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Quasiregular functions on R"” generalize analytic functions on C.

Can we develop an iterative theory for quasiregular maps
analogous to complex dynamics?

Today we'll first introduce quasiregular maps and then explore the
Julia set of such functions.



A continuous function f: R" — R" is called quasiregular (qr) if
f € W} ,.(R") and there exists K’ > 1 such that

IDFC)|" < K'di(x)  ae.

The smallest K’ for which the above holds is called the inner
dilatation K(f).

The outer dilatation Ko(f) is defined similarly, and the dilatation is
K(f) = max{K}, Ko}.

If K(f) < K, then f is called K-quasiregular.
A composition of gr maps is itself qr and

K(fog) < K(K(g).



Properties of quasiregular maps

Quasiregular functions on R” generalize analytic functions on C.

Theorem (Reshetnyak, 1967-68)
Non-constant quasiregular maps are discrete and open.

Rickman proved a Picard theorem for quasiregular maps:

Theorem (Rickman, 1980)

Forn > 2 and K > 1 there exists a constant q = q(n, K) with the
following property:
every K-qr map f: R™ — R" that omits q values must be constant.




For k € N, the winding map f: C — C given by f(re'?) = re? is
quasiregular with Kj(f) = Ko(f) = k.

The Zorich map Z: R” — R"\ {0} is a quasiregular analogue of

the exponential function.
It is periodic in n — 1 directions and grows/decays exponentially in

the other.



A gr map f is said to be of polynomial type if XILm [f(x)] = oc.
Otherwise, this limit does not exist and f is franscendental type.

Equivalently, f is of polynomial type iff deg f < oo, where

deg f = maxcard f~'(y).
yeRn

Can extend the definition of quasiregularity to functions R” — R”
(analogous to rational maps of C).

A polynomial type gr map f : R” — R" extends to a gqr map of R" by
setting f(o0) = oo.



Miniowitz used Rickman’s theorem to obtain an analogue of Montel's
theorem:

Let F be a family of K-qr maps on a domain D C R" and let

g = q(n, K) be Rickman’s constant.

Ifay,...,aq € R" are distinct and every f € F omits ay, ..., aq,
then F is a normal family.

If every iterate fN is K-quasiregular with the same K| then f is
called uniformly quasiregular (uqr).

For ugr maps many concepts of complex dynamics transfer nicely
and the non-normality definition of the Julia set works well.
(Hinkkanen, Martin, Mayer, Siebert.)



In general, the dilatation K(fN) = ccas N — oo, . ..

... s0 we can’'t apply Montel’s theorem to the family {fV}.

How do we study the dynamics of general quasiregular maps?



Sun and Yang considered gr maps f: C — C. They suggested using
the familiar “blowing-up” property of Julia sets as a definition:

J(f) := {z € C : for every neighbourhood U of z,
C\ O"(U) contains at most 2 points}.

Iff:C— Cisqgranddegf > K(f), then J(f) # 0 and ...
... J(f) has many properties expected of a Julia set.

To take things further, “at most 2 points” needs modifying.
We need a different notion of small sets.



In the rest of this talk, we’ll focus on quasiregular maps R” — R”"
of transcendental type.

This work builds upon similar results of W. Bergweiler for gr maps
R" — R7 for which the degree exceeds the inner dilatation.



For an open set A € R” and a compact subset C C A, the pair (A, C) is
called a condenser. Its (conformal) capacity is defined by

cap(A,C) = inf/ |Vu|" dm,
uJa

where the inf is over non-negative u € Cg°(A) with u(x) > 1 for x € C.

Equivalently, if I' is the family of paths in A that join C to 0A, then

cap(A, C) = M(IN), modulus of path family
=X\N)'"",  where X is extremal length.



If cap(A, C) = 0 then cap(A’, C) = 0 for every open set A
containing C.

In this case, we say that C is of capacity zero and write cap C = 0.
Otherwise we say C has positive capacity, cap C > 0.

For an unbounded closed set C, we say cap C = 0 if every
compact subset has capacity zero.

For example, countable sets have capacity zero.

Capacity zero = Hausdorff dimension zero.



For a quasiregular f : R” — R" of transcendental type, we define the
Julia set as

J(f) := {x € R" : for every nhd U of x, cap (R"\O"(U)) =0} .

It follows immediately that J(f) is closed and completely invariant.

For quasiregular f of trans type, the Julia set J(f) # 0.
In fact, J(f) is infinite.

For a trans entire function f: C — C, the definition of J(f) given above
agrees with the usual one.




Certain quasiregular sine function analogues S: R” — R have
the property that O (U) = R” for all non-empty open U.
Thus J(S) = R".

Let Z: R® — R3\ {0} be a Zorich map (gr version of exp).
Let a > 0 be large and let

fa(x) = Z(x) - (0,0, a).
Then there exists a unique attracting fixed point £ of f5,
J(fa) =R\ A(¢)

and J(fy) is a Cantor bouquet.



Letf: R" — R" be quasiregular of trans type with an attracting fixed
point¢. Then

JHNAE) =0 and J(f) C DA(E).

Unlike the analytic case, explicit examples show that for quasiregular
maps J(f) can be a proper subset of 0.A(¢).



Define the escaping set I(f) = {x € R" : f(x) — oc}.

If f is qr of trans type, then I(f) has an unbounded component.

We also consider the set of points with bounded orbit

BO(f) = {x € R": (f*(x)) is bounded}.

If f is gr of trans type, then cap BO(f) > 0.

Using the above, complete invariance and /(f) N BO(f) = ), we get

If f is qr of trans type, then J(f) C 0I(f) N 0BO(f).

In the analytic case we have J(f) = 9/(f) = 0BO(f), but for gr maps
the above inclusion may be strict.



Faster is better?

* We've seen that J(f) C JI(f) — it may be a proper subset.

¢ Similar proof gives that J(f) C 0A(f), where A(f) is the fast
escaping set.
See AF for A(f)!

Theorem (Bergweiler, Fletcher, N.)
Let f be trans type quasiregular of positive lower order. Then

J(f) = A(F).




Define, as usual, the backward orbit of a point x € R"
O (x)={y e R": f*(y) = x, some k > 0}.

The exceptional set E(f) is the set of points with finite backward
orbit under f.

For quasiregular f of trans type,
Rickman’s Picard Theorem = E(f) contains at most g — 1 points.



For a wide range of gr trans type maps, we can prove more about J(f):
J(f) is perfect,
J(fP)=J(f) forall p e N,
J(f) € O—(x) forall x € R"\ E(f),
J(f) = O~ (x) forall x € J(f)\E(f),
RM O+ (U) c E(f) for every open set U intersecting J(f).

Note that (J5) implies that

J(f) = {x € R": for every nhd U of x,
R™ O*(U) contains at most g — 1 points}.



A quasiregular trans type map f: R" — R" will satisfy the properties

J(f) is perfect,

J(fP) = J(f) for all p € N,

J(f) c O—(x) forall x € R"\E(f),

J(f) = O—(x) forall x € J(f)\E(f),

R™MO*(U) C E(f) for every open set U intersecting J(f),

if any one of the following conditions holds:
n=2(ie. f:C— C);
f is locally Lipschitz continuous;
the local index of f at x is bounded above for all x € R";
f does not have (a version of) the “pits effect”.

f has the pits effect if |f(x)| is ‘large’ except in ‘small’ domains.
Example: f bdd on path to co = f doesn’t have the pits effect.



The structure of the proof is roughly

f satisfies condition cap O-(x) > 0,

(@), (b), (c) or (d) = for all x ¢ E(f) = properties (J1)—(J5),

where the first implication is the tricky part.

We'd like (J1)—(J5) to hold for all quasiregular maps of trans type.
This would follow from:

If f is quasiregular of transcendental type, then

capO—(x) >0, forall x ¢ E(f).




