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Introduction

• Quasiregular functions on Rn generalize analytic functions on C.

• Can we develop an iterative theory for quasiregular maps
analogous to complex dynamics?

• Today we’ll first introduce quasiregular maps and then explore the
Julia set of such functions.



Quasiregular mappings

Definition
A continuous function f : Rn → Rn is called quasiregular (qr) if
f ∈W 1

n,loc(Rn) and there exists K ′ ≥ 1 such that

‖Df (x)‖n ≤ K ′Jf (x) a.e.

• The smallest K ′ for which the above holds is called the inner
dilatation KI(f ).

• The outer dilatation KO(f ) is defined similarly, and the dilatation is
K (f ) = max{KI ,KO}.

• If K (f ) ≤ K , then f is called K -quasiregular.
• A composition of qr maps is itself qr and

K (f ◦ g) ≤ K (f )K (g).



Properties of quasiregular maps

Quasiregular functions on Rn generalize analytic functions on C.

Theorem (Reshetnyak, 1967-68)
Non-constant quasiregular maps are discrete and open.

Rickman proved a Picard theorem for quasiregular maps:

Theorem (Rickman, 1980)
For n ≥ 2 and K ≥ 1 there exists a constant q = q(n,K ) with the
following property:
every K -qr map f : Rn → Rn that omits q values must be constant.



Examples of qr maps

• For k ∈ N, the winding map f : C→ C given by f (reiθ) = reikθ is
quasiregular with KI(f ) = KO(f ) = k .

• The Zorich map Z : Rn → Rn \ {0} is a quasiregular analogue of
the exponential function.
It is periodic in n − 1 directions and grows/decays exponentially in
the other.



Polynomial type vs transcendental type

Definition
A qr map f is said to be of polynomial type if lim

x→∞
|f (x)| =∞.

Otherwise, this limit does not exist and f is transcendental type.

Equivalently, f is of polynomial type iff deg f <∞, where

deg f = max
y∈Rn

card f−1(y).

Definition
Can extend the definition of quasiregularity to functions Rn → Rn

(analogous to rational maps of C).

A polynomial type qr map f : Rn → Rn extends to a qr map of Rn by
setting f (∞) =∞.



Normal families and uniform quasiregularity

Miniowitz used Rickman’s theorem to obtain an analogue of Montel’s
theorem:

Theorem (Miniowitz, 1982)
Let F be a family of K -qr maps on a domain D ⊂ Rn and let
q = q(n,K ) be Rickman’s constant.
If a1, . . . ,aq ∈ Rn are distinct and every f ∈ F omits a1, . . . ,aq,
then F is a normal family.

• If every iterate f N is K -quasiregular with the same K , then f is
called uniformly quasiregular (uqr).

• For uqr maps many concepts of complex dynamics transfer nicely
and the non-normality definition of the Julia set works well.
(Hinkkanen, Martin, Mayer, Siebert.)



General case?

In general, the dilatation K (f N)→∞ as N →∞, . . .

. . . so we can’t apply Montel’s theorem to the family {f N}.

How do we study the dynamics of general quasiregular maps?



Two dimensions, finite degree

Sun and Yang considered qr maps f : C→ C. They suggested using
the familiar “blowing-up” property of Julia sets as a definition:

J(f ) := {z ∈ C : for every neighbourhood U of z,

C \O+(U) contains at most 2 points}.

Theorem (Sun-Yang, 1999-2001)

If f : C→ C is qr and deg f > KI(f ), then J(f ) 6= ∅ and . . .
. . . J(f ) has many properties expected of a Julia set.

To take things further, “at most 2 points” needs modifying.
We need a different notion of small sets.



• In the rest of this talk, we’ll focus on quasiregular maps Rn → Rn

of transcendental type.

• This work builds upon similar results of W. Bergweiler for qr maps
Rn → Rn for which the degree exceeds the inner dilatation.



Capacity

For an open set A ⊂ Rn and a compact subset C ⊂ A, the pair (A,C) is
called a condenser. Its (conformal) capacity is defined by

cap(A,C) = inf
u

∫
A
|∇u|n dm,

where the inf is over non-negative u ∈ C∞0 (A) with u(x) ≥ 1 for x ∈ C.

Equivalently, if Γ is the family of paths in A that join C to ∂A, then

cap(A,C) = M(Γ), modulus of path family

= λ(Γ)1−n, where λ is extremal length.



Sets of zero capacity

• If cap(A,C) = 0 then cap(A′,C) = 0 for every open set A
containing C.
In this case, we say that C is of capacity zero and write cap C = 0.

• Otherwise we say C has positive capacity, cap C > 0.

• For an unbounded closed set C, we say cap C = 0 if every
compact subset has capacity zero.

• For example, countable sets have capacity zero.

• Capacity zero⇒ Hausdorff dimension zero.



Julia set definition

For a quasiregular f : Rn → Rn of transcendental type, we define the
Julia set as

J(f ) :=
{

x ∈ Rn : for every nhd U of x , cap
(
Rn\O+(U)

)
= 0

}
.

It follows immediately that J(f ) is closed and completely invariant.

Theorem
For quasiregular f of trans type, the Julia set J(f ) 6= ∅.
In fact, J(f ) is infinite.

Theorem
For a trans entire function f : C→ C, the definition of J(f ) given above
agrees with the usual one.



Examples

• Certain quasiregular sine function analogues S : Rn → Rn have
the property that O+(U) = Rn for all non-empty open U.
Thus J(S) = Rn.

• Let Z : R3 → R3 \ {0} be a Zorich map (qr version of exp).
Let a > 0 be large and let

fa(x) = Z (x)− (0,0,a).

Then there exists a unique attracting fixed point ξ of fa,

J(fa) = R3 \ A(ξ)

and J(fa) is a Cantor bouquet.



Results about Julia sets

Theorem
Let f : Rn → Rn be quasiregular of trans type with an attracting fixed
point ξ. Then

J(f ) ∩ A(ξ) = ∅ and J(f ) ⊂ ∂A(ξ).

Unlike the analytic case, explicit examples show that for quasiregular
maps J(f ) can be a proper subset of ∂A(ξ).



Define the escaping set I(f ) = {x ∈ Rn : f k (x)→∞}.

Theorem (Bergweiler, Fletcher, Langley, Meyer)
If f is qr of trans type, then I(f ) has an unbounded component.

We also consider the set of points with bounded orbit

BO(f ) =
{

x ∈ Rn :
(
f k (x)

)
is bounded

}
.

Theorem
If f is qr of trans type, then cap BO(f ) > 0.

Using the above, complete invariance and I(f ) ∩ BO(f ) = ∅, we get

Theorem
If f is qr of trans type, then J(f ) ⊂ ∂I(f ) ∩ ∂BO(f ).

In the analytic case we have J(f ) = ∂I(f ) = ∂BO(f ), but for qr maps
the above inclusion may be strict.



Faster is better?

• We’ve seen that J(f ) ⊂ ∂I(f ) — it may be a proper subset.

• Similar proof gives that J(f ) ⊂ ∂A(f ), where A(f ) is the fast
escaping set.
See AF for A(f)!

Theorem (Bergweiler, Fletcher, N.)
Let f be trans type quasiregular of positive lower order. Then

J(f ) = ∂A(f ).



Two familiar definitions

• Define, as usual, the backward orbit of a point x ∈ Rn

O−(x) = {y ∈ Rn : f k (y) = x , some k ≥ 0}.

• The exceptional set E(f ) is the set of points with finite backward
orbit under f .

• For quasiregular f of trans type,
Rickman’s Picard Theorem⇒ E(f ) contains at most q − 1 points.



Typical Julia set properties

For a wide range of qr trans type maps, we can prove more about J(f ):
(J1) J(f ) is perfect,
(J2) J(f p) = J(f ) for all p ∈ N,
(J3) J(f ) ⊂ O−(x) for all x ∈ Rn\E(f ),
(J4) J(f ) = O−(x) for all x ∈ J(f )\E(f ),
(J5) Rn\O+(U) ⊂ E(f ) for every open set U intersecting J(f ).

Note that (J5) implies that

J(f ) = {x ∈ Rn : for every nhd U of x ,
Rn\O+(U) contains at most q − 1 points}.



Theorem
A quasiregular trans type map f : Rn → Rn will satisfy the properties

(J1) J(f ) is perfect,
(J2) J(f p) = J(f ) for all p ∈ N,
(J3) J(f ) ⊂ O−(x) for all x ∈ Rn\E(f ),
(J4) J(f ) = O−(x) for all x ∈ J(f )\E(f ),
(J5) Rn\O+(U) ⊂ E(f ) for every open set U intersecting J(f ),

if any one of the following conditions holds:
(a) n = 2 (i.e. f : C→ C);
(b) f is locally Lipschitz continuous;
(c) the local index of f at x is bounded above for all x ∈ Rn;
(d) f does not have (a version of) the “pits effect”.

• f has the pits effect if |f (x)| is ‘large’ except in ‘small’ domains.
• Example: f bdd on path to∞⇒ f doesn’t have the pits effect.



A conjecture

The structure of the proof is roughly

f satisfies condition
(a), (b), (c) or (d)

⇒ cap O−(x) > 0,
for all x /∈ E(f )

⇒ properties (J1)–(J5),

where the first implication is the tricky part.

We’d like (J1)–(J5) to hold for all quasiregular maps of trans type.
This would follow from:

Conjecture
If f is quasiregular of transcendental type, then

cap O−(x) > 0, for all x /∈ E(f ).


