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ABSTRACT. The Fatou-Julia iteration theory of rational and
transcendental entire functions has recently been extended to
quasiregular maps in more than two real dimensions. Our goal
in this paper is similar; we extend the iteration theory of ana-
lytic self-maps of the punctured plane to quasiregular self-maps
of punctured space.

We define the Julia set as the set of points for which the com-
plement of the forward orbit of any neighbourhood of the point
is a finite set. We show that the Julia set is non-empty, and shares
many properties with the classical Julia set of an analytic func-
tion. These properties are stronger than those known to hold
for the Julia set of a general quasiregular map of space.

We define the quasi-Fatou set as the complement of the Julia
set, and generalise a result of Baker concerning the topological
properties of the components of this set. A key tool in the proof
of these results is a version of the fast escaping set. We generalise
various results of Mart́ı-Pete concerning this set, for example
showing that the Julia set is equal to the boundary of the fast
escaping set.

1. INTRODUCTION

1.1. Background. Most studies of complex dynamics have considered ana-

lytic maps of either C or Ĉ := C∪ {∞}; we refer to reference works such as [3, 4]
for more information on complex dynamics. Various authors have studied the
dynamics of analytic maps of the plane that have an additional essential singular-
ity which is also an omitted value. Without loss of generality, the singularity can be
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taken to be at the origin. These maps are known as transcendental analytic self-
maps of C∗, where C∗ := C \ {0} is the punctured plane. This study started with
Rådström [29], who pointed out that such maps are necessarily of the form

z ֏ zk exp(g(z) + h(1/z)),

where k ∈ Z and g,h are entire functions. Following Rådström, many authors
have contributed to this work (see, e.g., [2, 5, 15–17, 19]). We observe that, be-
cause of Picard’s theorem, there are no non-trivial analytic self-maps of the com-
plex plane equipped with more than one puncture.

In this paper, our goal is, for the first time, to extend this study to quasiregular
maps of punctured space. We defer the full definition of a quasiregular map to Sec-
tion 2; for now it is sufficient to note that these maps are the natural generalization
to higher dimensions of analytic maps in the plane. We set the following defini-
tions in place for the remainder of the paper. Fix the dimension d ≥ 2. Fix also
the number of finite punctures ν ∈ N; this is always in addition to a singularity at
infinity. We stress that ν is always taken to be at least one (for more information
on quasiregular dynamics in space without punctures, see, e.g., [7,12]). Finally we
define a set of punctures. For convenience we fix y0 = ∞, we let y1, y2, . . . , yν

be distinct points of Rd, and then we let S ⊂ R̂d := Rd ∪ {∞} be given by

S := {y0, y1, y2, . . . , yν}.

We are interested in the dynamics of a quasiregular map f : R̂d \ S → R̂d \ S,
with the property that S coincides with the set of essential singularities of f . In this
situation, we say that f is of S-transcendental type. Note that an essential singularity
is a point at which no limit of f exists.

It follows from Picard’s theorem and Stoı̈low factorization that a quasiregular
map from R2 to R2 can omit at most one point. Hence, if d = 2, then we must
have ν = 1. However, if d ≥ 3, then we can take ν to be arbitrarily large. We

demonstrate this as follows. Let g :R̂d → R̂d be a quasiregular map of degree ν+1,
such that g−1(∞) = {y0, y1, y2, . . . , yν}. Let F : Rd → Rd \ {y1, y2, . . . , yν} be
a quasiregular map with an essential singularity at infinity. (The existence of such
a map was shown by Drasin and Pankka [14].) Then,

f : Rd \ {y1, y2, . . . , yν} → R
d \ {y1, y2, . . . , yν} where f := F ◦ g

has essential singularities at {y0, y1, y2, . . . , yν}, as required. We note that the
class of maps such as F above is not small, since, if h : Rd → Rd is any quasiregular
map, then F ◦ h : Rd → Rd \ {y1, y2, . . . , yν} is also a quasiregular map.

1.2. The Julia set. Our definition of the Julia set follows earlier definitions
of the Julia set of a quasiregular map by using a version of the so-called blowing-up
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property. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of S-transcen-

dental type, that x ∈ R̂d, and that U ⊂ R̂d \ S. We define the backward orbit of
x by

O−(x) :=
⋃

k≥0

f−k(x),

and we also define the forward orbit of U by

O+(U) :=
⋃

k∈N

f k(U).

Definition 1.1. We define the Julia set, denoted J(f ), to be the set of all

points x ∈ R̂d \S such that, for every neighbourhood U of x, the set R̂d \O+(U)
is finite.

It can then be deduced that the Julia set is closed in R̂d \ S, and is completely

invariant. Here, we say that a set X ⊂ R̂d \ S is completely invariant if x ∈ X if
and only if f (x) ∈ X.

We show that our definition of the Julia set is consistent with the classical def-
inition used for transcendental analytic self-maps of the punctured plane. Recall
that the classical definition first defines the Fatou set as the set of points that have
a neighbourhood in which the set of iterates is a normal family, and then defines
the Julia set as the complement of the Fatou set.

Theorem 1.2. Suppose that f is a transcendental analytic self-map of the punc-
tured plane. Then, the classical definition of J(f ) agrees with Definition 1.1.

We next define the exceptional set E(f ) as

E(f ) := {x ∈ R̂d : card(O−(x)) < ∞}.

Clearly, S ⊂ E(f ). It is a consequence of a well-known result of Rickman [30]
that E(f ) is a finite set (see Lemma 2.1 below).

We now give our principal result regarding the Julia set of a quasiregular map
of S-transcendental type. Note that here, and elsewhere in the paper, the topolog-
ical operations of closure, complement, and boundary are taken with respect to

R̂d \ S unless otherwise specified. Also, if a set X ⊂ R̂d \ S is such that the closure

of X in R̂d meets S, then we say that X is S-unbounded ; otherwise we say that X
is S-bounded.

Theorem 1.3. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of
S-transcendental type. Then, the following hold:

(a) The Julia set of f is non-empty and perfect.
(b) For each x ∈ J(f ) \ E(f ), we have J(f ) = O−(x).
(c) We have J(f ) = J(f p), for p ∈ N.
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(d) Either J(f ) is connected or J(f ) has infinitely many components.
(e) All components of J(f ) are S-unbounded.

Clearly, it follows from (a) and (e) that J(f ) has a connected component
that contains at least two points. We can deduce that the Julia set has Hausdorff
dimension of at least one.

Remarks.

(1) It follows from Theorem 1.2 that Theorem 1.3 (d) and (e) are generalisa-
tions to quasiregular maps of Baker and Domı́nguez’s results Theorems 3
and 2 of [2], which concern transcendental analytic self-maps of C∗.

(2) The dynamics of general quasiregular self-maps of Rd and R̂d is the sub-
ject of [7,12], where a slightly weaker definition of the Julia set is adopted.
In this definition, the complement of the forward orbit of any neigh-
bourhood is constrained only to be “small” (see Definition 3.2 in Sec-
tion 3 below). In the cases studied in [7, 12], the Julia set is generally
non-empty, but otherwise properties analogous to Theorem 1.3 (a)–(c)
are only known to hold under additional hypotheses such as Lipschitz
continuity. Even with this extra assumption, it is only known that the
Hausdorff dimension of the Julia set is positive.

(3) The dynamics of local uniformly quasiregular maps of punctured manifolds
was studied by Okuyama and Pankka in [28].

(4) In Section 3, we make some brief comments about weakening the as-
sumption that every puncture is an essential singularity.

1.3. The quasi-Fatou set. Following [25–27], we define the quasi-Fatou
set QF(f ) as the complement of the Julia set (recall that complements are taken

in R̂d \ S). It is straightforward to show that the quasi-Fatou set is an open,
completely invariant set which, if non-empty, has the Julia set as its boundary. We
call the connected components of QF(f ) the quasi-Fatou components.

Baker [1, Theorem 1] (see also [2, Theorem 1] and [19]) showed that, for a
transcendental analytic self-map of the punctured plane, all the components of the
Fatou set are simply-connected, apart from at most one, which, if it exists, must
be doubly-connected. In view of Theorem 1.2, our next result is a generalisation
of this fact. Here, if a set X ⊂ Rd \ S is such that all complementary components
of X are S-unbounded, then we say that X is S-full ; otherwise we say that X is
S-hollow.

Theorem 1.4. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of S-
transcendental type. Then, all components of QF(f ) are S-full. Moreover, there are at
most ν components of QF(f ) which have more than one complementary component

in R̂d.

Suppose that d = 2, that S = {0,∞} (in which case ν = 1), and that U ⊂ C∗

is a domain that is S-full. Set W = Ĉ \ U . Then, either W is connected, in which
case U is simply-connected, orW has two components (one containing∞ and one
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containing 0), in which case U is doubly-connected. It follows that Theorem 1.4
is indeed a generalisation of [1, Theorem 1]. We observe that, unlike Baker, we
are not able to use normal family arguments in the quasi-Fatou components.

1.4. The fast escaping set. A key tool in the proof of the above results
is the fast escaping set. This was first defined, for a transcendental entire func-
tion, in [11], and a detailed study of this set was given in [35] (see also [8, 10],
which studied the fast escaping set of a quasiregular map of Rd of transcendental
type). When f is a function defined on C or Rd, the fast escaping set is roughly
the set of points x for which |fn(x)| eventually grows faster than some iter-
ated maximum modulus. Here, this refers to iteration of the maximum modulus
M(r, f ) := max|x|=r |f (x)| as a function of r > 0.

One motivation for studying the fast escaping set is its intimate connection
to the Julia set. In particular, for transcendental entire functions, the boundary
of the fast escaping set is the Julia set. The same result also holds for suitable
analytic self-maps of C∗ and for many quasiregular self-maps of Rd. We aim to
establish the analogous result for quasiregular maps of S-transcendental type (see
Theorem 1.6 below).

The fast escaping set of a transcendental analytic self-map of C∗ was first
studied in [20]; indeed, our work regarding the fast escaping set is, in a sense,
a generalisation of the results of [20] to quasiregular maps of S-transcendental
type. Our method of definition cannot match that used in [20] exactly, since that
definition is given using the maximum and minimum modulus functions, and
these are less useful in our setting. Instead, we define a family of functions each of
which is, in some sense, a generalised maximum modulus function.

Recall that our set of punctures is S = {y0, y1, . . . , yν}, with y0 = ∞. Let
P := {0,1, . . . , ν}. For each j ∈ P, we define the generalised modulus function on

R̂d by

|x|j :=



|x|, if j = 0,

1
|x −yj|

, if j > 0.

Next, we fix ρS > 0 sufficiently large that

(1.1) {x ∈ R̂d : |x|j ≥ ρS} ∩ S = {yj}, for j ∈ P.

Note that this definition of ρS will be in place throughout the paper. Then, for
each j, k ∈ P, we define the generalised maximum modulus function by

Mj,k(r , f ) := max
{x:|x|j=r}

|f (x)|k, for r > ρS .

Roughly speaking, the function Mj,k considers the maximum size of f (compared
to the kth essential singularity) considered at points near the jth essential singu-
larity.
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We now briefly outline the idea behind the definition of the fast escaping set
in our present setting; we defer the precise definition to Section 4. It is useful to
let N0 := N ∪ {0} and to call sequences e = e0e1 . . . ∈ PN0 itineraries. Suppose
that R > 0 and e ∈ PN0 . We define the maximum modulus sequence for e starting
at R by first setting R0 = R, and then letting

(1.2) Rn := Men−1,en(Rn−1, f ), for n ∈ N.

(We see in Section 4 that if R is sufficiently large, then we can guarantee that
Rn−1 > ρS , so that Rn can indeed be defined by (1.2).) For a given itinerary e,
the little fast escaping set Ae(f ) is roughly the set of points x for which |fn(x)|en
grows faster than some maximum modulus sequence for e. Then, we define the
fast escaping set to be the union

A(f) :=
⋃

e∈PN0

Ae(f ).

It was shown in [11] that the fast escaping set of a transcendental entire func-
tion is not empty, and in [33] that all components of this set are unbounded. Our
next result is an analogue of these facts for a quasiregular map of S-transcendental
type.

Theorem 1.5. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of S-
transcendental type and that e ∈ PN0 . Then, Ae(f ) is non-empty and all components
of Ae(f ) are S-unbounded.

Our second result concerning the little fast escaping sets provides the crucial
connection between these sets and the Julia set.

Theorem 1.6. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of
S-transcendental type and that e ∈ PN0 . Then,

J(f ) = ∂Ae(f ) = ∂A(f ).

Although there is no assumption of normality in a component of QF(f ), the
following easy corollary of Theorem 1.6 is a type of normality property, and is
central to our arguments.

Corollary 1.7. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of
S-transcendental type. If e ∈ PN0 and U is a quasi-Fatou component of f that meets
Ae(f ), then U ⊂ Ae(f ).

We show later (Theorem 4.3 (c)) that there are uncountably many disjoint
little fast escaping sets. Corollary 1.7 then yields the following result, as the open
set QF(f ) has only countably many components.

Corollary 1.8. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of
S-transcendental type. Then, A(f)∩ J(f ) 6= ∅. Moreover, there exists e ∈ PN0 such
that Ae(f ) ⊂ J(f ).



The Dynamics Of Quasiregular Maps of Punctured Space 329

1.5. Structure of this paper. The structure of this paper is as follows. First,
in Section 2, we give a number of important definitions and background results.
Next, in Section 3, we prove the first four parts of Theorem 1.3, and also Theo-
rem 1.2. Because the properties of the fast escaping set are required in the rest of
the paper, in Section 4 we give the precise definition of this set and prove Theo-
rem 1.5. In Section 5, we prove Theorem 1.6 and then, in Section 6, we use it to
prove the last part of Theorem 1.3. Finally, we prove Theorem 1.4 in Section 7.

2. DEFINITIONS AND BACKGROUND RESULTS

2.1. Quasiregular maps. We refer to [31, 36] for a detailed treatment of
quasiregular maps. Here, we merely recall some definitions and properties used in
this paper.

Suppose that d ≥ 2, that G ⊂ Rd is a domain, and that 1 ≤ p < ∞. The
Sobolev space W 1

p,loc(G) consists of those functions f : G → Rd for which all
first-order weak partial derivatives exist and are locally in Lp. We say that f is
quasiregular if f ∈ W 1

d,loc(G) is continuous, and there exists KO ≥ 1 such that

(2.1) sup
|h|=1

|Df (x)(h)|d ≤ KOJf (x) almost everywhere.

Here, Df (x) denotes the derivative, and Jf (x) denotes the Jacobian determinant.
If f is quasiregular, then there also exists KI ≥ 1 such that

(2.2) KI inf
|h|=1

|Df (x)(h)|d ≥ Jf (x) almost everywhere.

The smallest constants KO and KI for which (2.1) and (2.2) hold are denoted by
KO(f ) and KI(f ), respectively. If max{KI(f ),KO(f )} ≤ K, for some K ≥ 1,
then we say that f is K-quasiregular.

If f and g are quasiregular maps, and f is defined in the range of g, then
f ◦ g is quasiregular and [31, Theorem II.6.8]

(2.3) KI(f ◦ g) ≤ KI(f )KI(g).

Many properties of analytic functions extend to quasiregular maps; we use,
without comment, the fact that a non-constant quasiregular map is discrete and
open. We also use the following [30, Theorem 1.2], which is Rickman’s analogue
of Picard’s great theorem.

Lemma 2.1. If d ≥ 2 and K ≥ 1, then there exists an integer q = q(d,K)

with the following property. If a1, . . . , aq ∈ Rd are distinct and r > 0, then no
K-quasiregular map f : {x ∈ Rd : |x| > r} → Rd \ {a1, . . . , aq} has an essential
singularity at infinity.

The number q(d,K) is called Rickman’s constant.
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2.2. The capacity of a condenser. An important tool in the study of quasireg-
ular maps is the capacity of a condenser, and we recall this idea very briefly. If
A ⊂ Rd is open, and C ⊂ A is non-empty and compact, then the pair (A,C) is
called a condenser. Its capacity, denoted by cap(A,C), is defined by

cap(A,C) := inf
u

∫

A
|∇u|d dm.

Here, the infimum is taken over all non-negative functions u ∈ C∞0 (A) that satisfy
u(x) ≥ 1, for x ∈ C.

If cap(A,C) = 0 for a bounded open set A containing C, then cap(A′, C) = 0
for every bounded open set A′ containing C (see [31, Lemma III.2.2]). In this
case, we say that C has zero capacity, and write capC = 0; otherwise we say that C
has positive capacity, and write capC > 0. For an unbounded closed set C ⊂ Rd,
we say that C has zero capacity if every compact subset of C has zero capacity.
Roughly speaking, capC = 0 means that C is a “small” set. In particular, it is well
known that any finite set has zero capacity.

2.3. The modulus of a curve family. The proof of Theorem 1.6 closely
follows the proof of [10, Theorem 1.2]. This requires us to introduce the concept
of the modulus of a curve family, although we are able to eschew all detail and
refer to [31, 36] for more information. If Γ is a family of paths in Rd, then a

non-negative Borel function ρ : Rd → R∪ {∞} is called admissible if
∫

γ
ρ ds ≥ 1,

for all locally rectifiable paths γ ∈ Γ . We let F(Γ ) be the family of all admissible
Borel functions, and let the modulus of Γ be defined by

M(Γ ) := inf
ρ∈F(Γ)

∫

Rd
ρd dm.

Finally, if G ⊂ Rd is a domain, and E, F are subsets of Ḡ, then we denote by
∆(E, F ;G) the family of all paths which have one endpoint in E, one endpoint in
F , and which otherwise are in G.

2.4. Topological prerequisites. For simplicity, we define a continuum as a

non-empty subset of R̂d which is compact and connected in R̂d. We use the

following version of [18, Theorem 2 p. 172], in which we take closures in R̂d; this
is known as a boundary bumping theorem.

Proposition 2.2. Suppose that X is a proper subset of a continuum K, and that
X′ is a connected component of X. Then, X′ ∩K \X 6= ∅.

We also need the following version of [9, Lemma 3.2]. That result, roughly
speaking, is the case of a single puncture at infinity.
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Proposition 2.3. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of

S-transcendental type. Suppose that E ⊂ R̂d is a continuum that meets S. Then, all
components of f−1(E) are S-unbounded.

Proof. Let F = f−1(E) ∪ S, and note that this is a compact subset of R̂d. If
every component of F meets S, then the result follows by applying Proposition 2.2,
with X′ any component of f−1(E) and X = K \ S, where K is the component of
F containing X′.

Otherwise, some component of F does not meet S, and hence, F can be
partitioned into two non-empty disjoint relatively closed sets H1 and H2 such that
S ⊂ H2. Then, observe that we can deduce a contradiction in a very similar way
to [9, Lemma 3.2]; the details are omitted. ❐

We also require the following, which is a version of a result established, for
example, in the proof of [25, Theorem 1.4].

Proposition 2.4. Suppose that X ⊂ R̂d \ S is closed, and that K is a component
of X which is S-bounded. Then, there is an S-bounded domain V such that K ⊂ V
and ∂V ∩X = ∅.

Proof. Note that X∪S is a compact subset of R̂d. Let T be the component of
X ∪ S that contains K. Suppose that T meets S, in which case T \ S is a proper
subset of T . Since K is a connected component of T \ S, Proposition 2.2 implies
that K is S-unbounded. This is a contradiction.

Hence, T is disjoint from S. Because T is a component of the compact set
X ∪ S, it follows from [23, Theorem 5.6] that X ∪ S can be partitioned into two
disjoint relatively closed sets H1 and H2 such that T ⊂ H1 and S ⊂ H2. The

sets H1 and H2 are closed (and so compact) in R̂d, and hence, using the spherical

metric on R̂d, there is a positive distance of 2ε between them. Let V ′ be the
ε-neighbourhood of H1 and note that this is S-bounded. We take V to be the
component of V ′ that contains T . ❐

The final result in this subsection concerns continuous functions, and is al-
most identical to [24, Lemma 2.6] (see also [34, Lemma 1]). The proof is omitted.

Lemma 2.5. Suppose that f : R̂d \ S → R̂d \ S is a continuous function, and

that (En)n∈N0 is a sequence of non-empty S-bounded subsets of R̂d \ S such that

f (En) ⊃ En+1, for n ∈ N0.

Then, there exists ξ ∈ R̂d \ S such that fn(ξ) ∈ En, for n ∈ N0.

2.5. Properties of the generalised maximum modulus functions. It is use-
ful to define some Möbius maps that will be referred to in several subsequent
proofs. First, let τ be the reflection defined by τ(∞) = ∞ and

τ(x) = τ(x1, x2, . . . , xd) = (−x1, x2, . . . , xd), for x ∈ Rd.
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We then let ϕ0 : R̂d → R̂d be the identity map, and, for j ∈ P \ {0}, we let

ϕj : R̂d → R̂d be the Möbius map defined by

ϕj(x) := τ

(
x −yj
|x −yj|2

)
.

Note that we introduce the function τ only to ensure that each ϕj is orientation
preserving. The usefulness of the maps ϕj is due to the fact that

|x|j = |ϕj(x)|, for x ∈ R̂d, j ∈ P.

In the following lemma, we gather various properties of the generalised maxi-
mum modulus functions. We later use the first part of this result without further
comment.

Lemma 2.6. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of S-tran-
scendental type. Suppose also that j, k ∈ P. Then, the following hold:

(a) Mj,k(r , f ) is increasing, for sufficiently large values of r > ρS .
(b) If A > 1, then

lim
r→∞

Mj,k(Ar , f )

Mj,k(r , f )
= ∞.

(c) We have

lim
r→∞

logMj,k(r , f )

log r
= ∞.

Proof. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of S-tran-
scendental type. Part (a) is a consequence of the fact that f is an open map. For
part (b), we consider the quasiregular map g = ϕk ◦ f ◦ ϕ

−1
j . Note that g is

defined on a punctured neighbourhood of infinity, and has an essential singularity
at infinity. We need to show that

(2.4) lim
r→∞

M(Ar,g)

M(r , g)
= ∞.

The proof of this fact is similar to the proof of [6, Lemma 3.3], and is omitted.
Part (c) is a simple consequence of part (b). ❐

2.6. Asymptotic values. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular

map of S-transcendental type. If a ∈ R̂d and j ∈ P, then we say that a is an

asymptotic value of f at the jth puncture if there is a curve γ : (0,1) → R̂d \ S such
that γ(t)→ yj and f (γ(t))→ a as t → 1.

The following is an immediate consequence of [31, Theorem VII.2.6].
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Lemma 2.7. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of S-tran-
scendental type, and that j, k ∈ P. Then, yk is an asymptotic value of f at the jth
puncture.

3. PROOF OF THEOREM 1.2 AND

THE FIRST FOUR PARTS OF THEOREM 1.3

We begin by making the following simple observation.

Proposition 3.1. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of
S-transcendental type, and that U is a neighbourhood of a point x ∈ J(f ). Then,

R̂d \O+(U) ⊂ E(f ).

Proof. Suppose that y ∈ R̂d \O+(U). It is easy to see that

f−1(y) ⊂ R̂d \O+(U).

It follows that O−(y) is contained in the finite set R̂d\O+(U), and thus y ∈ E(f )
as required. ❐

It is useful to define a set which we later show is, in fact, equal to the Julia set.

Definition 3.2. For a quasiregular map f : R̂d \ S → R̂d \ S of S-transcen-

dental type, we denote by Jcap(f ) the set of all points x ∈ R̂d \ S such that, for
every neighbourhood U of x, we have

(3.1) cap R̂d \O+(U) = 0.

Remark. For general quasiregular self-maps of Rd or R̂d, a capacity condition
such as that in (3.1) is used to define the Julia set (see [7, 12]). In those settings,
it remains a significant open problem to determine whether this is equivalent to a
“finite omitted set definition” of the Julia set such as that in Definition 1.1.

Since, by Lemma 2.7, self-maps of punctured space have at least one finite
asymptotic value at each puncture, we can make progress through the following
four propositions.

Proposition 3.3. Suppose that d ≥ 2 and K ≥ 1, and let q ∈ N be Rick-
man’s constant. Then, there exists an integer N > q with the following property. If

U1, . . . , UN are S-bounded domains in R̂d \ S with pairwise disjoint closures, and if

f : R̂d \ S → R̂d \ S is a K-quasiregular map of S-transcendental type such that, for
each j ∈ {1, . . . , N},

f (Uj) ⊃ Ui, for at least N − q values of i ∈ {1, . . . , N},

then the following both hold:
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(a) We have that Uj ∩ Jcap(f ) 6= ∅, for j ∈ {1, . . . , N}.
(b) There exists j∗ ∈ {1, . . . , N} such that capO−(y) > 0, for y ∈ Uj∗ .

Proof. The proof of these results is almost identical to certain proofs in [12],
with the function gm referred to in [12] replaced by f . For reasons of brevity, we
have not reproduced all the details here.

Choose N ∈ N, divisible by 4, such that N > max{4K,8q}. Then, (a) can
be deduced from [7, Theorem 3.2] and the definition of Jcap(f ) by the argument
used on [12, p. 161] in the “Proof of Theorem 1.1 for functions without the pits
effect.”

The proof of [12, Theorem 1.9] shows that 3N/4 of the domains Uj have the
property that capO−(y) > 0, for y ∈ Uj . ❐

The next proposition is analogous to [24, Lemma 5.1]. Here, if U ⊂ Rd and
r > 0, then we define rU := {rx : x ∈ U}. It is useful to define a topological
ring, for j ∈ P and 0 < r1 < r2, by

Aj(r1, r2) := {x ∈ Rd : r1 < |x|j < r2},

and also, for simplicity, a “standard” ring

A(r1, r2) := A0(r1, r2) = {x ∈ R
d : r1 < |x| < r2}.

Proposition 3.4. Suppose that f : R̂d \ S → R̂d \ S is a K-quasiregular map
of S-transcendental type. Suppose that α > 1, that N is an integer greater than q,
where q is Rickman’s constant, and that U ′1, . . . , U

′
N are non-empty subsets of Rd with

pairwise disjoint closures in R̂d. Then, there exists r0 > ρS such that, for all r ≥ r0

and 1 ≤ R ≤ M(r, f ),

f (A(r ,αr)) ⊃ RU ′i , for at least N − q values of i ∈ {1, . . . , N}.

In particular, if x1, . . . xq+1 ∈ R
d are distinct, then, for all sufficiently large r > ρS ,

there exists y ∈ A(r ,αr) such that f (y) ∈ {x1, . . . , xq+1}.

Proof. Suppose, by way of contradiction, that no such r0 exists. Then, there
exist sequences of real numbers (rk)k∈N and (Rk)k∈N such that (rk)k∈N increases
to ∞ and 1 ≤ Rk ≤ M(rk, f ), but f (A(rk, αrk)) does not contain RkU ′i for at
least q + 1 choices of i ∈ {1, . . . , N}. We can assume that r1 > ρS , and so

{x ∈ Rd : |x| > r1} ∩ S = ∅.

For each k ∈ N, let fk : A(1, α) → Rd be the K-quasiregular map defined by

fk(x) :=
f (rkx)

Rk
.
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Then, fk omits a point in U ′i for at least q+1 values of i. We deduce that {fk}k∈N
is a normal family on A(1, α) by the quasiregular analogue of Montel’s theorem
due to Miniowitz [21, Theorem 5].

On the other hand, by Lemma 2.7, the existence of a finite asymptotic value
for f means that there exists c > 0 such that

min
|x|=r

|f (x)| ≤ c, for r ≥ r1.

Hence,

(3.2) min
{
|fk(x)| : |x| =

1+α
2

}
≤
c

Rk
≤ c, for k ∈ N,

while also

(3.3) M

(
1+α

2
, fk

)
=
M

(
1+ α

2
rk, f

)

Rk
≥
M

(
1+α

2
rk, f

)

M(rk, f )
,

for k ∈ N.
By Lemma 2.6 (b), this last term tends to infinity as k → ∞. Therefore, (3.2)

and (3.3) together contradict the normality of the family {fk}k∈N.
The final observation of the proposition follows by taking N = q + 1, R = 1,

and U ′i = {xi}, for i ∈ {1, . . . , N}. ❐

Proposition 3.5. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of
S-transcendental type. Then, Jcap(f ) is infinite and

(3.4) capO−(x) > 0, for x ∈ Rd \ E(f ).

Proof. Suppose that f : R̂d \ S → R̂d \ S is a K-quasiregular map of S-tran-
scendental type. Take N ∈ N as in Proposition 3.3, let α = 2, and let

U ′i := A(3i,3iα), for i ∈ {1, . . . , N}.

By Lemma 2.6 (c), let s0 > ρS be sufficiently large that M(3s, f ) ≥ s, for
s ≥ s0. Let r0 be the constant from Proposition 3.4. Suppose that s ≥max{r0, s0}

and that j ∈ {1, . . . , N}. Set r = 3js, R = s, and Ui := sU ′i , for i ∈ {1, . . . , N}.
Proposition 3.4 then yields that

f (Uj) = f (A(3js,3jαs)) ⊃ Ui,

for at least N − q values of i ∈ {1, . . . , N}.
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Next, Proposition 3.3 (a) implies that

Uj ∩ Jcap(f ) 6= ∅, for j ∈ {1, . . . , N}.

By choosing arbitrarily large values of s, it follows that Jcap(f ) is infinite.
In order to prove (3.4), we take x ∈ Rd \ E(f ) and recall that, by definition,

O−(x) is infinite. It follows by the last part of Proposition 3.4 that there exists
r ′ = r ′(x) > ρS such that for all r ≥ r ′

(3.5) there exists y ∈ A(r ,2r) such that f (y) ∈ O−(x).

Now choose a large value of s ≥ r ′, and take j∗ ∈ {1, . . . , N} as given by
Proposition 3.3 (b). It follows from (3.5) that there exists y ∈ Uj∗ such that
f (y) ∈ O−(x). This implies that y ∈ O−(x), and hence that O−(y) ⊂ O−(x).
Therefore, Proposition 3.3 (b) yields capO−(x) > 0. ❐

Proposition 3.6. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of
S-transcendental type. Then,

J(f ) = Jcap(f ) ⊂ O−(x), for x ∈ Rd \ E(f ).

Proof. This is very similar to [12, Proof of Theorem 5.1]. Observe that it

follows from the definitions that J(f ) ⊂ Jcap(f ). Let x ∈ R̂d \ E(f ), and let U

be an open set intersecting Jcap(f ). By Proposition 3.5, capO−(x) > 0, and so

O+(U) ∩ O−(x) 6= ∅, by the definition of Jcap(f ). Since O+(U) is open and

O−(x) is closed, we have in fact that O+(U)∩O−(x) 6= ∅. This in turn implies
both that

x ∈ O+(U)(3.6)

and

U ∩O−(x) 6= ∅.(3.7)

It follows from (3.6), and from the fact that x ∈ R̂d \E(f ) was arbitrary, that

R̂d \O+(U) ⊂ E(f ). Since this holds for any neighbourhood U of any point of
Jcap(f ), and since E(f ) is finite, this shows that Jcap(f ) ⊂ J(f ). It follows that
J(f ) = Jcap(f ) and, in particular, J(f ) is infinite. Since (3.7) holds for every

open set U intersecting J(f ), we can also deduce that J(f ) ⊂ O−(x). ❐

We are now ready to prove the first four parts of Theorem 1.3.

Proof of Theorem 1.3 (a)–(d). We note first that J(f ) is infinite by Proposi-
tions 3.5 and 3.6. Moreover, part (b) follows from Proposition 3.6 since J(f ) is
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closed and completely invariant. We complete the proof of part (a) by using a stan-
dard argument to deduce from part (b) that J(f ) is perfect (see, e.g., [12, Proof
of Theorem 5.1(iv)]).

Next, we prove part (c), which states that J(f ) = J(f p), for p ∈ N. It is
not difficult to see that E(f ) = E(f p). It is clear that J(f p) ⊂ J(f ), and so we
need to demonstrate the reverse inclusion. Note that our proof is similar to the
proof of [12, Theorem 5.2]. In fact, we show that J(f ) \ E(f ) ⊂ J(f p); this is
sufficient because E(f ) is finite, J(f ) is perfect, and J(f p) is closed.

Suppose that x ∈ J(f ) \ E(f ), and let U be a neighbourhood of x disjoint
from E(f ). Then,

(3.8) fN(f−N(U)) = U, for N ∈ N.

Since J(f p) is infinite, and U meets J(f ), there exists m ∈ N with the
property that fm(U) ∩ J(f p) 6= ∅. Let V := fm(U) and m = pk − ℓ, with
k ∈ N and ℓ ∈ {0,1, . . . , p − 1}. Then, V = f pk(f−ℓ(U)), by (3.8). Hence,

f ℓ
( ⋃

n∈N

f pn(V)
)
⊂ f ℓ

( ⋃

n∈N

f pn(f−ℓ(U))
)
=
⋃

n∈N

f pn(U).

We deduce that

Rd \
⋃

n∈N

f pn(U) ⊂ Rd \ f ℓ
( ⋃

n∈N

f pn(V)
)

⊂
(
f ℓ(Rd) \ f ℓ

( ⋃

n∈N

f pn(V)
))
∪ E(f ℓ)

⊂ f ℓ
(
Rd \

⋃

n∈N

f pn(V)
)
∪ E(f ℓ).

This last set is finite, because E(f ℓ) = E(f ) is finite and because, by Proposi-
tion 3.1,

R
d \

⋃

n∈N

f pn(V) ⊂ E(f p) = E(f ),

since V is open and meets J(f p).
We have shown that Rd\

⋃
n∈N f

pn(U) is a finite set, for any sufficiently small
neighbourhood, U , of x. It follows that x ∈ J(f p). Thus, J(f ) \E(f ) ⊂ J(f p),
as required.

Finally we prove part (d), which states that either J(f ) is connected or it has
infinitely many components. Suppose that J(f ) has finitely many components
J1, . . . , Jn with n ∈ N. Since J(f ) is perfect, none of these components is a
singleton, and hence, each is an infinite set. By complete invariance, each image
f (Jj) is contained in some component Jk. Moreover, each Jk must contain some
image f (Jj) because every point in J(f ) \ E(f ) must have a preimage under f .
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Thus, f permutes the set of components {J1, . . . , Jn}, and so there exists p ∈ N
such that f p(Jj) ⊂ Jj , for j ∈ {1, . . . , n}. Since J(f p) = J(f ), by part (c), we
can assume that p = 1.

Let G be the complement of J1. Then, f (G) ⊂ G, and it follows from the
definition of J(f ) that G ⊂ QF(f ). Therefore, we conclude that J1 is the only
component of J(f ), as required. ❐

Finally, in this section, we prove that our definition of the Julia set agrees with
the classical definition for a transcendental analytic self-map of C∗.

Proof of Theorem 1.2. Suppose f is a transcendental analytic self-map of C∗,
and let Jclass(f ) denote the (classical) Julia set. Note that we have E(f ) = {0,∞}.
Choose any point z ∈ Jclass(f ) \ {0,∞}. The fact that z ∈ J(f ) follows from
Montel’s theorem. It follows that J(f ) = O−(z) = Jclass(f ), by Theorem 1.3 (b)
and the C∗ analogue of this result (see [13]). ❐

Remark. When studying the dynamics of analytic self-maps of C∗, one often
also includes functions such as z ֏ exp(z)/z that have an omitted pole at 0. This
map is not of S-transcendental type, although its second iterate is. Analogously,

one can consider quasiregular maps g : R̂d \ S → R̂d \ S that need not have an
essential singularity at every point of S, but for which some iterate gp is assumed
to be of S-transcendental type. For such a map g it can be shown, based on the
proof of Theorem 1.3(c), that J(g) = J(gp). From this, it follows immediately
that the conclusions of Theorem 1.2, Theorem 1.3, and Theorem 1.4 all hold for
the function g (see also the contrasting remark at the end of the next section).

4. THE FAST ESCAPING SET

In this section, we give the precise definitions of the little fast escaping sets, and
the fast escaping set, of a quasiregular map f of S-transcendental type. We then
establish some fundamental properties of these sets before proving Theorem 1.5.

We begin by considering the maximum modulus sequences that were men-
tioned in the Introduction. Given an itinerary e ∈ PN0 and a sufficiently large
R > 0, the following lemma allows us to define the maximum modulus sequence
for e starting at R by setting R0 = R and

(4.1) Rn := Men−1,en(Rn−1, f ), for n ∈ N.

Lemma 4.1. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of S-tran-
scendental type. Then, there exists R(f ) > ρS such that if R > R(f ) and e ∈ PN0 ,
then the maximum modulus sequence for e starting at R, denoted (Rn)n∈N0 , satisfies
Rn > ρS , for n ∈ N0, and so can be defined as above. Moreover, the following hold:

(a) Mj,k(r , f ) > r 2, for j, k ∈ P and r > R(f ).
(b) The sequence (Rn)n∈N0 is strictly increasing and Rn →∞ as n →∞.
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(c) If R′ > R and (R′n)n∈N0 is the maximum modulus sequence for e starting at
R′, then R′n > Rn, for n ∈ N0.

Proof. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of S-transcen-
dental type. Note that by Lemma 2.6 (c), and because P is finite, we can choose
R(f ) > max{1, ρS} sufficiently large that Mj,k(r , f ) > r 2, for j, k ∈ P and
r > R(f ). Parts (a) and (b) follow. In particular, we can define the sequence (Rn)
by (4.1), as each term is greater than ρS . By increasing R(f ) if necessary, part (c)
follows from Lemma 2.6 (a). ❐

For brevity, we refer throughout this paper to the constant R(f ) in Lemma 4.1
simply as R(f ).

Now, suppose that R > R(f ) and that e ∈ PN0 , and let (Rn)n∈N0 be the
maximum modulus sequence for e starting at R. In a way similar to what was
done in [20], for each ℓ ∈ Z we define closed sets—the little level sets—by

Aℓe(f ,R) := {x : |f ℓ+n(x)|en ≥ Rn, for n ∈ N0 such that n+ ℓ ≥ 0}.

A note on this definition. An itinerary e ∈ PN0 represents a way of approaching S
by proximity to a particular sequence (yen)n∈N0 of elements of S. Roughly speak-
ing, a point lies in Aℓe(f ,R) if its iterates tend to S with a certain itinerary, faster
than the maximum modulus sequence (Rn)n∈N0 grows for the same itinerary.

We denote the shift map by σ ; in other words, σ(e0e1 . . . ) = e1e2 . . . . We
then define the little fast escaping set Ae(f ) by

Ae(f ) :=
⋃

ℓ∈Z, k∈N0

Aℓσk(e)(f ,R).

Note that we have suppressed the dependence on R, because we show below in
Theorem 4.3(a) that this definition is independent of the choice of R, provided
that R > R(f ). We also stress that the maximum modulus sequence used in
the definition of Aℓe(f ,R) is not, in general, the same as the maximum modulus

sequence used in the definition of, for example, Aℓσ(e)(f ,R).
Finally, we define the fast escaping set by

A(f) :=
⋃

e∈PN0

Ae(f ).

Remarks. Our notation is necessarily different from that in [20]. However, it
can be shown that for a transcendental analytic self-map of C∗, our definitions of
the little fast escaping sets and fast escaping set are equivalent to those of [20].

We also observe in passing that in the case that ν = 0 and S = {∞}, which
we are not studying here, the set PN0 contains a single element, and our definition
of the fast escaping set coincides with that given in [8, 10] for a quasiregular map
with a single essential singularity at infinity.
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The following proposition is useful; the proof is almost immediate from the
definitions.

Proposition 4.2. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of
S-transcendental type, that e ∈ PN0 , and that R > R(f ). Then,

(4.2) Aℓσk(e)(f ,R) ⊂ A
ℓ+1
σk+1(e)(f ,R), for ℓ ∈ Z and k ∈ N0,

and

(4.3) Ae(f ) =
⋃

ℓ∈N0, k∈N0

Aℓσk(e)(f ,R).

Proof. Let (Rn)n∈N0 be the maximum modulus sequence for σ k(e) starting
at R, and let (R′n)n∈N0 be the maximum modulus sequence for σ k+1(e) starting
at R. It follows from Lemma 4.1 that Rn+1 > R′n, for n ∈ N0.

Suppose that x ∈ Aℓσk(e)(f ,R). It follows that

∣∣f ℓ+n+1(x)
∣∣
en+k+1

≥ Rn+1 > R
′
n, for n ∈ N0, ℓ +n+ 1 ≥ 0.

Hence, x ∈ Aℓ+1
σk+1(e)(f ,R), and (4.2) follows. Equation (4.3) follows from the

observation that if ℓ < 0, then (4.2) implies that Aℓσk(e)(f ,R) ⊂ A
0
σk−ℓ(e)

(f ,R),

for k ∈ N0. ❐

Our next result collects a number of facts concerning the fast escaping set and
the little fast escaping sets. If e and e′ are elements of PN0 , then we say that they
are equivalent if there exist integers n and m such that σn(e) = σm(e′).

Theorem 4.3. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of
S-transcendental type and that e, e′ ∈ PN0 . Then, we have the following:

(a) The definitions of Ae(f ) and A(f) are both independent of the choice of
R > R(f ).

(b) The sets A(f) and Ae(f ) are completely invariant.
(c) The sets Ae(f ) and Ae′(f ) are equal if e and e′ are equivalent, but are

disjoint otherwise. In particular, Ae(f ) = Aσ(e)(f ).

Proof. To prove part (a), we only need to prove that the definition of Ae(f ) is
independent of the choice of R > R(f ), since the fact that the definition of A(f)
is independent of the choice of R > R(f ) follows from this. Suppose, without
loss of generality, that R′ > R > R(f). It follows from Lemma 4.1 (c) that

(4.4)
⋃

ℓ∈Z, k∈N0

Aℓσk(e)(f ,R
′) ⊂

⋃

ℓ∈Z, k∈N0

Aℓσk(e)(f ,R).
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We complete the proof of (a) by showing that the reverse inclusion to (4.4)
holds. First, by Lemma 4.1 (a), we choose η ∈ N sufficiently large that the fol-
lowing holds. If ẽ ∈ PN0 and (ρn)n∈N0 is the maximum modulus sequence for ẽ
starting at R, then ρη > R′.

Let ẽ be the symbol sequence which consists of, for example, η zeros followed
by the symbols of e. Suppose that ℓ ∈ Z and k ∈ N0. Let (ρn)n∈N0 be the
maximum modulus sequence for σ k(ẽ) starting at R. By the choice of η, we have
that ρη > R′, and so it follows from Lemma 4.1 (c) and the definition of ẽ that

Aℓσk(e)(f ,R
′) ⊃ Aℓσk(e)(f , ρη) = A

ℓ
σk+η(ẽ)(f , ρη).

We claim that Aℓσk+η(ẽ)(f , ρη) ⊃ A
ℓ−η
σk(ẽ)(f ,R); suppose that x ∈ Aℓ−ησk(ẽ)(f ,R).

It follows that

|f ℓ−η+n(x)|ẽk+n ≥ ρn, for n ∈ N0, ℓ − η+n ≥ 0,

in which case

|f ℓ+n(x)|ẽk+η+n ≥ ρn+η, for n ∈ N0, ℓ +n ≥ 0.

Since (ρn+η)n∈N0 is the maximum modulus sequence for σ k+η(ẽ) starting at ρη,

we deduce that x ∈ Aℓσk+η(ẽ)(f , ρη), and the claim follows.
Combining these results, we have shown that

Aℓσk(e)(f ,R
′) ⊃ A

ℓ−η
σk(ẽ)(f ,R).

We deduce that

⋃

ℓ∈Z, k∈N0

Aℓσk(e)(f ,R
′) ⊃

⋃

ℓ∈Z, k∈N0

A
ℓ−η
σk(ẽ)(f ,R) =

⋃

ℓ∈Z, k∈N0

Aℓσk(ẽ)(f ,R)

⊃
⋃

ℓ∈Z, k∈N0

Aℓσk+η(ẽ)(f ,R) =
⋃

ℓ∈Z, k∈N0

Aℓσk(e)(f ,R),

which completes the proof of (a).
For part (b), we first prove that Ae(f ) is completely invariant. Fix R > R(f ).

Suppose that x ∈ Ae(f ), in which case there exists ℓ ∈ Z and k ∈ N0 such

that x ∈ Aℓσk(e)(f ,R). It follows that f (x) ∈ Aℓ−1
σk(e)(f ,R) ⊂ Ae(f ). The

fact that f (x) ∈ Ae(f ) implies that x ∈ Ae(f ) follows very similarly, by using
Proposition 4.2. Hence, Ae(f ) is completely invariant. It follows that the same is
true for A(f).

For part (c), we first show that Ae(f ) = Aσ(e)(f ). For, taking R > R(f ),

Aσ(e)(f ) =
⋃

ℓ∈Z, k∈N0

Aℓσk+1(e)(f ,R) =
⋃

ℓ∈Z, k∈N

Aℓσk(e)(f ,R) ⊂ Ae(f ).
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Moreover, by Proposition 4.2,

Ae(f ) =
⋃

ℓ∈Z, k∈N0

Aℓσk(e)(f ,R) ⊂
⋃

ℓ∈Z, k∈N0

Aℓ+1
σk+1(e)(f ,R)

=
⋃

ℓ∈Z, k∈N0

Aℓσk(σ(e))(f ,R) = Aσ(e)(f ).

Hence, Ae(f ) = Aσ(e)(f ), as claimed. By repeated application of this equality, it
follows that Ae(f ) = Ae′(f ) if e and e′ are equivalent.

Next, we note that if R > ρS is sufficiently large, then the sets

{x ∈ R̂d \ S : |x|j > R}, for j ∈ P,

are pairwise disjoint. The fact that Ae(f ) and Ae′(f ) are disjoint if e and e′ are
not equivalent follows from this observation. ❐

To show that each little fast escaping set is non-empty, we require a covering
result that is analogous to [8, Proposition 5.1].

Lemma 4.4. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of S-
transcendental type, and that α,β > 1. Then, there exists r0 > ρS such that, for all
r > r0 and all j, k ∈ P, there exists R > Mj,k(r , f ) such that

f (Aj(r ,αr)) ⊃ Ak(R,βR).

Proof. Since P is a finite set, it suffices to show that there exists such an r0 for
any given j, k ∈ P. Suppose that j, k ∈ P, and consider the quasiregular map
g = ϕk◦f ◦ϕ

−1
j , which is quasiregular on a punctured neighbourhood of∞, and

has an essential singularity at ∞. We need to prove that there exists r0 > ρS such
that for all r > r0 there exists R > M(r , g) such that g(A(r ,αr)) ⊃ A(R,βR).
The proof of this, using, for example, equation (2.4), is almost identical to that of
Proposition 5.1 in [8] and is omitted. ❐

Proof of Theorem 1.5. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map
of S-transcendental type, and that e ∈ PN0 . Let R > R(f ), where R(f ) is the
constant from Lemma 4.1, and let (Rn)n∈N0 be the maximum modulus sequence
for e starting at R. These definitions are in place throughout the proof.

First, we prove that Ae(f ) is non-empty. Let (rn)n∈N0 be an increasing se-
quence of real numbers greater than R such that

rn+1 > Men,en+1(rn, f ), for n ∈ N0,(4.5)

and

f (Aen(rn,2rn)) ⊃ Aen+1(rn+1,2rn+1), for n ∈ N0.(4.6)
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The existence of such a sequence follows from Lemma 4.4, with α = β = 2.
Observe that it follows from (4.5) and from Lemma 2.6 (a) that

(4.7) rn ≥ Rn, for n ∈ N0.

From (4.6), by using Lemma 2.5, there is a point ξ ∈ Ae0(r0,2r0) with
the property that fn(ξ) ∈ Aen(rn,2rn), for n ∈ N. Note that the fact that
ξ ∈ Ae(f ) follows from (4.7).

The proof that all components of Ae(f ) are S-unbounded is as follows. By
Theorem 4.3 (a), we can assume that R is as large as we wish. In particular, we
assume that R = R0 is sufficiently large that the following holds for all r > R0: if
j, k ∈ P and x ∈ Rd is such that r/2 ≤ |x|j < r , then

(4.8) |f (x)|k < Mj,k(r , f ).

Every point in Ae(f ) lies in a little level set Aℓσk(e)(f ,R) for some ℓ, k ∈ N0,
by Proposition 4.2. We aim to prove that every component of all such sets is
S-unbounded. Since e is arbitrary, we can assume that k = 0. Next, we show
that there is no loss of generality in assuming that ℓ = 0. To see this, suppose
that y ∈ Aℓe(f ,R) and that f ℓ(y) lies in an S-unbounded component X of
A0
e(f ,R). Recalling that A0

e(f ,R) is closed, it follows by Proposition 2.3 that
the component of f−ℓ(X) containing y is S-unbounded. Therefore, because
f−ℓ(X) ⊂ Aℓe(f ,R), the pointy lies in an S-unbounded component ofAℓe(f ,R).

It remains to show that all components of

A := A0
e(f ,R) = {x ∈ R̂d \ S : |fn(x)|en ≥ Rn for n ∈ N0}

are S-unbounded. We take ξ ∈ A and aim to show that ξ lies in a connected
subset of A that is S-unbounded.

Fix a natural number n, and define sets

Xn,j := f−j({x ∈ R̂d \ S : |x|en ≥ Rn}), for j ∈ {0,1, . . . , n}.

These sets are all closed (recall that topological operations are taken in R̂d \ S).
Moreover, by Proposition 2.3, all components of these sets are S-unbounded.

For each j ∈ {0,1, . . . , n}, let Ln,j denote the component of Xn,j that con-
tains fn−j(ξ); clearly these sets are also closed and connected. We claim that

(4.9) Ln,j ⊂ {x ∈ R̂d \ S : |x|en−j ≥ Rn−j}, for j ∈ {0,1, . . . , n}.

It is clear that (4.9) holds when j = 0. Now suppose that (4.9) holds when
j = p − 1, for some p ∈ {1, . . . , n}. Suppose, by way of contradiction, that there
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exists w ∈ Ln,p such that |w|en−p < Rn−p. Since Ln,p is connected and contains
fn−p(ξ), it follows that there exists w′ ∈ Ln,p such that

Rn−p/2 ≤ |w′|en−p < Rn−p.

Note that f (w′) ∈ Ln,p−1, and so

|f (w′)|en−p+1 ≥ Rn−p+1 = Men−p,en−p+1(Rn−p, f ).

We deduce a contradiction to (4.8).
For simplicity, we set Ln := Ln,n. We have obtained that, for each n ∈ N,

Ln is a closed, connected, S-unbounded set, lying in {x ∈ R̂d \ S : |x|e0 ≥ R0}.

Moreover, since Ln is S-unbounded and {x ∈ R̂d : |x|e0 ≥ R0} ∩ S = {ye0}, by
the choice of R0, we have that Ln ∪ {ye0} is connected, and is a continuum.

From (4.9), we see that Ln+1,1 ⊂ Xn,0, and it easily follows that Ln+1 ⊂ Ln.
We deduce that (Ln ∪ {ye0})n∈N is a nested sequence of continua, each of which
contains ξ and ye0 . It then follows, by [22, Theorem 1.8], that

K =
⋂

n∈N

(Ln ∪ {ye0})

is a continuum containing ξ and ye0 . Observe also that K \ {ye0} ⊂ A.
Finally, we let X′ be the component of K \ {ye0} that contains ξ. Clearly, X′

is connected, and it follows by Proposition 2.2, with X = K \ {ye0}, that X′ is
S-unbounded, as required. ❐

Remark. It is natural to ask if A(f) = A(f p), holds for p ∈ N; this is known
to be true for quasiregular maps of Rd of transcendental type [8, Proposition 3.1].
In fact, this is not the case, even for transcendental analytic self-maps of C∗. For
example, let f be the transcendental analytic self-map of C∗ given by

f (z) := exp(exp(1/z)+ z).

It can be shown that if x > 0 is large, then x ∈ Ae(f ), where e = 00 . . . . Hence,
x ∈ A(f). However, M0,0(r , f 2) ≥ exp exp(er/2), for large values of r . We can
deduce that x ∉ A(f 2), and so A(f) 6= A(f 2).

5. THE BOUNDARY OF THE FAST ESCAPING SET

In this section, we prove Theorem 1.6. We begin by considering the set BO(f ) of
points whose forward orbit is S-bounded; in other words,

BO(f ) := {x ∈ R̂d \ S : ∃L > 0 s.t. |f k(x)|j < L, for k ∈ N0, j ∈ P}.

Proposition 5.1. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of
S-transcendental type. Then, BO(f ) is infinite.
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Proof. Let q be Rickman’s constant. By taking N = q + 1 and applying
Proposition 3.4 as in the proof of Proposition 3.5, we see that for any suffi-
ciently large s > ρS , the sets Ui = A(3is,2 · 3is) have the property that, for
each j ∈ {1, . . . , N}, there exists i ∈ {1, . . . , N} such that f (Uj) ⊃ Ui. It follows
that there exists j′ ∈ {1, . . . , N} and p ∈ N such that f p(Uj′) ⊃ Uj′ . Since
s > ρS , the sets Ui are all S-bounded. We can deduce, using Lemma 2.5, that
there exists ξ ∈ Uj′ such that f kp(ξ) ∈ Uj′ , for k ∈ N0. Hence, ξ ∈ BO(f ).
Since we are free to choose s arbitrarily large, we deduce that BO(f ) is infinite. ❐

We require the following, which is extracted from the proof of Theorem 3.3
in [32]. If a ∈ Rd and r > 0, then we let B(a, r) := {x ∈ Rd : |x − a| < r}.

Lemma 5.2. Suppose that G ⊂ Rd is an unbounded domain with the property
that there exist δ > 0 and r0 > 0 such that

(5.1) cap(B(0,2r), (Rd \G)∩ B(0, r )) ≥ δ, for r ≥ r0.

Suppose that g : G → Rd is a non-constant quasiregular map such that |g(x0)| > 1,
for some x0 ∈ G, and

(5.2) lim sup
x→y

|g(x)| ≤ 1, for y ∈ ∂G,

where the boundary in (5.2) is taken in Rd. Then, there exist α > 1, β ∈ (0,1), and
ρ0 > 0 such that if r/α > s > ρ0, then

log logMG(s, g) ≤

(
log(r/s)

logα
− 1

)
log(1− β) + log logMG(r , g),

where MG(r , g) = sup{|g(x)| : x ∈ G, |x| = r}.

We observe that the condition (5.1) certainly holds if Rd \ G contains an
unbounded curve (see, e.g., [32, Remark 3.4]). We use Lemma 5.2 to prove the
following.

Lemma 5.3. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of S-
transcendental type. Then, there exist ρ0 > ρS , α > 1, and B > 0 such that if
r/α > s > ρ0 and j, k ∈ P, then

(5.3) log
logMj,k(r , f )

logMj,k(s, f )
≥ B log

r

s
.

Proof. Since P is a finite set, it will suffice to prove the result for some fixed
choice of j, k ∈ P. By (1.1), the map g := ϕk ◦ f ◦ϕ

−1
j is quasiregular on the

set {x ∈ Rd : |x| ≥ ρS}. It follows from Lemma 2.7, together with the fact that
ν > 0, that there is a curve Γ which accumulates only at infinity and on which g is
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bounded. By taking a subcurve of Γ , if necessary, we can assume that Γ is simple,
and that Γ ⊂ {x ∈ Rd : |x| > ρS}. It follows that

G := {x ∈ Rd : |x| > ρS} \ Γ

is a domain. Note that g is unbounded on G because g has an essential singularity
at infinity. We deduce by Lemma 5.1, applied to a constant multiple of g, that
there exist ρ0 > ρS , α > 1, and B,C > 0 such that, for r/α > s > ρ0,

log
logMj,k(r , f )

logMj,k(s, f )
= log

logMG(r , g)

logMG(s, g)
≥ 2B log

(
r

s

)
− C.

The result follows, by increasing α if necessary. ❐

Next, we apply Lemma 5.3 to compare the rate of growth of two related
maximum modulus sequences.

Lemma 5.4. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of S-tran-
scendental type. Let ρ0, α, and B be as given by Lemma 5.3. Suppose that R > R(f )
satisfies

(5.4) R >max{ρ0, α, exp(2/B)} and
logMj,k(R, f )

logR
≥ exp(1), for j, k ∈ P.

Let e ∈ PN0 , and let (Rn)n∈N0 be the maximum modulus sequence for e starting
at R, and let (Sn)n∈N0 be the maximum modulus sequence for σ(e) starting at R.
Then,

(5.5) log
logRn

logSn−1
≥ En,

for n ≥ 1, where (En) denotes the iterated exponential sequence given by E1 = 1 and
En = exp(En−1) for n ≥ 2.

Note that by Lemma 2.6 (c), all sufficiently large R satisfy condition (5.4)
above.

Proof of Lemma 5.4. The n = 1 case holds because

log
logR1

logS0
= log

logMe0,e1(R, f )

logR
≥ 1 = E1,

by (5.4). We assume n ≥ 2 and

log
logRn−1

logSn−2
≥ En−1,
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and we aim to prove (5.5). Our assumption implies that

Rn−1/Sn−2 ≥ Sn−2
En−1 ≥ REn−1 > α.

Using (5.4) and Lemma 5.3 now leads to

log
logRn

logSn−1
= log

logMen−1,en(Rn−1, f )

logMen−1,en(Sn−2, f )
≥ B log

Rn−1

Sn−2

≥ B(En − 1) logR ≥ 2(En − 1) ≥ En. ❐

Proof of Theorem 1.6. Suppose that f : R̂d \ S → R̂d \ S is a quasiregular
map of S-transcendental type. Let e ∈ PN0 . Suppose first that x ∈ J(f ), and

let U ⊂ R̂d \ S be a neighbourhood of x. It follows from Proposition 5.1, and
the definition of the Julia set, that there exist ξ0 ∈ U and n0 ∈ N such that
fn0(ξ0) ∈ BO(f ). We deduce that U meets the complement of Ae(f ). By
Theorem 1.5, Ae(f ) contains an S-unbounded component, and so is infinite.
Hence, we can deduce in the same way that there exists ξ1 ∈ U and n1 ∈ N such
that fn1(ξ1) ∈ Ae(f ). We deduce, by Theorem 4.3 (b), that U meets Ae(f ).
Since U was arbitrary, we conclude that J(f ) ⊂ ∂Ae(f ). It follows by a similar
argument that J(f ) ⊂ ∂A(f ).

We next show that ∂Ae(f ) ⊂ J(f ), for each e ∈ PN0 . The proof of this
fact is similar to the proof of [10, Theorem 1.2], although we give sufficient detail
to show how that proof transfers into our setting. We note that a key difference
between [10, Theorem 1.2] and Theorem 1.6 is that, in our setting, a result on the
growth of the generalised maximum modulus functions (equation (5.3)) always
holds, whereas, for the transcendental-type quasiregular self-maps of Rd that are
studied in [10], an analogous property must be taken as an additional hypothesis.

We now let e ∈ PN0 , and suppose, by way of contradiction, that there exists
a point x0 ∈ ∂Ae(f ) such that x0 ∉ J(f ). Since J(f ) is closed, we can let r > 0
be sufficiently small that

B(x0,4r)∩ (J(f )∪ S) = ∅.

We can also assume, since J(f ) = Jcap(f ) (see Proposition 3.6), that r is suffi-
ciently small that the iterates of f omit a set of positive capacity in B(x0,4r).

Since x0 ∈ ∂Ae(f ), we can choose points

xA ∈ B(x0, r )∩Ae(f ) and xN ∈ B(x0, r ) \Ae(f ).

We take R > R(f ) sufficiently large that condition (5.4) is satisfied. From Theo-
rem 4.3 (a) and Proposition 4.2, we see that there exist ℓ ∈ N0 and k ∈ N0 such

that xA ∈ A
ℓ
σk(e)(f ,R). Let (Rn)n∈N0 be the maximum modulus sequence for

σ k(e) starting at R, and let (Sn)n∈N0 be the maximum modulus sequence for
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σ k+1(e) starting at R. Lemma 5.4 tells us that Rn grows much faster than Sn−1;
our aim is to seek a contradiction to this fact.

By the definition of Aℓσk(e)(f ,R), we have that

|f ℓ+n(xA)|ek+n ≥ Rn, for n ∈ N0.

We claim that, on the other hand, the fact that xN ∉ Ae(f ) implies that there
exists an infinite set N ⊂ N such that

|f ℓ+n(xN)|ek+n < Sn−1, for n ∈N .(5.6)

For, suppose that (5.6) does not hold, in which case there exists n0 ∈ N such that

|f ℓ+n(xN)|ek+n ≥ Sn−1, for n ≥ n0.(5.7)

Set ℓ′ = ℓ+n0, k′ = k+n0 and S′n = Sn0−1+n, for n ∈ N0. It follows from (5.7)
that

|f ℓ
′+n(xN)|ek′+n ≥ S

′
n, for n ≥ 0.

Since (Sn)n∈N0 is the maximum modulus sequence for σ k+1(e) starting at R, it
follows that (S′n)n∈N0 is the maximum modulus sequence for σ k

′
(e) starting at

S′0. It follows that xN ∈ A
ℓ′

σk′ (e)
(f , S′0) and so xN ∈ Ae(f ). This contradiction

completes the proof of our claim (5.6).
Next, for n ∈N , we set

XA,n := {x ∈ B(x0,2r) : |f ℓ+n(x)|ek+n ≥ Rn}

and

XN,n := {x ∈ B(x0,2r) : |f ℓ+n(x)|ek+n ≤ Sn−1}.

For I ∈ {A,N} and n ∈N , we denote the component of XI,n that contains xI by
YI,n. We assert that the closures of YA,n and YN,n both meet ∂B(x0,2r). In fact,
Proposition 2.3 tells us that all components of (f ℓ+n)−1(E) are S-unbounded

when E is either {y ∈ R̂d : |y|ek+n ≥ Rn} or {y ∈ R̂d : |y|ek+n ≤ Sn−1}, and
this implies our assertion. In particular, the connected sets YA,n and YN,n both
have diameter at least r .

Now, recalling notation from Section 2.3, let

Γn := ∆(YA,n, YN,n;B(x0,2r)).

Following [10], we note that by [36, Lemma 5.42], there exists ε = ε(d) > 0 such
that

(5.8) M(Γn) ≥ ε, for n ∈N .
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On the other hand, suppose that n ∈ N , and let F be the quasiregular map
F := ϕek+n ◦ f

ℓ+n. For exactly the same reasons as in [10], we can deduce that
there is a constant L = L(d) > 0 such that

(5.9) M(Γn) ≤ LKO(F)KI(F)
(

log
logRn

logSn−1

)1−d

.

Now, by (2.3), we have KI(F) ≤ KI(f )ℓ+n and KO(F) ≤ KO(f )ℓ+n. Hence, with
K = (KO(f )KI(f ))1/(d−1), we obtain, by using (5.8) and (5.9), that there is a
constant L′ = L′(d, f , ℓ) > 0 such that

log
logRn

logSn−1
≤ L′Kn.

This is in contradiction to (5.5) for large n ∈ N , and so ∂Ae(f ) ⊂ J(f ) as
required.

It remains to show that J(f ) = ∂A(f ). Since we have that J(f ) ⊂ ∂A(f ),
we need to show that ∂A(f ) ⊂ J(f ). Suppose, by way of contradiction, that
there exists x ∈ ∂A(f ) ∩ QF(f ). Let U ⊂ QF(f ) be a neighbourhood of x.
Then, U meets A(f), and so there exists e ∈ PN0 such that U meets Ae(f ). Since
∂Ae(f ) = J(f ), it follows that U ⊂ Ae(f ), and so U ⊂ A(f). This contradiction
completes the proof. ❐

6. PROOF OF THE FINAL PART OF THEOREM 1.3

Suppose that f : R̂d\S → R̂d\S is a quasiregular map of S-transcendental type. In
this section, we prove Theorem 1.3 (e), which states that J(f ) has no S-bounded
components.

Suppose, by way of contradiction, that K is an S-bounded component of
J(f ). Since J(f ) is closed, it follows by Proposition 2.4, with X = J(f ), that
there is an S-bounded domain V such that K ⊂ V and ∂V ⊂ QF(f ).

By Corollary 1.8, there exists e ∈ PN0 such that Ae(f ) ⊂ J(f ). Each point of
K is in J(f ), and so, by Theorem 1.6, is also in ∂Ae(f ). It follows that V meets
Ae(f ). Hence, ∂V also meets Ae(f ), because, by Theorem 1.5, every component
of Ae(f ) is S-unbounded. However, ∂V lies in QF(f ) and Ae(f ) does not meet
QF(f ). This contradiction completes the proof.

7. PROOF OF THEOREM 1.4

Suppose that f : R̂d \ S → R̂d \ S is a quasiregular map of S-transcendental type.
We first show that all quasi-Fatou components of f are S-full. Suppose, by way of
contradiction, that U is a quasi-Fatou component of f that is S-hollow. Let X be
an S-bounded complementary component of U . Clearly, X meets J(f ) and so X
contains a component of J(f ). Hence, this component of J(f ) is S-bounded, in
contradiction to Theorem 1.3 (e).
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In the remainder of the proof, for simplicity, complementary components are

taken in R̂d. We need to show that the number of quasi-Fatou components of
f having more than one complementary component is at most ν. Suppose, by
way of contradiction, that there is a set V that is the union of ν + 1 quasi-Fatou
components, each of which has more than one complementary component. We
can show by an inductive argument that V has at least ν + 2 complementary
components.

Since S has ν+1 elements, it follows that V has a complementary component
X which does not meet S. Then, X certainly meets J(f ) and so X contains a com-
ponent of J(f ). Hence, this component of J(f ) is S-bounded, in contradiction
to Theorem 1.3 (e).
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