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Quick introduction to quasiregular maps on RY. These generalize
analytic functions on C.

Survey some results from “quasiregular dynamics”. We seek an
iterative theory parallel to complex dynamics.

Discuss some specific results on the quasi-Fatou set.



A continuous f: R — R% is quasiregular (qr) if f € W} ..(R?) and
there exists Ko > 1 such that

IDFI® < Kods(x) ~ ae.

where || Df(x)|| is the norm of the derivative and J¢(x) is the Jacobian.

Informally, a gr map sends infinitesimal spheres to infinitesimal
ellipsoids of bounded eccentricity.

A mapping is called K-gr if the local distortion is < K.
Holomorphic functions on C are 1-qr.

The iterates of a gr map are qr, but in general if f is K-gr then "
may be K"-qr.



Quasiregular functions on R9 generalize analytic functions on C.

Non-constant quasiregular maps are open, discrete and almost
everywhere differentiable.

A non-constant qr map f: R — R is called polynomial type if

lim |f(x)| = co.

X—00

Otherwise, this limit does not exist and f is transcendental type.

Can also consider quasiregular self-maps of RY = RY U {co} that are
analogous to rational functions on C.



Some easily-stated results

Let f be quasiregular on R? of transcendental type.

Theorem (Siebert, 2004)
f has infinitely many periodic points of every period p > 2.

Theorem (Bergweiler, Fletcher, Langley, Meyer, 2009)
The escaping set is non-empty; that is,

I(f) == {x : "(X) = 0o as n — oo} # 0.

Theorem (Bergweiler, Fletcher, Drasin, 2014)
The fast escaping set A(f) # 0. In fact, all components are unbounded.

v




An example of a quasiregular map

Bergweiler and Eremenko defined a qr “trig function analogue” on RY
as follows:

height h F(x):=6"F(xJ)
above cube

—_—

" F bilipschitz from
cube to hemisphere

Extend to a map R? — R by reflecting in hyperplanes.

For large enough \, the map S := \F is locally uniformly expanding.



By iterating S, they obtained a strong Karpifiska paradox in R:

Letd > 2. RY can be expressed as an uncountable union of hairs such
that

any two hairs intersect only at a common endpoint (if at all); and

the union of hairs without their endpoints has Hausdorff dim 1.
(It follows that the set of endpoints has Hausdorff dim d.)

Remark: the hairs minus endpoints lie in the escaping set /(S).
Vogel, 2015: /(S) has positive Lebesgue measure.



Ford > 2 and K > 1 there exists a constant q = q(d, K) with the
following property:
every K-qr map f: R — RY that omits q values must be constant.

Miniowitz used Rickman’s theorem to obtain an analogue of Montel's
theorem:

Let F be a family of K-qr maps on a domain D c RY. If there exist
distinct points ay, . . ., aq that are omitted by every f ¢ F, then F is a
normal family.




If every iterate " is K-quasiregular with the same K, then f is
called uniformly quasiregular (uqr).

For ugr maps, the usual definition of Fatou and Julia sets via
normality works well.

For a non-injective uniformly quasiregular map f: R — R9
J(fP) = J(f);
J(f) is perfect;
J(f) is the smallest closed completely invariant set with > q points;
classification of periodic points and periodic Fatou components;
J(f) = boundary of any attracting basins.




Question: For ugr maps, is the Julia set the closure of the repelling
periodic points?

Let f: R9 — RY be ugr.

J(f) ¢ {post-branch set} — J(f) = {repelling periodic points}.

Note:

Ugr maps in dimension 2 are quasiconformally conjugate to
rational/analytic maps.

No examples are known of transcendental type ugr maps in
dimension > 3.



Now let f: RY — RY or RY — R9 be K-qr, but not assumed ug.

Extending an idea of Sun and Yang (c.1999) we use a ‘blowing-up’
property to define the Julia set:

J(f) = {x - for every nhd U of x, R\ O* (V) is small} .

Here “small” means conformal capacity zero.
It follows immediately that J(f) is closed and completely invariant.

The definition of J(f) above agrees with the usual one if f is ugr.
Ifdeg(f) > K;, then J(f) # 0 and, in fact, J(f) is infinite.

Example: For the gr sine analogue, J(S) = RY (Fletcher, N. 2013).



Assume f: RY — RY or R9 — R is K-qr, with deg(f) > K.

J(f) = {x - for every nhd U of x, R\ O* (V) is small}.

Equivalent to replace “small” by “finite” in J(f) definition.
J(f) is perfect and J(fP) = J(f).

The conjecture is open in general, but holds under a variety of extra
hypotheses. In particular, it holds in two dimensions or if f is Lipschitz.

Warren defines J(f) for quasimeromorphic maps (with poles) of trans
type. J(f) # 0 and the analogous conjecture holds for such maps.



The rest of this talk considers the quasi-Fatou set of a qr map
f: RY — RY of trans type,

QF(f) := R\ J(f).
Note: no normality assumption!

Notation: the maximum modulus M(r, f) = max{|f(x)| : |x| = r}.

Let f be gr such that liminf loglog M(r, f) =00
r—oo loglog r

Then J(f) = 0A(f), where A(f) is the fast escaping set.

(1)

Corollary: If (1) holds and a quasi-Fatou component meets A(f), then it

is contained in A(f). (A ‘normality’ property!)

This is not true for the escaping set /(f) ...



Example: Modifying Fatou’s function

Fatou’s function g(z) =z+ 1+ e “hasa
right half-plane H C I(g) N F(g) on which
9(z2) = z+1.




Example: Modifying Fatou’s function

Fatou’s function g(z) =z+1+ e “hasa
right half-plane H C I(g) N F(g) on which
g(z2)=z+1.

Modifying g in a disc, as shown, gives a gr
map g with a fixed point in H.

We still have H ¢ Q.F(g) because
9(H) ¢ H = no blowing-up in H.

But H contains escaping and non-escaping
points of g.




We say that a domain in R? is full if its complement has no
bounded components; otherwise, it is hollow.
A component U of QF(f) is called p-periodic if fP(U) c U

If f is trans entire on C and U is a p-periodic Fatou component, then,

forz e U, log |f"P(z)| = O(n) asn— oc.

Periodic Fatou components are always full (simply-conn) and are
called Baker domains if U N I(f) # (). Baker domains cannot meet A(f).

If f is trans type qr on RY and U is a full p-periodic quasi-Fatou
component, then, for x € U,

loglog |f"P(x)| = O(n) asn— oo.
Moreover, U N A(f) = 0.




Our first example shows we cannot improve the gr result to be as good
as the entire one.
Q@ OnC,letg(z)=z+1+e?and ¢(z) = |z|z.
Then f = go ¢ is gr and has a full 1-periodic @F component U
containing a right half-plane H such that

loglog |f"(x)| ~ nlog2 for x € H.

Q There exists a trans type qr map G: R® — RS equal to the identity
in a half-space.

Q There exists a trans type qr map f: R® — RS for which QF(f) is a
full domain in which f" — oo locally uniformly.

Remark: f = G + constant.



For each d > 2, there exists a quasiregular f on R of trans type such
that QF(f) has a hollow component.

For any such f, either

QF(f) has a sequence of wandering, bounded hollow
components; or

only one component of QF(f) is hollow and this is unbounded.

But, for the f we construct, we don’t know which!



Next, aim to generalize Kisaka and Shishikura’s result on the
connectivity of Fatou components.

For a domain U C R, denote by cc(U) the number of
components of R4\ U.

In the plane, cc(U) is the connectivity of U.
In general, cc(U) =1 < U isfull

Let Uy be a quasi-Fatou component of a trans type qr map f.
Denote by U, the component of QF(f) that contains f"(Uy). Then

cc(Uny1) < cc(Up) foralln> 0;
Ifcc(Up) = 1 or oo, then cc(Up) = cc(Up) for all n;
Ifcc(Up) # 1 or oo, then cc(Up) = 2 for all large n.




Suppose that f is trans type gr on R? and that Uy is a bounded hollow
quasi-Fatou component.

Again, let U, denote the component of QF(f) containing f"(Up).

Un = f"(Up) and is bounded and hollow for all n;

Un.1 surrounds U, for all large n;

dist(0, Up) — o0 as n — oo;

U, C A(F);

the ‘inner’ and ‘outer’ boundaries of U, are far apart for large n;
Jlim Lloglog(meas(Uy)) = cc.




Let f be trans type gr on RY.

If f has an unbounded hollow quasi-Fatou component U, then
U is completely invariant;
all components of R? \ U are bounded;
any other quasi-Fatou components are full.

Question: Can a trans type gr map ever have an unbounded hollow
quasi-Fatou component?

If the answer is “no”, the next result becomes very interesting!

If f does not have an unbounded hollow quasi-Fatou component, then
J(f) is perfect and contains continua, J(f) = 0A(f) and J(fP) = J(f).



