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Introduction

A Riemann surface is essentially a two-dimensional surface that locally looks like the complex plane.
Many concepts of complex analysis generalise to Riemann surfaces. In particular, we can define
analytic and meromorphic functions on them. The first aim of this essay is to show that every
Riemann surface admits non-constant meromorphic functions. To achieve this we will appeal to
the Uniformisation Theorem. This states that any Riemann surface can be expressed as a quotient
of a complex domain by a group of conformal1 self-maps of that domain. This group of maps
is necessarily discontinuous—the orbit of any point can only accumulate on the boundary of the
domain. The search for a non-constant meromorphic function on the Riemann surface is then
reduced to finding an automorphic function on the domain. A meromorphic function is said to
be automorphic with respect to a group of maps if the action of the maps leaves the value of the
function unchanged: letting Γ denote the group, a meromorphic function f(z) is automorphic if,

f(z) = f(Tz) for all T ∈ Γ.

An automorphic function assigns values to the orbits of the group and so gives a well-defined
function on the quotient space—our original Riemann surface. The discontinuity of the group of
conformal maps is immediately seen to be vital; without it the Isolated Values Theorem would
doom any automorphic function to be constant.

The first two sections of this essay are devoted to building up the necessary results on discon-
tinuous groups and their associated geometry. In the third section we discuss Riemann surfaces
and see how the Uniformisation Theorem will lead us to our goal of constructing non-constant
meromorphic functions on them. The end of this third section and the whole of the fourth contain
the existence proofs for the automorphic functions required to complete the story.

In the penultimate section we develop further the underlying geometry of a discontinuous group.
We put these results to use in the final section where we deal with the second aim of this essay:
exposing how quotient spaces similar to those encountered in the Uniformisation Theorem can be
given the structure of a Riemann surface.

The primary sources for this essay were the two books by Joseph Lehner. Sections 1, 2.3, 5 and
6 draw mainly from [1], while Sections 2.1, 2.2 and 4 are based more on [2]. Also consulted were
Beardon’s book [3] on discrete groups and Ford’s book [4] in which he introduced the isometric
circle. Acknowledgment is also due to Dr Kovalev and Dr Carne for their lecture courses on
Riemann Surfaces and Advanced Complex Variable.

1 Discontinuous Groups

In this first section we will introduce discontinuous groups of conformal mappings and examine
some of their properties.

Definition. Let Γ be a group of conformal maps of C∞ onto itself2. A point z ∈ C∞ is a limit
point of Γ if there exists a sequence of distinct maps Tn ∈ Γ and a point w ∈ C∞ such that
Tn(w) → z. The limit set of Γ is simply the set of all limit points of Γ and will be denoted by L.
The complement C∞ \ L is the set of ordinary points of Γ which we denote by O. The group Γ is
said to be discontinuous if O is non-empty and is discontinuous on U if U ⊆ O.

1A conformal map is simply an analytic bijection.
2By C∞ we mean the extended complex plane C ∪ {∞}, also called the Riemann sphere (see Section 3.1).
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Since we are considering conformal self-maps of C∞ we are in fact dealing with subgroups of
the group of Möbius transformations [5, §2.1]. A general Möbius map takes the form,

z 7−→ az + b

cz + d

for some complex coefficients a, b, c, d such that ad − bc 6= 0. We can always normalise so that
ad − bc = 1 and throughout this essay we shall assume that this normalisation has been carried
out. We adopt the usual conventions regarding the point ∞. For example, under the above map
∞ has image a/c and pre-image −d/c.

It is often useful to consider the map

z 7−→ az + b

cz + d

as the complex 2 × 2 matrix
(

a b
c d

)

.

It is a simple exercise in algebra to see that this gives a group homomorphism with composition
and inversion of maps corresponding to matrix multiplication and inversion. At this point we
should note that the matrices A and −A represent the same Möbius transformation. It is not
hard to see that the set of all normalised Möbius transformations is isomorphic to PSL(2,C), the
quotient group of all 2 × 2 complex matrices with determinant 1 under the equivalence A ∼ −A.
Consequently, we may refer to a Möbius map in its matrix form, provided we bear in mind the ±A
equivalence.

The group of Möbius maps naturally carries with it the topology of uniform convergence (with
respect to the chordal metric on C∞). The corresponding group of complex matrices can be viewed
as a subset of C

4 and so inherits the subspace topology. Intuitively, one would hope that the
convergence of Möbius maps is related to the convergence of representing matrices. The topologies
do indeed coincide appropriately, as is shown in [3, §4.5].

A group Γ of Möbius transformations naturally acts on C∞. We say that two points z, w ∈ C∞

are equivalent (under Γ) if there exists T ∈ Γ such that T (z) = w. This defines an equivalence
relation on C∞, the equivalence classes being the orbits of Γ. We write the orbit of z as,

Γz = {Tz : T ∈ Γ} .

Observe that an orbit of Γ can only accumulate at a limit point of Γ.

We shall now establish some results regarding the structure of discontinuous groups.

Definition. A group of matrices is discrete if it contains no elementwise convergent sequence of
distinct matrices. The limit need not be a member of the group.

We shall soon see that the discontinuity of a group of Möbius maps is closely related to the
discreteness of the corresponding group of matrices. As always, we consider groups of matrices
with determinant 1.

Lemma 1.1. A group Γ is discrete iff it contains no sequence of distinct matrices converging to
the identity.
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Proof. If Γ contains a sequence of distinct matrices converging to I then by definition it is not
discrete.

Conversely, suppose that Γ is not discrete and so contains a distinct sequence Tn → T . Note
that,

detT = lim detTn = 1

so the inverse T−1 exists and T−1
n → T−1 implying that,

T−1
n+1Tn → T−1T = I.

The latter sequence is in Γ so it simply remains to show that it has a subsequence of distinct
elements. If this is not the case then eventually (i.e. for all sufficiently large n) T−1

n+1Tn = I and so
Tn+1 = Tn. This contradicts the fact that the Tn are all distinct.

Theorem 1.2. A discontinuous group is discrete.

Proof. Recall that matrix convergence corresponds to the convergence of Möbius maps. Suppose
that Γ is not discrete. By the previous lemma there exists a distinct sequence Tn in Γ such that
Tn → I. Then for all z ∈ C∞ we have Tnz → z so that z is a limit point of Γ. Hence Γ is not
discontinuous.

Lemma 1.3. A discontinuous group is countable.

Proof. Let Γ be a discontinuous group. With each element

(

a b
c d

)

∈ Γ associate the point

(a, b, c, d) ∈ C
4. If Γ is uncountable then so is the set of such points in C

4. Hence some closed
ball in C

4 must contain uncountably many points. Since such a ball is compact we can find a
convergent sequence of these points. This corresponds to an elementwise convergent sequence of
distinct matrices in Γ, which contradicts the preceding theorem that Γ is discrete.

From this point on we shall largely restrict our attention to groups of mappings that preserve
either the unit disc, D = {z ∈ C : |z| < 1}, or the upper half plane, H = {z ∈ C : Im z > 0}. Such
discontinuous groups are called Fuchsian groups. The Riemann Mapping Theorem provides the
motivation for making this restriction: the theorem states that any simply-connected domain in C

(other than C itself) is conformally equivalent to D. If we let U be such a domain, let h : U 7→ D be
a conformal map and take a discontinuous group Γ of conformal self-maps of U , then Γ′ = hΓh−1

is an equivalent Fuchsian group. Therefore, by studying Fuchsian groups we study discontinuous
groups of conformal maps on any simply-connected domain.

One consequence of this is the Uniformisation Theorem that allows us to express ‘most’ Rie-
mann surfaces as a quotient of D by a discontinuous group. If we wish to consider meromorphic
functions on these Riemann surfaces then we are led quite naturally to seek automorphic functions
for Fuchsian groups. We shall return to these ideas later.

Note that we may freely move between the disc and the upper half plane since D is conformally
mapped onto H by the Möbius transformation z 7→ i(1+z)

1−z
. This allows us to work in whichever

space is most convenient.

We recall that the conformal maps fixing H are precisely the Möbius maps with real coefficients,
while the conformal self-maps of D are those Möbius transformations that take the form,

(

a b̄
b ā

)

, where |a|2 − |b|2 = 1.
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Note that these maps act on the whole of C∞ and preserve not only D (respectively H) but also
∂D and C∞ \ D (respectively ∂H and C∞ \ H).

We now establish a converse to Theorem 1.2 for Fuchsian groups.

Theorem 1.4. A discrete group Γ of conformal self-maps of H is discontinuous on H.

Proof. Suppose that Γ has a limit point z0 ∈ H. Then there exists a distinct sequence T1, T2, . . . in
Γ such that Tnw → z0 for some w = x + iy. Elements of Γ preserve H so w ∈ H (i.e. y > 0). By
transforming by the normalised real Möbius map that sends i to w,

A : z 7−→ y
1

2 z + xy−
1

2

y−
1

2

we may instead consider Γ′ = A−1ΓA which must also be discrete. The transformed group Γ′ has
limit point z1 = A−1z0 and contains the distinct sequence T ′

n = A−1TnA such that,

T ′

ni = A−1Tnw → z1.

Now write T ′

n =

(

an bn
cn dn

)

. Since z1 ∈ H we have that,

Im T ′

ni =
1

c2n + d2
n

→ Im z1 > 0

from which we deduce that the sequences cn and dn are bounded. We also have,

|T ′

ni|2 =
a2

n + b2n
c2n + d2

n

→ |z1|2

so the sequences an and bn are also bounded. Therefore, we can find a convergent subsequence of
the T ′

n. This contradicts the fact that Γ′ is discrete.

Corollary 1.5. A discrete group of conformal maps that preserve H has L ⊆ R ∪ {∞}. That is,
all limit points lie on the boundary of H.

Proof. The proof of the theorem shows that L ∩ H = ∅. An almost identical argument applies for
a limit point in the lower half plane. Hence L ∩ (C \ H) = ∅. Therefore L ⊆ ∂H.

Remark 1.6. These results do of course apply to D as well as to H. In particular, the limit set of
a Fuchsian group lies on the boundary of the preserved domain.

Example. We close this section with a quick look at some Fuchsian groups on H. A famous
example is the modular group,

SL(2,Z) =

{(

a b
c d

)

: a, b, c, d ∈ Z, ad− bc = 1

}

This is clearly a real discrete group, so by Theorem 1.4 it is discontinuous on H. Any subgroup
of SL(2,Z) will also be Fuchsian, for example the grandly-titled principal congruence subgroup of
level n,

Γ(n) =

{(

a b
c d

)

∈ SL(2,Z) :

(

a b
c d

)

≡ ±I (mod n)

}

We shall learn more about Γ(2) in Section 2.3.
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2 Geometry of Γ

In this section we shall introduce two geometric objects that arise from discontinuous groups:
isometric circles and fundamental regions.

2.1 The Isometric Circle

Definition. For a transformation T (z) = az+b
cz+d

not fixing ∞, the isometric circle of T is defined as

I(T ) = {z ∈ C : |cz + d| = 1}

We note immediately that c 6= 0 for a transformation that does not fix ∞, so the isometric
circle is indeed a circle of radius |c|−1 with centre −d/c. The isometric circle is the set of points
for which |T ′(z)| = 1. This explains the name: on the isometric circle the infinitesimal euclidean
length is unchanged by T .

Lemma 2.1. The transformation T maps3

I(T )
the interior of I(T )
the exterior of I(T )







onto







I(T−1)
the exterior of I(T−1)
the interior of I(T−1)

Proof. This is just a quick calculation. If T (z) = az+b
cz+d

then,

T−1(z) =
dz − b

−cz + a
and so I(T−1) = {z ∈ C : |cz − a| = 1}

|cT (z) − a| =

∣

∣

∣

∣

c
az + b

cz + d
− a

∣

∣

∣

∣

=

∣

∣

∣

∣

caz + bc− acz − ad

cz + d

∣

∣

∣

∣

=
1

|cz + d|
Therefore,

z ∈ I(T ) ⇒ |cz + d| = 1 ⇒ |cT (z) − a| = 1 ⇒ T (z) ∈ I(T−1)

z ∈ Int I(T ) ⇒ |cz + d| < 1 ⇒ |cT (z) − a| > 1 ⇒ T (z) ∈ Ext I(T−1)

z ∈ Ext I(T ) ⇒ |cz + d| > 1 ⇒ |cT (z) − a| < 1 ⇒ T (z) ∈ Int I(T−1)

2.2 Fundamental Regions

We have already remarked that a discontinuous group Γ of Möbius self-maps of a domain D
partitions D into orbits. We shall also be interested in the quotient space D/Γ. Therefore, it is
natural to consider subsets of D obtained by selecting one point from each of the group’s orbits.
This section discusses how we can construct such sets possessing useful geometric and topological
properties.

Definition. Let Γ be a discontinuous group of self-maps of D. A set F ⊆ D is a fundamental set
for Γ if F contains exactly one point of the orbit Γz for every z ∈ D.

Since it is often more convenient to work with open sets, we shall chiefly deal with a slightly
modified concept.

3By the interior of a circle we mean the set of points enclosed within the circle, rather than the topological set
interior.
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Definition. An open set R ⊆ D is a fundamental region for Γ if,

(i) R contains a point of Γz for all z ∈ D

(ii) No two points of R are equivalent under Γ

By forming the union of a fundamental region R with some of its boundary points we can obtain
a fundamental set F such that R ⊂ F ⊂ R.

So far there is no reason to believe that a fundamental region has any geometric structure. In
fact, for Fuchsian groups, it is possible to construct simply-connected fundamental regions bounded
by line segments and arcs of circles. The two primary ways of achieving this are the normal polygons
of Poincaré and Ford’s approach using isometric circles. We shall return to normal polygons in
Section 5.2. For now, we follow Ford’s method.

Definition. For Γ a Fuchsian group acting on D with no non-identity element fixing ∞, let the
region R0 be the set of points external to all isometric circles. That is,

R0 = {z ∈ C∞ : z ∈ Ext I(T ) for all T ∈ Γ \ {I}}

We note that all non-identity elements have isometric circles since they must not fix ∞.

It can be shown that R0 is open and that R0 ∩ D is a fundamental region for Γ (see [2, p115]).
We shall just establish those properties of R0 that will be needed later when we come to prove the
existence of non-constant automorphic functions. For the rest of this section we assume that Γ is
a Fuchsian group on D such that no non-identity element fixes ∞.

Theorem 2.2. R0 does not contain two equivalent points.

Proof. Let z ∈ R0 and T ∈ Γ \ {I}. Since z lies outside the isometric circle I(T ), the point T (z)
lies inside I(T−1) by Lemma 2.1. Hence T maps z outside R0, so no two distinct points of R0 can
be equivalent under Γ.

Lemma 2.3. There exists b̃ > 0 such that for all

(

a b̄
b ā

)

∈ Γ \ {I} we have |b| > b̃.

Proof. We will show that the set B =

{

b :

(

a b̄
b ā

)

∈ Γ

}

has no finite accumulation points. We

will then be done—zero cannot be an accumulation point of B, and an element of Γ with b = 0
fixes ∞, and so, by our assumption on Γ, it can only be the identity.

The proof is by contradiction. Suppose there exist distinct

(

an b̄n
bn ān

)

in Γ such that bn → b.

Then,
|an|2 − |bn|2 = 1 ⇒ |an|2 → 1 + |b|2

Hence the sequences an, bn are bounded and so we can find a convergent subsequence,

(

anj
b̄nj

bnj
ānj

)

.

This contradicts Theorem 1.2 that Γ is discrete.

Remark 2.4. Moreover, for a distinct sequence

(

an b̄n
bn ān

)

in Γ, we must have |bn| → ∞. Oth-

erwise bn possesses a convergent subsequence in contradiction to the above.

Theorem 2.5. R0 contains a neighbourhood of ∞. That is, there exists ρ such that

{z : |z| > ρ} ⊆ R0.
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Proof. This is equivalent to showing that all isometric circles lie within a bounded disc about

the origin. Recall that the isometric circle for

(

a b̄
b ā

)

has radius |b|−1 and centre −ā/b. By

the preceding lemma we know that the radii of all the isometric circles is bounded above by b̃−1.
By Remark 1.6 we know that ∞ is an ordinary point—no orbit can accumulate at infinity. In
particular, the set of pre-images of ∞ cannot accumulate at ∞. This set is simply,

{

− ā
b

:

(

a b̄
b ā

)

∈ Γ

}

which is seen to be the set of centres of the isometric circles of elements of Γ together with ∞ itself.
We conclude that the set of the centres of the isometric circles is bounded. Hence all isometric
circles lie in {z : |z| < ρ} for some ρ.

2.3 The Modular Group Γ(2)

We now construct an example of a fundamental region for the principal congruence subgroup of
level 2 of the modular group. Recall from the end of Section 1 that Γ(2) is the group of matrices
(

a b
c d

)

, where a, d are odd integers and b, c are even integers.

The group Γ(2) contains a subgroup of translations generated by z 7→ z + 2. Let Γ∞ denote
this subgroup. Any transformation in Γ(2) which fixes ∞ must lie in this subgroup (since it must
have c = 0, ad = 1 and b even). If we define the strip,

S = {z ∈ H : −1 < Re z < 1}

then we see immediately that any point of H can be mapped to a point of S by a translation in
Γ∞. In fact, S is a fundamental region for Γ∞.

The elements of Γ(2)\Γ∞ do not fix ∞ and so all have isometric circles. These are simply given
by |cz + d| = 1 for all odd d and non-zero even c. The isometric circles and the strip S are shown
in Figure 1. A quick check confirms that any isometric circle that meets S lies inside one of the
circles |2z ± 1| = 1. If we let,

T± =

(

±1 0
2 ±1

)

then these circles are I(T±). We define the set R to be those points of S that lie outside I(T+) and
I(T−), as shown in Figure 1.

The set R will be our fundamental region for Γ(2). We first show that a point z ∈ R is mapped
outside of R by any transformation T ∈ Γ(2). If T ∈ Γ∞ is a translation then T (z) clearly lies
outside S and so outside R. Otherwise, T has an isometric circle and by the construction of R the
point z must lie outside I(T ). Then Lemma 2.1 states that T maps z to a point inside I(T−1) and
so outside R. Hence R cannot contain equivalent points.

We must now prove that any point z0 ∈ H is equivalent under Γ(2) to a point in R. Some
translation in Γ∞ must map z0 to a point z1 ∈ S. If z1 /∈ R then it must lie within either I(T+)
or I(T−), i.e. |2z1 ± 1| < 1 for the appropriate choice of sign. Applying T± to z1 then increases its
imaginary part:

Im (T±z1) = Im

( ±z1

2z1 ± 1

)

=
Im z1

|2z1 ± 1|2 > Im z1

9



Figure 1: The region R and isometric circles for Γ(2).

By applying a translation, let z2 be a point of S equivalent to T±z1. Note that z2 has the same
imaginary part as T±z1 and is equivalent to z0.

If z2 /∈ R then we again find its image under T+ or T− and translate to obtain an equivalent
point z3 ∈ S such that Im z3 > Im z2. By induction, we define a sequence of points {z1, z2, . . .} ⊆ S
of strictly increasing imaginary part, all of which are equivalent to z0. If for some N we have zN ∈ R
then we are done. Otherwise, we would have an infinite sequence of points in S, the imaginary
part of each point lying between Im z1 and 1 (if zn ∈ S and Im zn > 1 then zn ∈ R). This
sequence of equivalent points would therefore have an accumulation point in H—a contradiction to
the discontinuity of Γ(2). This completes the proof that R is a fundamental region for Γ(2).

We conclude by noting that the vertical sides ofR are equivalent under the translations z 7→ z±2,
while the two curved sides of R (the semi-circles of I(T+) and I(T−)) are equivalent under T±.

3 Riemann Surfaces and Uniformisation

Fundamental to our proof of the existence of non-constant meromorphic functions on any Riemann
surface will be the Uniformisation Theorem. This allows us to classify all Riemann surfaces and
express them as quotient spaces of subsets of C∞. We can then ‘lift’ the question of existence to
that of finding non-constant automorphic functions for discontinuous groups.

3.1 Riemann Surfaces

Definition. A connected Hausdorff topological space S is a Riemann surface if

1. S is a surface (or ‘two-dimensional manifold’). That is, S has an open cover of co-ordinate
neighbourhoods {Uα} together with homeomorphisms, ϕα : Uα → ϕα(Uα) ⊆ C, called charts.

2. All the transition functions ϕβ ◦ ϕ−1
α are analytic where defined, i.e. on ϕα(Uα ∩ Uβ).

See Figure 2.

Observe that any domain in C is trivially a Riemann surface. Furthermore, the Riemann
sphere C∞ can be seen to be a Riemann surface by taking co-ordinate neighbourhoods C∞ \ {∞}
and C∞ \ {0}. As charts we use respectively stereographic projection from the north pole and

10



Figure 2: Charts and transition functions for a Riemann surface

Figure 3: Possible charts for the Riemann sphere
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stereographic projection from the south pole followed by complex conjugation. We shall denote
these charts by ϕ, ψ as shown in Figure 3.

The transition functions, ψ◦ϕ−1(z) = ϕ◦ψ−1(z) = 1
z
, are then analytic on their domain C\{0}.

Definition. Let R and S be Riemann surfaces. A continuous function f : R → S is analytic if,
for all charts ϕα on R and ψβ on S, the composition ψβ ◦ f ◦ ϕ−1

α is analytic. See Figure 4.

Figure 4: An analytic function between Riemann surfaces

In particular, a function f : R → C is analytic if f ◦ ϕ−1
α is analytic on its domain in C. By

extension, we say that f : R → C is meromorphic if f ◦ ϕ−1
α is meromorphic (i.e. analytic except

at poles).

In fact, f : R → C is meromorphic if and only if f : R → C∞ is analytic.

Definition. If f : R → S is analytic and a bijection then it is a theorem (see [5, §4.17]) that f−1

is also analytic and f is called a conformal equivalence. The Riemann surfaces R and S are said to
be conformally equivalent.

Conformal equivalence is a notion of two Riemann surfaces being ‘essentially the same’. We do
not generally distinguish between conformally equivalent Riemann surfaces.

Our abstract definition of a Riemann surface differs from that used by Riemann himself. In
his day, Riemann surfaces were defined as the most general domains on which analytic functions
could be considered. A function such as

√
z or log z, initially defined on a small neighbourhood,

can be analytically continued to a larger domain. If we are restricted to the complex plane this
continuation may be ‘multi-valued’. Riemann surfaces were conceived as multi-sheeted coverings
of C upon which these analytic continuations become single-valued functions. Taking

√
z as an

example, the corresponding Riemann surface is a two-sheeted covering of C branched over the
origin—each time a path encircles the origin it moves from one sheet of the covering to the other.
Whether we take 2 or −2 as the square root of 4 depends upon which sheet of the covering we
are on. In this way

√
z, considered on a Riemann surface, is rendered single-valued. Similarly, the

Riemann surface that is the most general domain for n
√
z is an n-sheeted covering of C, while log z

leads to an infinitely-sheeted covering.
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Taking Riemann’s viewpoint there is no question about the existence of non-constant meromor-
phic functions on Riemann surfaces. However, using the modern, complex manifold definition the
existence question is certainly non-trivial. By answering it, we demonstrate a consistency between
modern Riemann surfaces and the spirit of Riemann’s original definition.

3.2 Uniformisation

Given a domain D ⊆ C and a discontinuous group Γ acting on D we define the quotient D/Γ to
be the set of orbits of Γ, that is,

D/Γ = {Γz : z ∈ D}.
The quotient topology on D/Γ is the coarsest topology which makes the projection map,

π : D −→ D/Γ

z 7−→ Γz

continuous. Explicitly, U ⊆ D/Γ is open iff π−1(U) is open.

Observe that D/Γ is in one-to-one correspondence with any fundamental set for Γ. In Section 6
we exploit this for a Fuchsian group Γ in order to give H/Γ the structure of a Riemann surface
obtained by identifying equivalent boundary points of a normal polygon.

Theorem 3.1 (Uniformisation). For any Riemann surface S there exists a domain D equal to
either C, C∞ or D and a discontinuous group Γ acting on D such that the quotient space D/Γ can
be given a Riemann surface structure conformally equivalent to S. Moreover, the projection map
π is locally conformal—every point of D has a neighbourhood U such that the restriction π|U is
conformal.

No non-identity element of Γ has any fixed points in D.

The domain D is called the universal covering surface of the Riemann surface.

A complete proof of this profound result was eventually given by Koebe in 1912. A modern
account may be found in Sections 9.1 and 9.2 of [6].

At this point automorphic functions re-enter the story. If S is a Riemann surface conformally
equivalent to D/Γ then the automorphic functions with respect to Γ correspond precisely to the
meromorphic functions on S.

This correspondence is given by F = f ◦ π where F is an automorphic function on Γ and f is
a meromorphic function on D/Γ.

13



• Given f meromorphic, we see by composition that F (z) = (f ◦ π)(z) is meromorphic. For
T ∈ Γ we have that F (Tz) = f(π(Tz)) = f(π(z)) = F (z). Therefore F is automorphic.

• Given F automorphic, f(z) = F (π−1(z)) is well-defined since F takes the same value at all
points of the orbit π−1(z). The local conformality of π ensures that f is meromorphic.

This correspondence is actually an isomorphism between the fields of meromorphic functions
on D/Γ and automorphic functions on Γ.

This result is of paramount importance in our attempt to prove the existence of non-constant
meromorphic functions on any Riemann surface. We are now well placed to show this for Riemann
surfaces with universal covering surface D—by the above discussion this is equivalent to the exis-
tence of non-constant automorphic functions on a Fuchsian group. This will be done in Section 4
but we delay the proof for a moment so that we may deal with the other possible universal covering
surfaces.

3.3 Riemann Surfaces with C or C∞ as the Universal Covering Surface

By classifying those Riemann surfaces which have either C or C∞ as their universal covering surface
we shall show that they admit non-constant meromorphic functions.

All Möbius transformations have fixed points in C∞. Hence, referring back to the Uniformi-
sation Theorem, we see that (up to conformal equivalence) the only Riemann surface with C∞ as
the universal covering surface is C∞ itself. It is well known that the rational functions are the
meromorphic functions on C∞.

We now turn our attention to Riemann surfaces conformally equivalent to C/Γ, where Γ is a
discontinuous group of Möbius maps having no fixed points in C (except the identity map). Hence
Γ consists of transformations of the form z 7→ z + λ.

Theorem 3.2. If Γ = {z 7→ z + λ : λ ∈ Λ} is a non-trivial discontinuous group of translations of
C then either,

(i) Λ = {nα : n ∈ Z} = Zα for some α ∈ C \ {0}, or

(ii) Λ = {nα +mβ : n,m ∈ Z} = Zα+ Zβ for some α, β ∈ C \ {0}, α/β /∈ R.

Proof. The lattice Λ is the orbit of the origin so it cannot accumulate in C, i.e. Λ is a discrete set.
Note also that Λ is an additive subgroup of the complex plane.

Since Γ is non-trivial and Λ is discrete we may pick α ∈ Λ \ {0} with |α| minimal. If Λ = Zα
then we have case (i).

Otherwise, by again appealing to the discreteness of Λ, pick β ∈ Λ \ Zα with |β| minimal. We
are required to show that we now have case (ii).

Suppose that α/β ∈ R. Let k = ⌊β/α⌋ be the greatest integer less than or equal to β/α. Then,

β − kα ∈ Zα+ Zβ

but
|β − kα| = |β/α− k||α| < |α|.

So |α| minimal ⇒ β − kα = 0 ⇒ β ∈ Zα. A contradiction, therefore α/β /∈ R.
Suppose now that γ ∈ Λ \ (Zα + Zβ). Let nα +mβ be a closest point of Zα + Zβ to γ. The

point γ lies in some parallelogram with vertices in Zα+ Zβ. One possibility is shown in Figure 5.
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Figure 5: The α/β /∈ R condition ensures that the parallelogram is not degenerate

Straightforward geometry gives that,

|(nα +mβ) − γ| < |β|,
so our choice of β implies that either γ ∈ Zα or γ− (nα+mβ) = 0. Both cases are a contradiction.

Therefore Λ = Zα+ Zβ.

The problem of finding a non-constant meromorphic function on a Riemann surface with uni-
versal covering surface C is reduced to that of finding an automorphic function on (i) C/Zα and

(ii) C/(Zα+ Zβ). The first case is easily settled by taking, for example, the function z 7→ e
2πiz

α . If
α were real or pure imaginary we could take trigonometric or hyperbolic functions respectively.

To tackle the second case we must find a meromorphic function on C that is invariant under
translations z 7→ z + λ, where λ ∈ Zα + Zβ. Such a function is called a doubly-periodic or elliptic
function with periods α and β.

We now take the periods to be 1 and τ where Im τ > 0. To see that this incurs no loss of
generality, note that α/β /∈ R implies that either Im(α/β) > 0 or Im(β/α) > 0. Take τ = α/β
or β/α appropriately and let f(z) be elliptic with periods 1 and τ . Then f(βz) or f(αz) is the
required elliptic function with periods α and β.

We begin our search for elliptic functions by introducing theta functions. While not doubly-
periodic themselves they have some of the properties we are interested in and we shall later build
an elliptic function from them.

Definition. For Im τ > 0 define the theta function,

ϑ(z) =
∞
∑

n=−∞

exp 2πi

(

1

2
n2τ + nz

)

Lemma 3.3. The function ϑ(z) is analytic.

Proof. We use the Weierstrass M-test to show that the series converges uniformly on

SC = {z ∈ C : |Im z| ≤ C} for C > 0

Write z = x+ iy and τ = τR + iτI .
∣

∣

∣

∣

exp 2πi

(

1

2
n2τ + nz

)
∣

∣

∣

∣

= exp
(

−πτIn2 − 2nπy
)

≤ exp
(

−πτIn2 + 2nπC
)

= exp

(

−πτI
(

n− C

τI

)2

+ π
C2

τI

)

= MC exp

(

−πτI
(

n− C

τI

)2
)
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Where the constant MC is independent of z and n. By comparison with a geometric series we see
that,

∞
∑

n=−∞

MC exp

(

−πτI
(

n− C

τI

)2
)

converges since τI > 0. Therefore, the M-test tells us that the series defining ϑ(z) converges
uniformly on SC . A uniformly convergent series of analytic functions converges to an analytic
function. Hence ϑ(z) is analytic on C since C was arbitrary.

Lemma 3.4.

(i) ϑ(z + 1) = ϑ(z). The theta function is 1-periodic.

(ii) ϑ(z + τ) = exp
(

2πi
(

−1
2
τ − z

))

ϑ(z)

Proof. (i) Clear from the series definition of ϑ(z).

(ii) ϑ(z + τ) =
∞
∑

n=−∞

exp 2πi

(

1

2
n2τ + n(z + τ)

)

=
∞
∑

n=−∞

exp 2πi

(

1

2
(n+ 1)2τ − 1

2
τ + nz

)

= exp 2πi

(

−1

2
τ − z

) ∞
∑

n=−∞

exp 2πi

(

1

2
(n+ 1)2τ + (n+ 1)z

)

= exp 2πi

(

−1

2
τ − z

)

ϑ(z)

We finish this section by writing down a meromorphic function invariant under z 7→ z + λ,
λ ∈ Z + Zτ .

Theorem 3.5. There exists an elliptic function.

Proof. Let

f(z) =

(

ϑ
(

z − τ
2

)

ϑ
(

z − τ
2
− 1

2

)

)2

Since ϑ(z) is 1-periodic and analytic, f is 1-periodic and meromorphic.
Finally, using Lemma 3.4 (ii),

f(z + τ) =

(

exp 2πi
(

− τ
2
−
(

z − τ
2

))

ϑ
(

z − τ
2

)

exp 2πi
(

− τ
2
−
(

z − τ
2
− 1

2

))

ϑ
(

z − τ
2
− 1

2

)

)2

=
exp 2πi(−2z)

exp 2πi(1 − 2z)

(

ϑ
(

z − τ
2

)

ϑ
(

z − τ
2
− 1

2

)

)2

= f(z)
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4 Existence of Automorphic Functions on Fuchsian Groups

We now complete the proof of the existence of non-constant meromorphic functions on a Riemann
surface by constructing automorphic functions on Fuchsian groups. This covers the one remaining
case of Riemann surfaces with D as the universal covering surface.

4.1 Automorphic Forms

We first introduce automorphic forms, whose role in this proof is analogous to that of the theta
function in the construction of an elliptic function.

Definition. Let Γ be a Fuchsian group on D. A meromorphic function F (z) on D satisfying,

F (Tz) = (bz + ā)rF (z) for all T =

(

a b̄
b ā

)

∈ Γ

is an automorphic form of dimension −r.

Since dTz
dz

= (bz + ā)−2 this condition has the equivalent form,

F (Tz)(dTz)
r
2 = F (z)(dz)

r
2

Note that an automorphic form of zero dimension is an automorphic function. Furthermore, if
F1, F2 are two automorphic forms of equal dimension and F2(z) 6≡ 0 then F1(z)

F2(z)
is an automorphic

function.

As a brief aside we now explore how automorphic forms correspond to differentials on the
Riemann surface D/Γ.

Definition. Let S be a Riemann surface. Let U ⊆ S/Γ be a co-ordinate neighbourhood and let ϕ
be a chart on U . Then t = ϕ(q) is called a local variable at q ∈ U . It clearly depends on the choice
of chart.

Definition. Let S be a Riemann surface. A meromorphic differential of weight m assigns to each
co-ordinate neighbourhood of S, and each choice of local variable t, a meromorphic function η(t)
obeying the transformation law,

η1(t1)(dt1)
m = η2(t2)(dt2)

m

where ηi is the function corresponding to the local variable ti for i = 1, 2.

If t1 = ϕ1(q) and t2 = ϕ2(q) then this can be expressed in terms of the transition function
t1 = ϕ1 ◦ ϕ−1

2 (t2):

η2(t2) =

(

d

dt2
(ϕ1 ◦ ϕ−1

2 )(t2)

)m

η1

(

ϕ1 ◦ ϕ−1
2 (t2)

)

.

Theorem 4.1. Let π : D → D/Γ be the projection map and let t be a local variable at q = π(z).
An automorphic form F (z) of dimension −2m on D corresponds to a meromorphic differential
η(t)(dt)m on D/Γ, of weight m, where

F (z)(dz)m = η(t)(dt)m.
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Proof. The meromorphicity of one implies it for the other.
Suppose first that the differential is given. Under a transformation T ∈ Γ, the projection

π(Tz) = π(z) = q is unchanged, so t is unchanged. Hence,

F (Tz)(dTz)m = F (z)(dz)m

and so F (z) is an automorphic form of dimension −2m.
Now suppose instead that the automorphic form F is given. The choice of inverse z = π−1(q)

is immaterial since F (z)(dz)m takes the same value for any choice. Since z depends only on q and
not on the choice of local variable,

η1(t1)(dt1)
m = F (z)(dz)m = η2(t2)(dt2)

m

so η(t)(dt)m is indeed a meromorphic differential of weight m.

In fact, the sets of automorphic forms and meromorphic differentials are complex vector spaces
and the above correspondence is an isomorphism.

4.2 Existence

We shall now construct a family of automorphic forms from which the required automorphic func-
tions can be built.

Let T0 = I, T1, T2, . . . where Tn =

(

an b̄n
bn ān

)

be the elements of a Fuchsian group Γ on D (any

such group is countable by Lemma 1.3). We impose the condition that ∞ is only fixed by T0 = I.
If H is a rational function with no poles on ∂D then the Poincaré series,

F (z) =
∞
∑

n=0

H(Tnz)(bnz + ān)−r r ≥ 4, r is an integer

is an automorphic form of dimension −r. Temporarily assuming appropriate convergence, we see

that F transforms correctly under V =

(

α β̄
β ᾱ

)

∈ Γ;

F (V z) =
∞
∑

n=0

H(TnV z)

(

bn
αz + β̄

βz + ᾱ
+ ān

)−r

= (βz + ᾱ)r

∞
∑

n=0

H(TnV z)((bnα+ ānβ)z + bnβ̄ + ānᾱ)

= (βz + ᾱ)rF (z)

The final equality following from the observation that TnV =

(

· ·
bnα+ ānβ bnβ̄ + ānᾱ

)

and that

Γ = ΓV .

The next theorem will be of crucial importance in the proof of the convergence of the Poincaré
series.

Theorem 4.2. If Γ = {I, T1, T2, . . .} as above and Tn(∞) 6= ∞ for n ≥ 1 then the series,

∞
∑

n=0

|bnz + ān|−r r ≥ 4, r is an integer

converges locally uniformly on D.
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Proof. Since no non-identity element of Γ fixes ∞, we can appeal to the results of Section 2.2.
Recall that we defined R0 as the region external to all of the isometric circles I(Tn) for n ≥ 1. By
Theorem 2.5 there exists ρ > 0 such that {z : |z| > ρ} ⊆ R0.

Let Rn = Tn(R0). By Theorem 2.2, R0 does not contain equivalent points—hence the Rn are
disjoint. (If ζ ∈ Ri ∩Rj then T−1

i ζ and T−1
j ζ are equivalent points of R0.)

As R0 lies outside I(Tn), Lemma 2.1 tells us that Rn lies within I(T−1
n ).

Let K be a finite disc in R0 and, for n ≥ 1, let Kn = Tn(K) ⊆ Rn. The Kn are disjoint and lie
within isometric circles. Therefore,

∞
∑

n=1

Area (Kn) ≤ πρ2.

Writing u+ iv = Tn(x+ iy) and recalling the Cauchy-Riemann relations we calculate the Jacobian,

∣

∣

∣

∣

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣

∣

∣

∣

=

∣

∣

∣

∣

∂u
∂x

− ∂v
∂x

∂v
∂x

∂u
∂x

∣

∣

∣

∣

=

(

∂u

∂x

)2

+

(

∂v

∂x

)2

=

∣

∣

∣

∣

∂Tn(x+ iy)

∂x

∣

∣

∣

∣

2

= |T ′

n(z)|2

= |bnz + ān|−4

So that,

Area(Kn) =

∫∫

Kn

du dv =

∫∫

K

dx dy

|bnz + ān|4

= |bn|−4

∫∫

K

∣

∣

∣

∣

z +
ān

bn

∣

∣

∣

∣

−4

dx dy

≥ |bn|−4

∫∫

K

dx dy

(|z| + ρ)4

= |bn|−4M

Where M , the value of the integral, is finite since K is finite. The inequality is just the triangle rule
together with the observation that −ān/bn is the centre of I(Tn), so that |ān/bn| ≤ ρ. Therefore,

∞
∑

n=1

|bn|−4 ≤ 1

M

∞
∑

n=1

Area(Kn) ≤ πρ2

M

By Remark 2.4, |bn| → ∞ so that for r ≥ 4 we have |bn|−r ≤ |bn|−4 for sufficiently large n.
Therefore, by comparison with the above we have established the convergence of the sequence,

∞
∑

n=1

|bn|−r

We now prove the theorem. The n = 0 term is |b0z + ā0|−r = 1 so it may safely be ignored. The
condition that |an|2 − |bn|2 = 1 implies that |an| > |bn|. This means that the points −ān/bn lie
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outside the unit disc. Let Q be a compact subset of D. Let δ > 0 be the minimum distance between
Q and ∂D. Then for z ∈ Q,

∣

∣

∣

∣

z +
ān

bn

∣

∣

∣

∣

> δ

⇒
∞
∑

n=1

|bnz + ān|−r =
∞
∑

n=1

|bn|−r

∣

∣

∣

∣

z +
ān

bn

∣

∣

∣

∣

−r

≤ δ−r

∞
∑

n=1

|bn|−r

So the series converges uniformly on Q.

By proving the convergence assumed in the discussion at the beginning of this section, the
following theorem establishes the existence of an automorphic form on Γ.

Theorem 4.3. For Γ as in the previous theorem and H a rational function whose set of poles P
does not meet ∂D, the Poincaré series,

F (z) =
∞
∑

n=0

H(Tnz)(bnz + ān)−r r ≥ 4, r is an integer

(i) converges absolutely locally uniformly on D \ Γ(P )

(ii) is meromorphic on D.

Proof.

(i) Let Q be a compact subset of D \ Γ(P ).

Q ∩ Γ(P ) = ∅ ⇒ Γ(Q) ∩ P = ∅

Γ(Q) can only accumulate at limit points of Γ, which by Remark 1.6 lie in ∂D and so outside
P . Therefore Γ(Q) is at a positive distance from P . Hence H(Tnz) is uniformly bounded on
Q, with the bound, say C, independent of n. Therefore, for z ∈ Q,

∞
∑

n=0

|H(Tnz)(bnz + ān)−r| ≤ C
∞
∑

n=0

|bnz + ān|−r

which converges uniformly on Q by the previous theorem.

(ii) If z0 ∈ D\Γ(P ) then Γ(P ) cannot accumulate at z0 since it only accumulates on ∂D. Therefore,
z0 lies in a compact neighbourhood Q as in (i), and the Poincaré series converges uniformly
on Q. Since each term in the series is analytic on Q (recall that −ān/bn /∈ D) the function
F (z) is analytic at z0 ∈ Q.

Now suppose that z0 ∈ D ∩ Γ(P ). Then Tnz0 ∈ P for at most finitely many n, since P is a
finite set disjoint from the limit set of Γ. Let N be maximal such that TNz0 ∈ P . Then the
finite sum,

N
∑

n=0

H(Tnz)(bnz + ān)−r

is meromorphic on C. The remainder of the series converges uniformly on a compact neigh-
bourhood of z0. To see this, let Q ⊆ D be a compact neighbourhood of z0 that does not meet
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Γ(P ) \ {z0}. (As before, this is possible because Γ(P ) can only accumulate on ∂D.) Then the
argument of (i) applies, so that,

∞
∑

n=N+1

H(Tnz)(bnz + ān)−r

is analytic at z0.

Therefore, F (z) is meromorphic at z0, and so on all of D.

We have now proved that the Poincaré series defines an automorphic form. To see that this
may be non-constant pick α ∈ D that is not fixed by any non-identity element of Γ. Setting
H(z) = (z − α)−k,

Fk(z) =
∞
∑

n=0

(Tnz − α)−k(bnz + ān)−r r ≥ 4, r is an integer

must have a pole of order k at z = α, since the first term has such a pole, yet the sum of the other
terms is analytic at α. We deduce that,

f(z) =
F2(z)

F1(z)

is our long-sought automorphic function. The simple pole at α implies that f is non-constant.

We have in fact proved more. A quick exercise shows that the quotient of an automorphic form
of dimension r1 by one of dimension r2 gives an automorphic form of dimension r1 − r2. Hence
there exist non-constant automorphic forms of all positive and negative dimensions.

We must now lift the restriction that no non-identity element of Γ fixes ∞. There must exist
some point ζ ∈ C \ D such that Tnζ 6= ζ for all n ≥ 1 (i.e. by a countability argument). Let A be
a Möbius map fixing D and sending ζ to ∞. Then ∞ is not fixed by any non-identity element of
the transformed group AΓA−1, so there exist non-constant automorphic functions and forms with
respect to AΓA−1.

Definition. If F is an automorphic form of dimension −2m with respect to AΓA−1, then the
A−1-transform of F is,

FA−1(z) = F (Az)

(

dAz

dz

)m

Theorem 4.4. Let F be an automorphic form of dimension −2m with respect to AΓA−1. Then
FA−1(z) is an automorphic form of dimension −2m with respect to Γ.

Proof. FA−1(z) is meromorphic on D since F and A are.
We now verify the transformation condition,

FA−1(Tz)(dTz)m = F (ATz)(dATz)m by definition of FA−1

= F ((ATA−1)Az)(d(ATA−1)(Az))m inserting A−1A = I
= F (Az)(dAz)m since F automorphic on AΓA−1

= FA−1(z)(dz)m
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This means that given any Fuchsian group Γ on D we can find non-constant automorphic
functions and forms of any dimension on a transformed group AΓA−1. By taking the A−1-transform
we get non-constant automorphic functions and forms on Γ. Hence, given a Riemann surface
S = D/Γ, we have established the existence of non-constant meromorphic functions and differentials
on S.

We have now dealt with all the cases presented by the Uniformisation Theorem and so have com-
pleted our proof of the existence of non-constant meromorphic functions on an arbitrary Riemann
surface.

5 A Return to Geometry

The Uniformisation Theorem realises all Riemann surfaces as quotients by discontinuous groups.
The goal of the remainder of this essay is to show how a Riemann surface structure may be put on a
certain class of quotient spaces. From now on, we shall concern ourselves with Fuchsian groups on
H, that is, discrete subgroups of the group of real Möbius maps (i.e. maps with real coefficients).
To get us started quickly, several preliminary results will be stated without proof.

5.1 Fixed Points

A point z ∈ C∞ is a fixed point of a Möbius map T if Tz = z. It is clear that a non-identity map
has at most two fixed points. If T : z 7→ az+b

cz+d
has exactly one fixed point then it is called a parabolic

fixed point. A quick calculation shows that if a, b, c, d are real then a parabolic fixed point is either
∞ or is real. If T has real coefficients and two distinct fixed points then it is conjugate4 to one of
the following:

(i) z 7→ eiθz for some θ ∈ (0, 2π). In this case the fixed points form a complex conjugate pair
and are said to be elliptic.

(ii) z 7→ kz for some k ∈ (0, 1). In this case the fixed points are real and are said to be hyperbolic.

Theorem 5.1. If Γ is a Fuchsian group on H and w is an elliptic fixed point of an element of Γ
then the stabiliser, Γw = {T ∈ Γ : Tw = w}, is a finite cyclic subgroup of Γ. The order of w is
defined to be the order of Γw. If p is a parabolic fixed point then Γp is an infinite cyclic subgroup of
Γ.

See [1, p15] for a proof.

Remark 5.2. It follows that when w is an elliptic fixed point of order l, with E the generator of
Γw and A(z) = z−w

z−w̄
,

AEA−1(z) = e±
2πi

l z

Definition. A fixed circle of a Möbius transformation is a circle or straight line that is mapped
onto itself.

Remark 5.3. If C is a fixed circle of T then A(C) is a fixed circle of T ′ = ATA−1.

4Two maps T and S are conjugate if S = ATA−1 for some A.
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If T is a real Möbius map with a parabolic fixed point then it is conjugate to a translation (with
unique fixed point at ∞). The fixed circles of a translation are clearly straight lines in the direction
of translation. The fixed circles of T are therefore circles through the parabolic fixed point. Since
T maps H to itself and the parabolic fixed point is real, the fixed circles must be tangent to R at
the fixed point.

If T has an elliptic fixed point w then it is conjugate (by a map sending w 7→ 0, w̄ 7→ ∞) to a
rotation about the origin. The fixed circles of this rotation are clearly circles centred on the origin.
It follows that the fixed circles of T are orthogonal to circular arcs joining w and w̄ and each fixed
circle encloses either w or w̄.

5.2 Normal Polygons

By constructing a normal polygon we obtain a fundamental region with many important properties.
In this section we state a variety of results that will be useful later. Essentially, a normal polygon
is the set of points that, under the hyperbolic metric, are strictly nearer to some w0 than to any
other point of Γw0.

Definition. For Γ a Fuchsian group on H we define the normal polygon N0 with centre w0 ∈ H to
be,

{z ∈ H : ρ(z, w0) < ρ(z, Tw0) for all T ∈ Γ \ {I}}

where the hyperbolic metric ρ is derived from the Riemannian metric ds =
|dz|
Im z on H. We require

that w0 is not fixed by any element of Γ.

The geodesics of hyperbolic geometry are called hyperbolic lines. They are circles and straight
lines orthogonal to the real axis.

Normal polygons are similarly defined for Fuchsian groups on D. The intersection of D with
the region R0 defined using isometric circles in Section 2.2 is actually the normal polygon with the
origin as the centre (see [2, p151]).

This raises an interesting historical point: Poincaré introduced the use of hyperbolic geometry
in this subject in the 1880s. Considering conformal mappings as hyperbolic isometries is a powerful
technique for studying all types of discontinuous groups. Indeed, hyperbolic geometry is the natural
geometry to use in many areas of complex analysis and its applications are widespread. However,
some decades after Poincaré, Ford introduced the isometric circle in an attempt to simplify the
subject by removing all reference to non-Euclidean geometry. There is some small merit to this: we
have set up the basics of the theory without (yet) using hyperbolic geometry and Poincaré himself,
despite arriving at his results through hyperbolic geometry, avoided any use of it in his papers, for
fear of causing confusion. However, to proceed any further the use of non-Euclidean geometry is
virtually essential. The above remark about R0 demonstrates how Ford’s approach for Fuchsian
groups is a very special case of what can be achieved using hyperbolic geometry.

Definition. A subset N of H is H-convex if the arc of a hyperbolic line joining any two points of
N lies entirely within N .

It is apparent that a H-convex set is connected and, in fact, simply-connected.

Theorem 5.4. A normal polygon is a fundamental region for Γ and is H-convex. Its boundary
consists of hyperbolic line segments and possibly also points of R. [1, §I.4C–4D]

23



Definition. A maximal hyperbolic line segment lying on the boundary of a normal polygon N0 is
called a side. If two sides of N0 meet at a parabolic fixed point p ∈ R ∪ {∞} then p is called a
parabolic vertex of N0.

Theorem 5.5. Every parabolic fixed point is a parabolic vertex of some normal polygon N0. Fur-
thermore, if K is the interior of a fixed circle of p and ∆ = N0 ∩K, then the images of ∆ under
Γ cover K. See Figure 6. [1, p42–47]

Figure 6: Γ(∆) covers K

Remark 5.6. The image of a parabolic vertex is also a parabolic vertex: if p is a parabolic fixed
point of T ∈ Γ then for any V ∈ Γ the point V (p) is a parabolic fixed point of V TV −1.

Definition. A fundamental region R for Γ is said to be locally finite if each compact subset of H

intersects only finitely many of the images of R under Γ.

Theorem 5.7. A normal polygon is locally finite. [1, p30–31]

6 Quotient Spaces as Riemann Surfaces

In this final section we describe in detail how the quotient space of a Fuchsian group can be made
into a Riemann surface.

Definition. For Γ a Fuchsian group on H, let P denote its set of parabolic vertices. We then define
H

+ = H ∪ P .

Remark 5.6 implies that ΓP = P , so the group Γ acts on the space H
+. We shall soon show

how H
+/Γ, the set of orbits of Γ in H

+, can be endowed with the structure of a Riemann surface.
First we look at a consequence of this result that is analogous to our earlier work.

Definition. We shall call an automorphic function f(z) simple if, for each parabolic vertex p, f(z)
tends to a definite value (possibly ∞) as z → p from within a normal polygon.

Our discussion of Section 3.2 can be extended to give an isomorphism between the field of simple
automorphic functions and the field of meromorphic functions on H

+/Γ. In fact, by defining simple
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automorphic forms in the obvious way, Theorem 4.1 generalises to relate these to meromorphic
differentials on H

+/Γ. See [1, p131–132].

The Riemann surface H/Γ can be viewed as a ‘punctured’ version of H
+/Γ with the points

corresponding to parabolic vertices removed. Then a meromorphic function on H/Γ can be extended
to one on H

+/Γ if we can assign values to the punctured points in such a way that the function
remains meromorphic. This can be done if and only if the original function corresponds to a simple
automorphic function on Γ. If this is not the case, then the function has an ‘essential singularity’
at the punctured point.

The set H
+/Γ is clearly in one-to-one correspondence with any fundamental set for Γ relative

to H
+. Hence, we may picture the space H

+/Γ as a closed normal polygon of Γ with equivalent
boundary points identified.

Example. Recall the fundamental region for the modular subgroup Γ(2) of Section 2.3. Figure 1
shows that this fundamental region has parabolic vertices at 0, −1, 1 and ∞. The vertices at
−1, 1 are equivalent under Γ(2), as are the two vertical sides and the two semi-circular sides. If
we were to glue together these identified sides we would obtain a sphere. The quotient H

+/Γ(2)
is conformally equivalent to the Riemann sphere. Likewise, the punctured surface H/Γ(2) is a
3-punctured sphere—the punctured points corresponding to the distinct orbits of the parabolic
vertices 0, 1 and ∞.

The first step towards making H
+/Γ into a Riemann surface is to define a basis, B, for a topology

on H
+. Let B contain:

• All open discs in H. That is, all sets of the form {z ∈ H : |z − z0| < r} for some z0 ∈ H and
0 < r ≤ Im z

• For each finite p ∈ P , and for each K ⊆ H a fixed circle of p, the set {p}∪ IntK

• If ∞ ∈ P , all sets of the form {z : Im z > h} ∪ {∞} for some h > 0

It is not hard to check that the basis B gives rise to a Hausdorff topology on H
+. Note that

the resulting subspace topology on H coincides with its usual topology. Hence the subspace H is
connected. Any open set in H

+ containing a point of P necessarily intersects H, so it is not possible
to write H

+ as a disjoint union of two open sets. Therefore, H
+ is a connected space.

An element of Γ, being a Möbius map, will carry one member of B onto another (recalling
that ΓP = P ). This implies that it is an open map under the topology for H

+. It is in fact a
homeomorphism, since the same is true of the inverse map.

The projection mapping,

π : H
+ −→ H

+/Γ

z 7−→ Γz

is clearly surjective. As before, we can use this projection map to induce a topology on H
+/Γ from

that of H
+. We simply define a set U ⊆ H

+/Γ to be open iff π−1(U) is open. The projection
mapping is then automatically continuous and so H

+/Γ becomes a connected topological space.
The projection map is open. To prove this we must show that if A ⊆ H

+ is open then
π(A) ⊆ H

+/Γ is open. Under the induced topology this image is open iff π−1{π(A)} is open.
This is just the set ΓA of images of A under elements of Γ, but these maps are homeomorphisms
and so ΓA is indeed open.
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Lemma 6.1. H
+/Γ is a Hausdorff space.

Proof. Let Γx and Γy be distinct points of H
+/Γ. Let N0 be a normal polygon for Γ. We can

assume that x, y ∈ N0 since Γ(Tx) = Γx for all T ∈ Γ. We work through the possible cases:

1. Suppose first that x, y ∈ H. Since x is an ordinary point of Γ there exists a closed disc B
in H that contains x but no points of Γy. Let K be any compact neighbourhood of y. By
the local finiteness of N0 (Theorem 5.7), B meets only V1N0, . . . , VnN0 and K meets only
W1N0, . . . ,WmN0 for some Vi,Wj ∈ Γ. Now, if T ∈ Γ and T (B) meets K then it must meet
some WjN0 (since the WjN0 cover K). Then B must meet T−1WjN0. Hence T = WjV

−1
i for

some i, but there are only finitely many such T . We have thus shown that any such K meets
only finitely many images of B. Therefore, we can choose K sufficiently small so that it meets
no image of B, i.e. ΓK ∩ ΓB = ∅. Let X and Y be the interiors of B and K respectively.
Then, since π is an open map, π(X) and π(Y ) are the required disjoint open neighbourhoods
of Γx and Γy.

2. Now suppose that x, y ∈ P . Let Sx and Sy be disjoint sets in B such that x ∈ Sx and y ∈ Sy.
Let ∆x = Sx ∩N0 and ∆y = Sy ∩N0. By Theorem 5.5, Γ∆x is dense in Sx and Γ∆y is dense
in Sy. This implies that if ΓSx intersects ΓSy, then for some V,W ∈ Γ the set V∆x meets
W∆y. However, ∆x and ∆y both lie in N0, which does not contain equivalent points. Hence
V = W and ∆x meets ∆y, so that Sx meets Sy—a contradiction. Therefore, ΓSx ∩ ΓSy is
empty and π(Sx), π(Sy) are disjoint open neighbourhoods of Γx and Γy.

3. The final case is that x ∈ P, y ∈ H. We use the same ideas as before. Let B be an open disc
in H containing y. By local finiteness, B meets only V1N0, . . . , VnN0. Letting Bi = N0∩V −1

i B
we see that the sets ViBi cover B, so Γ (

⋃

iBi) is dense in B. See Figure 7.

Figure 7: Choosing neighbourhoods for x ∈ P and y ∈ H
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Choose Sx ∈ B, a neighbourhood of x, such that Sx is disjoint from B1, . . . , Bn. Following
(2) let ∆x = Sx ∩N0 then Γ∆x is dense in Sx. The argument of (2) now shows that ΓSx and
ΓB are disjoint, and we are done as before.

We shall now describe a set of co-ordinate neighbourhoods and charts that make H
+/Γ a surface.

For each Γx ∈ H
+/Γ define the co-ordinate neighbourhood Ux of Γx to be π(Ux), where Ux ∈ B

is chosen such that:

• x ∈ Ux

• Ux \ {x} contains no fixed points of elements of Γ

• TUx ∩ Ux = ∅ for all T ∈ Γ that do not fix x

• If x is a fixed point then the boundary of Ux is a fixed circle of some element fixing x (see
Section 5.1)

Since the projection mapping is open, Ux is an open neighbourhood of Γx.

Define πx to be the restriction of π to Ux. The map πx is continuous because π is continuous.
Moreover, if A ⊆ Ux is open (in the subspace topology on Ux) then A is open in H

+ so that
πx(A) = π(A) is open. Therefore, πx is an open mapping.

We now seek maps τx : Ux → C such that the composition,

ϕx = τx ◦ π−1
x

is a chart on Ux. Since π−1
x is continuous and open, it will suffice to choose τx continuous and open

such that τx ◦ π−1
x is well-defined5 and injective. Then ϕx will be a homeomorphism from Ux onto

its image. These compositions are shown in Figure 10.
To choose τx appropriately we must work in cases:

1. x is not fixed by any element of Γ.

Our choice of Ux makes π−1
x a well-defined and injective function from Ux to the disc Ux.

Taking τx(z) = z − x will do.

2. x is an elliptic fixed point of order l.

Let E generate the stabiliser Γx (see Theorem 5.1). The transformation A(z) = z−x
z−x̄

carries

the fixed points of E to 0 and ∞. Remarks 5.2 and 5.3 imply that AE(z) = e±
2πi

l A(z) and
that, since ∂Ux is a fixed circle of E, A maps Ux onto an open disc centred on the origin. We
define,

τx(z) = [A(z)]l =

(

z − x

z − x̄

)l

so that τx maps Ux to an open disc D, as shown in Figure 8.

5i.e. single-valued
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Figure 8: Defining τx when x is an elliptic fixed point. The + points in Ux are equivalent.

Since τx is analytic on Ux it is continuous and open. For Γz ∈ Ux, the set π−1
x {Γz} equals

{z, E(z), E2(z), . . . , El−1(z)} but τx maps these equivalent points to a single point of D:

τx(E
m(z)) = [A(Em(z))]l = [e±

2πmi
l A(z)]l = [A(z)]l = τx(z)

so that τx ◦ π−1
x is single-valued.

Furthermore, π−1
x maps distinct points of Ux to inequivalent sets in Ux. These have distinct

images under τx, showing that τx ◦ π−1
x is injective.

3. x ∈ R is a parabolic fixed point.

We take a similar approach to that of the previous case. Let P generate the stabiliser Γx

(again Theorem 5.1). Since A(z) = 1
z−x

sends the fixed point x to ∞, the conjugated map
APA−1 is a translation,

APA−1(z) = z + c for some c ∈ R

Equivalently, AP (z) = A(z) + c.

Since ∂Ux is a fixed circle of P , the region A(Ux) is a half-plane as shown below (since by
Remark 5.3, ∂A(Ux) must be a fixed circle of the translation).

Figure 9: Defining τx when x is a parabolic fixed point. The + points in Ux are equivalent.

Now define τx(z) =

{

exp
(

2πiA(z)
c

)

= exp
(

2πi
c(z−x)

)

, z ∈ Ux \ {x}
0 , z = x

As shown in Figure 9, τx maps Ux to an open disc in C.

For Γz ∈ Ux, the set π−1
x {Γz} equals {Pm(z) : m ∈ Z}, but τx maps this set to a single point:

τx(P
mz) = exp

(

2πiA(Pmz)

c

)

= exp

(

2πiA(z)

c
+ 2πmi

)

= τx(z)
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So τx ◦ π−1
x is well-defined. As before, distinct points of Ux correspond to inequivalent sets in

Ux so that τx ◦π−1
x is injective. All that remains is to show that τx is continuous and open on

Ux. This is clearly the case on Ux \ {x}, for τx is analytic there. To show that τx is open on
all of Ux it will suffice that, for x ∈ Q ∈ B, the set τx(Q) is an open disc about the origin. To
see this, follow the maps described above—∂Q is a fixed circle of P , so A(Q) is a half-plane
and τx(Q) is a disc. Conversely, the pre-image under τx of any open disc centred on the origin
is a member of B. Hence, τx is continuous on all of Ux.

4. x = ∞ is a parabolic fixed point.

In this case Γ∞ is generated by z 7→ z + c for some c ∈ R and

τx(z) = exp

(

2πi

c

)

will do. The proof is as for (3), omitting the first steps.

We have now defined charts ϕx = τx ◦ π−1
x for all the co-ordinate neighbourhoods Ux and so

H
+/Γ is a surface. To show that it is in fact a Riemann surface we must verify that the transition

functions ϕx ◦ ϕ−1
y are analytic.

The function ϕx ◦ ϕ−1
y has domain D = ϕy(Ux ∩ Uy). If this is non-empty then we may assume

that the representative x of Γx has been chosen so that Ux intersects Uy. See Figure 10.

Lemma 6.2. We claim that on D,

ϕx ◦ ϕ−1
y =

(

τx ◦ π−1
x

)

◦
(

πy ◦ τ−1
y

)

= τx ◦ rUx
◦ τ−1

y

where rUx
is just restriction to Ux (this is the domain of τx).

Proof. Let t ∈ D. Then t = ϕy(Γz) for some Γz ∈ Ux ∩ Uy ⊆ H
+/Γ, as shown in Figure 10.

Our choices for Uy and τy ensure that τy maps equivalent points of Uy to a single point and
inequivalent points to distinct points. Hence,

rUx
◦ τ−1

y {t} = rUx
(Γz ∩ Uy) = Γz ∩ Ux ∩ Uy (1)

π−1
x ◦

(

πy ◦ τ−1
y

)

{t} =
(

π−1
x ◦ πy

)

(Γz ∩ Uy) = π−1
x (Γz) = Γz ∩ Ux (2)

The sets (1) and (2) are non-empty (since Γz ∈ Ux ∩ Uy ⇒ Γz ∩Ux ∩ Uy 6= ∅) and have the same
image under τx. This proves the claim.

We now tackle the question of analyticity.

Lemma 6.3. The composition τx ◦ rUx
◦ τ−1

y (t) is analytic on D.

Proof. If x is not a fixed point then τx(z) = z − x is analytic. Similarly, if y is not a fixed point
then τ−1

y (t) = t+ y is analytic. Otherwise, by checking the possible definitions we see that τx(z) is
locally conformal for z 6= x. Also, since τy(y) = 0, the inverse τ−1

y (t) is locally conformal for t 6= 0.

The sets Ux and Uy have been chosen so that Ux ∩ Uy contains no fixed points. Therefore, if x
is a fixed point, then x /∈ Ux ∩ Uy so τx is analytic on rUx

◦ τ−1
y (D) = Ux ∩ Uy. If y is a fixed point

then D = τy(Ux ∩ Uy) does not contain the origin, so τ−1
y is analytic on D.

In all cases τx ◦ rUx
◦ τ−1

y (t) is analytic on D.

Since the transition functions ϕx ◦ϕ−1
y are analytic, we have now seen that our system of charts

and co-ordinate neighbourhoods makes H
+/Γ a Riemann surface.
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Figure 10: The points of Γz in H
+ are marked +
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Remarks

By restricting the argument of this section to H (with its usual topology) instead of H
+, we see

how H/Γ can be given the structure of a Riemann surface. Recalling that D and H are conformally
equivalent, this is a pleasing complement to the result of Uniformisation Theorem that ‘most’
Riemann surfaces are conformally equivalent to D/Γ for some discontinuous group Γ.

We earlier exploited the link between discontinuous groups and Riemann surfaces in order to
study the automorphic and meromorphic functions that naturally exist on them. In fact, this link
can be used to discover something about the nature of the spaces themselves, as in the following
result, a proof of which may be found in [1, p121–123].

Theorem 6.4. Let Γ be a Fuchsian group on H with normal polygon N0.
The Riemann surface H

+/Γ is compact iff N0 ∩ H
+ is compact in the topology of H

+.
The Riemann surface H/Γ is compact iff N0 ∩ H is compact.
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