Real Meromorphic Functions

Daniel Nicks

University of Nottingham
Dan.Nicks@maths.nottingham.ac.uk

11 June 2009

Real entire functions

Definition

A meromorphic function f is said to be real if $f(z)$ is real or infinite whenever z is real; that is, $f(\mathbb{R}) \subseteq \mathbb{R} \cup\{\infty\}$.

Real entire functions

Definition

A meromorphic function f is said to be real if $f(z)$ is real or infinite whenever z is real; that is, $f(\mathbb{R}) \subseteq \mathbb{R} \cup\{\infty\}$.

There have been several recent successes in the study of real entire functions and their zeros.

Real entire functions

Definition

A meromorphic function f is said to be real if $f(z)$ is real or infinite whenever z is real; that is, $f(\mathbb{R}) \subseteq \mathbb{R} \cup\{\infty\}$.

There have been several recent successes in the study of real entire functions and their zeros.

- Proof of Wiman's conjecture: If f is real entire and the zeros of f and $f^{\prime \prime}$ are all real, then f belongs to the Laguerre-Pólya class and so all derivatives of f have only real zeros.

Real entire functions

Definition

A meromorphic function f is said to be real if $f(z)$ is real or infinite whenever z is real; that is, $f(\mathbb{R}) \subseteq \mathbb{R} \cup\{\infty\}$.

There have been several recent successes in the study of real entire functions and their zeros.

- Proof of Wiman's conjecture: If f is real entire and the zeros of f and $f^{\prime \prime}$ are all real, then f belongs to the Laguerre-Pólya class and so all derivatives of f have only real zeros.
- For any real entire f the number of non-real zeros of $f^{(k)}$ tends to 0 or ∞ as $k \rightarrow \infty$.

Real entire functions

Definition

A meromorphic function f is said to be real if $f(z)$ is real or infinite whenever z is real; that is, $f(\mathbb{R}) \subseteq \mathbb{R} \cup\{\infty\}$.

There have been several recent successes in the study of real entire functions and their zeros.

- Proof of Wiman's conjecture: If f is real entire and the zeros of f and $f^{\prime \prime}$ are all real, then f belongs to the Laguerre-Pólya class and so all derivatives of f have only real zeros.
- For any real entire f the number of non-real zeros of $f^{(k)}$ tends to 0 or ∞ as $k \rightarrow \infty$.

What can be done for real meromorphic functions?

A classification question

Problem
Classify meromorphic f such that f, f^{\prime} and $f^{\prime \prime}$ have only real zeros and poles.

A classification question

Problem

Classify meromorphic f such that f, f^{\prime} and $f^{\prime \prime}$ have only real zeros and poles.

Entire case settled by Hellerstein, Shen and Williamson.

A classification question

Problem

Classify meromorphic f such that f, f^{\prime} and $f^{\prime \prime}$ have only real zeros and poles.

Entire case settled by Hellerstein, Shen and Williamson.

Theorem (HSW 1977-83)

If f is entire and $f, f^{\prime}, f^{\prime \prime}$ have only real zeros, then f is one of

- $A e^{B z}$
- $A\left(e^{i c z}-e^{i d}\right)$
$A, B \in \mathbb{C}$
- $A \exp \left(e^{i(c z+d)}\right)$
$c, d, K \in \mathbb{R}$
- $A \exp \left\{K\left(i(c z+d)-e^{i(c z+d)}\right)\right\}$
$a \geq 0, \quad b, z_{n} \in \mathbb{R}$
- $A z^{m} e^{-a z^{2}+b z} \Pi\left(1-\frac{z}{z_{n}}\right) e^{z / z_{n}}$

Strictly non-real case

Definition

A meromorphic function is said to be strictly non-real if it is not a constant multiple of a real function.

Strictly non-real case

Definition

A meromorphic function is said to be strictly non-real if it is not a constant multiple of a real function.

Strictly non-real case of classification problem also settled by HSW.

Strictly non-real case

Definition

A meromorphic function is said to be strictly non-real if it is not a constant multiple of a real function.

Strictly non-real case of classification problem also settled by HSW.

Theorem (HSW)

A meromorphic strictly non-real f with real poles (at least one) such that $f, f^{\prime}, f^{\prime \prime}$ have real zeros is either

$$
\frac{A e^{-i(c z+d)}}{\sin (c z+d)} \quad \text { or } \quad \frac{A \exp \left\{-2 i(c z+d)-2 e^{2 i(c z+d)}\right\}}{\sin ^{2}(c z+d)}
$$

where A is complex, c, d are real and $A c \neq 0$.

Open case

The only remaining case of the classification problem is:

Problem

Classify real meromorphic f with real poles (at least one) such that f, f^{\prime} and $f^{\prime \prime}$ have real zeros.

Open case

The only remaining case of the classification problem is:

Problem

Classify real meromorphic f with real poles (at least one) such that f, f^{\prime} and $f^{\prime \prime}$ have real zeros.

- A difficult open problem.

Open case

The only remaining case of the classification problem is:

Problem

Classify real meromorphic f with real poles (at least one) such that f, f^{\prime} and $f^{\prime \prime}$ have real zeros.

- A difficult open problem.
- An example of such a function is

$$
\alpha z+\lambda \tan (c z+d)+A \quad \text { with } \alpha, \lambda, c, d, A \text { real. }
$$

Open case

The only remaining case of the classification problem is:

Problem

Classify real meromorphic f with real poles (at least one) such that f, f^{\prime} and $f^{\prime \prime}$ have real zeros.

- A difficult open problem.
- An example of such a function is

$$
\alpha z+\lambda \tan (c z+d)+A \quad \text { with } \alpha, \lambda, c, d, A \text { real. }
$$

- Other examples: $(\tan z+4) \tan z$ and $\tan ^{3} z-9 \tan z$.

The derivative of the first example never takes the value α :

$$
\frac{d}{d z}(\alpha z+\lambda \tan (c z+d)+A)=\alpha+\lambda c \sec ^{2}(c z+d) .
$$

The derivative of the first example never takes the value α :

$$
\frac{d}{d z}(\alpha z+\lambda \tan (c z+d)+A)=\alpha+\lambda c \sec ^{2}(c z+d)
$$

Are there other examples that satisfy the extra condition $f^{\prime} \neq \alpha$?

The derivative of the first example never takes the value α :

$$
\frac{d}{d z}(\alpha z+\lambda \tan (c z+d)+A)=\alpha+\lambda c \sec ^{2}(c z+d)
$$

Are there other examples that satisfy the extra condition $f^{\prime} \neq \alpha$? No other transcendental examples if $\alpha=0 \ldots$

Theorem (Hellerstein, Shen and Williamson)

If f is real transcendental meromorphic with real zeros and poles (at least one of each), $f^{\prime} \neq 0$ and $f^{\prime \prime}$ has real zeros then

$$
f(z)=\lambda \tan (c z+d)+A \quad \lambda, c, d, A \in \mathbb{R}
$$

\ldots and still no other examples if $\alpha \neq 0 \ldots$
\ldots and still no other examples if $\alpha \neq 0 \ldots$

Theorem (Hinkkanen and Rossi)

Suppose f is real transcendental meromorphic with real poles (at least one) and f, f^{\prime} have real zeros. If f^{\prime} omits some non-zero value α, then α is real and

$$
f(z)=\alpha z+\lambda \tan (c z+d)+A \quad \lambda, c, d, A \in \mathbb{R}
$$

Further, the zeros of $f^{\prime \prime}$ are real.
\ldots and still no other examples if $\alpha \neq 0 \ldots$

Theorem (Hinkkanen and Rossi)

Suppose f is real transcendental meromorphic with real poles (at least one) and f, f^{\prime} have real zeros. If f^{\prime} omits some non-zero value α, then α is real and

$$
f(z)=\alpha z+\lambda \tan (c z+d)+A \quad \lambda, c, d, A \in \mathbb{R}
$$

Further, the zeros of $f^{\prime \prime}$ are real.

- Kohs and Williamson showed that the above result holds without assuming that f is real or transcendental.
\ldots and still no other examples if $\alpha \neq 0 \ldots$

Theorem (Hinkkanen and Rossi)

Suppose f is real transcendental meromorphic with real poles (at least one) and f, f^{\prime} have real zeros. If f^{\prime} omits some non-zero value α, then α is real and

$$
f(z)=\alpha z+\lambda \tan (c z+d)+A \quad \lambda, c, d, A \in \mathbb{R}
$$

Further, the zeros of $f^{\prime \prime}$ are real.

- Kohs and Williamson showed that the above result holds without assuming that f is real or transcendental.
- We will extend the above in a different direction.

Extension of Hinkkanen and Rossi's result

Theorem 1 (N. '08)

Let f be real transcendental meromorphic such that all but finitely many of the poles of f and zeros of f^{\prime} are real.

Extension of Hinkkanen and Rossi's result

Theorem 1 (N. '08)

Let f be real transcendental meromorphic such that all but finitely many of the poles of f and zeros of f^{\prime} are real. If f^{\prime} takes some non-zero value α only finitely often then $\alpha \in \mathbb{R}$ and

Extension of Hinkkanen and Rossi's result

Theorem 1 (N. '08)

Let f be real transcendental meromorphic such that all but finitely many of the poles of f and zeros of f^{\prime} are real. If f^{\prime} takes some non-zero value α only finitely often then $\alpha \in \mathbb{R}$ and

$$
\begin{equation*}
f(z)=\alpha z+i \lambda \frac{P(z) e^{i c z}-\overline{P(\bar{z})} e^{-i c z}}{P(z) e^{i c z}+\overline{P(\bar{z})} e^{-i c z}}+A \tag{1}
\end{equation*}
$$

where λ, c, A are real and P is a polynomial.

Extension of Hinkkanen and Rossi's result

Theorem 1 (N. '08)

Let f be real transcendental meromorphic such that all but finitely many of the poles of f and zeros of f^{\prime} are real. If f^{\prime} takes some non-zero value α only finitely often then $\alpha \in \mathbb{R}$ and

$$
\begin{equation*}
f(z)=\alpha z+i \lambda \frac{P(z) e^{i c z}-\overline{P(\bar{z})} e^{-i c z}}{P(z) e^{i c z}+\overline{P(\bar{z})} e^{-i c z}}+A \tag{1}
\end{equation*}
$$

where λ, c, A are real and P is a polynomial.
Further, all but finitely many of the zeros of f and $f^{\prime \prime}$ are real.

Extension of Hinkkanen and Rossi's result

Theorem 1 (N. '08)

Let f be real transcendental meromorphic such that all but finitely many of the poles of f and zeros of f^{\prime} are real. If f^{\prime} takes some non-zero value α only finitely often then $\alpha \in \mathbb{R}$ and

$$
\begin{equation*}
f(z)=\alpha z+i \lambda \frac{P(z) e^{i c z}-\overline{P(\bar{z})} e^{-i c z}}{P(z) e^{i c z}+\overline{P(\bar{z})} e^{-i c z}}+A \tag{1}
\end{equation*}
$$

where λ, c, A are real and P is a polynomial.
Further, all but finitely many of the zeros of f and $f^{\prime \prime}$ are real.
Examples

- $P(z) \equiv e^{i d}$ then (1) becomes $\alpha z-\lambda \tan (c z+d)+A$.

Extension of Hinkkanen and Rossi's result

Theorem 1 (N. '08)

Let f be real transcendental meromorphic such that all but finitely many of the poles of f and zeros of f^{\prime} are real. If f^{\prime} takes some non-zero value α only finitely often then $\alpha \in \mathbb{R}$ and

$$
\begin{equation*}
f(z)=\alpha z+i \lambda \frac{P(z) e^{i c z}-\overline{P(\bar{z})} e^{-i c z}}{P(z) e^{i c z}+\overline{P(\bar{z})} e^{-i c z}}+A \tag{1}
\end{equation*}
$$

where λ, c, A are real and P is a polynomial.
Further, all but finitely many of the zeros of f and $f^{\prime \prime}$ are real.
Examples

- $P(z) \equiv e^{i d}$ then (1) becomes $\alpha z-\lambda \tan (c z+d)+A$.
- $P(z)=z+i, c=1$ get $f(z)=\alpha z+\lambda \frac{z \sin z+\cos z}{\sin z-z \cos z}+A$.

Sketch of proof

- α is real: else f^{\prime} takes values $\alpha, \bar{\alpha}$ finitely often.

Sketch of proof

- α is real: else f^{\prime} takes values $\alpha, \bar{\alpha}$ finitely often.
- $f(z)-\alpha z=\frac{w_{1}}{w_{2}}$ where w_{1}, w_{2} solve a differential equation

$$
w^{\prime \prime}+\frac{1}{2} S(z) w=0
$$

Sketch of proof

- α is real: else f^{\prime} takes values $\alpha, \bar{\alpha}$ finitely often.
- $f(z)-\alpha z=\frac{w_{1}}{w_{2}}$ where w_{1}, w_{2} solve a differential equation

$$
w^{\prime \prime}+\frac{1}{2} S(z) w=0
$$

- Find solutions to DE on a domain D. Re-arranging gives

$$
\begin{equation*}
f(z)=\alpha z+\frac{k P e^{i c z}+I Q e^{-i c z}}{P e^{i c z}+Q e^{-i c z}} \quad \text { on } D \tag{2}
\end{equation*}
$$

where k, I are complex constants and P^{2}, Q^{2} are polynomials.

Sketch of proof

- α is real: else f^{\prime} takes values $\alpha, \bar{\alpha}$ finitely often.
- $f(z)-\alpha z=\frac{w_{1}}{w_{2}}$ where w_{1}, w_{2} solve a differential equation

$$
w^{\prime \prime}+\frac{1}{2} S(z) w=0
$$

- Find solutions to DE on a domain D. Re-arranging gives

$$
\begin{equation*}
f(z)=\alpha z+\frac{k P e^{i c z}+I Q e^{-i c z}}{P e^{i c z}+Q e^{-i c z}} \quad \text { on } D \tag{2}
\end{equation*}
$$

where k, l are complex constants and P^{2}, Q^{2} are polynomials.

- Show that P and Q are polynomials, and so (2) holds on \mathbb{C}.

Sketch of proof

- α is real: else f^{\prime} takes values $\alpha, \bar{\alpha}$ finitely often.
- $f(z)-\alpha z=\frac{w_{1}}{w_{2}}$ where w_{1}, w_{2} solve a differential equation

$$
w^{\prime \prime}+\frac{1}{2} S(z) w=0
$$

- Find solutions to DE on a domain D. Re-arranging gives

$$
\begin{equation*}
f(z)=\alpha z+\frac{k P e^{i c z}+I Q e^{-i c z}}{P e^{i c z}+Q e^{-i c z}} \quad \text { on } D \tag{2}
\end{equation*}
$$

where k, I are complex constants and P^{2}, Q^{2} are polynomials.

- Show that P and Q are polynomials, and so (2) holds on \mathbb{C}.
- As f is a real function can now show (2) gives required form.

Sketch of proof

- α is real: else f^{\prime} takes values $\alpha, \bar{\alpha}$ finitely often.
- $f(z)-\alpha z=\frac{w_{1}}{w_{2}}$ where w_{1}, w_{2} solve a differential equation

$$
w^{\prime \prime}+\frac{1}{2} S(z) w=0
$$

- Find solutions to DE on a domain D. Re-arranging gives

$$
\begin{equation*}
f(z)=\alpha z+\frac{k P e^{i c z}+I Q e^{-i c z}}{P e^{i c z}+Q e^{-i c z}} \quad \text { on } D \tag{2}
\end{equation*}
$$

where k, I are complex constants and P^{2}, Q^{2} are polynomials.

- Show that P and Q are polynomials, and so (2) holds on \mathbb{C}.
- As f is a real function can now show (2) gives required form.
- Finally, find enough real zeros of $f, f^{\prime \prime}$ that there cannot be infinitely many other (non-real) zeros.

A result without assuming f real

A result without assuming f real

Theorem 2 (N. '08)

Let f be transcendental meromorphic such that all but finitely many of the zeros and poles of f^{\prime} are real, and $f^{\prime}(z)=\alpha$ only finitely often for some $\alpha \in \mathbb{C} \backslash\{0\}$.

A result without assuming f real

Theorem 2 (N. '08)

Let f be transcendental meromorphic such that all but finitely many of the zeros and poles of f^{\prime} are real, and $f^{\prime}(z)=\alpha$ only finitely often for some $\alpha \in \mathbb{C} \backslash\{0\}$. Then either

$$
f(z)=\alpha\left(z+i \lambda \frac{P(z) e^{i c z}-\overline{P(\bar{z})} e^{-i c z}}{P(z) e^{i c z}+\overline{P(\bar{z})} e^{-i c z}}\right)+B
$$

where $\lambda, c \in \mathbb{R}, \quad B \in \mathbb{C}, \quad P$ polynomial; or

A result without assuming f real

Theorem 2 (N. '08)

Let f be transcendental meromorphic such that all but finitely many of the zeros and poles of f^{\prime} are real, and $f^{\prime}(z)=\alpha$ only finitely often for some $\alpha \in \mathbb{C} \backslash\{0\}$. Then either

$$
f(z)=\alpha\left(z+i \lambda \frac{P(z) e^{i c z}-\overline{P(\bar{z})} e^{-i c z}}{P(z) e^{i c z}+\overline{P(\bar{z})} e^{-i c z}}\right)+B
$$

where $\lambda, c \in \mathbb{R}, \quad B \in \mathbb{C}, \quad P$ polynomial; or

$$
f(z)=\alpha z+R(z) e^{i c z}+B, \quad \text { where } R(z) \text { is rational. }
$$

A result without assuming f real

Theorem 2 (N. '08)

Let f be transcendental meromorphic such that all but finitely many of the zeros and poles of f^{\prime} are real, and $f^{\prime}(z)=\alpha$ only finitely often for some $\alpha \in \mathbb{C} \backslash\{0\}$. Then either

$$
f(z)=\alpha\left(z+i \lambda \frac{P(z) e^{i c z}-\overline{P(\bar{z})} e^{-i c z}}{P(z) e^{i c z}+\overline{P(\bar{z})} e^{-i c z}}\right)+B
$$

where $\lambda, c \in \mathbb{R}, \quad B \in \mathbb{C}, \quad P$ polynomial; or

$$
f(z)=\alpha z+R(z) e^{i c z}+B, \quad \text { where } R(z) \text { is rational. }
$$

The second case can occur. For example,

$$
f(z)=\alpha z+\frac{3-i z}{z-i} \alpha e^{i z}, \quad f^{\prime}(z)=\alpha+\left(\frac{z+i}{z-i}\right)^{2} \alpha e^{i z}
$$

A result without assuming f real

Theorem 2 (N. '08)

Let f be transcendental meromorphic such that all but finitely many of the zeros and poles of f^{\prime} are real, and $f^{\prime}(z)=\alpha$ only finitely often for some $\alpha \in \mathbb{C} \backslash\{0\}$. Then either

$$
f(z)=\alpha\left(z+i \lambda \frac{P(z) e^{i c z}-\overline{P(\bar{z})} e^{-i c z}}{P(z) e^{i c z}+\overline{P(\bar{z})} e^{-i c z}}\right)+B
$$

where $\lambda, c \in \mathbb{R}, \quad B \in \mathbb{C}, \quad P$ polynomial; or

$$
f(z)=\alpha z+R(z) e^{i c z}+B, \quad \text { where } R(z) \text { is rational. }
$$

Corollary

For f as above, all but finitely many of the zeros of $f^{\prime \prime}$ are real.

