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Real entire functions

Definition

A meromorphic function f is said to be real if f (z) is real or
infinite whenever z is real; that is, f (R) ⊆ R ∪ {∞}.

There have been several recent successes in the study of real entire
functions and their zeros.

Proof of Wiman’s conjecture: If f is real entire and the zeros
of f and f ′′ are all real, then f belongs to the Laguerre-Pólya
class and so all derivatives of f have only real zeros.

For any real entire f the number of non-real zeros of f (k)

tends to 0 or ∞ as k →∞.

What can be done for real meromorphic functions?
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A classification question

Problem

Classify meromorphic f such that f , f ′ and f ′′ have only real zeros
and poles.

Entire case settled by Hellerstein, Shen and Williamson.

Theorem (HSW 1977-83)

If f is entire and f , f ′, f ′′ have only real zeros, then f is one of

AeBz

A(e icz − e id)

A exp
(
e i(cz+d)

)
A exp

{
K
(
i(cz + d)− e i(cz+d)

)}
Azme−az2+bz

∏(
1− z

zn

)
ez/zn

A,B ∈ C
c, d ,K ∈ R
a ≥ 0, b, zn ∈ R
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Strictly non-real case

Definition

A meromorphic function is said to be strictly non-real if it is not
a constant multiple of a real function.

Strictly non-real case of classification problem also settled by HSW.

Theorem (HSW)

A meromorphic strictly non-real f with real poles (at least one)
such that f , f ′, f ′′ have real zeros is either

Ae−i(cz+d)

sin(cz + d)
or

A exp
{
−2i(cz + d)− 2e2i(cz+d)

}
sin2(cz + d)

where A is complex, c , d are real and Ac 6= 0.
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Open case

The only remaining case of the classification problem is:

Problem

Classify real meromorphic f with real poles (at least one) such that
f , f ′ and f ′′ have real zeros.

A difficult open problem.

An example of such a function is

αz + λ tan(cz + d) + A with α, λ, c , d ,A real.

Other examples: (tan z + 4) tan z and tan3 z − 9 tan z .
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The derivative of the first example never takes the value α:

d

dz

(
αz + λ tan(cz + d) + A

)
= α + λc sec2(cz + d).

Are there other examples that satisfy the extra condition f ′ 6= α?
No other transcendental examples if α = 0 . . .

Theorem (Hellerstein, Shen and Williamson)

If f is real transcendental meromorphic with real zeros and poles
(at least one of each), f ′ 6= 0 and f ′′ has real zeros then

f (z) = λ tan(cz + d) + A λ, c , d ,A ∈ R.
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. . . and still no other examples if α 6= 0 . . .

Theorem (Hinkkanen and Rossi)

Suppose f is real transcendental meromorphic with real poles (at
least one) and f , f ′ have real zeros. If f ′ omits some non-zero
value α, then α is real and

f (z) = αz + λ tan(cz + d) + A λ, c, d ,A ∈ R.

Further, the zeros of f ′′ are real.

Kohs and Williamson showed that the above result holds
without assuming that f is real or transcendental.

We will extend the above in a different direction.
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Extension of Hinkkanen and Rossi’s result

Theorem 1 (N. ’08)

Let f be real transcendental meromorphic such that all but finitely
many of the poles of f and zeros of f ′ are real.

If f ′ takes some
non-zero value α only finitely often then α ∈ R and

f (z) = αz + iλ
P(z)e icz − P(z)e−icz

P(z)e icz + P(z)e−icz
+ A (1)

where λ, c ,A are real and P is a polynomial.
Further, all but finitely many of the zeros of f and f ′′ are real.

Examples

P(z) ≡ e id then (1) becomes αz − λ tan(cz + d) + A.

P(z) = z + i , c = 1 get f (z) = αz + λ
z sin z + cos z

sin z − z cos z
+ A.
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Sketch of proof

α is real: else f ′ takes values α, α finitely often.

f (z)− αz = w1
w2

where w1, w2 solve a differential equation

w ′′ + 1
2S(z)w = 0.

Find solutions to DE on a domain D. Re-arranging gives

f (z) = αz +
kPe icz + lQe−icz

Pe icz + Qe−icz
on D, (2)

where k , l are complex constants and P2, Q2 are polynomials.

Show that P and Q are polynomials, and so (2) holds on C.

As f is a real function can now show (2) gives required form.

Finally, find enough real zeros of f , f ′′ that there cannot be
infinitely many other (non-real) zeros.
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A result without assuming f real

Theorem 2 (N. ’08)

Let f be transcendental meromorphic such that all but finitely
many of the zeros and poles of f ′ are real, and f ′(z) = α only
finitely often for some α ∈ C \ {0}. Then either

f (z) = α

(
z + iλ

P(z)e icz − P(z)e−icz

P(z)e icz + P(z)e−icz

)
+ B,

where λ, c ∈ R, B ∈ C, P polynomial; or

f (z) = αz + R(z)e icz + B, where R(z) is rational.

The second case can occur. For example,

f (z) = αz +
3− iz

z − i
αe iz , f ′(z) = α +

(
z + i

z − i

)2

αe iz .
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Corollary

For f as above, all but finitely many of the zeros of f ′′ are real.
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