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ON p-ADIC HEIGHTS IN FAMILIES OF ELLIPTIC CURVES

CHRISTIAN WUTHRICH

1. Introduction

About twenty years ago, following an initial idea of Bernardi [2] and Néron [14],
Perrin-Riou [16] and Schneider [18] defined a canonical p-adic height pairing on
abelian varieties over number fields; here p is an odd prime number such that
the abelian variety has good ordinary reduction at all places above p of its field
of definition. They proved formulae as they should appear in the p-adic version
of the conjecture of Birch and Swinnerton-Dyer for the L-function coming from
the Iwasawa theory of the Selmer-group, but only under the assumption that this
pairing is non-degenerate. Schneider conjectured the non-degeneracy of the p-adic
height pairing should be true, just as it is for the real-valued Néron-Tate height.
In particular, the p-adic height of a non-torsion point on an elliptic curve of rank
one should be a non-zero p-adic number. This is still not known except for elliptic
curves with complex multiplication defined over the rational numbers Q as was
proven by Bertrand in [3] using transcendental methods. For function fields, there
is a result by Papanikolas [15].

This article investigates the particular case of elliptic curves over number fields.
Here the p-adic height is composed of two terms, a term involving the denominator
of the z-coordinate and a term using the canonical p-adic sigma function explicitly
described in [11] by Mazur and Tate. See section 6 for a detailed definition.

We analyse the variation of the p-adic height in a family of elliptic curves. For the
classical Néron-Tate height, this was considered, for instance, in [26] by Tate. We
restrict our attention to the case of an elliptic surface fibred over the affine line over
a number field. The behaviour of the p-adic height of points varying in a section of
the surface is analysed via the local decomposition mentioned above. In the classical
case, this was first done by Call in [6]. Later, a finer study of the variation was given
by Silverman in the three articles [22], [23] and [24]. Our method is quite similar
to this analysis of the local real analytic properties of the Néron-Tate height. We
refer to the end of section 4 for a comparison.

It turns out that the variation is p-adically continuous, see theorem 2. From
this, we can conclude in theorem 3 that for a sufficiently nice set of sections in a
family of elliptic curves over Q, the p-adic regulator is either constant zero or has
at most a finite number of zeros. This can be used to check the non-degeneracy of
the p-adic height simultaneously for an infinite number of elliptic curves in a family.
Meanwhile, in corollary 5, we find that arbitrarily small p-adic heights are possible
in contrast to case of the Néron-Tate height.

In the final sections, we explain some conjectures on the valuation of p-adic
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heights, based on calculations listed in the tables at the end. As a consequence one
can conjecture that the rank of the Mordell-Weil group over the cyclotomic Z,-
extensions of Q of an elliptic curve over Q is equal to the rank of the Mordell-Weil
group over Q for a set of density 1 among the primes p where E has good ordinary
reduction.

But first, we include the study of the denominator of a section in a family of
elliptic curves. In section 4, we explain the inevitable hypothesis that we have to
impose on our sections, where they come from (as explained in the example after
corollary 4) and why they are rather harmless (see proposition 3 and 6).

Acknowledgements. 1 would like to express my warmest thanks to John Coates,
Tony Scholl, Paola Argentin and Sylvia Guibert. I am thankful to Joseph Silverman
for drawing my attention to his articles [22], [23] and [24].

2. Cancellation

The first three sections contain a detailed study of the denominator of the z-
coordinate of a point on an elliptic curve. In particular, we are interested in its
behaviour when the point is multiplied by an integer.

Let A be a unique factorisation domain. We will study the points of an elliptic
curve E over the fraction field F' of A, given by a Weierstrass equation

v2 Farzy + azy = 22 + arx® + asx + ag (Weq)

with coefficients a; in the ring A. A non-zero point P can always be written in the
form

P = (a(P),y(P)) = (&), 2P, (2.1)

where a(P), b(P) and e(P) are elements of A such that e(P) is relatively prime to
both a(P) and b(P). Of course, these expressions are only well-defined up to the
multiplication by units in A*.

The symbol ¢ will always stand for the uniformizer —% at the origin O of E in
F(E). Let m > 0 be an integer. The m-th division polynomial f,, (with respect
to the chosen Weierstrass equation) is defined to be the function in F(FE) having
divisor [m]*(0) — m? - (O) and normalised to have m - ©=™" as the leading term
at the origin O. A detailed description of these functions can be found in the first
appendix of [11]. It will be used repeatetly that the square of f,, can be written as
a polynomial in the function z of the form

2 =m? 2™ ' + lower order terms in z (2.2)

whose coefficients turn out to be polynomials in Z[a1, as, a3, a4, ag), in particular
they are in A. Similarly, the functions g, = @ - f2, — fm+1 - fm—1, defined for all
integers m > 1, are polynomials of degree m? in x with integral coefficients. These
polynomials appear in the formula describing multiplication by m:

a(mP)

_ _ gn(P)  gu(P)-e(P)*™
empy ~ M) = F B = (f(P) e (PP

valid for m > 1 and points P € E(F) that are not m-torsion. The expression on the
right is written as a fraction of elements in A, since the power of e(P) is sufficient

(2.3)
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to eliminate all the denominator. More precisely
fm(P)?- oe(P)2m2 = m? a(P)’”f_1 e(P)? + higher order terms in e(P)  (2.4)

is a polynomial in Af[a(P), e(P)]. But there is no reason to believe that this expres-
sion on the right of (2.3) is a reduced fraction. By definition of e(mP), the largest
common factor of the numerator and the denominator in this fraction will be the
square of the following element of A which will be called the cancellation of P when
multiplied with m :

fm(P) - e(P)™

op(P) = ——————. 2.5

This is well-defined up to a unit in A* whenever m > 1 and P € E(F) is not a
m-torsion point, but depends on the equation (Weq).

LeEMMA 1. Under a change of equation of the form
r=u’ -z’ +r, y=u-y +ulry -2 +rs, (2.6)
with u being a unit in A* and the r; in A, the cancellation 6,,(P) can only change
by a unit.

The main result on cancellations is the following non-cancellation proposition. It
can be deduced from the explicit formula for the local non-archimedian real-valued
height functions (Theorem VI.4.1 in [21]). We give a short independent proof here.

PROPOSITION 1. Let E be an elliptic curve given by an equation (Weq) over a
ring A which is complete with respect to a discrete valuation v with residue field
F,. If a point P € E(F) reduces to a non-singular point in the reduction E(F,)
then the cancellation 8, (P) is a unit for all m # 0, provided mP # O.

Proof. We split the proof into three cases. First suppose that e(mP) and e(P)
are both units. Then the reduction P of P and the reduction mP of mP are two
non-zero points in the group Epg(F,) of non-singular points on the reduction E.
The multiplication formula (2.3) is also valid in this group and so the denominator
must be invertible in F,,. This is what we want to prove, since the valuation of
fm(P) - e(P)™” is zero.

Next, we prove the statement when e(mP) and e(P) have the same valuation
k > 0. Here our two points P and mP lie in the same layer E(mF) of the formal
group E where m is the maximal ideal in A. (We refer to chapter IV of [20] for
everything we need about formal groups.) Since there is a canonical isomorphism
of groups

E(m*F) _ mk

E(mk+1) T mktL

we see that m must have valuation 0 as an element in A, otherwise mP would
belong to E(m**1). The valuation of the expression in (2.4) is 2k since a(P) is a
unit when e(P) is not, so both terms in the definition (2.5) of §,,(P) have valuation
k.

Finally, we look at the case when e(mP) has a strictly bigger valuation than
e(P). If so, mP lies in a layer closer to O, and therefore the points (m — 1)P and
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(m + 1)P must lie in the same layer as P. Using what we just proved about such
multiples, we see that the expressions

fuir(P) - e((m+ DPY™D"and  fu i (P) - ef(m — 1)P) Y’

must have the same valuation as e(P). Consider the numerator of the multiplication
formula (2.3):

9m(P)e(PY’™ =(fu(P)* 2(P) = fru41(P) fm-1(P)) - e(P)™
=fm(P)* e(P)*™ -a(P)e(P) >

— Frs1 (P) e(P)™HV L o (P)e(P)mV L e(P) 2

The previous argument shows that the second term is a unit. Meanwhile, because
the cancellation 4,,(P)? is an integral element, the first term must have valuation
at least as big as the valuation of e(mP)? - e(P) 2, which is strictly positive in our
case. So we see that the square of the cancellation

o _ (fm(P)-e(P)™)? _ gm(P) - e(P)*™
Om(P)” = e(mP)? - a(mP)

is a unit. This concludes the proof. O

Conversely one can prove that the cancellation is not a unit when P reduces
to the singular point. The valuation of 2(P) is smaller than half the valuation
of the discriminant A, but in most cases it is 1 or 2. This leads to a numerical
interpretation of the term (j,(X,a) in théoréme II1.4.1 in [13]) that has to be
added in the formula for the Néron-Tate height as an intersection pairing on the
Néron model.

3. The Class Group Pairing

Let A be a Noetherian Krull domain with class group Cl(A) (written additively)
and fraction field F. Let E be an elliptic curve over F' given by an equation (Weq)
with coefficients in the ring A. The subgroup E°(F') of E(F') of points with non-
singular reduction at all primes of height 1 is of finite index by Tate’s algorithm [25].
For a non-zero point P in E°(F’) and a prime p of height 1, the localisation A, of A
at p is a principal ideal domain, and so we can define an element e, (P) € A, using
the construction in section 2. As a consequence of proposition 1 for the completion
of A,, we get a formula as in excerise 6.4 in [21].

COROLLARY 1. Letm > 1 and let P be a point in E°(F) that is not m-torsion,
then, for all p,

2

ep(m - P) =ey(P)™ - fm(P), up to a unit in Ay,

According to remark 3.5.3 in [10], there is a pairing on E(F') with values in the
class group. We give an explicit description of this here. If F' is a function field of a
curve this is just the canonical height on the minimal model considered by Manin.
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Define a map
q: E°(F) — Cl(A)
P~ the class of Zord,J (ep(P))-p
P

where the sum runs over all primes p of height 1. The previous corollary allows us
to calculate g(mP) for an integer m: it is the class of

Zordp(ep(mP)) p=m? Zordp(ep(P)) P+ Zordp(fm(P)) - p.
P 3 3

But the second term is just the principal divisor (f,,(P)), so we conclude that
g(mP) = m? - q(P). One can show furthermore that the parallelogram law holds
for ¢ and so it induces a bilinear form on E°(F') with values in Cl(A). But we are
only interested in the following consequence:

PROPOSITION 2. Suppose that the class group Cl(A) is finite. There exists a
subgroup of finite index E*(F) of points P in E°(F) such that q(P) = 0, so there
are elements a(P), b(P) and e(P) in A, defined up to multiplication by A*, such
that (e(P)) is coprime to both (a(P)) and (b(P)) and

a(P b(P
P = (e((p))za e((p))s)-

Combining this with the corollary 1, we get the

COROLLARY 2. In this subgroup E®(F'), we have the formula

e(m-P) = e(P)m2 - fm(P),  up to a unit in A*. (3.1)

4. Families

Now we fix a number field K with its ring of integers R. Moreover, K, denotes
the completion of K at a finite place v, R, its integers, m, the maximal ideal and
IF,, the residue field.

By & we will denote in what follows a Weierstrass equation (Weq) with coefficients
in the ring of polynomials R[T] whose discriminant A € R[T] is not zero. Such an
& will be called a family over R.

When taking the same equation but considered over K[T], we obtain a scheme
Ex fibred over the affine line Al | that is, a birational equivalence class of elliptic
surfaces defined over K (see chapter IIT of [21]). In particular, there is a group
of sections Ex(K), which can be viewed as the points, defined over K(T), of the
generic fibre, i.e. the elliptic curve given by the equation of £ over K (T'). For short,
we write £(K) for this group and we will call its non-zero elements sections of &;
they are not sections over R of the scheme associated to the equation £. Denote
by £°(K) its subgroup of finite index containing the sections that do not meet any
singularity of a fibre.

For 7 € K, the fibre above (T' — 7) will be denoted by &£, and, given a section
P € £(K), the point P, is where P meets the fibre &,. For a finite place v of R, &,
stands for the reduction of £ at v, which is a Weierstrass equation over F,, [T']. The
reductions of the fibre £, are denoted by g’m}.

It is important to note that R[T] is a Noetherian Krull domain with finite class
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group Cl(R[T]) = CI(R) according to proposition 13 and 18 in chapter VII.1.9 and
VII.1.10 of [5]. Therefore, we can define a subgroup £°*(K) as in proposition 2 and,
for each section in £°(K), a polynomial e(P) in R[T] well-defined up to a unit in
R[T)* = R*.

Let 7 be an element of the principal ideal domain R,,. On the one hand, the
coordinates of the point P, € £, (K) can be written according to (2.1) as reduced
fractions of elements in R,,, say

at least if Py # O,
On the other hand, when replacing T by 7 in e(P), written e(P)(r), we will also
obtain fractions of elements in R,,, namely

a(P)(r) b(P)(7)

P, = . 4.1

= (e aoeF 1

Once again, we have two fractions that we can compare: we might have some

cancellation in the expression (4.1), which allows us to define, for every 7 € R, and
section P € £°(K) with P, # O;, an element v,(P,7) in R, by

ev(P‘r) . ’Y’U(Pa T) = e(P)(T), (42)

which is defined up to a unit in R}.

PROPOSITION 3. Let P € £*(K) be a section in a family £ as described above.
The map

7+ ordy (Vo (P, 7))

from R, to the integers is bounded and v-adically continuous. Moreover it is the
zero map for all but a finite number of places.

Proof. Consider the resultant r € R of the polynomials e(P) and a(P). The
valuation of 7 at v, which is almost always zero, bounds the valuation of 7, (P, 7)
for all 7. It is clear that the cancellation of a(P) and e(P) has locally constant
valuation. O

PROPOSITION 4. Let P be a section of a family £. Suppose that P belongs to
E*(K). Then for all but a finite number of places v, the points Pr have non-singular
reduction Pr,, in & (F,) for all 7 € R.

Proof. One way of proving this is to note that for the places v for which ~,, (P, 7)
is a unit, and this excludes only finitely many by the previous proposition, the condi-
tions for P, to have singular reduction can be written as congruences in polynomials
modulo the prime ideal p,, associated to the place v:

(26(P) + a1 a(P) e(P)* + aze(P)’) (1) =0 (mod p,),
(3a(P)? + 2az a(P)e(P)? + ase(P)* — a1 b(P)e(P)) (1) =0 (mod py).
If there is a 7 such that 13“} is singular, then the resultant of the two polynomials

above must be in the ideal p,,. This happens only for a finite number of v. ]

The best case is, of course, when a section P € £(K) has non-singular reduction
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for all finite places v and all fibres 7 € R, i.e. P, € £2(K) for all 7. In this case we
say that the section has good reduction everywhere.

COROLLARY 3. Let E be an elliptic curve over a number field K with a point
Q € E*(K) of infinite order. E can be embedded into a non-constant family £ with
a section P € £°(K) having good reduction everywhere that meets E at Q. Moreover
we can even achieve that v, (P,7) =1 for all T and all v.

Proof. By varying the coeflicients of E with a parameter 7', we can construct a
linear pencil of cubic curves that all pass through the point () and have an inflection
point at O. In order to have P € £°(K), we want £ such that P is not a singularity
of any cubic of the pencil. This pencil can be written as an equation £ over R[T]
with a section P that has constant coordinates and we may assume that & = E.
Now Pisin £*(K) as e, (P;) = e(P)(7) = e(Q) and @ belongs to E*(K). Moreover
v (P,7) = 1. Proposition 4 says that we need to be concerned only about a finite
number of places v, if we want P, to have good reduction for all 7 and v. Since P,
has good reduction everywhere for 7 = 0, it has good reduction at v for all 7 =0
(mod p,). Therefore we can replace the variable T by a - T for an a in all p,, where
P has possibly some singular reduction. l

PROPOSITION 5. Let P be a section of a family £ that belongs to £*(K) and
which has good reduction everywhere. Then P, belongs to £2(K) for all T € R. There
exists an element y(P,T) in R, defined up to R*, such that e(P;)-y(P,T) = e(P)(1).
It satisfies y(mP, 1) = (P, T)mQ.

Proof. For the first part, note that ¢(P) = ¢(P;) under the isomorphism from
CI(R[T]) to Cl(R). The existence of (P, 7) follows now exactly like in (4.2). The
final statement follows from the following calculation, with equalities always up to
R*,

2

Y(mP,7) - e(Pr)™ - fra(Pr) = 7(mP,7) - e(mP;) by (3.1)
= e(mP)(1) by definition
= e(P)(1)™ - fn(P)(7) by (3.1)

= (P, 7)™ - e(P)™ - fn(P)(r).

Next we see that the definition of the m-th division polynomial is such that the
restriction of f,,(P) to &; must be the m-th division polynomial of this fibre. Hence
y(mP, 1) =~(P,7)™. O

COROLLARY 4. Ify(P,7) belongs to R* for all T, then v(mP,7) is also in R*.

On an elliptic curve over a global field F', every point P can be multiplied by a
sufficiently big integer to guarantee that P has good reduction at every place v,
due to the fact that the subgroup E°(F) is of finite index. Unfortunately, it is not
true for families as the following example over the rational numbers shows:

E: Y +ry=2>-T3 +27%

& has a section P = (T,T) and 2P = (T? = 5T — 2, —T% + 2T? + &) is in the

subgroup £°(Q) = £°(Q). The family has multiplicative reduction at 7 = 0 with
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singularity (0,0), the multiples of the section 2P meet the fibre & at
2 2 4 3 6
(2P)o = (=3, 37) (4P)o = (5. —3%7) (6P)o = (=32, 33)

(8P)o = (F=,—15s)  (10P)o = (3, 30)

So there is no hope that any multiple of P will have non-singular reduction at
the place v = 2. In terms of Néron-models, this reflects the fact that the Néron
fit-model of G,,, over a discrete valuation ring has an infinite cyclic group of con-
nected components (see Example 10.1.5 in [4]). For an additive fibre, this “group
of connected components” would have to be an infinite torsion K/R, but here not
even the Néron flt-model exists.

The next part of this section is devoted to the following proposition that tells us
that the above phenomenon is the only obstacle for finding a multiple with good
reduction everywhere.

PROPOSITION 6. Let £ be a family and let P be a section. There are multiples Q)
of P such that QQ, has good reduction at every finite place v for all T € R\ U, where
U is a set of arbitrarily small density which is the union of arithmetic progressions.
Moreover, if no fibre £, for T € R is of multiplicative type, then one can take U to
be empty.

Proof. First one may assume that P is in £°(K). Proposition 4 shows that one
has only to care about a finite number of places v. Let us consider the discriminant
A € Ry[T). By excluding 7 in the congruence classes of the zeros of A modulo a
power of p,,, we can guarantee that the valuation of the discriminant ord, (A(7))
stays bounded. Taking a high power of p,, we are sure to have excluded a set of
sufficiently small density. in other words, we excluded small v-adic neighbourhoods
around the 7 where the fibre &; is singular.

The following lemma will prove the first part.

LEMMA 2. Let E be an elliptic curve (Weq) defined over a discrete valuation
ring R, with finite residue field F,. The index of the subgroup E°(K) in E(K) is
bounded by an expression depending only on the valuation of the discriminant A
and the residue field F, .

Proof. 'To see this, let u € R, be the constant in the change of coordinates (2.6)
of E used to obtain a minimal equation. We have that

ord, (A) = 12 ord, (u) + ordy, (Amin) (4.3)

and so, both expressions on the right are bounded by the valuation of A. Now, the
index of E°(K) in E(K) is bounded by

#(E(F,)) - (#F,)°" %=1 . (the index in the minimal case).

This is just saying how many points are pushed out of E°(K) when changing the
equation.

From the algorithm of Tate (see [25]) we have a bound for the index in the min-
imal case, namely the maximum between 4 and ord, (Amin). The number of points
in the reduction is bounded by an expression only depending on the cardinality of
the field F,, by Hasse-Weil. Hence every factor is bounded by the valuation of the
discriminant. O
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The second part can be deduced from the calculations in the above lemma. If
the bad fibre is not of multiplicative type, then the reduction of fibres close to it
must be additive. Hence the minimal-case index is bounded by 4, furthermore the
valuation of u will also be bounded when 7 is sufficiently v-adically close to the
bad fibre. So the index is bounded in a neighbourhood even though the valuation
of A is not. In other words, we only have to remove small v-adic neighbourhoods
of multiplicative fibres for finitely many v. O

It is not difficult to deduce a variant of Tate’s theorem on the variation of the
canonical height in a family of elliptic curves (see [26]) from the above consideration
using local height functions.

We will now compare our results here to the non-archimedian calculations in the
articles [22], [23] and [24]. In the first one, Silverman considers three examples to
illustrate the general theorems that follow in [23] for the local real-valued height
functions and in [24] for the Néron-Tate height.

Let us look at the last of his examples. It is the section P = (0,0) in the family

E: Y + Tay + Ty =2° + 2Tz (4.4)

over Z with A(T) = T*-(T+1)2-(2T+27). In fact, P passes through the singularity
of the additive fibre at T = z = y = 0; but the multiple Q = 3P = (#, %)
is a section that has good reduction everywhere, v(Q,7) = £1 for all 7 € Z and
so e(Q;) = e(Q)(7) = £2. According to [21, Theorem VI.4.1], we have an explicit
formula for the local height functions A

Ae, p(Qr) = ord,(e(Qr)) - log(p) + 5 ord,(A(7)) - log(p)

for all primes p, since @, has good reduction. It is then easy to deduce proposition
1.6.1 of [22] using the quasi-quadraticity of A:

9-Xe, p(Pr) = Ac, p(Qr) — ordy(f3(Pr)) - log(p) + 2 ord,(A(7)) - log(p)
ord,(2) - log(p) — ord,(27°) - log(p) + 5 - ord,(A(7)) log(p)
e, p(Pr) = & ord,(A(r) /") log(p)

The main difference to his treatment is that we are multiplying the section with
a sufficiently large integer until we can work with the nice explicit formula for the
local height function. A combination of proposition 3 and proposition 6 can even
be used to prove the “potential good reduction” case of theorem I1.0.1 in [23].

But of course, we fail to calculate anything when there is no multiple that has
good reduction everywhere. It is no surprise that this happens precisely when there
are terms in @ appearing in Silverman’s formulae. We would have to work with
explicit cancellations in the multiplicative case.

For instance, we change the above Weierstrass equation to a minimal model at
T=o0.Let S= %, 2" =5% -z and y' = S* -y, then

g Y+ 2y + 82y =2 + 294 and P =(0,0).

The fibre at S = 0 is multiplicative and only 5P will not encounter the singularity

anymore, but it hits the fibre at (3, 5-). There is no multiple of P that will have
good reduction at 2 for all § € Z.
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5. The canonical p-adic sigma function

We recall the following theorem due to Mazur and Tate. It is a special case of
the results in the second appendix of [11].

First some notation: A denotes a complete discrete valuation ring with residue
field I, of characteristic p # 2. The Tate-algebra A{T'} is defined to be the v-adic
completion of the polynomial ring A[T'], it coincides with the algebra of power-series
in A[T] whose coefficients tend v-adically to zero.

THEOREM 1 (B. MAZUR and J. TATE). Let & be a Weierstrass equation (Weq)
defined over the Tate-algebra A{T}. We suppose that every fibre &, for T in the
algebraic closure A of A, is an elliptic curve with good and ordinary reduction.
Then there exists a unique function o¢(T)(t), called the sigma function, on the
formal group E/A{T} of the form t- (1 +t- A{T}[t]), where t = =%, such that
one of following two equivalent conditions holds (we write a(Q,7) for os(7)(#(Q))
when Q is a point of the formal group &.(A)):

— For all non-zero points P and @ in the formal group z‘:’T(A), we have

U(P_ QJT) 'O'(P+Q,T)
o(P,7)?-0(Q,7)?

=z(Q;) — z(P;). (5.1)
— For aoll integers m # 0 and points Q in c‘:}(fi), there is the formula
o(m-Q,7) =o(Q,1)™ - fm(Q)(7), (5.2)

where [, (Q) is the m-th division polynomial as defined in section 2, which is
a function on & that, restricted to the formal group, is in

HQ)™ - A{THHQ)]-

In particular, we are granted a sigma function for every elliptic curve E in Weier-
strass form over the ring A with good ordinary reduction, that is, a function

op(t) €t-(1+t- Aft]), (5.3)

as described in theorem 3.1 of [11]. Our version here states moreover that the sigma
functions of fibres in a family fit well together.

Our assumption that the reduction of every geometric fibre is ordinary implies
that the Hasse-invariant modulo v is a constant element of F.. The reduction of
the coefficients of the sigma function o, above gives the sigma function &(7T)(t) €
t-(14t-F, [T][t]) at all places of F, [T] of the reduced elliptic surface £ as considered
by Papanikolas in [15], for instance in his lemma 7.6.

6. The p-adic height

Let p be an odd prime. Let E be an elliptic curve over the number field K given
by a Weierstrass equation (Weq) over R. We suppose that the elliptic curve E has
good, ordinary reduction at all primes above p. Inside E*(K), there is a subgroup
of finite index, that we will denote by EP(K), contained in the intersection of the
formal groups E(m,) of all places v above p. For a non-torsion point P € EP(K),
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the (cyclotomic) p-adic height is defined by
hy(P) =) ord,(e,(P)) - log, (#F,) — Y _ log,(Nk,q, (0u(P))),
vip vlp

where log,,: Q) — pZ, denotes the p-adic logarithm defined as usual with log,,(p) =
0. Here 0,(t) denotes the canonical v-adic sigma function of E over the field K.
But since we assumed that P belongs to E*(K), we have a single e(P) for all places
v, and then we can simplify the expression above to

hp(P) =log,(Nk:o(e(P))) = Y _log,(Nk,.q,(0u(P)))

vlp
e(P)
= 1 Ngk,.
o)
e(P)
=log, (H NKU;QP(O_ (P))) (6.1)
vlp Y
From the formulae (3.1) and (5.2), it is immediate that
h,(m - P) = m? - h,(P). (6.2)

Moreover h,, satisfies the parallelogram law and so it induces a bilinear form (- | -),,
on E*(K) with values in pZ, that can be extended then to all of E(K) by defining
the p-adic height of a point P via the formula (6.2), where m is such that the
multiple mP belongs to EP(K); and we let h,(O) = 0.

Given points P® ..., P™ in E(K), we define their p-adic regulator

Reg,(PY,...,P™) € Q,

to be the determinant of the r x r-matrix ((P® | P),); ;. The regulator of a
full set of generators of the non-torsion part of E(K) should appear in the p-adic
version of the Birch and Swinnerton-Dyer formula (see [12]). But, as explained in
the introduction, it is not even known if it is non-zero in general.

7. Heights in Families

Let £ be a family over the number ring R with a section Q. Let p be an odd
prime and suppose £ has good ordinary reduction at all primes above p as in
theorem 1. We will assume that ) has good reduction everywhere. Furthermore we
want Q € £*(K) and that @, belongs to the formal group &, (m,) for all 7 and all
places v above p. This can always be achieved by multiplying with a sufficiently
large integer as £°(K) is of finite index and there are only finitely many different
reductions at a place v for different 7 € R. In particular, ), belongs now to E2(K)
by proposition 5 and so we can calculate the p-adic height of @, according to (6.1),
at least if it is not torsion:

7 e(QT)
hP(QT) =1 P Nk,: p
% (Tll e (UU(Q,T)))

= log, (1|I Nieso, (SDD)) ~log, o Nio(r(@7),  (71)

where we used the definition of v(Q,7) in proposition 5.
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Let now v be a place above p. We know that e(Q) is a polynomial in R[T], so in
particular it lives in R, {T'}. Next we look at

(@) _ _a(Q)-e(Q)
Q) = — = — € K(T).
D=0 e F
Since @ is in the formal group at v, the polynomial e(Q) takes values in m,,
therefore b(Q) is always a unit in R. Hence #(Q)) is a converging power series in

R,{T}. Replacing this series in the sigma function gives a power series o, (Q) in
R,{T} such that

UU(Q)(T) = UU(Qa T) = Ov,&, (QT)

Note that e(Q;), t(Q,) and o,(Q)(r) must have the same valuation, and so the
valuation of e(Q)(7)/0,(Q)(7) is bounded between 0 and the valuation of (@, 7)
at v. The latter is bounded itself as shown in proposition 3. We conclude that

_ @
2 Q=5

and that it has neither zeros nor poles.
We identify HU| p Bo with R®Z, in K ® Q. Putting the functions g, together,
we get a continuous function

G@Q) =]]9(@):Re®Z,—» R Z,

v|p

€ R,{T} (7.2)

that has the property that every value can only be taken a finite number of times
unless all the g,(Q) are constant functions. This is a consequence of (7.2) and the
Weierstrass preparation theorem. G(Q) is linked to the p-adic height in (7.1) by

ﬁp(QT) =log, o N(G(Q)(r)) —log, o N(v(Q, 7)) for all 7 € R, (7.3)

whenever Q- is not torsion. Here N is the norm map from K ® Q, to @,.

THEOREM 2. Let p be an odd prime and let £ be a family of elliptic curves
over a number ring R. Suppose P € £°(K) is a section that has good reduction
everywhere and that v(P,T) is a unit for all 7 € R. Then the map T — h,(P;)
extends to a continuous map from R® Z, to Zp.

Proof. Most parts of the statement were obtained above when deriving the
formula (7.3). We need to multiply our section P by a sufficiently large integer to
obtain a section () that satisfies the hypotheses made on ). Moreover, the second
term disappears because of corollary 4. O

In particular, it is interesting to see that the right hand side of (7.3) is defined
even when the point (), is torsion, or even if it is equal to O,. This can be seen as
a partial p-adic analogue to Tate’s theorem in [26].

THEOREM 3. Let p be an odd prime and let r > 0 be an integer. Let £ be a
family of elliptic curves over Z with sections P® ... P™. We suppose that £ has
good ordinary reduction at p and that every section P® has a multiple Q¥ which
has good reduction everywhere and for which v(Q®,7) is constant for all T € Z.
Then the regulator Reg,(P{",. .., P{™) is either constant 0 or there are only finitely
many 7 in Z for which it vanishes.
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Proof. By multiplying Q) with an integer, we may suppose that it has every-
where good reduction and that Q¢ belongs to the formal group &, (pZ,) for all 7.
By proposition 5, y(¥ = y(Q®, 1) is still constant. So the above calculations apply
to Q® and give the formula

hy(QY) = log,(9,(Q)(1)) — log, (v?)

with g,(Q”) € Z,{T}. Finally, the regulator Reg,(P{",...,P{") is a linear com-
bination of products of the functions 7 — hy,(Q%). Therefore, it belongs to Z,{T'}
as well, and the Weierstrass preparation theorem proves the statement. ]

The same proof generalizes immediately to imaginary quadratic fields, but not
for fields K with units of infinite order.

The theorem gives a weaker version of Silverman’s specialisation theorem I11.11.4
in [21]. If the regulator Reg,(P{", ..., P{”) is non-zero for some 7 € Z, then the sec-
tions PM, ..., P™ are linearly independent in £(K’) and so the points P, ..., P
will be independent in &, (K) for almost all 7 € Z.

Unfortunately, we are unable to prove that the regulator is not constant zero if
the sections are independent.

Here is an example to illustrate the theorem for r = 1: let

E:yP+y=2+(13T-1) -2

be a family over Z with constant, good and ordinary reduction at p = 13. We
will study the section P = (0,0). The section happens to have good reduction
everywhere and, since it has constant coordinates, v(P,7) is always 1. Using
successive approximation of the coefficients of o, (7)(¢) modulo powers of 13, one
finds an approximation for the series for the 13-adic height

his(P;) = (6-13% + O(13%)) + (11- 13+ 8-13% + O(13%)) - 7
+(8-13%2 4+ 0(13%)) - 72 + 0(13?)

valid for all 7 € Z. Hence it is easy to see that for all 7 Z 0 (mod 13), the valuation
of the 13-adic height of P, is 1. Moreover, in this example, there is only one single
zero T in Zi3 of the function on the right and it seems unlikely that it will be an
element of Z.

There are conjectures of Lang and Silverman on lower bounds for the real valued
Néron-Tate height, such as conjecture 9.9 in [20]. As stated in the introduction,
this is certainly not true for the p-adic height, for we have the following

COROLLARY 5. The p-adic height can become arbitrarily small.

This is best explained with another example. The family
E:y? =2° — (10T+1)*-2 + (10T +1)?

has a section P = (10T + 1,107 + 1). It has a multiple @ = 6P that satisfies the
hypotheses of theorem 3 for p = 5. Again the 5-adic height of P, is a power series
in 7 with coefficients in Z3 converging to 0. There is a unique 5-adic integer 79 € Z5
that is a zero of this function. By taking integers T € Z close enough to 7y, we will
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obtain points with arbitrarily small 5-adic height:

T=98=3+4-5+3-52: hs(P,) =5 +3-5°+4-55+0(57)
T=473=3+4-5+3-5>+3-5%: hs(P)=  2-5°+4-5°+0(7)
T=1098=3+4-5+3-5°+3-5°+5%: hy(P;) = 4-55+0(57)

8. Further calculations and conjectures

The p-adic height of a point P, which does not lie in the formal group at p, on
an elliptic curve E/Q with good ordinary reduction at p is, by definition, in pZ,,
unless p is anomalous (meaning that p divides #E(F,)), in which case it belongs
to p~! Z,. It seems that its valuation is most of the time equal to 1 (or —1 in the
anomalous case). See also the tables, included at the end of this article, for a list of
exceptionally small height.

In order to check this intuition, one can do the following calculation: all families
with ag = 0 have a section P = (0,0) that does not belong to the formal group at p.
Instead of working with Z{T'}, one can do a similar reasoning for Z{a1,as,as, a4 }.

Look at all coefficients [ai, a2, as, a4, ag = 0] with the same reduction modulo p.
Since these curves have the same reduction, there is a multiple Q = mP which lies
in the formal group at p for all curves. The p-adic height of @ turns out to be a
function in Z,{a1,as,as,as} if the point has good reduction at all primes on the
corresponding curve. If so, the p-adic height of (0,0) modulo p* only depends on
the coefficients a; modulo p* for all & > 1.

For p = 3, there are 2916 choices for the vector [a;, a2, as, a4, as = 0] modulo 9
such that the corresponding curve has good ordinary reduction at 3. For each vector,
one can find an elliptic curve with coefficients in Z such that the point (0,0) has
non-singular reduction for all primes, and calculates the 3-adic height modulo 9 of
it. This is, by the above remark, independent of the chosen coefficients in Z. In
this way, we find 983 cases where the 3-adic height is exceptionally small. In other
words, we have proved the follwing

— In 33.71% of all cases the 3-adic height of a point P outside the formal group
with good reduction at every prime on an elliptic curve with good ordinary
reduction at 3 has valuation higher than the expected valuation 1(or —1 in the
anomalous case).

— A similar calculation for p = 5 leads to the affirmation that 20.0032% have
smaller 5-adic height than expected.

This leads to the following

CONJECTURE 1. Let E be an elliptic curve defined over QQ and P a point of
infinite order in E(Q).

— Among the primes p for which E has good, ordinary, non-anomalous reduction,
the set of p for which the p-adic height of P belongs to pZ, has density zero.

— Among these primes p there are only finitely many such that the p-adic height
of P belongs to p3Z,.

— Among anomalous, good and ordinary primes p, the set of p for which the
p-adic height of P belongs to Z, is of density zero and there are only finitely
many for which it belongs to pZ,,.
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We describe a consequence of these conjectures for the Iwasawa-theory of elliptic
curves. As a general reference for Iwasawa-theory on elliptic curves we refer the
reader to [8] or [7].

Let E/Q be an elliptic curve of rank r and suppose that the Tate-Shafarevich
group ITI(E/Q) is finite. Assume E has good ordinary reduction at an odd prime
p- By Q7=°, we mean the cyclotomic Z,-extension of Q, i.e. the unique Galois
extension of Q with Galois group I' isomorphic to Z,. Let X be the Pontryagin-
dual of the p-Selmer group Sel,(E/Q? <), which is, by a theorem of Kato [9], a
torsion module over the Iwasawa-algebra A = Z,[I'] ~ Z,[T]. When the p-adic
regulator Reg,, of a set of generators P®V, ..., P of E(Q) modulo torsion is non-
zero, a theorem of Perrin-Riou [17] and Schneider [19] asserts that the lowest term
of the characteristic power series fx(T') of X in Z,[T] is ¢-T", where c is given
explicitly by

.~ Reg, -(#E(F)(®)* 1, co - #(IL(E/Q(p))
P #EQ(p))?

with equality up to multiplication by a unit in Z ;. Here the c, are the local Tam-
agawa factors. For all but finitely many primes p, the leading coefficient ¢ is then
equal, up to a unit in Z X, to

¢~ L - Reg, -(#E(F,)(p)).

If ¢ is a unit, then we conclude that X is pseudo-isomorphic to A/(T") ~ Zj. The
Pontryagin-dual of the exact sequence (see page 17 of [8])

0= E@Q") @ Qp/Zp = Sel,(E/Q™) — II(E/Q™)(p) = 0

shows that the dual of the group E(Q7 <) ® Q,/Z, is a quotient of X. Thus the
rank of the Mordell-Weil group E(Q?-¢) is at most 7. On the other hand it contains
already the group E(Q) and so it is of rank . This also shows that III(E/Q?<*)(p)
is Zy-cotorsion and hence finite.

So we can reformulate the above conjecture and extend it to larger ranks:

CONJECTURE 2. Let E/Q be an elliptic curve of rank r > 0 and suppose that
III(E/Q) is finite.

— The coefficient c is a unit in Z; for a set of density 1 among the primes p with
good ordinary reduction.

— The same is true for anomalous primes.

— For a set of density 1 among the primes p where E has good ordinary reduction,
the rank of the Mordell-Weil group E(Q?¥°) is equal to r and the group
II(E/Qr¥)(p) is finite.

Note that for curves of rank r = 0, this is the statement of proposition 5.1
in [7] on page 105. But unlike in the case r = 0, the above conjecture claims
that the behaviour for anomalous primes does not differ from the behaviour for
non-anomalous primes, if r > 0.

Appendix A. Tables

The following tables list primes with special behaviours for some curves of rank
1 of small conductor. The elliptic curve E will be given by the coefficients of the
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minimal form [a1,as,as,as,a6]. All calculations have been done for odd primes
smaller than 1000. We will list the primes with bad reduction, those with supersin-
gular reduction. The next line contains the anomalous primes. Then the last line
contains the most interesting information: the primes for which the p-adic height of
the point P of infinite order is exceptionally small. For all other good and ordinary
primes the valuation of the p-adic height of P is 1, if p is non-anomalous, and —1 for
the anomalous. We found only one exception among the anomalous primes, namely
p = 3 on the curve 91B.

Finally, we add a small list of values of heights in some exceptional cases above.

All calculation were done using Pari-GP [1] and Mathematica.

10.

11.

12.

13.

14.
15.

16.

17.

18.

20.

21.

22.

23.

24.

25.
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E [a;] P bad supersingular anomalous exceptions E
37A [0,0,1,—1,0] (0,0) 37 3, 17, 19, 257, 311, 577 53, 127, 443, 599 13, 67, 547 37A
43A [0,1,1,0,0] (0,0) 43 7, 37 3, 5, 103, 127, 541 none o 43A
2.

53A [1,-1,1,0,0] (0,0) 53 3,5, 11, 239, 751 71, 97 none S 53A
LN

57A [0,-1,1,-2,2] (2,1) 3,19 37, 41, 151, 163, 491, 571, 599, 601 11 5 (E) 57A

58A [1,-1,0,—1,1] (0,1) 29 3, 23, 83, 139, 191, 283, 311, 317, 587 53, 109, 673, 739 31 Eﬁ 58A
)

61A [1,0,0, -2, 1] (1,0) 61 31, 101, 281, 439 3,7, 13,113 71 T 61A
2

65A [1,0,0,—1,0] (1,0) 5,13 139, 191, 439, 659 3 43 = 65A

TTA [0,0,1,2,0] (2,3) 7,11 3, 283 , 503, 701, 911 31, 71, 179, 223 5 2 7A
<

79A [1,1,1,—2,0] (0,0) 79 113, 271, 409, 479, 521, 947 none 41, 83, 131 = 79A
ol
7

82A [1,0,1, -2, 0] (0,0) 4 29, 103, 131, 191, 251, 421, 443, 599, 811, 859, 983 3 5,229, 283, 499 o 82A
=

83A [1,1,1,1,0] (0,0) 83 47, 73, 89, 199, 281, 311, 503, 661 853, 991 none = 83A

88A [0,0,0, —4, 4] (2,2) 11 3, 13, 241, 271, 547, 761 23, 383, 797 29, 41, 401 E 88A

89A [1,1,1,-1,0] (0,0) 89 29, 41, 101, 359, 421, 433, 811, 911 733 5 g 89A
=

91A [0,0,1,1,0] (0,0) 7,13 3, 151, 269, 457, 877 277, 673 17,181,607 Z  91A
3]

91B [0,1,1,-7,5] (-1,3) 7,13 11, 59, 101, 149, 347, 383, 521, 563, 827, 863 3 3, 991 © 9B

92A [0,0,0,—1,1] (1,1) 23 3, 59, 97, 109, 157, 227 none 193 92A

FIGURE A.1. Calculations of p-adic heights for elliptic curves of rank one with small conductor and 2 < p < 1000.

L1
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E D p-adic height of P its valuation
37A 13 6-13249-13% +3-13% + O(13%) 2
37A 67 27672 +4-673 + O(674) 2
57A 5 3:-524+4-5%+2-5%+ O(5%) 2
58A 31 13312 +5.313 4+ O(314) 2
61A 71 37.712 + 18- 713 4 O(714) 2
65A 43 17432 +13 - 433 + O(43%) 2
TTA 5 4.52+1-5%4+0(5%) 2
T9A 41 6-412 +7-413 4 O(41%) 2
T9A 83 14 - 832 + O(833) 2
T9A 131 99 - 1312 4+ O(1313) 2
82A 5 2.52+1-5%4+1-5% 4+ 0O(5%) 2
82A 229 67 - 2292 4+ O(2293) 2
82A 283 241 - 2832 + O(2833) 2
88A 29 1292 + 14293 + O(29%) 2
88A 41 29 -412 420 - 413 4 O(41%) 2
89A 5 1-5243-5% +1-5%+0(5%) 2
91A 17 15172 +8-173 4 O(17%) 2
91A 181 851812 4+ O(1813) 2
91B 3 2.3% +35 437+ O(38) 3
92A 193 23 -1932 + O(193%) 2

FIGURE A.2. Some small p-adic heights on curves of rank one

Antwerp, 1972), Springer, 1975, pp. 33-52. Lecture Notes in Math., Vol. 476.
26. JoHN TATE, Variation of the canonical height of a point depending on a parameter, Amer. J.
Math. 105 (1983), no. 1, 287-294.
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