The Julia set in quasiregular dynamics

Dan Nicks

University of Nottingham

May 2013

Joint work with Walter Bergweiler

Introduction

- Quasiregular functions on \mathbb{R}^n generalize analytic functions on \mathbb{C} .
- Can we develop an iterative theory for quasiregular maps analogous to complex dynamics?
- Today we'll first introduce quasiregular maps and then explore the Julia set of such functions.

Quasiregular mappings

Definition

A continuous function $f : \mathbb{R}^n \to \mathbb{R}^n$ is called quasiregular (qr) if $f \in W^1_{n,\text{loc}}(\mathbb{R}^n)$ and there exists $K' \ge 1$ such that

 $\|Df(x)\|^n \leq K'J_f(x)$ a.e.

- The smallest *K*' for which the above holds is called the *inner dilatation K*_{*l*}(*f*).
- The outer dilatation $K_O(f)$ is defined similarly, and the dilatation is $K(f) = \max{K_I, K_O}$.
- If $K(f) \leq K$, then f is called K-quasiregular.
- A composition of qr maps is itself qr and

 $K(f \circ g) \leq K(f)K(g).$

Properties of quasiregular maps

Quasiregular functions on \mathbb{R}^n generalize analytic functions on \mathbb{C} .

Theorem (Reshetnyak, 1967-68)

Non-constant quasiregular maps are discrete and open.

Rickman proved a Picard theorem for quasiregular maps:

Theorem (Rickman, 1980)

For $n \ge 2$ and $K \ge 1$ there exists a constant q = q(n, K) with the following property: every *K*-qr map $f : \mathbb{R}^n \to \mathbb{R}^n$ that omits q values must be constant.

Examples of qr maps

- For $k \in \mathbb{N}$, the winding map $f : \mathbb{C} \to \mathbb{C}$ given by $f(re^{i\theta}) = re^{ik\theta}$ is quasiregular with $K_l(f) = K_O(f) = k$.
- The Zorich map Z: ℝⁿ → ℝⁿ \ {0} is a quasiregular analogue of the exponential function.
 It is periodic in n 1 directions and grows/decays exponentially in the other.

Polynomial type vs transcendental type

Definition

A qr map *f* is said to be of *polynomial type* if $\lim_{x\to\infty} |f(x)| = \infty$. Otherwise, this limit does not exist and *f* is *transcendental type*.

Equivalently, *f* is of polynomial type iff deg $f < \infty$, where

$$\deg f = \max_{y \in \mathbb{R}^n} \operatorname{card} f^{-1}(y).$$

Definition

Can extend the definition of quasiregularity to functions $\overline{\mathbb{R}^n} \to \overline{\mathbb{R}^n}$ (analogous to rational maps of $\overline{\mathbb{C}}$).

A polynomial type qr map $f : \mathbb{R}^n \to \mathbb{R}^n$ extends to a qr map of $\overline{\mathbb{R}^n}$ by setting $f(\infty) = \infty$.

Normal families and uniform quasiregularity

Miniowitz used Rickman's theorem to obtain an analogue of Montel's theorem:

Theorem (Miniowitz, 1982)

Let \mathcal{F} be a family of K-qr maps on a domain $D \subset \mathbb{R}^n$ and let q = q(n, K) be Rickman's constant. If $a_1, \ldots, a_q \in \mathbb{R}^n$ are distinct and every $f \in \mathcal{F}$ omits a_1, \ldots, a_q , then \mathcal{F} is a normal family.

- If every iterate f^N is K-quasiregular with the same K, then f is called uniformly quasiregular (uqr).
- For uqr maps many concepts of complex dynamics transfer nicely and the non-normality definition of the Julia set works well. (Hinkkanen, Martin, Mayer, Siebert.)

In general, the dilatation $K(f^N) \to \infty$ as $N \to \infty, \ldots$

... so we can't apply Montel's theorem to the family $\{f^N\}$.

How do we study the dynamics of general quasiregular maps?

Two dimensions, finite degree

Sun and Yang considered qr maps $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$. They suggested using the familiar "blowing-up" property of Julia sets as a definition:

 $J(f) := \{z \in \overline{\mathbb{C}} : \text{for every neighbourhood } U \text{ of } z, \}$

 $\overline{\mathbb{C}} \setminus O^+(U)$ contains at most 2 points}.

Theorem (Sun-Yang, 1999-2001)

If $f : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ is qr and deg $f > K_l(f)$, then $J(f) \neq \emptyset$ and J(f) has many properties expected of a Julia set.

To take things further, "at most 2 points" needs modifying. We need a different notion of small sets.

- In the rest of this talk, we'll focus on quasiregular maps ℝⁿ → ℝⁿ of transcendental type.
- This work builds upon similar results of W. Bergweiler for qr maps $\overline{\mathbb{R}^n} \to \overline{\mathbb{R}^n}$ for which the degree exceeds the inner dilatation.

Capacity

For an open set $A \subset \mathbb{R}^n$ and a compact subset $C \subset A$, the pair (A, C) is called a *condenser*. Its *(conformal) capacity* is defined by

$$\operatorname{cap}(A, C) = \inf_{u} \int_{A} |\nabla u|^{n} \, dm,$$

where the inf is over non-negative $u \in C_0^{\infty}(A)$ with $u(x) \ge 1$ for $x \in C$.

Equivalently, if Γ is the family of paths in A that join C to ∂A , then

$\operatorname{cap}(A,C)=M(\Gamma),$	modulus of path family
$=\lambda(\Gamma)^{1-n},$	where λ is extremal length.

Sets of zero capacity

- If cap(A, C) = 0 then cap(A', C) = 0 for every open set A containing C.
 In this case, we say that C is of *capacity zero* and write cap C = 0.
- Otherwise we say C has *positive capacity*, cap C > 0.
- For an unbounded closed set *C*, we say cap C = 0 if every compact subset has capacity zero.
- For example, countable sets have capacity zero.
- Capacity zero \Rightarrow Hausdorff dimension zero.

Julia set definition

For a quasiregular $f : \mathbb{R}^n \to \mathbb{R}^n$ of transcendental type, we define the Julia set as

 $J(f) := \left\{ x \in \mathbb{R}^n : ext{for every nhd } U ext{ of } x, ext{ cap} \left(\mathbb{R}^n ackslash O^+(U)
ight) = 0
ight\}.$

It follows immediately that J(f) is closed and completely invariant.

Theorem

For quasiregular f of trans type, the Julia set $J(f) \neq \emptyset$. In fact, J(f) is infinite.

Theorem

For a trans entire function $f : \mathbb{C} \to \mathbb{C}$, the definition of J(f) given above agrees with the usual one.

Examples

- Certain quasiregular sine function analogues S: ℝⁿ → ℝⁿ have the property that O⁺(U) = ℝⁿ for all non-empty open U. Thus J(S) = ℝⁿ.
- Let Z: ℝ³ → ℝ³ \ {0} be a Zorich map (qr version of exp). Let a > 0 be large and let

$$f_a(x) = Z(x) - (0, 0, a).$$

Then there exists a unique attracting fixed point ξ of f_a ,

$$J(f_a) = \mathbb{R}^3 \setminus \mathcal{A}(\xi)$$

and $J(f_a)$ is a Cantor bouquet.

Results about Julia sets

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be quasiregular of trans type with an attracting fixed point ξ . Then

$$J(f) \cap \mathcal{A}(\xi) = \emptyset$$
 and $J(f) \subset \partial \mathcal{A}(\xi)$.

Unlike the analytic case, explicit examples show that for quasiregular maps J(f) can be a proper subset of $\partial A(\xi)$.

Define the *escaping set* $I(f) = \{x \in \mathbb{R}^n : f^k(x) \to \infty\}.$

Theorem (Bergweiler, Fletcher, Langley, Meyer) If f is qr of trans type, then I(f) has an unbounded component.

We also consider the set of points with bounded orbit

$$BO(f) = \{x \in \mathbb{R}^n : (f^k(x)) \text{ is bounded}\}.$$

Theorem

If f is qr of trans type, then $\operatorname{cap} BO(f) > 0$.

Using the above, complete invariance and $I(f) \cap BO(f) = \emptyset$, we get

Theorem

If *f* is qr of trans type, then $J(f) \subset \partial I(f) \cap \partial BO(f)$.

In the analytic case we have $J(f) = \partial I(f) = \partial BO(f)$, but for qr maps the above inclusion may be strict.

Faster is better?

- We've seen that $J(f) \subset \partial I(f)$ it may be a proper subset.
- Similar proof gives that J(f) ⊂ ∂A(f), where A(f) is the fast escaping set.
 See AF for A(f)!

Theorem (Bergweiler, Fletcher, N.)

Let f be trans type quasiregular of positive lower order. Then

 $J(f)=\partial A(f).$

Two familiar definitions

• Define, as usual, the *backward orbit* of a point $x \in \mathbb{R}^n$

$$O^{-}(x) = \{y \in \mathbb{R}^{n} : f^{k}(y) = x, \text{ some } k \ge 0\}.$$

- The *exceptional set E*(*f*) is the set of points with finite backward orbit under *f*.
- For quasiregular *f* of trans type, Rickman's Picard Theorem $\Rightarrow E(f)$ contains at most q - 1 points.

Typical Julia set properties

For a wide range of qr trans type maps, we can prove more about J(f):

- (J1) J(f) is perfect,
- (J2) $J(f^{p}) = J(f)$ for all $p \in \mathbb{N}$,
- (J3) $J(f) \subset \overline{O^-(x)}$ for all $x \in \mathbb{R}^n \setminus E(f)$,
- (J4) $J(f) = \overline{O^-(x)}$ for all $x \in J(f) \setminus E(f)$,
- (J5) $\mathbb{R}^n \setminus O^+(U) \subset E(f)$ for every open set *U* intersecting J(f).

Note that (J5) implies that

 $J(f) = \{x \in \mathbb{R}^n : \text{for every nhd } U \text{ of } x, \\ \mathbb{R}^n \setminus O^+(U) \text{ contains at most } q-1 \text{ points} \}.$

Theorem

A quasiregular trans type map $f : \mathbb{R}^n \to \mathbb{R}^n$ will satisfy the properties

 $\begin{array}{ll} (J1) & J(f) \text{ is perfect,} \\ (J2) & J(f^p) = J(f) \text{ for all } p \in \mathbb{N}, \\ (J3) & J(f) \subset \overline{O^-(x)} \text{ for all } x \in \mathbb{R}^n \setminus E(f), \\ (J4) & J(f) = \overline{O^-(x)} \text{ for all } x \in J(f) \setminus E(f), \\ (J5) & \mathbb{R}^n \setminus O^+(U) \subset E(f) \text{ for every open set } U \text{ intersecting } J(f), \end{array}$

if any one of the following conditions holds:

(a) n = 2 (i.e. $f : \mathbb{C} \to \mathbb{C}$);

(b) f is locally Lipschitz continuous;

(c) the local index of f at x is bounded above for all $x \in \mathbb{R}^n$;

(d) f does not have (a version of) the "pits effect".

- *f* has the pits effect if |f(x)| is 'large' except in 'small' domains.
- Example: *f* bdd on path to $\infty \Rightarrow f$ doesn't have the pits effect.

A conjecture

The structure of the proof is roughly

$$\begin{array}{ll} f \text{ satisfies condition} \\ (a), (b), (c) \text{ or } (d) \end{array} \Rightarrow \begin{array}{l} cap \, \overline{O^-(x)} > 0, \\ \text{ for all } x \notin E(f) \end{array} \Rightarrow \begin{array}{l} \text{properties (J1)-(J5),} \end{array}$$

where the first implication is the tricky part.

We'd like (J1)-(J5) to hold for all quasiregular maps of trans type. This would follow from:

Conjecture

If *f* is quasiregular of transcendental type, then

 $\operatorname{cap} \overline{O^-(x)} > 0$, for all $x \notin E(f)$.