The quasi-Fatou set in quasiregular dynamics

Dan Nicks

University of Nottingham

July 2018

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Talk overview

- Quick introduction to quasiregular maps on ℝ^d. These generalize analytic functions on ℂ.
- Survey some results from "quasiregular dynamics". We seek an iterative theory parallel to complex dynamics.

• Discuss some specific results on the quasi-Fatou set.

Quasiregular mappings

Definition

A continuous $f : \mathbb{R}^d \to \mathbb{R}^d$ is *quasiregular* (qr) if $f \in W^1_{d, \text{loc}}(\mathbb{R}^d)$ and there exists $K_O \ge 1$ such that

$$\|Df(x)\|^d \leq K_O J_f(x)$$
 a.e.

where ||Df(x)|| is the norm of the derivative and $J_f(x)$ is the Jacobian.

- Informally, a qr map sends infinitesimal spheres to infinitesimal ellipsoids of bounded eccentricity.
- A mapping is called K-qr if the local distortion is $\leq K$.
- Holomorphic functions on \mathbb{C} are 1-qr.
- The iterates of a qr map are qr, but in general if f is K-qr then fⁿ may be Kⁿ-qr.

Quasiregular mappings

Quasiregular functions on \mathbb{R}^d generalize analytic functions on \mathbb{C} .

Theorem (Reshetnyak, 1967-68)

Non-constant quasiregular maps are open, discrete and almost everywhere differentiable.

Definition

A non-constant qr map $f : \mathbb{R}^d \to \mathbb{R}^d$ is called *polynomial type* if

$$\lim_{x\to\infty}|f(x)|=\infty.$$

Otherwise, this limit does not exist and *f* is *transcendental type*.

Can also consider quasiregular self-maps of $\overline{\mathbb{R}^d} = \mathbb{R}^d \cup \{\infty\}$ that are analogous to rational functions on $\overline{\mathbb{C}}$.

Some easily-stated results

Let *f* be quasiregular on \mathbb{R}^d of transcendental type.

Theorem (Siebert, 2004)

f has infinitely many periodic points of every period $p \ge 2$.

Theorem (Bergweiler, Fletcher, Langley, Meyer, 2009)

The escaping set is non-empty; that is,

$$I(f) := \{x : f^n(x) \to \infty \text{ as } n \to \infty\} \neq \emptyset.$$

Theorem (Bergweiler, Fletcher, Drasin, 2014)

The fast escaping set $A(f) \neq \emptyset$. In fact, all components are unbounded.

An example of a quasiregular map

Bergweiler and Eremenko defined a qr "trig function analogue" on \mathbb{R}^d as follows:

Extend to a map $\mathbb{R}^d \to \mathbb{R}^d$ by reflecting in hyperplanes.

For large enough λ , the map $S := \lambda F$ is locally uniformly expanding.

イロト イポト イヨト イヨト ヨー のくぐ

An application of quasiregular dynamics(!)

By iterating *S*, they obtained a strong Karpińska paradox in \mathbb{R}^d :

Theorem (Bergweiler, Eremenko, 2011)

Let $d \ge 2$. \mathbb{R}^d can be expressed as an uncountable union of hairs such that

- any two hairs intersect only at a common endpoint (if at all); and
- the union of hairs without their endpoints has Hausdorff dim 1. (It follows that the set of endpoints has Hausdorff dim d.)

Remark: the hairs minus endpoints lie in the escaping set I(S).

Vogel, 2015: I(S) has positive Lebesgue measure.

Analogues of Picard's and Montel's theorem

Theorem (Rickman, 1980)

For $d \ge 2$ and $K \ge 1$ there exists a constant q = q(d, K) with the following property: every K-qr map $f : \mathbb{R}^d \to \mathbb{R}^d$ that omits q values must be constant.

Miniowitz used Rickman's theorem to obtain an analogue of Montel's theorem:

Theorem (Miniowitz, 1982)

Let \mathcal{F} be a family of K-qr maps on a domain $D \subset \mathbb{R}^d$. If there exist distinct points a_1, \ldots, a_q that are omitted by every $f \in \mathcal{F}$, then \mathcal{F} is a normal family.

(日) (日) (日) (日) (日) (日) (日) (日)

Uniformly quasiregular maps

- If every iterate fⁿ is K-quasiregular with the same K, then f is called uniformly quasiregular (uqr).
- For uqr maps, the usual definition of Fatou and Julia sets via normality works well.

Theorem (Hinkkanen, Martin, Mayer, 2004)

For a non-injective uniformly quasiregular map $f : \overline{\mathbb{R}^d} \to \overline{\mathbb{R}^d}$

- $J(f^p) = J(f);$
- J(f) is perfect;
- *J*(*f*) is the smallest closed completely invariant set with > q points;
- classification of periodic points and periodic Fatou components;
- J(f) = boundary of any attracting basins.

Uniformly quasiregular maps

Question: For uqr maps, is the Julia set the closure of the repelling periodic points?

Theorem (Siebert, 2004)

Let $f: \overline{\mathbb{R}^d} \to \overline{\mathbb{R}^d}$ be uqr.

 $J(f) \not\subset \overline{\{\text{post-branch set}\}} \implies J(f) = \overline{\{\text{repelling periodic points}\}}.$

Note:

- Uqr maps in dimension 2 are quasiconformally conjugate to rational/analytic maps.
- No examples are known of transcendental type uqr maps in dimension \geq 3.

Non-uniformly quasiregular dynamics

Now let $f \colon \mathbb{R}^d \to \mathbb{R}^d$ or $\overline{\mathbb{R}^d} \to \overline{\mathbb{R}^d}$ be *K*-qr, but <u>not</u> assumed uqr.

Extending an idea of Sun and Yang (c.1999) we use a 'blowing-up' property to *define* the Julia set:

$$J(f):=\left\{x: ext{for every nhd } U ext{ of } x, \ \mathbb{R}^dackslash O^+(U) ext{ is small}
ight\}.$$

Here "small" means conformal capacity zero. It follows immediately that J(f) is closed and completely invariant.

Theorem (Bergweiler 2013, Bergweiler, N. 2014)

The definition of J(f) above agrees with the usual one if f is uqr. If deg $(f) > K_I$, then $J(f) \neq \emptyset$ and, in fact, J(f) is infinite.

Example: For the qr sine analogue, $J(S) = \mathbb{R}^d$ (Fletcher, N. 2013).

A conjecture

Assume $f : \mathbb{R}^d \to \mathbb{R}^d$ or $\overline{\mathbb{R}^d} \to \overline{\mathbb{R}^d}$ is *K*-qr, with deg(*f*) > *K*_l.

 $J(f) := \left\{ x : \text{for every nhd } U \text{ of } x, \mathbb{R}^d \setminus O^+(U) \text{ is small} \right\}.$

Conjecture

- Equivalent to replace "small" by "finite" in J(f) definition.
- J(f) is perfect and $J(f^p) = J(f)$.

The conjecture is open in general, but holds under a variety of extra hypotheses. In particular, it holds in two dimensions or if *f* is Lipschitz.

Warren defines J(f) for quasimeromorphic maps (with poles) of trans type. $J(f) \neq \emptyset$ and the analogous conjecture holds for such maps.

The quasi-Fatou set

The rest of this talk considers the *quasi-Fatou set* of a qr map $f : \mathbb{R}^d \to \mathbb{R}^d$ of trans type,

$$\mathcal{QF}(f) := \mathbb{R}^d \setminus J(f).$$

Note: no normality assumption!

Notation: the maximum modulus $M(r, f) = \max\{|f(x)| : |x| = r\}$.

Theorem (Bergweiler, Fletcher, N. 2014)

Let f be qr such that
$$\liminf_{r \to \infty} \frac{\log \log M(r, f)}{\log \log r} = \infty.$$
 (1)

Then $J(f) = \partial A(f)$, where A(f) is the fast escaping set.

Corollary: If (1) holds and a quasi-Fatou component meets A(f), then it is contained in A(f). (A 'normality' property!)

This is not true for the escaping set I(f)...

Example: Modifying Fatou's function

Fatou's function $g(z) = z + 1 + e^{-z}$ has a right half-plane $H \subset I(g) \cap F(g)$ on which $g(z) \approx z + 1$.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ● ののの

Example: Modifying Fatou's function

Fatou's function $g(z) = z + 1 + e^{-z}$ has a right half-plane $H \subset I(g) \cap F(g)$ on which $g(z) \approx z + 1$.

Modifying g in a disc, as shown, gives a qr map \tilde{g} with a fixed point in H.

We still have $H \subset \mathcal{QF}(\tilde{g})$ because

 $\tilde{g}(H) \subset H \Rightarrow$ no blowing-up in H.

But *H* contains escaping and non-escaping points of \tilde{g} .

(日) (日) (日) (日) (日) (日) (日) (日)

Full periodic domains vs. Baker domains

- We say that a domain in ℝ^d is *full* if its complement has no bounded components; otherwise, it is *hollow*.
- A component U of QF(f) is called p-periodic if $f^p(U) \subset U$.

Theorem (Baker, 1988)

If f is trans entire on \mathbb{C} and U is a p-periodic Fatou component, then, for $z \in U$, $\log |f^{np}(z)| = O(n) \text{ as } n \to \infty.$

Periodic Fatou components are always full (simply-conn) and are called *Baker domains* if $U \cap I(f) \neq \emptyset$. Baker domains cannot meet A(f).

Theorem (N., Sixsmith, 2017)

If f is trans type qr on \mathbb{R}^d and U is a full p-periodic quasi-Fatou component, then, for $x \in U$,

$$\log \log |f^{np}(x)| = O(n)$$
 as $n \to \infty$.

Moreover, $U \cap A(f) = \emptyset$ *.*

Examples

Our first example shows we cannot improve the qr result to be as good as the entire one.

On C, let g(z) = z + 1 + e^{-z} and φ(z) = |z|z.
 Then f = g ∘ φ is qr and has a full 1-periodic QF component U containing a right half-plane H such that

 $\log \log |f^n(x)| \sim n \log 2$ for $x \in H$.

Theorem (N., Sixsmith, 2017)

- ② There exists a trans type qr map $G \colon \mathbb{R}^3 \to \mathbb{R}^3$ equal to the identity in a half-space.
- So There exists a trans type qr map $f : \mathbb{R}^3 \to \mathbb{R}^3$ for which $\mathcal{QF}(f)$ is a full domain in which $f^n \to \infty$ locally uniformly.

Remark: f = G + constant.

Hollow quasi-Fatou components — Existence

Theorem (N., Sixsmith, 2017)

For each $d \ge 2$, there exists a quasiregular f on \mathbb{R}^d of trans type such that $\mathcal{QF}(f)$ has a hollow component.

For any such f, either

- QF(f) has a sequence of wandering, bounded hollow components; or
- only one component of QF(f) is hollow and this is unbounded.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ● ののの

But, for the *f* we construct, we don't know which!

Hollow quasi-Fatou components — How many holes?

- Next, aim to generalize Kisaka and Shishikura's result on the connectivity of Fatou components.
- For a domain U ⊂ ℝ^d, denote by cc(U) the number of components of ℝ^d \U.
- In the plane, cc(U) is the connectivity of U.
- In general, $cc(U) = 1 \iff U$ is full.

Theorem (N., Sixsmith, 2017)

Let U_0 be a quasi-Fatou component of a trans type qr map f. Denote by U_n the component of $Q\mathcal{F}(f)$ that contains $f^n(U_0)$. Then

- $\operatorname{cc}(U_{n+1}) \leq \operatorname{cc}(U_n)$ for all $n \geq 0$;
- If $cc(U_0) = 1$ or ∞ , then $cc(U_n) = cc(U_0)$ for all n;
- If $cc(U_0) \neq 1$ or ∞ , then $cc(U_n) = 2$ for all large n.

Bounded hollow quasi-Fatou components

Suppose that *f* is trans type qr on \mathbb{R}^d and that U_0 is a <u>bounded</u> hollow quasi-Fatou component.

Again, let U_n denote the component of $Q\mathcal{F}(f)$ containing $f^n(U_0)$.

Theorem (N., Sixsmith, 2017)

- $U_n = f^n(U_0)$ and is bounded and hollow for all n;
- U_{n+1} surrounds U_n for all large n;
- dist(0, U_n) $\rightarrow \infty$ as $n \rightarrow \infty$;
- $\overline{U_n} \subset A(f);$
- the 'inner' and 'outer' boundaries of U_n are far apart for large n;
- $\lim_{n\to\infty}\frac{1}{n}\log\log(\operatorname{meas}(U_n))=\infty.$

Unbounded hollow quasi-Fatou components?

Let *f* be trans type qr on \mathbb{R}^d .

Theorem (N., Sixsmith, 2017)

If f has an <u>unbounded</u> hollow quasi-Fatou component U, then

- U is completely invariant;
- all components of $\mathbb{R}^d \setminus U$ are bounded;
- any other quasi-Fatou components are full.

Question: Can a trans type qr map ever have an unbounded hollow quasi-Fatou component?

If the answer is "no", the next result becomes very interesting!

Theorem (N., Sixsmith, 2017)

If f does not have an unbounded hollow quasi-Fatou component, then J(f) is perfect and contains continua, $J(f) = \partial A(f)$ and $J(f^p) = J(f)$.