of 7" and a m-torsion point @ of A is the value of the constant function

9+ Q)
T Qv == 0y
The following maps
o) — o 0,

make the sections of the line bundle associated to A over an open W in A correspond

to functions h on W such that
hMy+ Q) gr(y+Q)=h(y) -gr(y) forall@ € Alm] and y € W. (I11.5)

Consider the quotient of CxV by the action of U given by u-(z,v) = ((T', Q)wei- 2, = +v)
with @ being the image of ;= in A[m]. The sections of this line bundle are represented
by functions 4 such that u - (h(y),y) = (h(y + Q),y + Q); in other words exactly by the
condition (II1.5). Hence removing the zero section, this quotient space is nothing
else than X,. We can conclude that ap(u) = (T, Q)wa as claimed. O

1I11.1.1 Completed torsors

We extend here the definitions that we have encountered so far in the chapter to
points P in A(F)*.

Lemma II1.3. Given a point P in A(F)*, we can associate to it an exact sequences
0 ——— = (F*) ——— X} (F) —— A(F)" ——— 0.

I guess one should be more precise and say that we actually construct a homomor-
phism from A(F)* to Exty, (A(F)*, (F*)*).

Proof. The point P is represented by a sequence of points P, in A(F) such that
Py, differs from P, by p* Q for some point @ in A(F). Write X}, and X, for the
extensions associated to P,,; and P, respectively. The multiplication by p* in Ext

can be written as
Xq(F) x F*

o) = (5w (b e Py
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a fact that can be proven either using Baer sums or the fonctoriality of Ext as in a)
on page 164 of [Ser84]. The injection of F* here sends c to (jg(c),c). So the space
Xk4n(F) associated to Py, can be represented by elements (z, z,a) with z € X (F),
z € Xg(F) and a in F* such that n(z) = 7(z), subject to the relations (—j(c), j(c),c) =
0 and (j(c), —j(b),b*") = 0 for all b and ¢ in F*. Hence in X,,,,(F)/p*, the expres-
sions (0,0,c) are trivial. We conclude that there is an inverse to the natural map
from X, (F)/p* to Xy (F)/p*, namely the map sending = € X, (F)/p* to (z,2,1) in
X1k (F)/p* where z is any lift of 7(z) to Xo(F). In other words, the sequence

A(F)[pF] — F*JpF — X (F)/p* —= A(F)/p* —= 0 (111.6)

is isomorphic to the same sequence but with X, replaced by X,, .
This proves that via the maps

"]

Xian(F)/p <2 X (F) < Xu(F) /0

we can build the limit X;(F) = lim X, (F)/p* as k tends to infinity. The limit of the
exact sequence I11.6 yields the sequence we wish to construct because, under our
hypothesis on the field F, the group A(F)/p" is finite and 7, A(F) is trivial. O

111.2 The pairing on the fine Mordell-Weil group

The reason G,,-torsors were introduced in the last section is that our aim here is to
link the cohomological definition of the height pairing on the fine Selmer group to
an analytic pairing using theta functions.

Let A be an abelian variety over a number field K and let A be as usual a map
from Gy (K) to Z,. The fine Mordell-Weil group 9t was defined to be the following
kernel

0 - My, - AK) —— P A(K,)*
VEY

Let P be an element of A(K)*. It gives rise to a sequence as in lemma I11.3
0——— = (K*) ——— X}(K) ———= A(K)" ——— 0

and similar for local fields.
Consider the maps )\, from (K)* to Z,. If v does not divide p, then A(K,)* is
finite, and hence we are allowed to extend the map A, to a map )\, on X} (K,) with
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values in Q,,.

For places above p, we do not need to extend the map )\, and hence we define )\,

only on the image of ;.

Proposition 111.4. Let P be an element of A(K)* and Q be an element of M(A/K).
Choose any lift v of Q € A(K)* to Xp(K)*. Then

(P,Q) = (R(P), k(@) = Y Ao(@).

all

allows one to evaluate the pairing from H} (K, T,A) x R(A/K) with values in Q, on
the image of the Kummer map k.

Proof. (Un)-fortunately, we need to do a little detour via Néron-models. Let «7° be
the connected component of the Néron-model of A over O. The theory of extensions
developed before should be possible just the same for Néron-models (see [Sch82,
Section 3]). We represent the point P € A(K)* by a sequence of points P, in A(K).

For the point P, there is an extension of O-group schemes

0— Gy, — 2 — &° — 0.

In particular, this provides us with a sequence
0 —= 0F — 24(05) —= #°(0y) —= H'(0,G,,) = CL(Oy).

Define the subgroup 7;(0Oy) as the image of the map into .&7°(0y,); it is a subgroup of
A°(K) of finite index bounded by the class number of Oy, for all k. We can multiply
the point @ with the class number and the product of the Tamagawa numbers to
guarantee that @ lies in [;(Oy) for all k. Thus we may assume that @ lies in the
image of the completed 27(05) = lim 2;.(0y)/p".

0 ——— (03) —— 27(05) — F°(0)" —— Cl(Oy)(p)

| ¥ ¥

0 —— PE) — P XK, — PAK) ——0
vEX VEXD vEX

Choose a lift y of @ to 27(0y). Comparing this diagram to the definition of the
height in (1.32) via the Kummer maps shows that (x(P), x(Q)), is equal to the sum



I11.3 Theta functions 67

of \,(y) for v in 3. Here we used the fact that the element y has to belong to the
image of j for all places in X because @ lies in M (A/K).

Let v be a place outside . There is a natural map from the top line of the above
diagram to the exact sequence

00— (03) —= Z7(0y) —= Z°(0,)* —= 0

in which all terms are finite. Hence there is a multiple of y that has trivial image in
2¥(0,) — X7(K,) and so \,(y) = 0. Therefore we have shown the formula with
x replaced by y. But the difference of x and y in X}(K) is the image of an element 2

from K* and, by the product formula, the sum of \,(z) over all places is zero. O

I11.2.1 The class group pairing

We quickly add here a description of the map A°(K) —— Cl(Oy) which actually
gives a pairing A(K) x A°(K) with values in the finite group Cl(0s). Let A be a
divisor representing a point P € A(K) on the Néron-model 7. Write f for the map
o/° — Spec(0Oy). The section @ in «7°(Oy) intersects the divisor A in A.Q). The
divisor class of f*(A.Q) in Pic(Spec Oy) = C1(Oy,) depends only on the class P of A.

This pairing appears in the article [MaTa83] of Mazur and Tate. In the function
field case, it is the canonical height pairing described by Manin, see [Sil94, Theorem
I111.9.3] for the case of an elliptic surface. In the case of an elliptic curve, it will be
calculated in IV.1.2.

111.3 Theta functions

Now, we are able to express the pairing using p-adic theta function as introduced by
Barsotti, Néron [Nér82], Cristante and Norman [ Nor85] (to cite a few).

For any choice of theta functions for the places above p, we construct here a pairing
on A(K) x A(K) with values in Q,. In the end, it turns out that, when restricted to
the fine Selmer group, all pairings coincide and agree with the p-adic height.

For an elliptic curve we will eventually write down theta functions explicitly and
prove what is done in this section in more concrete terms.

Here is théoréme 5 in [Oes82].

Proposition I11.5. There exists a continuous morphism ), extending \, to XA (Ky)
with values in Q,. If v does not divide p, then the map ), is unique. For places v
above p, the map is unique up to addition by a homomorphism of the form e o 7 for

a continuous morphism e from A(K,) to Q,.
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0 ~ KX - X (Ky) — A(K,) —— 0
Aul Ao
Y

Proof. (We follow the proof of Oesterlé.) The uniqueness is clear because there can
not be any continuous morphism A(K,) to Q, if v does not divide p.
The associated sequence of Lie algebras over K, say

0 ' -1 n 0,

as a sequence of vector spaces over K, is split. Let r’ be linear section r — g.
Since all Lie algebras are commutative, the map »’ is a morphism of Lie algebras.
Hence there exists an open V in X, (K,) and a morphism r of Lie groups from V" to
K* whose tangent map is . Now r is a section of j restricted to the image of r.
We can extend the definition of  to j(KF) + V. Note that the index of j(K) +V in
XA (K,) is finite, since its image in A(K,) is an open subgroup of the compact group
A(K,). Therefore we can extend the map \, o r to X, (K,). O

Note that in the case that the place is not above p, then this actually says that the
valuation ord, : K — Z can be extended to a homomorphism from X, (K,) to Q.

Meanwhile, if the v divides p, the continuous map e from A(K,) to Q, must be of
the form g o £ with ¢ is Q,-linear map from the Lie algebra n to Q, and .Z is the
logarithm from the formal group into the Lie algebra.

Let A be a divisor on A(K), algebraically equivalent to zero, defined over K. By
definition of the extension (I11.1) of A by G,,, associated to divisor A, there exists a
rational section s, of 7 from A\ |A| to X defined over K, unique up to multiplication
by a scalar in K*.

Choose now a zero-cycle a of degree zero on A(K) whose sum is ). For every finite
place v, define a symbol

N

N
(A, )y = Ay osa(a) = > mi- Ay o sa(Qi), ifa=> ni(Q)
=1

i=1
Since a has degree 0, the expression does not depend on the scalar factor of s,. It
satisfies the properties of the Néron symbols. See section 8 of Néron’s seminar
talk [Nér82], for the details, or section 4 of [Sch82] and his reference to [Blo80].
See also theorem 11.6.2 in [Lan83].

The above construction of A, can also be viewed as a section from the Lie algebra

n of A to the Lie algebra ¢ of X,. The associated map from an open subgroup U
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of A(K,) to X,(K,) can be written in terms of the birational map ¢ in (I11.2) as a
solution 6, , to the equation
On,.(z + y)
B =g @) a0
where F, is still the rational function on A x A with divisor sum*(A) — pi(A) — p5(A).
According to Néron in [Nér82, section 3], there exists analytic functions satisfying
this equation and they only differ by an exponential factor of a function of the form
go . as above. To be precise, we should mention here that the analytic function is
only defined in a neighbourhood U of O in A(K,). If we would like to extend it, we
have to pass to a finite covering space.
This means that the map s,(Q) = ¥ (0,..(Q), Q) is a section of .

0 KX Xp(K,) —— A(Kp) ——— 0
X t
A(Ky) \ [A]
Since the symbol (A, a), doesn’t depend on the scalar factor of the section, we find

that
(A a), = Ay © su(a)

Via ¢ there is also an obvious choice of the section r in the proof of proposi-
tion I11.5, namely the projection on the first factor. Hence A, o s, = A, o Ox ... Again,
only for places v above p a different choice of the theta function will affect the result
by adding a linear form of logarithms on A.

Therefore, depending on our choice of a theta function 6, , for the places above p,

there is a pairing on A(K) x A(K) with values in Q, given as

(P,Qhs =Y _ Avobs.(a).

all
if P is the class of A and a has sum equal to Q.

The term )\, o 0, ,(a) should be considered as the v-adic distance of a from the
divisor A. This leads to the notion of Weil’s height functions and Néron’s divisors.
See [Lan83, Chapter 10]. Moreover for places outside p, the Néron-symbol (A, a),
can be described as the intersection pairing on the Néron model at the special fibre
b@%ﬂ; at least if both are supported in the connected component.

I11.3.1 Remarks

These single extensions are only one side of a splitting of bi-extensions. The point

of view of bi-extensions is carried out in [ MaTa83].
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If the abelian variety A has ordinary reduction at all places v above p, there exists a
canonical function 6, , which gives rise to the canonical height pairing on the classical
Selmer group. For this we refer to [MaTa91] and [Col98, Proposition 11.6.1] (in the
case of elliptic curves) and [Nor85, section 4].

In a more general situation, one can construct p-adic height pairings associated to
“splittings of certain Hodge filtrations”.

II11.3.2 On the fine Mordell-Weil group

From proposition II1.4 we deduce now the following

Proposition 111.6. Let P be a point in M (A/K) and Q in M (A/K), represented
as sequences of points P, and Q;, in A(K) and A(K) respectively. Choose theta
functions 0, ,, for all places v above p associated to the divisors Ay in the class of
Py,.. The height pairing affiliated with )\ can be calculated as

<Pa Q)A = kh—{go Z )\U o eAk,U(ak)
all

where a;, is a zero-cycle of degree zero whose sum equals Q;, and whose support is
disjoint from the support of A.

A different choice of the theta functions does not change the result. This is due
to that fact that the sequence @, approaches O at all places above p and hence the
kernel of the logarithm. Once again the restriction on P ¢ A(K)* to lie in the fine
Mordell-Weil group did not actually matter in the construction of the height via theta

functions. This corresponds to the extensions of the pairing described in (1.33).

I11.3.3 The function field case

We can completely describe the p-adic pairing on an abelian variety over a global
function field K in the case that the characteristic of the residue fields is different
from p and zero. There are no places above p, and so the fine Selmer group coincides
with the classical Selmer group. The pairing, restricted to global points A°(K) ®
A°(K) — Z, can now be expressed as the p-adic logarithm of the intersection
pairing on the Néron model as described in the introduction. Since the intersection
pairing is non-degenerated on the Néron-Severi group of the Néron-model viewed
as a variety over the field of constants in K, we see that the p-adic height pairing is
non-degenerated. We refer to Tate’s article [Tat66].

In the case when the characteristic is equal to p, the above questions do not make

much sense; as the fine group will be too small. We have to impose that the abelian
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variety has ordinary reduction, so that we can use the canonical height pairing as
in [Pap00].



Chapter 1V
Elliptic curves

In the dream of the man who was dreaming,
the dreamt man awoke.
The circular Ruins; Jorge Luis Borges.

In this chapter, we aim to deduce an analytic formula for the p-adic height on the
fine Selmer group of an elliptic curve and to link it to a naive p-adic height. But first,
we have to have a good understanding of the “denominator” of a point on an elliptic

curve.

IV.1 Cancellations and the Class Group Pairing

The formulations in this section are kept as general as possible, for we intend to use
the results later in the study of families of elliptic curves.

IV.1.1 Cancellation

Let R be a unique factorisation domain. We will study the points of an elliptic curve
E over the fraction field F' of R, given by a Weierstrass equation

VP + aray + asy = 2% + agx® + asz + ag (Weq)

with coefficients a; in the ring R. A non-zero point P can always be written in the
form

P = (2(P),y(P) = (% » pyp) + (Iv.1)

where a(P), b(P) and ¢(P) are elements of R such that ¢(P) is relatively prime to
both a(P) and b(P). Of course, these expressions are only well-defined up to the
multiplication by units in R*.

The symbol ¢ will always stand for the uniformizer -4 at the origin O of E in

F(FE). Let m > 0 be an integer. The m-th division polynomial f,, (with respect
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to the chosen Weierstrass equation) is defined to be the function in F(E) having
divisor [m]*(O) —m? - (O) and normalised to have m-¢'~™" as the leading term at the
origin O. A detailed description of these functions can be found in the first appendix
of [MaTa91]. It will be used repeatedly that the square of f,, can be written as a
polynomial in the function z of the form

f2 =m?2™ ! + lower order terms in z (IV.2)

whose coefficients turn out to be polynomials in Z[ay, as, as, a4, ag), in particular they
are in R. Similarly, the functions g,, = - f2 — fim+1- fm_1, defined for all integers m >
1, are polynomials of degree m? in = with integral coefficients. These polynomials
appear in the formula describing multiplication by m:
a(mP) _ mpy = I _ gm(P)- 6(P)2”2L ’
e(mP)? fm(P)? (fn(P) - e(P)™)?

valid for m > 1 and points P € E(F) that are not m-torsion. The expression on the

2

(IV.3)

right is written as a fraction of elements in R, since the power of ¢(P) is sufficient to
eliminate all the denominator. More precisely

Fm(P)? - e(P)2™ = m2a(P)™ ' e(P)? + higher order terms in e(P) (IV.4)
is a polynomial in R[a(P),e(P)]. But there is no reason to believe that this expres-
sion on the right of (IV.3) is a reduced fraction. By definition of e(mP), the largest
common factor of the numerator and the denominator in this fraction will be the
square of the following element of R which will be called the cancellation of P when
multiplied with m :

D) (IV.5)

This is well-defined up to a unit in R* whenever m > 1 and P € E(F) is not a
m-torsion point, but depends on the equation (Weq).

Lemma IV.1. Under a change of equation of the form

r=u 2 +r, y=ud-y +ulry- 2’ +rs, (IV.6)

with v being a unit in R* and the r; in R, the cancellation ¢,,(P) can only change by

a unit.

The main result on cancellations is the following non-cancellation proposition. It
can be deduced from the explicit formula for the local non-archimedian real-valued
height functions (Theorem VI.4.1 in [Sil94]). We give a short independent proof

here.
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Proposition IV.2. Let E be an elliptic curve given by an equation (Weq) over a ring
R which is complete with respect to a discrete valuation v with residue field F,,. If
a point P € E(F) reduces to a non-singular point in the reduction E(F,) then the
cancellation §,,(P) is a unit for all m # 0, provided mP # O.

Proof. We split the proof into three cases. First suppose that e(mP) and e(P) are
both units. Then the reduction P of P and the reduction mP of mP are two non-
zero points in the group EHS(FU) of non-singular points on the reduction E. The
multiplication formula (IV.3) is also valid in this group and so the denominator must
be invertible in F,. This is what we want to prove, since the valuation of f,,(P) -
e(P)™ is zero.

Next, we prove the statement when e(mP) and e(P) have the same valuation & > 0.
Here our two points P and mP lie in the same layer F(m*) of the formal group' E
where m is the maximal ideal in R. (We refer to chapter IV of [Sil86] for everything
we need about formal groups.) Since there is a canonical isomorphism of groups

Em*)  mk

E(mk—f—l) T omktD

we see that m must have valuation 0 as an element in R, otherwise m P would belong
to E(m**1). The valuation of the expression in (IV.4) is 2k since a(P) is a unit when
e(P) is not, so both terms in the definition (IV.5) of 4,,(P) have valuation k.

Finally, we look at the case when e(mP) has a strictly bigger valuation than e(P).
If so, mP lies in a layer closer to O, and therefore the points (m — 1)P and (m +1)P
must lie in the same layer as P. Using what we just proved about such multiples,
we see that the expressions

fma1(P)-e((m+1)P)™*  and £, 1(P)-e((m — 1)P)mD?

must have the same valuation as e¢(P). Consider the numerator of the multiplication
formula (IV.3):

2

Gn(P) e(P)*™ =(fu(P)22(P) = fins1(P) fn-1(P)) - e(P)*™
=fm(P)? e(P)*™" - a(P)e(P) ™
— fr1(P) e(P)HD” L f (P)e(P) ™V L eo(P) 2,

The previous argument shows that the second term is a unit. Meanwhile, because
the cancellation §,,(P)? is an integral element, the first term must have valuation at

1This is not the Pontryagin dual of £
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least as big as the valuation of e(mP)? - ¢(P)~2, which is strictly positive in our case.
So we see that the square of the cancellation

2 _ (fm(P)-e(P)Y™)? _ gun(P)-e(P)*"
Om(P)” = e(mP)? N a(mP)

is a unit. This concludes the proof. O

Conversely one can prove that the cancellation is not a unit when P reduces to
the singular point. The valuation of §5(P) is smaller than half the valuation of the
discriminant A, but in most cases it is 1 or 2. This leads to a numerical interpretation
of the term (j,(X,a) in théoréme I11.4.1 in [Nér65]) that has to be added in the
formula for the Néron-Tate height as an intersection pairing on the Néron model.

IV.1.2 The Class Group Pairing

Now, let R be a Noetherian Krull domain with class group CI(R), written additively.
Let F be the fraction field of R. Let E be an elliptic curve over F' given by an equa-
tion (Weq) with coefficients in the ring R. The subgroup E°(F) of E(F) of points
with non-singular reduction at all primes of height 1 is of finite index by Tate’s al-
gorithm [Tat75]. For a non-zero point P in E°(F) and a prime p of height 1, the
localisation R, of R at p is a principal ideal domain, and so we can define an element
ep(P) € Ry. As a consequence of proposition V.2 for the completion of R,, we get a
formula as in exercise 6.4 in [Sil94].

Corollary IV.3. Let m > 1 and let P be a point in E°(F) that is not m-torsion, then,
for all p,

2

ep(m - P) = ep(P)™ - fm(P), up to a unit in P,°.

According to remark 3.5.3 in [MaTa83], there is a pairing on F(F') with values in
the class group. We have come across this pairing already in I111.2.1, but we give
an explicit description of this here. If F is a function field of a curve this is just the
canonical height on the minimal model considered by Manin. Define a map

q: E°(F) — CI(R)

P — the class of Zordp(ep(P)) p
p

where the sum runs over all primes p of height 1. The previous corollary allows us
to calculate ¢(mP) for an integer m: it is the class of

> ordy(ep(mP)) - p=m>>_ordy(ep(P)) - p+ Y ordy(fm(P)) - p.
p p p
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But the second term is just the principal divisor (f,,(P)), so we conclude that ¢(mP)
is equal to m?-¢(P). One can show furthermore that the parallelogram law holds for
¢ and so it induces a bilinear form on E°(F') with values in CI(R). But we are only
interested in the following consequence:

Proposition 1V.4. Suppose that the class group CI(R) is finite. There exists a sub-
group of finite index E*(F) of points P in E°(F) such that ¢q(P) = 0, so there are
elements a(P), b(P) and e(P) in R, defined up to multiplication by R*, such that
the ideal (e(P)) is not contained in any prime ideal of height 1 containing (a(P)) or
(b(P)) and

For a ring R of dimension 1 such as the number ring O, this just means that the
integral elements e(P) and a(P) are prime to each other.

Combining this with the corollary 1V.3, we get the
Corollary IV.5. In this subgroup E*(F'), we have the formula

e(m-P)=e(P)™ - fu(P), up to aunitin R*. (Iv.7)

IV.2 Sigma functions

In this section, we wish to construct explicitely the theta function in the case of an
elliptic curve F via the sigma functions. As explained in section II1.3, the height
on the fine Selmer group can be calculated using any theta function. Here the con-
struction of Bernardi [Ber81] is used, rather than the canonical sigma function of
Mazur and Tate in [MaTa91] which exists only if the reduction at places above p
is ordinary. There is also a construction of a “canonical” sigma function for elliptic
curves by Néron [Nér82, 8. Remark 2], but it was shown by Perrin-Riou in [PR84,
page 240] that it actually agrees with the sigma function constructed by Bernardi.
We keep our Weierstrass equation (Weq) for E with coefficients a; in the ring R.

The expression ¢ will still denote the uniformizer -5 ato. The invariant differential

dx

isw= g 0.
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1IV.2.1 Bernardi’'s sigma function

Using the formal group (see [Sil86, IV.1]), we can write

z:,,?(t):t—|—%altZ+é(a%—l—ag)t?’—i—i(ai{’+2a1a2+2a3)t4+---
1 a
p(t)::c(t)%—%(a%%-llag):t—2—71+%(a%—8a2)—agt—(a4+a1a3)t2+---

1
= ;%—T}to(a‘f—FSa%ag—FlGa% —24ay a3 —48ay) 22 + -+

for the formal logarithm and the Weierstrass p-function which are formal series in
F[t] and L R[t] respectively. We define the o-function of Bernardi by the following

expression
o(z) =z-exp (ff(z% —p(z))dz dz) ,

where of course the integration of the series has to be understood as the formal

integration. So it is a formal solution to the differential equation

d <d10g0> _ (1v.8)

w w

It can be expressed as a power series in z or ¢:

o(z) =2+ ﬁ(—a‘f—Sa%ag — 1642 +24a, a3 +48a4) 2" + - -

ot)=t+3at’+(af +a2)t® + 1(a} +2a1 a2+ 2a3) t" + -+ € F[1]

Specify now that F' is a non-archimedian completion K, of a number field K. The
power series o(t) € K,[t] is a rational function on the formal group E in the sense
of [MaTa91, 2.1]. It is normalised and the divisor associated to it is (O). This means
nothing else than that in the Weierstrass preparation theorem the decomposition of
oist-uwithu € 1+1¢- K,[t] having neither poles nor zeros. The translation of ¢ by

a divisor A of degree zero on E is defined to be

N

N
oa(t(P)) = [[o®(P - P)™  ifA=D n;-(P).
=1

i=1

Then o, has divisor A on E.
The solution o of the differential equation (IV.8) is not unique, all other solutions
are of the form
o®(t) = o(t) -exp (a1 + a2 L(t) + a3 ZL(1)?).

If we impose that ¢(O) = 0 and % (0) = 1 then we are limited to the functions

o®(t) = o(t) - exp(a - L(t)?).
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for some a € K,, (compare with [ PR84, page 237]). Such functions are called sigma
functions. They are all odd in the sense that o([—1]*t) = —o(¢).

For a point @ on E(K,) with #(Q) of valuation strictly greater than ord, (¢)/(¢ — 1),
where / is the characteristic? of the residue field F,, the series for o(Q) = o(t(Q))
converges (see [Ber81]). In other words, there is an open subgroup U around O on
which o gives an analytic function with a single simple zero at O. If the divisor A is
supported with in U, then o, is analytic on U.

From the properties of the complex sigma function, we derive the formal identities
in K((s,t))

o([ml]t) = fm(t) - o(t)™

with the division polynomial f,,. Indeed, these relations are exactly the reason that
the local factor at oo for the canonical real-valued height is a quasi-quadratic function
satisfying the quasi-parallelogram law (see [Sil94, chapter VI]).

The second equation can also be used to extend the definition of the o-function to
the whole of E(K), since the open subgroup U has finite index in the compact group
E(K,). At least up to a root of unity it is well-defined. As we will take the p-adic

logarithm of it, this factor disappears again.

Lemma IV.6. Let A be a divisor of degree zero on E, defined over K,,, whose support
is contained in U. The analytic function

oa(P + Q)
Oa (P) 'UA(Q)
on U x U is the restriction of a rational function F, defined over K, on E x E of
divisor sum*(A) — pi(A) — pi(A).

Proof. Write A = n;P;. First, we note that the following function is the restriction

of a rational function

s e Tl

_oa(X+Y) oa(X YY)
 oa(X)2-o(Y)2Xn)

The term in o(Y) vanishes because A is assumed to have degree 0. Putting X =Y,

we find that the quotient o, ([2] X) /oA (X)? is the restriction of a rational function. If3

’we do allow ¢ = p.
3for ¢ = 2 this proves still that the square of the above function is rational, or we could have

restricted to 2U.
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¢ # 2, then [2] is an isomorphism on U and hence we can find X and Y such that

Q=X-Y 2Y=P-Q

We conclude that
UA(X +Y) UA(X - Y) UA(X)2 _ UA(P) : UA(Q)

oa(X)? oa(21X) (P +Q)

is the restriction of a rational function. It is clear that this has divisor as claimed. O

Of course, the choice of the sigma function is not important for this lemma, a
different choice changes the function G by a constant. This is the proof the function
ox is a theta function 6, , as defined in section III.3.

Instead of working with theta functions, we could have adopted the point of view
of Colmez in [Col98] who constructs p-adic heights using Green’s functions.

1IV.3 The p-adic height pairing

Let E be an elliptic curve over a number field K given by a (Weq) over the ring of
integers O of K. We do not require that the equation is minimal with respect to some
places and the height pairing is independent of the chosen model. In this section
we will find an explicit formula for the p-adic height pairing on the fine Mordell-
Weil group affiliated with a character \: G.(K) — Z, given as a collection of maps
Aot K —— Zp.

The proposition IV.4 guarantees us the existence of a subgroup E*(K) in E(K) of
finite index such that the denominator e(P) of a point P € E*(K) is a well defined
element of O.

Let P and @ be two points in E(K). As a divisor A for P we choose (O) —(—P) and
as the zero-cycle a for @, we take (Q +7) — (T)) where T is any point in E(K) close to
O. Let v be any finite place in K and let o, be a v-adic sigma function. The obvious
choice being the sigma function of Bernardi constructed in the previous section. The
local symbol is given by

- B 0,(Q+T) o, (P+T)
(A,a)v—%(ffv,wﬁ—A“<UU<Q+T+P)' ou(T) )

As a function in 7', the right hand side has divisor (—P — Q) + (O) — (=P) — (—Q),
so there exists a function* f(7") with this divisor defined over the global field K. We

“actually a fraction of two linear terms
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normalise it so that %(O) = 1. Thus

ou(P) - 0u(Q)
UU(P + Q)

The factor can be found by looking at the derivative at O. We draw the conclusion

@, = ( ).

that the pairing for this choice of ¢, is

_ oy(P) - 04(Q) )
<P7Q>A,o_a%;})\v< UU(P+Q) f(T)>

2N < oo P n 6(2?)>

all v
The last equality follows from the fact that f(7) is defined over K and so the sum of
Ao (f(T)) is zero.

If the place v is not above p, then the only thing that matters in the above ex-
pression is the valuation of the fraction of the sigma functions. Note that since we
normalised the sigma-function, so that d%(()) = 1, the valuation of ¢, (P) equals
the valuation of ¢(P) if P belongs to the subgroup on which the series o, con-
verges. But if P is outside this group, but still belonging to E*(K), the formula
oo(P)™ - fn(P) = o,(m P) that was used to extend the sigma function and the cor-
responding formula (IV.7) show that the equality between the valuations will still
hold.

Therefore, the height pairing associated to these sigma functions o, can be further
simplified to

e(P)-e Q
-2 (re) 2 (Chrter)
In particular for the cyclotomic Z,-extension defined in 1.2.2, the pairing takes the

form

e(P)  e(Q) UU(P+Q)>' (1V.9)

(P, Qloe.r = > _log, oNk,, Qp< ou(P) 0u(Q) (P +Q)

vlp
Both formulae are only valid, if o, converges for P and @ for all v | p and both, P
and @ belong to E*(K).

Let now P and @ be two elements of M(E/K) given by sequences P and @ of
points in F(K). Suppose we can choose them in such a way that they all belong
to the subgroup of finite index for which the above formula holds. Then the above
formula gives the p-adic height (P, Q),.

<P7 Q)A = klggo<kaQk>/\,a
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This is independent of the chosen sigma function because a change of the sigma
functions by a factor exp(a - Z(t)?) changes the v-part of the pairing of P, with Q;,
by

. < exp(a - L(Py + Qp)?)
0% \exp(a - Z(P)?) - expla - Z(Qr)?)

) = Ng,.q, o exp(2a - Z(Py) - Z(Qk))-

Note once again that it suffices that @ tends v-adically to O for all places v above
p and that P can be any point of F(K)*. This is the extension of the pairing to
E(K)* x 9.

Instead of talking about the bilinear form, we could also restrict the attention to
the induced quadratic map defined as

I(P) = 3 (P, P),

for all P in M(E/K). We can recover the bilinear form (-, -), from &, via the formula
(P,Q) = hy(P+ Q) — hy(P)— h,(Q). Let us put the results of this section so far into
a

Theorem 1V.7.

Let E be an elliptic curve over a number field K and let P be a point in the inter-
section of M(E/K) and E*(K)*. Write P as a sequence of points P, € E*(K). Then
the cyclotomic p-adic height of P can be computed using the formula

. UU(Pk)
o P) = Jim 3o, oNie, (%)
vlp

This is up to the sign an expression similar to the local decomposition of the canon-
ical real-valued height of Néron and Tate. Since we will only be interested in the
valuation of the regulator, the sign does not matter at all. Note also that the coeffi-
cients of o, are in fact in K for all v. If we take an embedding of K into the algebraic
closure Q,, we can write the formula as the logarithm of the sum of conjugates.

We can get rid of the transcendental function o by expressing it as a limit of naive
heights, involving only the limit of p-adic logarithm of the numerator. The pairing
on the fine Selmer group looks “less transcendental” than the canonical pairing on
the Selmer group in the ordinary case. One could hope that it is easier to prove that
the fine pairing is non-degenerate.

The first limit formula for p-adic heights appeared in Perrin-Riou’s articles [ PR84]
and [PR83]. Almost in the form we present here, it is stated in [BerPR93] where
Bernardi and Perrin-Riou used the formula to do calculations of the height pairing
associated to the sigma function of Bernardi.
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Theorem IV.8.

Let E be an elliptic curve over a number field K. Let P and Q be points in M(E/K).
that can be written as a sequence of points P, and Q) in E*(K). Then the cyclotomic
p-adic height pairing of P and () is equal to

[a—

2 a(Py + Q)

where a denotes the numerator as defined in proposition IV.4.

<P, Q>cyc = — - thl 10gp ONK:Q <M>

Proof. If a point P € E*(K) lies in the domain of convergence of o, we have that

ou(P)
t(P)

=1+ 3a1t(P)+Ot(P))* =1 (mod mydF)y

v

at least if the valuation of ¢(P) is sufficiently large so that the denominators do not
interfere. Since the valuation of P, and @, are growing with &, the limit of the pairing

associated to the sigma function of Bernardi can be simplified to

Y e(Py) e(@k) t(Px+ Q)
(P Qe = g, logy 0N (t(Pk) HQr) (P + Qk)) .

The Weierstrass equation for a point P with high valuation at a place v gives

b(P)? = b(P)? + a1 b(P) a(P) e(P) + a3 b(P) e(P)?
= a(P)? 4+ ay a(P)? e(P)? + ag a(P) e(P)* 4 ag e(P)°
=a(P)® (mod mord“(t(R)))

v

and so

This proves the theorem. O

Instead of the numerator of the z-coordinate, we could have taken the numerator
b of the y-coordinate and change the % to a % in the theorem.



Chapter V

Variation in families

The universe (which others call the Library) is
composed of an indefinite and perhaps, infi-
nite number of hexagonal galleries, with vast
air shafts between, surrounded by very low
railings. From any of the hexagon one can see,
interminably, the upper and lower floors.
The Library of Babel; Jorge Luis Borges.

We wish to analyse the variation of the p-adic height of a section in an elliptic
surface. For the real-valued height this was initiated by Silverman and Tate, see
the chapter 111.11 in [Sil94] for details. In the article [Wut04], the variation of the
canonical p-adic height on an elliptic surface over the affine line was studied. It was
shown that under certain restrictions on the section the height varied continuously.

We transpose these results to the heights studied in this thesis. We also remove
the not so important restriction of the base curve being the affine line. Most of
the results from [Wut04] carry over to our situation here. For the same important
reason as explained for the canonical height, the technical restrictions on the section
can not be removed.

Since the fine Selmer group itself is “varying” from fibre to fibre, we shall start by
analysing the variation of the height obtained from the sigma function of Bernardi.
After that, we will restrict to sections in the fine Mordell-Weil group and prove
results about the variation of the height on the fine Selmer group.

V.1 Families

Let K be an number field with O its ring of integers. Let C' be a smooth, projective
and geometrically connected curve defined over K and &, — C an elliptic surface

fibred over C. Also a regular model € of C over O can be chosen, see [Liu02, chapter
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10]. We will see later that there is no minimal regular model of £, over C with
the nice properties we would expect from such a “Néron-model” over a base of
dimension 2.

We cover C by a finite number of affine opens U/K such that Pic(U) = 0. Choose
regular integral models U over O for U of the form

u= SPGCR = Spec(O[Tl,Tg, e Tm]/(fl, N fn))

We see that PicU = ClO. Furthermore, we may refine the cover until we have
on every U a section of the relative differential and hence by [Del75], there is an
integral model &, — U of the surface &, given by a Weierstrass equation (Weq)
with coefficients a; in R. The scheme & obtained by glueing the &, will be referred
to as a family and the cover U with the demanded properties will be called a tight
cover.

There is a group of sections €, (K'), which can be viewed as the points of the generic
fibre, i.e. the solutions of the Weierstrass equations defined over the function field
K(C) of C. For short, we write £(K) for this group and we will call its non-zero ele-
ments sections of &; they are not sections over O of the scheme €. Denote by £°(K)
its subgroup of finite index containing the sections that do not meet any singularity
of a fibre of £, — C as in lemma I11.9.4 in [Sil94].

For a closed point 7 in C, the fibre above = will be denoted by &, and, given a
section P € £(K), the point P, in &,(K) is where P meets the fibre .. For a finite
place v of O, &, stands for the reduction of & at v, which, on U, is the reduced
Weierstrass equation over F,[T1,7%...T;,]/(f;). The reductions of the fibre &, are
denoted by &, .

V.1.1 Local properties

We start by analysing the properties of the denominator of a section P in £°(K) for
a fixed finite place v in O. As usual O,, denotes the ring of integers of the completion
K, of the number field K with maximal ideal m,,.

All our considerations will be of geometrically local nature and we concentrate
therefore on the Weierstrass equation of &, over the ring R. Let R, = O, ®9 R be
the ring of functions of U, = U x O,. Note that R, is a principal ideal domain under
our hypothesis on the class group of R.

We can define, for each section in £°(K,,), an element ¢,(P) in R, well-defined up
to a unit in R} as in section IV.1.

Let 7 be a point! in U,(9,). On the one hand, the coordinates of the point P, ¢

lwe are not going to distinguish in notation the generic point on U(K,) from the section U(O,,)



V.1 Families 85

&, (K,) can be written according to (IV.1) as reduced fractions of elements in O,,, say

= (e )

at least if P, # O..
On the other hand, when evaluating ¢, (P) € R, at 7, written ¢, (P)(7), we will also
obtain fractions of elements in O, namely

faP)) b(P))
R_<%@WV’%@W¥>' V-1

Once again, we have two fractions that we can compare: we might have some
cancellation in the expression (V.1), which allows us to define, for every 7 € U,,(0,,)
and section P € £°(K,) with P, # O,, an element ~,(P,7) in O, by

ev(Pr) - v (P, 7) = ey (P)(7), (V.2)

which is defined up to a unit in 0.

Lemma V.1. Let P € £°(K,) be a section in a family £&. The map 7 — ord,(y,(P, 7))
from U(0O,) to the integers is bounded and v-adically continuous.

Proof. The ring R, has dimension 2 and so the intersection of the zero-loci of the
relatively prime elements a,(P) and e, (P) in R, is of dimension 0. The intersection
number at the maximal ideal (m,,7) in R, of a,(P) and e,(P) is a bound for the
valuation of ~,(P, 7). O

When a section P € £(K,,) has non-singular reduction for all fibres 7 € U(O,), i.e.
P, € &2(K,) for all 7, we say that the section has good reduction (with respect to
the cover U).

On an elliptic curve over a local field F, every point can be multiplied by a suffi-
ciently big integer to guarantee that it has good reduction, due to the fact that the
subgroup E°(F) is of finite index. Unfortunately, it is not true for families as the

following example for R, = Zy[T] shows:
& Y4 ay=2>-T4+27%

€ has a section P = (7,7T) and 2P = (T2 — 3T — 2, —T3+2T? + ) is in the subgroup
£€°(Q2). The family has multiplicative reduction at 7 = 0 with singularity (0,0), the
multiples of the section 2P meet the fibre &, at
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So there is no hope that any multiple of P will have non-singular reduction. Actually
the Tamagawa number of the fibre at 7 = 2" is 2n+1. In terms of Néron-models, this
reflects the fact that the Néron flt-model of G,,, over a discrete valuation ring has an
infinite cyclic group of connected components (see Example 10.1.5 in [ BoLiiRa90]).
For an additive fibre, this “group of connected components” would have to be an
infinite torsion K,/0,, but here not even the Néron flt-model exists.

The following proposition tells us that the above phenomenon is the only obstacle
for finding a multiple of a section with good reduction.

Lemma V.2. Let P be a section of & defined over K,,.

i). Suppose &, has no bad fibre of multiplicative type. Then there exists a refined
tight cover such that a multiple of the section P has good reduction.

ii). If € has fibres of multiplicative type and P belongs to £°(K,) then there is such
a cover if the reduction of P, is non-singular on a whole v-adic neighbourhood
of each multiplicative fibre.

Proof. We may suppose that the section P belongs to £°(K,). We may refine the
cover U in such a way that every point of C(K,) appears as the generic point of an
element of U(O,,) for some U. The cover will still be finite because C'(K,) is compact
and the U(O,) are open in the v-adic topology.

First, we treat the case when there is no singular fibre in U(O,). We claim that
the index of £2(K,) in &,(K,) is bounded for all 7 in U(O,). In order to prove this
claim, we first have to note that the valuation of the discriminant A is bounded
because it cannot have a zero on U(O,). For a given 7, we can change the given
Weierstrass equation &, over O to a minimal form by replacing = by «? 2’ + r and y
by u?y/ +u? sy +t as in proposition VII.1.3 in [Sil86]. The valuation of u is bounded
by & ord,(A); hence it is bounded on U(0,). The index in the minimal Weierstrass
equation is the Tamagawa number and hence it is bounded by the maximum of 4
and the valuation of the discriminant. If « is not a unit, then the index on & is the
product of the index on the minimal equation, the number of points in the reduction
of the minimal equation and (#F,)°"d(*)=1_ This proves the claim.

Next we suppose that there is an additive fibre at 7y in U(O,). We may refine the
cover, so that the reduction on U(O, ) is constant and, hence, additive on the whole
v-adic neighbourhood Uy = U(0,) in C(K,) of 7p. We may assume that (0,0) is the
singularity on &,, and that the valuation of ord,(z(P;)) is bounded because P can
not pass through the singularity since it belongs to £°(K,). Write X (P;) for the -

2

coordinate of P; in a minimal equation, i.e. X(P;) =u"*-z(P;). If we multiply the
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section by 4, we are guaranteed that the point P,, for every 7, when transferred to
the minimal equation, has non-singular reduction. A point on &, has non-singular
reduction if and only if it has non-singular reduction in the minimal equation and
the valuation of its z-coordinate is smaller than —2 ord,(u). Since the valuation of
x(P;) is bounded, we may multiply P sufficiently often with the number of elements
of the residue field F,, until this holds for P, for all r. O

Another example is the family over Z,[T] given by
E: v —2zy +Ty =23 — 24+ T)a* +2Tx

with two independent sections P = (2,0) and Q = (1,1). There is a fibre of multi-
plicative type at 7' = 0 with its singularity at (0,0). Neither P nor (Q meet the sin-
gularity, but P has bad reduction. Nevertheless 2P has z-coordinate %
and hits the bad fibre at the same point as Q does. In fact, if 7 is divisible by &, the
cancellation v, (2P, 7) equals 4 and e3(2P;) and a(2P;) are units. Hence the reduction
of 2P is good in this neighbourhood. Here the reduction of &, for = = 2" is additive

of type 15, _; with ¢, = 4.

V.1.2 Global properties

Let P € £°(K) be a section. Since the class number of K is finite and constant for
all R in the cover, the proposition IV.4 provides us with a subgroup of finite index
E*(K) of £°(K) such that P admits on every U a global denominator ¢(P) in R, equal
to e, (P) for all v and well-defined up to an element in R*.

Lemma V.3. Let P be section of £€*(K). Then 7 —— ord, (v, (P, 7)) is the trivial map

for all but a finite number of places.

Proof. Again R has dimension 2 and the zero-loci of ¢(P) and a(P) have to intersect

in a subscheme of dimension 0 of U. O

Lemma V.4. Let P be a section of a family &. Suppose that P belongs to £°(K). Then
for all but a finite number of places v, the section P has good reduction at v

Proof. Let us exclude all places v for which +,,(P, 7) is not a unit. For the remaining

places v, the conditions for P, to have singular reduction at v can be reformulated
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by saying that the elements

2b(P) + a; a(P) e(P)* + aze(P)? and
3a(P)? 4+ 2ay a(P)e(P)? 4 age(P)* — a1 b(P) e(P)

of R lie in the maximal ideal (m,, 7). If they both vanish along a subscheme of U of
dimension 1, then it has to be a component of the zero locus of the discriminant A.
This would imply that the section P encounters the singularity of a bad fibre on C

which is in contradiction to the hypothesis that P belongs to £°(K). O

We say that a section P in £°(K) has good reduction everywhere if it has good
reduction for all finite places v, that is to say that P, belongs to £2(K) for all 7.

Proposition V.5. Let & be a family and let P be a section. If &, has no fibre of
multiplicative type then we find a tight cover and a multiple of P with everywhere

good reduction.

If €, has multiplicative fibres we might still be lucky and there exists such a mul-
tiple, but otherwise we would have to exclude a set of arbitrary small density of
C(K).

Proof. We know that we can multiply P into £°(K). By the previous lemma, we may
concentrate on a finite number of places v. For each of them we can refine the cover
sufficiently to be able to apply the local lemma V.2. O

Lemma V.6. Let P be a section of a family & that belongs to £°*(K) and which has
good reduction everywhere. Then P, belongs to £2(K) for all - € U(O). There exists
an element (P, 7) in O, defined up to O*, such that e(P;) - v(P,7) = e(P)(7).

This together with lemma V.3 implies in particular that we may refine the tight
cover in order to assure that v(P,7) is a constant on every U, for, up to R*, the
expression v(P, 7) only takes finitely many values on each U.

Proof. For the first part, note that ¢(P) = ¢(P;) under the isomorphism from CI(R)
to C1(O). The existence of v(P, 7) follows now exactly like in (V.2). O

V.2 Heights in Families

In this section, the variation of the p-adic height associated to the choice of a sigma
function o, of Bernardi for every place above p is considered as we follow a section
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in a family. For simplicity of notation, the formulae are only written for the cyclo-
tomic Z,-extension rather than for a general \. Write A, (P) for the cyclotomic height
associated to the sigma function of Bernardi as in (IV.9).

Fix an embedding of K into the completion C, of the algebraic closure of Q,.

Theorem V.7.

Let p be an odd prime and let & be a family of elliptic curves over a number ring O.
Suppose P € £(K) is a section that has a multiple with good reduction everywhere.
Then the map 7 — h,(P;) from C(K) to Q, extends to a piecewise rigid analytic
function on C(C,).

Proof. Choose a tight cover on C. Let ) be a section in £*(K) with everywhere
good reduction and suppose that the cover is sufficiently fine so that v(Q,7) = v is
constant on each U. See lemma V.6. Let @ be the multiple of P with good reduction
everywhere. Furthermore we want that ) lies in £*(K) and that @), belongs to the
layer of the formal group &.(m,) such that o,(Q,) converges for all 7 € U(O) and
all places v above p. This can always be achieved by multiplying with a sufficiently
large integer as £°(K) is of finite index and there are only finitely many different
reductions at a place v for different = € U(O). Now we can calculate the p-adic
height of @, according to (IV.9), at least if Q, # O.:

- [ (420

:1OgP<HNKU:Qp<UU(QT) >> +log, oNk.q(7), (V.3)
vlp

e(Q)(7)

and since h,(P;) is a scalar multiple of 1, (Q;) it suffices to prove the theorem for Q.
Let now v be a place above p and let U2 be the rigid analytic space associated to U
over K, as in [Sch98]. The rigid analytic functions on Uy = U(O,) form the ring R?"
defined to be the quotient of the Tate-algebra K,(7T1,...T,,) of convergent power
series by the ideal generated by the equations f; of U.
We know that ¢(Q) is an element of R with no poles on Uy, so in particular it lives
in R?", Next we look at

y(Q) b(Q)

Since @ is in the formal group at v for all 7 in Uy, #(Q) cannot have poles either and

HQ) = -

so it belongs to R?".
The sigma function of Bernardi was constructed as a power series in ¢t whose co-

efficients are polynomials in a; € R of the (Weq) with rational coefficients. Hence
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it is a power series in R[t]. Substituting ¢ by ¢(Q)) we get a power series 0, (Q) in

R?™ whose zeros are exactly the zeros of ¢(Q). More precisely, we know that Z(ch?i
is a unit for all 7 in U, and so the quotient 72 @) s an element of R2" without poles

e(Q)

or zeros. This shows that on Uy x C, the function log Nk, .q, 70(Q)

e(@)
R ® C,, and so h(Q;) is a finite sum of analytic functions. O

is an element of

Corollary V.8. The map 7 +—— h(P;) has either only finitely many zeros in C(C,) or

it is constant zero on a p-adic open.

Suppose € is non-split and that it is defined over Q. If the section is non-torsion,
we can almost exclude the second case: The j-invariant is non-constant and hence
has a zero 7 on C. With some luck this zero is a rational point of C(Q) and hence
we have a fibre &, with complex multiplication. By a result of Bertrand [Ber82,
Corrolaire 2], the value of the sigma function of Bernardi evaluated on a non-torsion
point is a transcendental p-adic number. So unless we are unlucky and the section
hits the fibre €, at a torsion point, we would know that the value of h,(P;) is non-
zero and hence it would be non-zero in a p-adic open of 7.

It is certainly necessary to illustrate the theorem V.7 with a concrete example. Let
&: y? =2 + 82 — (1+8)x +1

be a family over Z[S]. As an elliptic surface &, — P!, it has a bad fibre at S = oo
and at the irreducible divisor (S* +25% — 552 — 65 — 27). It has two independent
sections P = (0,1) and @ = (1, 1) such that 2P and 2Q belong to £°(Q). Now we will
substitute S = 1 + 36 - T to concentrate on a smaller open. Here the reduction at 3
is constant good anomalous for all 7 € Z. It is not difficult to show that 6 P has good
reduction everywhere for 7 € Z. We have

e(6P) =324 - T? - (12754584 T° + 1889568 T° + 52488 T* — 8748 T3 — 486 T + 1).

The resultant of ¢(6P) and a(6P) is a power of two, but a(6P) is odd for all 7 € Z.
Hence v(6P,7) = 1 for all 7 € Z. We see that (6P), lies in the formal group at 3 for
all 7 € Z.

The sigma function of Bernardi is equal to
1+36T 5 4795272 + 180T — 101 By

3 180
80294976 T3 — 5520960 T2 — 831816 T — 12319

11340

o3 =1+

tT+0(t)®

and evaluates on 6P to

o3(6P)(1) = (2-3'+3°+2-354+2.37+2.35+2.3%) . 72+ (3%) . 74 + O(3)"°
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for all 7 € Z3. We can compute the 3-adic height associated to the sigma function of
Bernardi
he(6P;) =2-3%-72 4 (31 +3%) . 73 + 35 . 71 4 O(3)°.

In particular this has a unique zero for 7 = 0. This is no surprise because P,_; = (1,0)
is actually a 3-torsion point on &,—g.

With the two section, we can hope to construct a section in £(Q) ® Z,, in the kernel
of reduction at p = 3. In fact the logarithms for € Z are

2 =206P) =372 (2+3' +2-32+2-3° +2.3") + 3" . 72 + O(3)")
20=236Q,;) =3 (2+2-3)+(2-3'+3%) . 7+ (2-3°+2-3%) . 72 + O(3)*)

and hence z; has valuation 2 for all = € Z3, while z; has valuation at least 4. We can
conclude that M = P — 2L - Q) belongs to £(Q) ® Z, and for all 7 in Z, the element M
must belong to M(€,/Q). In particular we can compute the 3-adic height of M for
all 7in Z

(M) =(3*+2-3%)-72+3° . +30. 74 L+ O(3)".

Once again, we can deduce that the height is non-zero for all 7 # 0. In fact M.—y = O.
We conclude that the 3-adic height on (&, /Q) is non-degenerate for all 7 € Z for
which the rank of £.(Q) is 2.

The rank of the elliptic surface is 2, probably generated by P and Q. For each 7
in Z, except a finite number (like 7 = 0) the rank of the fibre £.(Q) is at least 2, by
Silverman’s specialisation theorem. It is expected that the average of the rank is
about 2 + 1.

Theorem V.9.
Let € be a family over a number ring O. Suppose {PV),... P(")} is a set of sections
of &, all having a multiple with everywhere good reduction. Let )M be the kernel of

reduction from Z,PM) & - - & Z,,P") to @,,,&(K,)* for all places v above p. Then the

vlp
regulator of M, is a piecewise rigid analytic function on C(C,).

Proof. The v-adic logarithm map .%, is a power series in R[t¢] and hence .Z,(P;) is
rigid analytic on the Uj of the proof of the previous theorem. We can refine the cover
in order to find analytic expressions al(.j )(7) such that

MD = o). PO ... 4 a0 (7). PO

T T

belongs to N for all 7 in Uy and they form a Z,-basis of 91, on U. The result follows
now from the previous theorem. O



Chapter VI
Numerical Computations

The Aleph’s diameter must have been about
two or three centimetres, but Cosmic Space
was in it, without diminution of size. Each ob-
ject (the mirror’s glass, for instance) was infi-
nite objects, for I clearly saw it from all points
in the universe.

The Aleph; Jorge Luis Borges.

This chapter contains the explanation and results of the numerical calculations
done on the fine Mordell-Weil group. Throughout the whole chapter E/Q is an
elliptic curve and p an odd prime. We assume that the fine Tate-Shafarevich group

K(E/Q)(p) is finite. It is actually conjecturally trivial for all examples considered.

V1.1 The algorithms

VI.1.1 The height pairing

Suppose that the rank r of the Mordell-Weil group E(Q) is strictly larger than 1.

There are essentially two ways of computing the p-adic height on the fine Mordell-
Weil group. In the article of Bernardi and Perrin-Riou [ BerPR93], they perform cal-
culations of the regulator on the fine Mordell-Weil group for supersingular reduction
using the limit formula

k—o0

. -1
h(P) = lim mlogp <a(pk P))

where a denotes still the numerator. 1 suppose that the same method was used
in [PR0O3a].
The main computational problem with this formula is that we need to multiply the

point P with p* which, if p is large, can be very long and complicated. Instead, it is
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easier to actually calculate the sigma function of Bernardi directly, using the built-in
Weierstrass p-function in pari [pari].

Lemma VI.1. Define B to be the intersection of E(Q) with E(p Zp). The fine Mor-
dell-Weil group 9t is isomorphic to the kernel of the localisation map from B ® 7Z,
to E(pZy).

Proof. 1f we denote as usual by ®(Q,) the group of components and by Ey(F,) the
non-singular points in the reduction, we have two exact sequences
0 —— E(pZ,) — E°(Q))* — Ens(Fy)(p) — 0

VI.1
0 — E°(Qp)" — E(Qp)" — 2(Qp)(p) — 0 VD

Hence the subgroup B has index prime to p in the kernel of the map from F(Q) to
E(Qp)*. O

Let Q1, Q2,...Q, be a basis of B. Denote by .Z, the p-adic elliptic logarithm
converging on the whole of the formal group and giving us an isomorphism with
pZy,. We conclude that

m:{xl Q1+"'+$TQT |xz eZp such that xlgp(Ql)_F""}'l‘rgp(Qr) :O}

The first step is therefore to compute a Z-basis of B. If we start with a basis
{P;} of E(Q) modulo torsion with relatively small real-valued height, we can find
Z-linear combinations of the P; that lie in B. Once we have found sufficiently many
to generate B, a reduction using the LLL-algorithm, permits us to find a basis of B
with relatively small real-valued height. In this way, the computation that follow
are faster.

Now it is easy to compute the matrix of the bilinear form on B ® Z, with respect
to the sigma function of Bernardi. But it is important to make sure that the points
in the basis are multiplied so that they have good reduction at all places. Once a
Zy-basis of M (in the presentation above) is found using ., the determinant of the
pairing restricted to 9t can be computed. Its valuation is independent of all choices,
it is the well-defined valuation of the (cyclotomic) regulator on 9.

VI.1.2 The index of 91, in 9

Although it is not needed directly anymore in the final formula of the Euler char-
acteristic, it can still be interesting to compute the index of 9Mi,, in 9M1; under our
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assumptions this is the same as the index of Ry, in K. The easiest choice for X is as
the union of the bad places, {0} and {p}. By definition

0 My — M @ E(@U)*

veX(tp)

The target of the localisation map has order

c = H P . NP
bad v#p
where ¢, is the Tamagawa number at v and N,, is the number of non-singular points
in the reduction. This product ¢, which is a power of p, is quite often equal to 1.
Otherwise, find a basis M; of 9t expressed as Z,-combinations of the basis {Q;} of
B, say M; = 3 m; ;- Q;. Choose integers m; ; that are congruent to m;; modulo c.
Then the points M = m; ;- Q; in E(Q) represent a Z/c-basis of M/c. The index of

My, in 9 is the order of the image generated by points A// in the above localisations.

VI1.1.3 Local torsion points

Sometimes we wish to compute the number of torsion points in E(Q,)(p). Write the

symbol ® for the tensor product with Q,/Z,. The exact sequences

00— EO(Qp)(p) — E(Qp)(p) — @(Qp)(p) —5> Eo(@p)® — E(Qp)® —0
0+ EQ)(p) —> Ens(F,)(p) —> B(pZy)® —> E*(Q)® —> 0

allow us to compute the local torsion without using the division polynomial. In order
to decide if, in case N, is divisible by p, the map ¢’ is trivial one takes any point Q) in
E°(Q,) not in the formal group and checks if the point p @ lies in the second layer of
the formal group or only in the first layer. Similarly one can check if § is trivial in the

unlucky case that p divides ¢,. An example of such a calculation is given in 11.2.1.

VI.1.4 The index [, of 91 in 7,M

Also this quantity does not appear in the Euler characteristic formula anymore, but

we could still be interested in the order of I,. But in fact we have here a little

Lemma VI1.2. If E has good reduction at p, or more generally if p does not divide c,,
then the natural embedding from 9 to T,M is an isomorphism.

Proof. In proposition 1.11 the bound on I, shows that if £(Q,)(p) is trivial, then so is
Iy. Hence we may assume that £(Q,)(p) is equal to Ens(F,)(p) = Z/p, because p does
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not divide ¢,. (Compare with the sequences in the paragraph on the computation of
the local torsion.) Consider the following diagram
0 - M = M

J J I

0 ——— BQ)(p) — BQ) — %(EQ ©Qy/Z,) —= 0

| . '

0 —— E(Qp)(p) — E(Qp)* - %(E(@p) ® @p/Zp> —0

Since the p-primary part of ®(Q,) is trivial, there is an isomorphism in (VI.1) between

E(Qp)* and E°(Q,)*. Also we see that 7,(E(Q,) ® Q,/Z,) is equal to T,(E(pZ,) ®
Qp/Zy) = E(pr). Hence the exact sequence

0 <— Ens(Fy)(p) <~— E(Qy)" <— E(pZ,) <—0

splits the bottom sequence in the diagram above. O

VI.1.5 The group D(p)

The group D is defined to be the cokernel of the localisation map from F(Q)* to
E(Qp)*. If the rank of the curve is 0, then D(p) is simply the quotient of E(Q,)(p)
by E(Q)(p). Suppose therefore that the rank is at least 1. Then D = D(p) is finite.
After the calculation of the image of E(Q) in ®(Q,)(p) and Ens(F,)(p), we have also
to look at the image of the basis of B within £ (pZyp). For instance, if the reduction is
good and is not anomalous, then d = #D(p) is such that all @; maps into E(deZp)
and at least one of them does not lie in E(pd+2Zp). The larger the rank is the less

frequent there are curves and primes for which D is non-trivial.

V1.2 Examples

VI1.2.1 The curves of conductor 11

It is quite traditional, if I may say so, to consider the three curve of conductor 11
as the first and standard example for Iwasawa theory of elliptic curves. Our con-
siderations are based on the detailed description in [CoSu00] chapter 4.4 and in
Greenberg’s part of [cetraro99] on page 106 and on the pages 120-125. They are the
following curves

Eq: v 4y =2 — 2% — 10z — 20
Ey: v 4+ y = 2% — 2% — 7820z — 263580
Es: y2+y:m3—x2
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labelled 1141, 1142 and 1143 in Cremona’s tables [Cre97]. We include here a lemma
that should have shown a long time ago:

Lemma VI1.3. The Tate-Shafarevich groups 11(E;/Q) of E; are trivial for all i =1, 2
and 3.

Proof. Because of the invariance of the Birch and Swinnerton-Dyer formula under
isogeny, it is enough to prove it for £ = E;. A 2-descent, using Cremona’s mwrank,
and a 3-descent, using Stoll’s magma script [ScSt04], prove the statement for the 2-
primary and the 3-primary part of III(£/Q). For p = 5 the triviality of III(E/Q)(p) is
proven by Fisher in [Fis01]. Now let K = Q(1/—7) and write a = _1%‘/__7 We profit
from the pari program of Green [Gre] to compute the Heegner point

ygk =1+ a,4-a)

associated to the maximal order in K. It has good reduction at all places and the
real-valued height of yx proves that it is not of finite order. Hence E(K) has rank 1
by Kolyvagin’s result, stated in [Gro91 ]. Next, we check that the point y is actually
a generator of F(K) modulo its torsion part E(K )rs = Z/5 - (5,5). Hence II(E/K)
has trivial p-part for all odd p such that p: Gal(Q(E[p]):Q) — Gl(IF,) is surjective,
i.e all but p = 5 according to 5.5.2 in [Ser72]. A little descent argument shows that
the p-primary part of III(£/Q) injects into III(E/K) for all primes but p = 2. O

Proposition VI1.4. The fine Selmer group R(E/.Q) of E; over .Q is finite for all odd

primes and i = 1, 2 or 3.

Proof. For all odd primes p # 5 with good and ordinary reduction, the classical
Selmer group is trivial over .Q (see example after lemma 5.3 in [cetraro99] or the-
orem 4.6 in [CoSu00]), hence so is . R. For all primes with good, but supersingular

reduction, we know from corollary I1.5 that

#E(Qp)(p) - [Tz
#EQ)p)

Because neither ¢, nor N, can be divisible by p in this case, the right hand side is

#Jo - x(R) =

trivial and hence the Euler characteristic as well as the mysterious index J; are both
trivial. This implies that f, is a unit and hence, that _R is finite.

So we are left with two primes, 5 and 11. The curves all have bad reduction at
11 of multiplicative type, so there is no 11-torsion point on F;(Q;;). The product
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of the Tamagawa factors is either 5 or 1, so the bound (in the case of multiplicative
reduction) gives once again that the Euler characteristic vanishes for p = 11.

Finally we come to p = 5. For FEj3, the classical Selmer group is trivial over .Q,
so it has to be the same for . R. The curve F; has no 5-torsion over Q5 and the
product of the Tamagawa number is 1, so the above bound shows that the Euler
characteristic is trivial. The curve E; is more problematic, as here the above bound
is 5, because there are 5 torsion points over Qs and Q and the Tamagawa number cq;
equals 5. In fact the classical Selmer group is dual to the A-module A/(5) = Z/5[T7].
(See [cetraro99] on page 121.) Since the characteristic series of . R has to divide the
one of the classical Selmer group, it is either 5 or 1. In the first case, the y-invariant
of the dual of _R would be non-zero and this contradicts corollary 3.5 in [CoSu].
Therefore . R is trivial and J; has 5 elements. A summary of the calculations for
p = 5 is given in the following table. O

Curve | N5 [[ew E(@5)(5) #E@) | x(8) x(R) #Jo

E; 5 5 5 5 5 1 5
E, 5 1 1 1 52 1 1
Es 5 1 5 5 1 1 1

VI1.2.2 The curves of conductor 294

Another example is given by the two curves

I y2+xy:a:3—m—1

Es: v 4+ zy = 2® — 141z + 657
both of conductor 294 with label B1 and B2 in Cremona’s tables. The work done for
the classical Selmer group, as in [CoSu00, 4.10], proves already that the fine Selmer
group .S is trivial for all primes but 3, assuming the Tate-Shafarevich group is trivial

as expected. The bound from the Euler characteristic shows that it is also finite for
p = 3. Note that for F> and p = 7, we must have that #.J, = 72.

VI1.2.3 The curve of conductor 37
The curve of smallest conductor with rank 1 is given by
E: v 4+ y =2 — . (VIL.2)

It is of conductor 37. There are no global torsion points, but the point P = (0,0)
generates the Mordell-Weil group F(Q) = Z P. The only bad place 37 has reduction

of type 1y, so the product of the Tamagawa numbers is 1. It is not hard to show that
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Lemma VI.5. II(E/Q) is trivial.

Proof. (One should consult Zagier’s extensive discussion of this curve in [Zag85].)
Let K be the field Q(v/—7). The Heegner point yx equals (0,0) which is the gen-
erator £(Q) and of E(K). Hence by Kolyvagin’s result (theorem 1.3 in [Gro91])
the p-primary part of 11I(E/K) is trivial for all primes p # 2. We used here Serre’s
description in 5.5.6 of [Ser72] that the Galois group of the extension obtained by
adjoining the p-torsion points is isomorphic to Gly(FF,) for all primes. This implies
the result for p # 2. For the remaining prime p = 2, the program mwrank shows that
H(E/Q)[2] = 0. O

For the prime p = 37, the bound gives that the Euler characteristic of R is trivial
and so . R must have corank 1 and the fine Tate-Shafarevich /K (E/.Q) is finite.

Let now p be an odd prime different from 37. Then

#Jo - X(R) = #D(p) = #D

where D is the cokernel of the localisation E(Q)* to E(Q,)*. Since the generator P
is integral, the reduction from F(Q)* to E(F,)(p) is always surjective. Let Q be the
first multiple of P that belongs to the formal group E(pr). So in fact, #D equals
the 1 if the point Q does not belong to the second layer E(pZZp). Otherwise it equals
#D = ord,(e(Q)) — 1.

For primes smaller than 1000 it happens only for p = 179 and p = 593 that D is not
trivial. For both these exceptional cases the order of D equals p. Hence for all other
primes, the Euler characteristic of ;,\CR is trivial.

We shall concentrate now on the case p = 179 (the case p = 593 can be treated in
exactly the same way). The first point to lie in the formal group is Q@ = 81 P. It has
denominator ¢(Q) exactly divisible by 179%2. Hence #.J; - x(R) = p.

The question arises if it is the Euler characteristic that is non-trivial or .J,. Since
E has good and ordinary reduction at p, we can calculate the Euler characteristic
formula of the classical Selmer group ;g using the canonical p-adic height of P stated
in (1) in the introduction. (See for instance [PR93a].) We find

hi79(P) = 2-179 + 159 - 1792 + O(179)3

for the canonical 179-adic height of P. This can be used to show that the Euler
characteristic x(8) of the dual of .S is trivial. This proves that the Euler characteristic
of ;52 must be trivial, too. Hence J; has p elements. Now we have a look at the
diagram (I.42). It shows that the group .J, maps to the dual of Tj,.. We know here
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by the bound in lemma 1.12 that the group 7}, is trivial, since the number of points
in the reduction Ni79 = 162 is not divisible by p. Therefore the group J; equals
the kernel ker(d). Therefore we have found an example where the map d is not an
isomorphism. Neither is the map from _Rr to the dual of R;, = 0. By the control
theorem 1.15, the group R(E/Q) = D = Z/p injects into . R" = Z/p and . Rr = Z/p.

Proposition VI.6. Let £ be the curve (V1.2) of conductor 37. For any odd prime
p < 1000 the fine Selmer group R(F/.Q) and ;K(E/.Q) are finite. The group J; is
trivial except for the cases p = 179 and p = 593 when it has order p.

VI1.2.4 The curve of conductor 389

The curve
E: P4y =2+ 2% — 22

has conductor 389 and rank 2. The Mordell-Weil group is generated by P, = (0,0)
and P, = (1,0). The only bad reduction is at 389 with ¢339 = 1. Since there are
two generators here, the image of the map E(Q)* into E(Q,)* is large and we do not
expect that the index D is ever non-trivial for this curve. In fact for primes up to 1000
we could not find any. The Tate-Shafarevich should be trivial; we are going to assume
this. Hence in the formula of the Euler characteristic in theorem I1.4, the only term
that could give a non-trivial bound is the regulator. The only primes below 1000
such that the regulator has valuation larger than 1 are p = 41 and p = 167. In both
cases the valuation is 2. For these good ordinary and non-anomalous primes we can
compute the canonical p-adic height on the classical Selmer group: 20 - 412 + O(41)3
and 153 - 1672 + O(167)? respectively. Hence the fine Selmer group must have trivial
Euler-characteristic as well.

Proposition V1.7. Let E be the curve (V1.2.4) of conductor 389. Suppose thatI1(E/Q)
is trivial. For any odd prime p < 1000 the fine Selmer group R(E/.Q) has corank 1
and K (F/.Q) is finite. The J, is trivial except if p = 41 or p = 167 when it has order

p-

V1.2.5 Another example

Until now all the example show how to conclude for all considered primes p that
the Euler characteristic of the fine Selmer group is trivial. Here now an example in
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which we are unable to decide if it so. Let

2

E: vV 4oy =2 -2 -4z + 4

be the elliptic curve named 446D in the tables of Cremona and let p = 5. The curve
has good anomalous reduction at p, the Tamagawa numbers are cy53 = 1 and ¢y = 2.
The localisation map is surjective and so D is trivial. We suppose that the Tate-
Shafarevich group has trivial 5-primary part. There are no 5-torsion points on the
curve defined over Q. The regulator of the fine Selmer group has valuation 2 and so
we know that #Jy-x(R) has valuation 1. As before, we look at the canonical regulator
on the classical Selmer group, it equals 2 - 5+ O(5)? and so the Euler characteristic
of the classical Selmer group has valuation 1. Unfortunately this does not allow us
to decide if Jy or x(R) is trivial. Maybe a 2-descent over Q could help.

V1.3 A non-trivial Euler characteristic

So far, we did not encounter an example of a non-trivial Euler characteristic for the
fine Selmer group. It would be tempting to make a conjecture that not only the u-
invariant is trivial (conjecture A of Coates and Sujatha in [CoSu]) but that also the
A-invariant is trivial, i.e. the Euler characteristic is trivial.

After some search, we finally found a non-trivial Euler characteristic. But it is the
only example that we found so far.

Let E be the elliptic curve

P =23 + 2% — 18z + 25

of conductor 5692. No torsion points are rational over Q and the Mordell-Weil group
has rank 2 generated by the points P, = (0,5) and P, = (1,3). The reduction at 2
is of type IV with 3 components and for 1423 the reduction is of type I;. At p = 3
the reduction is good ordinary and anomalous with N3 = 6. The regulator on the
fine Selmer group is extremely large; it has valuation 5. We find that #.J, - x(R)
has valuation 6. There is no hope that we can bound the Euler characteristic via
the calculations of the classical Selmer group either, for its canonical regulator is
2-33+2-3%4+0(3)% and its Euler characteristic x(8) is equal to 3*. The analytic order
of III(E/Q) is 1, but we have been unable to prove that its 3-primary part is indeed

trivial.

Proposition V1.8. If the 3-primary part of II1(E/Q) is trivial, then the characteristic
power series of the dual of R(E/.Q) for p = 3 is divisible by wy =T - (3 + 3T + T?).
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Proof. Let K = 1Q be the first layer of the cyclotomic Zs-extension. It can be gener-
ated by an element o with minimal polynomial o —3-a 41 = 0. The ring of integers
O = Z[a] has class number 1. With some luck, we were able to find six independent
points in F(K), namely

Ps= (—a®—2-a+2,-3-0>-3-a+4),
Pi= (—a®—2-a+3,-2-0°—-2-a),
Ps=(-2-0?>-3-a+4,—-a’>+2,)),
Ps=(-2-0>-2-a+6,-2-0>+2-a+9).

The real-valued height regulator of these points together with P, and P, is equal
to 62.0642480 and so the rank of E(K) is at least 6. The characteristic series of the
classical Selmer group must therefore be divisible by T2 - (3 + 37 + T?)2. The points
P;, P, and P3 generate in the localisation E(K,)* at the unique prime p = (o + 1)
above 3 a subgroup of rank 3. Therefore the fine Selmer group R(E/K) has rank at
least 3 and the proposition follows. O

We are unable at present to determine completely the characteristic series. The
pari script of Simon [Sim02] calculates the rank of F(K) via 2-descent to be 6. Also
the Dokchitser brothers have computed the complex L-series for me. L(E/K,s)
vanishes of order 6 at s = 1 and the first coefficient is equal to 1122.8376. So the
polynomial (3 + 37 + T?) divides fs only twice and fx only once. According to con-
jecture 1.11 in [cetraro99] on page 58, the p-invariant of the Selmer group should
be trivial. This would mean that there is another distinguished polynomial in the

series fs.

VI.3.1 Further descent calculations

Encouraged by the above example, we tried to compute some more 2-descents over
the first layer of the cyclotomic Zs-extension K. In the tables VI.5, we will come
across a certain number of examples for which the bounds on the Euler character-
istic x(R) do not permit us to conclude that it is trivial. In these cases it might be
interesting to see if the rank grows at the first step of the Z;-extension like in the
previous example. In all the examples we used the nice program of Simon [Sim02].
As in the tables at the end, b means that the reduction at p = 3 is bad, f stands for
supersingular reduction and when the reduction is anomalous the sign » will indicate
it.

In some examples the order of the Selmer group was determined but no points

were found. Together with the information that the rank of F(K) must have the
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same parity as the rank of £(Q), we are able to give a choice between two values.

There were three curve where we were unable to determine the 2-Selmer group. For

any other example the rank of the Mordell-Weil group grows by at most 2 and hence

the rank of the fine Mordell-Weil group does not grow. We add also the value of the

Euler characteristic of the Selmer group x(8) to the table. There are four curves for

which we can conclude that the characteristic power series f; of the Selmer group is

the product of %+ and 7", where r is the rank of £(Q). In these cases we deduce that

the fine Selmer group has trivial Euler characteristic. In the list we added a “w;” to

it.

Table VI.1: Descent calculations over Q

N curve rank F(Q) rank E(K) x(8)
53A [1,-1,1,0,0] 1 1 h

91B [0,1,1,-7,5] 1 3 » 2
92B [0,0,0,-1,1] 1 1 h

1238 [0,-1,1,1,-1] 1 1 b

142A  [1,-1,1,-12,15] 1 1 h

153B  [0,0,1,6,27] 1 1 b

156A  [0,-1,0,-5,6] 1 lor3 b

171B  [0,0,1,6,0] 1 1 b

189A  [0,0,1,-3,0] 1 1 b

189B  [0,0,1,-24,45] 1 1 b

207A  [1,-1,1,-5,20] 1 1 b

215A  [0,0,1,-8,-12] 1 1 h

219B  [0,1,1,3,2] 1 1 b

220A  [0,1,0,-45,100] 1 3 N2
225E  [0,0,1,-75,256] 1 1 b

226A  [1,0,0,-5,1] 1 3 N 1w
446D [1, -1, 0, -4, 4] 2 2 h

794A  [1,0,1,-3,2] 2 2or4 N2
817A  [0,1,1,1,6] 2 2or4 M1
944E  [0,0,0,-19,34] 2 2 h
1028A [0,1,0,-10,9] 2 4 N 1w
1034A [1,0,1,-12,14] 2 4 N 1w
1132A [0,1,0,-5,4] 2 4 S 1w
1143C [0,0,1,-3,90] 2 é b
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N curve rank £(Q) rank F(K) X(8)
1171A  [1,-1,1,-3,0] 2 2 b
1446A  [1,1,0,-4,4] 2 2 b
1480A  [0,0,0,-28,52] 2 2 h
1613A  [0,1,1,-3,0] 2 4 » 3
1701) (0,0,1,-27,56 2 2 b
1712D  [0,-1,0,0,16] 2 4 1w
1746B  [1,-1,0,-24,44] 2 ¢ b
1907A  [1,-1,1,-46,130] 2 2 h
1917C  [1,-1,1,-41,110] 2 2 b
1933A  [1,0,0,1,-2] 2 ¢ »M o1
5077A  [0,0,1,-7,6] 3 3 h
13766A [1,0,1,-23,42] 3 3or5 » o1
18562C [1,0,1,-20,30] 3 3or5 »M o1

V1.4 Conjectures

It was already explained earlier in 1.7 that there is a widely believed conjecture
called the weak Leopoldt conjecture. It is a consequence of the non-degeneracy of
the height pairing on the fine Selmer group. As described in 1.11, it should hold even
if the height is degenerate.

Conjecture VI1.9. Let A/K be an abelian variety and . K an arbitrary 7,-extension of
K. It should be true that the dual of the fine Selmer group R(A/.K) is A-torsion.

If A= F is an elliptic curve, K is an abelian extension of Q and the extension is the
cyclotomic extension, the conjecture is verified thanks to the work of Kato [ Kat00]. If
K is an imaginary quadratic extension of Q and __K is the anti-cyclotomic extension,
then it is a consequence of the work of Bertolini-Darmon, Cornut-Vatsal,. ..

V1.4.1 The growth of the fine Mordell-Weil group

The conjecture implies that the fine Mordell-Weil group M(A/.K) is finitely gener-
ated, so we should consider the growth of the rank of the Mordell-Weil group.

Let /K be an elliptic curve. Assume first that the base-field is simply Q. In this
case, the rank of the fine Mordell-Weil group M(E/Q) is simply » — 1 if the rank r
of the Mordell-Weil group is positive and zero otherwise. This is because the target
E(Qp)* is of Z,-rank 1 and a multiple of a point of infinite order of £(Q) maps into
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the formal group, and hence to a non-zero point in E(Q,)*.

Is there an easy generalisation of this ? Something like the classical Leopoldt
conjecture for the p-adically completed group of units in an number field ?

The fine Mordell-Weil group was defined to be

0 —+ ME/K) — E(K) ®Zy —+ Oypp B(K,)"

The target of the localisation map has Z,-rank equal to the degree of the extension
[K : Q]. Hence we have the obvious, but very weak inequalities rank 9 (E/K) > 0
and

max{rank F(K) — 1,0} > rank9(E/K) > rank E(K) — [K : Q].

See [Jon95, Proposition 7.1].

In Z,-extensions we can say something more. Assume that the Tate-Shafarevich
groups K(E/,K) are all finite and assume first that the dual of .8 is A-torsion and
“semi-simple at all roots of unities”. If £ has good and ordinary reduction at p, we
could ask for the canonical p-adic height on E(,K) to be non-degenerate for all n.
Then of course, both, F(,K) and 9(_K), are of finite rank.

The rank of 9M(EF/,K) is the rank of ;U\Q/(wn) with w, = (1 + T)?" — 1. Similar the
rank of the whole Mordell-Weil group is the rank of _$ /(wy, ). Write the characteristic

fam T ()7 (£2)"

for some element & € A prime to any of the following factors. The rank of F(K) is rg
and the rank of E(,,K) is equal to the sum of the rank of E((,,_1)K) and (p"—p"~')-r,,. If
the rank jumps up by more than (p" —p"~!)-d with d = [K : Q], which is the difference

series of _S as

in the rank of the target of the localisation map, then the rank of 9t has to jump up
as well by at least (p” — p"~!) - (1, — d). Hence we conclude that the characteristic
series of the dual of _R has to be divisible by
max{0,r1—d max{0,ro—d
pmax{0ro—d} (%) tr=d} <i—f> 0r—dh

If the ground field K is Q, then we see that if the rank of the Mordell-Weil group
jumps up by some amount, there is a new point P in E(,Q) which is not defined over
(n—1)Q- In the localisation E(,Q,)* at the unique prime above p, the point P can not
belong to the image of the localisation from E((,_;\Q)*. Therefore the rank of the
fine Mordell-Weil group jumps up if and only if the rank of the Mordell-Weil grows
by more than p” — p”~!. Hence we have shown the

Proposition VI.10. Let £/Q be an elliptic curve with good ordinary reduction at p.
Suppose that the p-adic height pairing on E(,(Q) is non-degenerate for all n and that
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the Tate-Shafarevich group 11(E/,Q)(p) is finite for all n. Then the characteristic
power series of the dual of the fine Selmer group . R is of the form

fp = W . pmax{0ro—1} | (ﬂ)max{o,rlfl} . (wQ)max{O,rgﬂ} o

T wy
for some I/ € A prime to the following factors. Here the r; are the powers with
which these factors appear in the characteristic series of the dual of the classical

Selmer group .S.

In other words the quotient of the two characteristic series is exactly once divisible
by the polynomials - that appear in the series for the Selmer group .S.

Next, we wish to consider the case when the Selmer group is not A-torsion; the
Tate-Shafarevich is still assumed to be finite for all n. We know that the rank of the
Mordell-Weil group grows at worst like rankA(ﬁ) -p" 4+ O(1). If the Z,-extension
is cyclotomic, it is conjectured (see conjecture 1.8 in [cetraro99] on page 57) that
the Mordell-Weil group is finitely generated over . K even if the Selmer group is not
A-torsion (as it can happen for supersingular primes). As noted before, the target
of the localisation map grows like [K : Q] - p™. Hence if the A-rank of the dual of .S
is less than the degree of K, we would expect once again that the rank of the fine
Selmer group is bounded.

The only situation in which something more is known about the growth of the
Mordell-Weil group E(,K) is the anti-cyclotomic Z,-extension .. above an imag-
inary number field K. Again, we suppose that £ does not have an order of K as
its endomorphism ring. Due to the work of Bertolini-Darmon, Cornut-Vatsal,. . . it
is proven that the A-rank of .S is 1 and the rank of the Mordell-Weil group grows
like p™ + O(1). See [Ber01, Theorem 5.3]. But the same theorem also states that
the rank of the image in the localisation has the same speed of growing, or in other
words that the fine Mordell-Weil group M(E/,.K) has bounded rank. Actually we
even know that the weak Leopoldt conjecture holds.

Somewhat cheeky maybe is the following more general question based on the ex-
planations above.

Question VI1.11. Is it true that the rank of the fine Mordell-Weil group of an elliptic
curve only grows in a Galois extension L : K of number fields if the rank of the
Mordell-Weil group increases by more than the growth [L : Q] — [K : Q] of the

degree ?
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V1.4.2 The growth of the fine Tate-Shafarevich group

We assume that the weak Leopoldt conjecture holds and that the Z,-extension is
cyclotomic. Concerning the Iwasawa-invariants of the dual of . R there is a first

conjecture due to Coates and Sujatha [CoSu]

Conjecture V1.12. Let E/K be an elliptic curve, then the p-invariant of the dual of
the fine Selmer group R(E/.K) should be zero for the cyclotomic Z,-extension.

Based on the theorem of Ferrero and Washington, they prove it when the field K
is abelian over Q and there is a p-torsion point defined over K. In the complete
calculations presented in the tables in section VI.5, we could not find a counter-
example to the conjecture and this provides therefore quite good numerical evidence
in support of this conjecture. The conjecture is equivalent to the statement that . R
is Z,-cofree.

Another reason to believe in this conjecture is the analogy with the function field
case as explained in the introduction.

We may ask further questions about the structure of . R. The very few examples

of non-trivial Euler characteristic suggest that one could ask the following question

Question VI.13. Is it possible that the fine Tate-Shafarevich X(E/.K)(p) is infinite

over the cyclotomic Z,-extension for some E and p ?

Of course, a negative answer includes already the conjecture that the fine Tate-
Shafarevich group K(E/,K)(p) is finite for all n. If the base field is Q, then the
question can be reformulated by asking if the power series 7’ in proposition VI.10
is ever a non-unit. Indeed, write A(’K) for the sum of the degrees of the irreducible
distinguished factors of #'. Assuming the finiteness of K(E/,K)(p) and that the
characteristic series of the dual of . R equals the expression in that proposition. If
p° is the order of JK(F/,K), then

en = 1(R) - p" + A(K) -+ O(1).

This can be shown using [ NeScWi00, Proposition I11.5.13]. We have not come across
a single example where we could prove that K(F/.Q) is infinite. Note that the
injection of 7 K(E/,Q)(p) into HI(E/,Q)(p) has cokernel in the cokernel of localisation
E(Q) ® Qp/Z, — E(+Qp) ® Qp/Z,; hence in a group of corank p™ + O(1). So there
is still a lot of space for the classical Tate-Shafarevich to grow exponentially.
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VI1.4.3 Distributions

Let E£/Q be an elliptic curve. We wish to generalise the proposition 5.1 in [cetraro99 ]
on page 105, saying that, for a curve of rank zero, there is a set of primes p of
density 1 among all primes where E has good ordinary reduction such that .8 = 0,
i.e. that the rank of the Selmer group does not increase. For the classical Selmer
group generalising conjectures and numerical evidence for them were announced
in [Wut04]. We shall consider the situation for the growth of the fine Selmer group

here.

Proposition VI1.14. For an elliptic curve E/Q of rank 0 with finite II(E/Q), there is
a set of primes of density 1 such that R(E/.Q) is finite.

Proof. The Euler characteristic formula in corollary I1.5 shows that the proof of
proposition 5.1 in [cetraro99] can be applied without change. O

Now suppose that the rank is 1. The formula (I1.4) could almost be used to prove
the same result, if we only knew that the index D is trivial for a set of primes p of
density 1. To my knowledge, there are no results in this direction.

For curves of rank larger than 1, there is another factor that will play an important
role in the question if the bound on the Euler characteristic is trivial, namely the
regulator. The results in chapter V suggest that the regulator is a unit for a set of
density 1 among all primes. But remember that there is a second bound coming
from the growth of the classical Selmer group which is conjectured to have the same
property to be trivial for a set of density 1 among all good ordinary primes (see
conjecture 2 in [Wut04]). We therefore dare to make the following

Conjecture VI1.15. Let E/Q be an elliptic curve. There should be only a finite number
of primes p for which the corank R(E/.Q) is larger than the corank of R(E/Q).

It implies that the K (E/.Q)(p) is finite for almost all primes if one believes the
fine Tate-Shafarevich groups over Q to be finite. The numerical evidence in the
tables V1.5 is very much in support of this conjecture. Of course, for this conjecture
to make sense, we have to assume that the conjecture on the p-invariant hold for

almost all primes.
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V1.5 Tables

Some notations for the following tables. The symbol b will stand for a prime with bad
reduction, Mor anomalous reduction and hfor supersingular reduction. The tables
contain curves of low conductor found in the tables of Cremona [Cre97]. The con-
ductor N, the coefficients of the global minimal Weierstrass equation [a1, a2, as, a4, ag]
are given for each curve as well as the regulator of the fine Mordell-Weil group
(Reg.), the product of the Tamagawa numbers (Tam.), the index D(p) from the for-
mula in theorem I1.4 and global torsion points E(Q)(p) (Tors.). The expression
Jox = #Jo - x(R) is the product of the Euler characteristic of the dual of the fine
Selmer group . R and the unknown index J, (or the bound of this product if the re-
duction is multiplicative). If the curve has good ordinary reduction, we can add to
our list the value of the Euler characteristic of the dual of the classical Selmer group
(x(8)). This is also a bound for the Euler characteristic x(R) of the dual of the fine
Selmer group.

Rather than giving the values, we only list the p-adic valuation of all expressions
since this is all that we are interested in anyway. The list only contains the cases
when the bound #Jj - x(R) is not trivial. Hence

If a curve F an odd prime p < 300 is not mentioned in these lists, then the
Euler-characteristic x(R) of . R and the index J, are trivial. Hence ..R has the
same rank » — 1 as R and the fine Tate-Shafarevich /K (E/.Q) is finite if II(E/Q)

is.

Furthermore, the second bound coming from the classical Selmer group permits us
to prove in some cases when the reduction is ordinary that the Euler characteristic
of the fine Mordell-Weil group is trivial. We also eliminate the five cases that were
computed via 2-descent over the first layer of the Zs;-extension in the table VI.1.
Hence we are left with only a few cases where we do not know if it is trivial or not,
they are denoted with the symbol “?” in the beginning. Calculations have been done
for all odd primes smaller than 300. If the row for a curve is empty, then there is

not any exceptional case at all for p < 300.

VI.5.1 Rank1

The list here contains the first hundred curves of rank 1. Of course, the regulator
of the fine Mordell-Weil group is trivial here, since 9t = 0. As explained in the
end of section I1.3, the value of the Euler characteristic is linked to the expression
calculated in [CoMc94]. It is therefore no surprise that we get almost the same
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table. In fact the only differences are that their table lists much larger primes, but

they do not include bad primes. Also, the p-adic height of the generator was not

included in their table.

Table VI1.2: Euler characteristics for curves of rank 1

N Curve p | Jox | Tam. D(p) Tors. | x(8)
37A  [0,0,1,-1,0] 179 | 1 0 1 0 0
43A (0,1,1,0,0] 13| 2 0 2 0
? 53A [1,-1,1,0,0] 131 1 0 1 0
31| 1 0 1 0 0
57A [0,-1,1,-2,2]
58A [1,-1,0,-1,1]
61A [1,0,0,-2,1] 5| 1 0 1 0 0
17| 1 0 1 0 0
65A [1,0,0,-1, 0] 71 1 0 1 0
? T77A [0,0,1, 2, 0] b7 1 0 1 0
? p11 | 1 0 1 0
79A [1,1,1,-2,0]
82A [1,0,1,-2,0] 71 1 0 1 0 0
? p191 | 2 0 2 0
83A 1,1,1,1, 0] 71 1 0 1 0 0
88A [0,0,0,-4,4] 293 | 1 0 1 0 0
89A [1,1,1,-1,0] 11 1 0 1 0 0
13] 1 0 1 0 0
91A (0,0,1,1, 0] 43| 1 0 1 0 0
? 91B [0,1,1,-7,5] M| 2 0 2 1 2
? 92B [0,0,0,-1,1] i3] 1 1 0 0
139 | 1 0 1 0 0
? 99A [1,-1,1,-2,0] »11| 1 0 1 0
19| 1 0 1 0 0
101A [0,1,1,-1,-1]
102A  [1,1,0, -2, 0] 731 1 0 1 0 0
106A [1,1,0,-7,5]
112A (0,1,0,0,4] 113| 1 0 1 0 0
117A [1,-1,1,4,6]
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N Curve p | Jox | Tam. D(p) Tors. | x(8)
118A [1,1,0,1,1] 61| 1 0 1 0 0
121B  [0,-1,1,-7,10] 17| 1 0 1 0
122A [1,0,1,2,0] 47| 1 0 1 0 0

50| 1 0 1 0 0
123A  [0,1,1,-10,10] X5 | 2 1 1 1 0
123B [0,-1,1,1,-1] 53| 1 0 1 0
124A [0,1,0,-2,1] M| 2 1 1 1 0
128A [0,1,0,1,1] 29| 1 0 1 0 0
129A [0, -1, 1, -19, 39] 71 1 0 1 0 0
130A [1,0,1,-33,68] 23| 2 1 1 1 0
103 | 1 0 1 0 0
131A [0,-1,1,1,0] 259 | 1 0 1 0 1
135A [0,0,1,-3,4]
136A [0,1,0,-4,0] 29| 1 0 1 0 0
138A [1,1,0,-1,1]
141A [0,1,1,-12, 2] 711 1 0 0
1] 1 0 1 0
141D [0,-1,1,-1,0] 53| 1 0 1 0 0
142A [1,-1,1,-12,15] 13| 2 2 0 0
142B [1,1,0,-1, -1] 311 0 1 0 0
1] 1 0 1 0 0
M1| 1 0 1 0 1
143A  [0,-1,1,-1,-2] 47| 1 0 1 0 0
145A 1, -1,1, -3, 2] 711 0 1 0 1
148A [0, -1, 0, -5, 1] 311 1 0 0 0
152A [0,1,0,-1, 3] 711 0 1 0 0
153A [0,0,1,-3,2] 37| 1 0 1 0 0
153B [0,0,1,6,27] b3 | 2 0 2 0
154A [1,-1,0,-29,69] A»5| 1 0 1 0 2
155A [0,-1,1,10,6] bH5| 2 1 1 1
155C [0,-1,1, -1, 1] 311 0 1 0 0
156A [0,-1,0,-5,6] 53| 1 1 0 0
1] 1 0 1 0 0
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N Curve p | Jox | Tam. D(p) Tors. | x(8)
158A [1,-1,1,-9,9]
158B [1,1,0,-3,1] 67| 1 0 1 0 0
160A [0,1,0,-6,4]
162A [1,-1,0,-6,8]
163A [0,0,1,-2,1] 73| 1 1 0
166A [1,1,0,-6,4] 131 | 1 1 0
170A [1,0,1,-8,6]
? 171B [0,0,1,6,0] b3 | 1 0 1 0
51 1 0 1 0 0
230 | 1 0 1 0 0
172A  [0,1,0,-13,15] M| 2 1 1 1 0
? 711 0 1 0 1
? 175A [0,-1,1,2,-2] b»5]| 1 0 1 0
31| 1 0 1 0 0
103 | 1 0 1 0 0
127 | 2 0 2 0 0
269 | 1 0 1 0 0
175B [0,-1,1,-33,93] 149 | 1 0 1 0 0
176C [0, -1,0,3,1] 301 0 1 0 0
? 184A [0,-1,0,0,1] M| 2 0 2 0 1
17| 1 0 1 0 0
184B [0,-1,0,-4,5] 17| 1 0 1 0 0
67 | 1 0 1 0 0
185A [0,1,1,-156,700]
? 185B [0,-1,1,-5,6] b5 1 0 1 0
711 0 1 0
1] 1 0 1 0
227 | 1 0 1 0
185B [0,-1,1,-5,6]
185C [1,0,1,-4,-3] 13| 1 0 1 0 0
? 189A [0,0,1,-3,0] b3 | 1 1 1 0
? 189B [0,0,1,-24,45] 53| 1 0 1 1
511 0 1 0 0
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N Curve p| Jox | Tam. D(p) Tors. | x(8)
190A [1,-1,1, -48, 147] 11| 1 1 0 0 0
190B [1,1,0,2,2] 11| 1 0 1 0
192A [0,-1,0,-4,-2]
196A [0,-1,0,-2,1] 311 1 0 0 0

51 1 0 1 0 0
M3 1 0 1 0 1
197A [0,0,1, -5, 4] 13| 1 0 1 0 0
198A [1,-1,0,-18,4]
200B [0,1,0,-3,-2]
201A [0,-1,1, 2, 0] 17| 1 1 0
201B [1,0,0, -1, 2] 711 1 0
201C  [1,1,0,-794,8289]
203B [1,1,1,0,-2]
205A  [1,-1,1,-22, 44] 17| 1 0 1 0 0
207A [1,-1,1, -5, 20] b3 | 2 0 2 0
208A [0,-1,0,8,-16] 311 0 1 0 0
hal | 1 0 1 0
208B [0, -1, 0, -16, 32] 7| 2 0 2 0 1
200A [0,1,1,-27, 55] M| 2 1 1 1 0
37 | 1 0 1 0 0
210D [1,1,0,-3,-3]
212A [0, -1, 0, -4, 8] 311 1 0 0
1 0 1 0 0
214A [1,0,0,-12, 16] 1 1 0 0 0
214B [1,0,1,1,0] (71| 1 0 1 0
214C  [1,0,1,-193,1012]
215A [0,0,1,-8,-12] 13 1 0 1 0
216A [0, 0,0, -12, 20] 43 | 1 0 1 0 0
p101 | 1 0 1 0
218A [1,0,0, -2, 4] M| 2 1 1 1
219A [0,-1,1, -6, 8] 51 1 0 1 0
219B [0,1,1, 3, 2] b3 | 2 1 1 1
19| 1 0 1 0 0




V1.5 Tables

113

N Curve p | Jox | Tam. D(p) Tors. | x(8)
? 219C [1,1,0,-82,-305] M| 1 0 1 0 1
97 | 1 0 1 0 0
? 220A [0,1,0,-45,100] M| 3 1 1 2
224A [0,1,0,2,0]
? 225A [0,0,1,0,1] 4131 | 1 0 1 0
? 225E [0,0,1, -75, 256] b3 1 1 0 0
197 | 1 0 1 0 0
226A [1,0,0,-5,1] M| 1 1 0 0 1
? M1 0 1 0
V1.5.2 Rank 2

For curves of rank 2, we have chosen the first hundred curves in Cremona’s tables.

There are three cases when the calculations of the canonical regulator for the classical

Selmer group were too complicated to be done; the symbol “¢” is showing where

this happened. Some of the computations here involved quite large numbers. The

numerator of a certain point on the curve of conductor 1143 had more than 300’000

digits.

Table VI1.3: Euler characteristics for curves of rank 2
N Curve p | Jox | Reg Tam. D(p) Tors. | x(8)
380A [0,1,1,-2,0] 41| 1 | 1 0 0 0 0
167 | 1 1 0 0 0 0
433A [1,0,0,0,1] M| 1 | 1 0 0 0 0
17 | 1 1 0 0 0 0
23| 1 1 0 0 0 0
281 1 1 0 0 0 0

? 446D [1,-1,0,-4,4] 13| 1 | 1 0 0 0
? N1 1 0 0 0 1
? 563A [1,1,1,-15,16] 5| 1 | 1 0 0 0 1
7 1 1 0 0 0 0
193 | 1 1 0 0 0 0
571B [0, 1,1, -4, 2] 50 1 | 1 0 0 0 0
13| 1 1 0 0 0 0

?  643A [1,0,0,-4,3] 43| 2 2 0 0 0
50 | 1 1 0 0 0 0
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N Curve p | Jox | Reg Tam. D(p) Tors. | x(8)

?  655A [0,0,1,-13,18] b5 | 1 1 0 0 0

? 71 1 1 0 0
13| 1 1 0 0 0

664A [0,0,0,-7,10]

681C [0,-1,1,0,2] 59| 1 1 0 0 0

707A [0,1,1,-12,12] | 1 1 0 0 0

? b7 | 2 2 0 0 0
79| 1 1 0 0 0 0
?  709A [0, -1,1, -2, 0] 1 1 0 0 0 1
? 1 1 0 0 0 2
19| 1 1 0 0 0 0
718B [1,0,1,-5,0] 5] 1 1 0 0 0 0
181 | 1 1 0 0 0 0
?  794A [1,0,1,-3,2] M| 3 3 0 0 0 2
N 2 2 0 0 0 0
37 | 1 1 0 0 0 0
?  817A [0,1,1,1,6] M| 1 1 0 0 0 1
916C [0,0,0,-4,1] 281 | 1 1 0 0 0 0

?  Q44E [0, 0,0, -19, 34] 13 1 1 0 0 0
31| 1 1 0 0 0 0
67 | 1 1 0 0 0 0
997B [o,-1,1,-5,-3] 167 | 1 1 0 0 0 0
997C [0, -1, 1, -24, 54] 3] 3 3 0 0 0 0
5] 2 2 0 0 0 0

1001C [0, 0,1, -199, 1092]

1028A [0,1,0,-10,9] M| 2 1 1 0 0 1
31| 1 1 0 0 0 0
53| 2 2 0 0 0 0
1034A [1,0,1,-12,14] | 1 1 0 0 0 1
1058C [1,0,1,0,2] M| 1 1 0 0 0 0
1070A [1,-1,0,-10,16] 67| 1 1 0 0 0 0
1073A  [0,-1,1,-45,132] 83| 1 1 0 0 0 0
1077A [1,1,1,-27,42] 11| 1 1 0 0 0 0
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N Curve p | Jox | Reg Tam. D(p) Tors. | x(8)

23| 1 1 0 0 0 0

1088] [0, 1,0, -25, 39] M1 1 0 0 0 0

? M| 2 2 0 0 0 2

1094A [1,0,1,-7,6] M| 2 2 0 0 0 0
1102A [1,1, 0, -29, 61]

1126A [1,-1,0, 2, 4] 70 1 1 0 0 0 0

1132A [0,1,0, -5, 4] M| 2 1 1 0 0 1

? M1 1 0 0 0 1

70 2 2 0 0 0 0

1137A [1,1,1, -2, 2] 17 | 2 2 0 0 0 0

23| 1 1 0 0 0 0

? 1141A [1,0,0,-27, 94] 5 2 1 1 0 0 3

11| 1 1 0 0 0 0

101 | 1 1 0 0 0 0

? 1143C [0,0,1,-39,90] »p3| 3 3 0 0 0

51 1 1 0 0 0 0

13| 1 1 0 0 0 0

41 | 1 1 0 0 0 0

? 227 | 1 1 0 0 0 2

1147A [0, -1,1, -9, 9] 311 1 0 0 0 0

43 | 1 1 0 0 0 0

? 1171A [1,-1,1, -3, 0] 13 3 3 0 0 0

? MO3 | 1 1 0 0 0 ¢

1246C [1,-1,0, -1, 13] 17 | 1 1 0 0 0 0

1309B [0, -1, 1, -22, 52] 311 1 0 0 0 0

13| 1 1 0 0 0 0

83| 1 1 0 0 0 0

179 | 1 1 0 0 0 0
1324A [0,1,0, 3, 4]
1325E [0,1,1, -8, -6]

1431A [1,-1,1, -29, -26] 51 1 1 0 0 0 0
1436A [0,1,0,-12, 4]

1443C [1,1,1,-9,6] 51 1 1 0 0 0 0
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N Curve p | Jox | Reg Tam. D(p) Tors. | x(8)
?  1446A [1,1,0,-4,4] 53| 1 1 0 0 0
109 | 1 1 0 0 0
1466B  [1, -1, 1, -42, 105] 11| 1 1 0 0 0
1477A [1,0,0, -6, 7] 5 2 2 0 0 0
?  1480A [0, 0,0, -28, 52] 13 1 1 0 0 0
1483A [0,1,1, 2, 2]
1525C [1,0,0, -8, 7]
1531A [0,0,1, -14, 20] 11| 1 1 0 0 0 0
1534B [1, -1, 0,5, 37]
1570B [1,0,1, -4, 6] 17 | 1 1 0 0 0 0
1576A [0,1,0,-9,-5] 53| 1 1 0 0 0 0
67 | 1 0 0 1 0 0
1591A [0,0,1,-71, 552] 29 | 1 1 0 0 0 0

1594A  [1,-1,1, -27, 75]
1608A  [0,-1,0,-25,61] 73| 1 | 1

o
o
o
o

1611D [0,0, 1, -9, 20]
? 1613A [0,1,1,-3,0] | 2 | 2 0 0 0
131 | 1 0 0 0
7] 1 | 1 0 0 0
? 1615A [1,0,0,-215,1192] b17| 1 | 1 0 0 0
1621A [1, -1, 1, -4, 4]
?  1627A [1,1,1,-3,-2] 5| 1 | 1 0
1639B [1,-1,1,-6,6] 5| 1 | 1 0 0 0 0
? 61 1 | 1 0 0
1641B [0, -1, 1, -4, 6]
1642A [1,1,0,-1,5] 5| 1 | 1 0 0 0 0
? 117 1 | 1 0 0 0
1653A  [0,-1,1,-27,182] 239 | 1 | 1 0 0 0 0
?  1662A [1,1,0,-27,45] b3 | 2 | 2 0 0 0
N1 |1 0 0 0 0
111 | 1 0 0 0 0
37 1 | 1 0 0 0 0
1664N [0,0,0,-4,16] 5| 1 | 1 0 0 0 0
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N Curve p | Jox | Reg Tam. D(p) Tors. | x(8)

1] 1 1 0 0 0 0

? 1674D (1,-1,0,-9,9] b3| 3 3 1 0 0
17| 1 1 0 0 0 0
277 | 1 1 0 0 0 0
? 1688A [0,1,0,-12,16] 51 1 1 0 0 0 1
1696D [0, 0, 0, -76, 256] 511 1 0 0 0 0
1696E [0,-1,0,15,1] 47| 1 1 0 0 0 0
101 | 1 1 0 0 0 0

?  1701) [0,0,1,-27,56] b3 | 2 1 1 1 0
M| 1 1 0 0 0 0
1712D [0,-1,0,0,16] 311 1 0 0 0 1
1] 1 1 0 0 0 0
13| 1 1 0 0 0 0
220 | 1 1 0 0 0 0
233 | 1 1 0 0 0 0
1717B [0,-1,1, -4, 4] 511 1 0 0 0 0
1732A  [0,1,0,-44,100] 11| 1 1 0 0 0 0
73| 1 0 0 1 0 0
1738A [1,1,0,-14,4] 13| 1 1 0 0 0 0

1745D [0,-1,1, -6, 6]

? 1746B [1,-1,0,-24,44] b3 | 1 1 0 0 0
1748A [0, -1, 0, -90, 361] 711 1 0 0 0 0
43 | 1 1 0 0 0 0
1752 [0,-1,0,-20,36] 11| 1 1 0 0 0 0
1793B [0,1,1,6,6] 199 | 1 1 0 0 0 0
1832B [0,-1,0,-27,64] 29| 1 1 0 0 0 0
1856D [0,-1,0,-17,49] 17| 1 1 0 0 0 0
? M3 1 1 0 0 0 ¢
1862A [1,0,1,-75,242] »3| 3 2 1 0 1 0
1873A 1, -1,1, -1, 2] 5| 2 2 0 0 0 0
107 | 1 1 0 0 0 0
1887A [1,1,1,-17,20] 13| 1 1 0 0 0 0
19| 1 1 0 0 0 0
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N Curve p | Jox | Reg Tam. D(p) Tors. | x(8)
131 1 1 0 0 0 0
197 | 1 1 0 0 0 0
1888A [0, -1, 0, -2, 4]
? 1907A [1,-1,1, -46, 130] 13 1 1 0 0 0
7| 2 2 0 0 0 0
? 117 ] 1 | 1 0 0 0
31| 1 1 0 0 0 0
1909A [0,0,1, -4, 2] 7 1 1 0 0 0 0
1] 1 1 0 0 0 0
? 1913A [1,1,0,-202, 1025] 711 | 1 0 0 0 1
? 1917C  [1,-1,1,-41,110] 53| 2 | 2 1 0 0
1918C [1,0,1, -22, -24] Nl 1|1 0 0 0 0
73| 1 1 0 0 0
? p137 | 1 1 0 0 0
1922B [1,1,0, -4, -4] 3] 2| 2 0 0 0 0
191 1 1 0 0 0 0
2 1933A [1,0,0,1, -2] Nl 1|1 0 0 0 1
? 5|1 1 1 0 0 0 1
103 | 1 1 0 0 0 0
1952B [0,1,0,-17, 31]
? 1957A [1,1,0,-522,4315] 19| 1 | 1 0
43 | 1 1 0 0
? M63 | 1 1 é
1957B [1,1,1, -8, -12]
1964A [0, 0,0, -16, 25] 17 2 | 2
2006D [1,1, 0, -88, 284] 89 | 1 1
2 2007A [1,-1,1,-14,42] 11| 1 | 1
VI1.5.3 Rank 3
Finally the list the few curves of rank 3 that are in Cremona’s lists.
Table VI.4: Euler characteristics for curves of rank 3
N Curve p | Jox | Reg Tam. Tors. | x(8)
?  5077A [0,0,1,-7,6] 3| 2
N5
11197A [1,-1,1,-6,0] 53| 1
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N Curve p | Jox | Reg D(p) Tam. Tors. | x(8)

11642A [1,-1,0,-16,28]
? 12279A [0,-1,1,-10,12] M| 1 1 0 0 0 1
29| 1 1 0 0 0 0
? 13766A [1,0,1,-23,42] M| 1 1 0 0 0 1
M| 3 3 0 0 0 0

16811A [0,0,1,-1,6]
18097B [1,1,1,-10,6] 67| 1 1 0 0 0 0
? 18562C [1,0,1,-20,30] M| 2 2 0 0 0 1
127 | 1 1 0 0 0 0
? 18745A [0,1,1,-146,636] M| 1 1 0 0 0 1
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