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Real entire functions

A meromorphic function f is said to be real if (z) is real or
infinite whenever z is real; that is, f(R) C R U {oco}.
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Real entire functions

Definition
A meromorphic function f is said to be real if (z) is real or
infinite whenever z is real; that is, f(R) C R U {oco}.

There have been several recent successes in the study of real entire
functions and their zeros.
@ Proof of Wiman's conjecture: If f is real entire and the zeros
of f and " are all real, then f belongs to the Laguerre-Pdlya
class and so all derivatives of f have only real zeros.
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Real entire functions

Definition
A meromorphic function f is said to be real if (z) is real or
infinite whenever z is real; that is, f(R) C R U {oco}.

There have been several recent successes in the study of real entire
functions and their zeros.

@ Proof of Wiman's conjecture: If f is real entire and the zeros
of f and " are all real, then f belongs to the Laguerre-Pdlya
class and so all derivatives of f have only real zeros.

o For any real entire f the number of non-real zeros of f(k)
tends to 0 or co as k — oo.
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Real entire functions

Definition
A meromorphic function f is said to be real if (z) is real or
infinite whenever z is real; that is, f(R) C R U {oco}.

There have been several recent successes in the study of real entire
functions and their zeros.

@ Proof of Wiman's conjecture: If f is real entire and the zeros
of f and " are all real, then f belongs to the Laguerre-Pdlya
class and so all derivatives of f have only real zeros.

o For any real entire f the number of non-real zeros of f(k)
tends to 0 or co as k — oo.

What can be done for real meromorphic functions?
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A classification question

Classify meromorphic f such that f, f’ and f” have only real zeros
and poles.
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A classification question

Problem
Classify meromorphic f such that f, f’ and f” have only real zeros
and poles.

Entire case settled by Hellerstein, Shen and Williamson.
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A classification question

Classify meromorphic f such that f, ' and f” have only real zeros
and poles.

Entire case settled by Hellerstein, Shen and Williamson.

Theorem (HSW 1977-83)

If f is entire and f, f/, f” have only real zeros, then f is one of

o Aeb?

o A(e’ — ) ABeC

o Aexp (ef(cz+d) c,d, KeER

o Aexp{K (i(cz+d)— ei(cz+d))} a=0, bz, eR

° Azme—az2+bz H (1 _ 5) ez/z,,

Zn
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Strictly non-real case

A meromorphic function is said to be strictly non-real if it is not
a constant multiple of a real function.
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Definition
A meromorphic function is said to be strictly non-real if it is not
a constant multiple of a real function.

Strictly non-real case of classification problem also settled by HSW.
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Strictly non-real case

A meromorphic function is said to be strictly non-real if it is not
a constant multiple of a real function.

Strictly non-real case of classification problem also settled by HSW.

Theorem (HSW)

A meromorphic strictly non-real f with real poles (at least one)
such that f, f/, f” have real zeros is either

Ae—i(cz+d) Aexp {_2,’((2 4 d) _ 2e2i(cz+d)}
—— o
sin(cz + d) sin?(cz + d)

where A is complex, ¢, d are real and Ac # 0.
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Open case

The only remaining case of the classification problem is:

Classify real meromorphic f with real poles (at least one) such that
f, f' and f" have real zeros.
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Open case

The only remaining case of the classification problem is:

Classify real meromorphic f with real poles (at least one) such that
f, f' and f have real zeros.

o A difficult open problem.

@ An example of such a function is

az+ Atan(cz+d)+ A with a, A, ¢, d, A real.
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Open case

The only remaining case of the classification problem is:

Classify real meromorphic f with real poles (at least one) such that
f, f' and f have real zeros.

o A difficult open problem.

@ An example of such a function is
az+ Atan(cz+d)+ A with a, A, ¢, d, A real.

@ Other examples: (tanz +4)tanz and tan®z —9tanz.
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The derivative of the first example never takes the value «:

di (az + Atan(cz + d) + A) = a + Acsec®(cz + d).
z
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The derivative of the first example never takes the value «:
d 2
e (az + Atan(cz + d) + A) = a+ Acsec™(cz + d).
4

Are there other examples that satisfy the extra condition f' # «a?

Dan Nicks Real Meromorphic Functions



The derivative of the first example never takes the value «:

di (az + Atan(cz + d) + A) = a + Acsec®(cz + d).

V4

Are there other examples that satisfy the extra condition f' # «a?
No other transcendental examples if a =0...

Theorem (Hellerstein, Shen and Williamson)

If f is real transcendental meromorphic with real zeros and poles
(at least one of each), f’ # 0 and f” has real zeros then

f(z) = Atan(cz+d)+ A A c,d,AeR.
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... and still no other examples if &« #0. ..
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... and still no other examples if &« #0. ..

Theorem (Hinkkanen and Rossi)

Suppose f is real transcendental meromorphic with real poles (at
least one) and f, ' have real zeros. If f' omits some non-zero
value «, then « is real and

f(z) =az+ Atan(cz+d)+ A A c,d,AeR.

Further, the zeros of f” are real.
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... and still no other examples if &« #0. ..

Theorem (Hinkkanen and Rossi)

Suppose f is real transcendental meromorphic with real poles (at
least one) and f, ' have real zeros. If f' omits some non-zero
value «, then « is real and

f(z) =az+ Atan(cz+d)+ A A c,d,AeR.
Further, the zeros of f” are real.

@ Kohs and Williamson showed that the above result holds
without assuming that f is real or transcendental.
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... and still no other examples if &« #0. ..

Theorem (Hinkkanen and Rossi)

Suppose f is real transcendental meromorphic with real poles (at
least one) and f, ' have real zeros. If f' omits some non-zero
value «, then « is real and

f(z) =az+ Atan(cz+d)+ A A c,d,AeR.
Further, the zeros of f” are real.

@ Kohs and Williamson showed that the above result holds
without assuming that f is real or transcendental.

@ We will extend the above in a different direction.
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Extension of Hinkkanen and Rossi's result

Theorem 1 (N. '08)

Let f be real transcendental meromorphic such that all but finitely
many of the poles of f and zeros of f’ are real.
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Extension of Hinkkanen and Rossi's result

Theorem 1 (N. '08)

Let f be real transcendental meromorphic such that all but finitely
many of the poles of f and zeros of f’ are real. If f’ takes some
non-zero value « only finitely often then @ € R and

v P(z)eicz - %e—icz
f(Z) o + )\’D(z)eicz _i_ﬁe—icz A (1)

where A, ¢, A are real and P is a polynomial.
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Extension of Hinkkanen and Rossi's result

Theorem 1 (N. '08)

Let f be real transcendental meromorphic such that all but finitely
many of the poles of f and zeros of f’ are real. If f’ takes some
non-zero value « only finitely often then @ € R and

v P(z)eicz - %e—icz
f(Z) o + )\’D(z)eicz _i_%e—icz A (1)

where A, ¢, A are real and P is a polynomial.
Further, all but finitely many of the zeros of f and " are real.

Examples
o P(z) = e then (1) becomes az — Atan(cz + d) + A.
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Extension of Hinkkanen and Rossi's result

Theorem 1 (N. '08)

Let f be real transcendental meromorphic such that all but finitely
many of the poles of f and zeros of f’ are real. If f’ takes some
non-zero value « only finitely often then @ € R and

v P(z)eicz - %e—icz
f(Z) o + )\’D(z)eicz _i_%e—icz A (1)

where A, ¢, A are real and P is a polynomial.
Further, all but finitely many of the zeros of f and " are real.

Examples
o P(z) = e then (1) becomes az — Atan(cz + d) + A.
zsinz 4 cosz

P = ', =1 tf = )\ A.
° (Z) zHic ge (Z) azt SInZ—ZCOSZ+
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Sketch of proof

@ « is real: else f’ takes values «, @ finitely often.
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Sketch of proof

@ « is real: else f’ takes values «, @ finitely often.

o f(z) —az = {1 where wi, wy solve a differential equation

w” 4+ 3S(z)w = 0.

Dan Nicks Real Meromorphic Functions



Sketch of proof

@ « is real: else f’ takes values «, @ finitely often.

o f(z) —az = {1 where wi, wy solve a differential equation
w” 4+ 3S(z)w = 0.
@ Find solutions to DE on a domain D. Re-arranging gives

kPeicz 4 /Qe—icz
Peicz + Qe—icz

f(z) =az+ on D, (2)

where k, | are complex constants and P2, Q2 are polynomials.
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Sketch of proof

@ « is real: else f’ takes values «, @ finitely often.

o f(z) —az = {1 where wi, wy solve a differential equation
w” 4+ 3S(z)w = 0.
@ Find solutions to DE on a domain D. Re-arranging gives

kPeicz 4 /Qe—icz

Peicz + Qe—icz on D’ (2)

f(z) =az+

where k, | are complex constants and P2, Q2 are polynomials.
@ Show that P and Q are polynomials, and so (2) holds on C.
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Sketch of proof

a is real: else f’ takes values «, @ finitely often.

f(z) — az = |1 where wi, w; solve a differential equation
w” 4+ 3S(z)w = 0.
@ Find solutions to DE on a domain D. Re-arranging gives

kPeicz 4 /Qe—icz

Peicz + Qe—icz on D’ (2)

f(z) =az+

where k, | are complex constants and P2, Q2 are polynomials.
Show that P and @ are polynomials, and so (2) holds on C.

As f is a real function can now show (2) gives required form.
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Sketch of proof

a is real: else f’ takes values «, @ finitely often.

o f(z) —az = {1 where wi, wy solve a differential equation
w” 4+ 3S(z)w = 0.
@ Find solutions to DE on a domain D. Re-arranging gives

kPeicz 4 /Qe—icz

f(z) =az+ Peicz - Qe—icz

on D, (2)

where k, | are complex constants and P2, Q2 are polynomials.
@ Show that P and Q are polynomials, and so (2) holds on C.
@ As f is a real function can now show (2) gives required form.

e Finally, find enough real zeros of f, f” that there cannot be
infinitely many other (non-real) zeros.
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A result without assuming f real
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A result without assuming f real

Theorem 2 (N. '08)

Let f be transcendental meromorphic such that all but finitely
many of the zeros and poles of f’ are real, and f'(z) = a only
finitely often for some o € C\ {0}.
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A result without assuming f real

Theorem 2 (N. '08)

Let f be transcendental meromorphic such that all but finitely
many of the zeros and poles of f’ are real, and f'(z) = a only
finitely often for some o € C\ {0}. Then either

D P(Z)eicz_%eficz
f(Z) o < u )\P(Z)eicz _i_ﬁe—icz) v B’

where \,c € R, B € C, P polynomial; or
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Theorem 2 (N. '08)

Let f be transcendental meromorphic such that all but finitely
many of the zeros and poles of f’ are real, and f'(z) = a only
finitely often for some o € C\ {0}. Then either

D P(Z)eicz_%eficz
f(Z) o < u )\P(Z)eicz _i_ﬁe—icz) v B’

where \,c € R, B € C, P polynomial; or

f(z) = az + R(z)e* + B, where R(z) is rational.
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A result without assuming f real

Theorem 2 (N. '08)

Let f be transcendental meromorphic such that all but finitely
many of the zeros and poles of f’ are real, and f'(z) = a only
finitely often for some o € C\ {0}. Then either

D P(Z)eicz_%eficz
f(Z) o < u )\P(Z)eicz _i_ﬁe—icz) v B’

where \,c € R, B € C, P polynomial; or
f(z) = az + R(z)e + B, where R(z) is rational.

The second case can occur. For example,

3—iz , z+i\*
f(z) =az+ —ae’?, fl(z)=a+ - ae”.
z— | z— |
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A result without assuming f real

Theorem 2 (N. '08)

Let f be transcendental meromorphic such that all but finitely
many of the zeros and poles of f’ are real, and f'(z) = a only
finitely often for some av € C\ {0}. Then either

D P(Z)eicz_%eficz
f(Z) o ( T )\P(Z)eicz +(Z)e—icz> + B’

where \,c € R, B € C, P polynomial; or

f(z) = az + R(2)e* + B, where R(z) is rational.

Corollary

For f as above, all but finitely many of the zeros of f” are real.
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