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Abstract

A real entire function belongs to the Laguerre-Pólya class LP if it is the limit of a sequence of real
polynomials with real zeroes. By building upon results that resolved a long-standing conjecture
of Wiman, a number of conditions are established under which a real entire function f must
belong to the class LP , or to one of the related classes U∗2p. These conditions typically involve
the non-real zeroes of f and its derivatives, or those of the differential polynomial ff ′′ − a(f ′)2.

1. Introduction: the Pólya–Wiman conjectures

This paper is motivated by a conjecture attributed to Wiman about the zeroes of real entire
functions and their derivatives. Here an entire function is said to be real if it takes real values
on the real axis. An entire function f belongs to the Laguerre-Pólya class LP if there exists a
sequence of real polynomials with only real zeroes that converges locally uniformly to f . Such
functions are necessarily real and have only real zeroes unless f ≡ 0. It is not difficult to show
that LP is closed under differentiation; hence, all derivatives of a transcendental function in
LP have only real zeroes. Pólya [32] asked whether the converse is true: Must a real entire
function belong to LP if f (k) has only real zeroes, for every k ≥ 0?

The following stronger conjecture due to Wiman [1, 2] dates back to around 1911 and was
eventually confirmed in 2002 [7]: If f is a real entire function such that ff ′′ has only real
zeroes, then f ∈ LP . Wiman’s conjecture therefore implies the striking result that if the zeroes
of a transcendental real entire function and its second derivative are real, then the zeroes of
all its derivatives are confined to the real axis.

See [7] for a history of the proof of Wiman’s conjecture. We mention only that important
steps were taken by Levin and Ostrovskii [27], Sheil-Small [33] and Bergweiler, Eremenko and
Langley [7]. Pólya’s conjecture was settled by Hellerstein and Williamson [15, 16].

There are now many theorems related to the Pólya-Wiman conjectures, and the new results
presented here are best viewed in this context. Before proceeding, we define a family of classes
of real entire functions [9, 15, 16].

For each integer p ≥ 0, the class V2p consists of all functions

g(z) exp
(
−az2p+2

)
,

where a ≥ 0 and g is a real entire function with real zeroes and genus at most 2p+ 1 [13, p.29].
The classes U2p are then defined by U0 = V0 and U2p = V2p \ V2p−2 for p ≥ 1. The connection
with the Pólya-Wiman conjectures is made clear by the Laguerre-Pólya Theorem that U0 = LP
[20, 31]. We denote by U∗2p the class of real entire functions f = Pf0, where f0 ∈ U2p and P is
a real polynomial. It follows that every real entire function of finite order with finitely many
non-real zeroes belongs to exactly one of the classes U∗2p.
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Theorem 1.1 below was first proved for f ∈ U2p and k = 2 in [33]. This result follows a
convention that we shall adopt throughout this paper: all counts of zeroes are made with
regard to multiplicity unless explicitly stated otherwise. Theorem 1.2 is the corresponding
infinite order result, which was proved for k = 2 in [7], and for k ≥ 3 in [22]. An immediate
corollary of these results is that if f is a real entire function and ff (k) has only real zeroes, for
some k ≥ 2, then f ∈ LP . This represents one natural generalisation of Wiman’s conjecture.

Theorem 1.1 ([9, Corollary 5.2]). Let f be a real entire function. If f ∈ U∗2p, then f (k)

has at least 2p non-real zeroes for all k ≥ 2.

Theorem 1.2 ([7, 22]). Let f be a real entire function of infinite order. Then ff (k) has
infinitely many non-real zeroes for all k ≥ 2.

2. Statement of results

In the spirit of the Pólya-Wiman conjectures, the aim of this paper is to seek out conditions
under which a real entire function must belong to the class LP or to one of the more general
classes U∗2p. These conditions will typically involve the non-real zeroes of the function and its
derivatives. The first result below implies that a real entire function f belongs to LP if it has
only real zeroes and all the non-real zeroes of f ′′ are critical points of f .

Theorem 2.1. Let f be a real entire function with finitely many non-real zeroes. If f ∈ U∗2p,
then f ′′ has at least 2p non-real zeroes that are not critical points of f . If instead f is of infinite
order, then f ′′ has infinitely many such zeroes.

Theorem 2.1 is a mild strengthening of the k = 2 cases of Theorems 1.1 and 1.2. Our next
result extends these cases in a different direction. It turns out that statements regarding the
zeroes of ff ′′ can sometimes be generalised to ones considering the zeroes of ff ′′ − a(f ′)2

for certain values of a. The zeroes of the differential polynomial ff ′′ − a(f ′)2 for a general
meromorphic f have also been studied in [4, 21, 25, 26]. With all this in mind, we remark
that if f is entire, then a zero of ff ′′/(f ′)2 − a of multiplicity m is a zero of ff ′′ − a(f ′)2 of
multiplicity at least m.

Theorem 2.2. Let a < 1 and let f be a real entire function with finitely many non-real
zeroes. If f ∈ U∗2p, then ff ′′/(f ′)2 − a has at least 2p non-real zeroes. If instead f is of infinite
order, then ff ′′/(f ′)2 − a has infinitely many non-real zeroes.

To see that we cannot take a ≥ 1 in the above, let f(z) = exp(z2p) for p ∈ N. Then f ∈ U2p

but ff ′′/(f ′)2 − a has no zeroes if a = 1, and only 2p− 2 non-real zeroes if a > 1. However, it
follows from [25, 26] that any counterexample to Theorem 2.2 with a > 1 must have the form
f = PeQ, where P and Q are polynomials.

The following corollary to Theorem 2.2 is proved in Section 5 by using an argument based
on iteration. Note that this time there are no assumptions about the zeroes of the function.

Corollary 2.3. Let a ≤ 1
2 and let f be a real entire function such that f ′/f is of finite

lower order. If ff ′′/(f ′)2 − a has only finitely many non-real zeroes, then f ∈ U∗2p for some p.
Moreover, if ff ′′/(f ′)2 6= a on C \ R, then f ∈ LP .
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Corollary 2.3 is new even for a = 0, in which case it shows that a real entire function f must
belong to the class LP if f ′/f has finite lower order and each non-real zero of ff ′′ is a critical
point of f . It seems reasonable to conjecture that the conclusions of Corollary 2.3 may remain
valid even without the assumption that f ′/f has finite lower order.

Our next result considers zeroes of higher derivatives.

Theorem 2.4. Let k ≥ 2 and let f be a real entire function such that f (k−1)/f (k−2) is of
finite lower order. Suppose that all (respectively, all but finitely many) of the non-real zeroes
of ff (k) are also zeroes of f (k−2) and f (k−1). Then f ∈ LP (respectively, f ∈ U∗2p for some p).

The hypothesis that f (k−1)/f (k−2) is of finite lower order is certainly satisfied if either f or
f ′/f is of finite order. See Lemma 6.4 for a proof of the latter fact.

The results stated above all require that the function under consideration either has only
finitely many non-real zeroes or satisfies an order condition. We now seek results that are free
of these particular restrictions. Instead, we take integers M ≥ k ≥ 2 and define the following
hypotheses for an analytic function f :

(I) all the non-real zeroes of ff (k) are zeroes of f with multiplicity at least k but at most M ;
(I′) all but finitely many of the non-real zeroes of ff (k) are zeroes of f with multiplicity at

least k but at most M ;
(II) ff ′′ − a(f ′)2 has no non-real zeroes, for some a ∈ C \ { 1

2 , 1};
(II′) ff ′′ − a(f ′)2 has finitely many non-real zeroes, for some a ∈ C \ { 1

2 , 1}.
Under these hypotheses, the next theorem provides a bound on the Tsuji characteristic for

functions defined on a half-plane as developed in [27, 35]. We write H = {z ∈ C : Im z > 0}
for the (open) upper half-plane. We shall say that a function is meromorphic on the closed
upper half-plane H ⊆ C to mean that it is meromorphic on some domain containing H. Let g
be meromorphic on H and, for r ≥ 1, let n(r, g) denote the number of poles of g, counted with
multiplicity, that lie in {z : |z − ir/2| ≤ r/2, |z| ≥ 1}. The half-plane versions of the integrated
counting function and the proximity function are defined as

N(r, g) =

∫r
1

n(t, g)

t2
dt, m(r, f) =

1

2π

∫π−sin−1(1/r)

sin−1(1/r)

log+|g(r sin θeiθ)|
r sin2 θ

dθ. (2.1)

The Tsuji characteristic of g is then the sum T(r, g) = m(r, g) + N(r, g). A useful summary of
properties of the Tsuji characteristic may be found in [7, p.980], see also [11] for more details.

Theorem 2.5. If f is analytic on H and satisfies either (I′) or (II′) then, for all j ≥ 0,

N(r, 1/f) = O(log r) and T

(
r,
f (j+1)

f (j)

)
= O(log r) as r →∞. (2.2)

We will apply Theorem 2.5 to obtain the following three results.

Theorem 2.6. Let f be a real entire function and take real a < 1
2 and M ≥ k ≥ 2. Suppose

that either

(i) all (respectively, all but finitely many) of the non-real zeroes of ff (k−1)f (k) are zeroes of
f with multiplicity at least k but at most M ; or

(ii) ff ′′ − a(f ′)2 has no (respectively, finitely many) non-real zeroes and f ′ has finitely many
non-real zeroes.

Then f ∈ LP (respectively, f ∈ U∗2p for some p).
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Theorem 2.7. Let f be a real entire function.
(i) If (I′) holds and the zeroes of f (j) have finite exponent of convergence for some

0 ≤ j ≤ k − 1, then f ∈ U∗2p for some p. If in addition (I) holds, then f ∈ LP .
(ii) If (II′) holds and the zeroes of f or f ′ have finite exponent of convergence, then f ′/f has

finite order. Moreover, if a < 1
2 then we have f ∈ U∗2p for some p, and in fact f ∈ LP if

(II) also holds.

The final two results only place a ‘finite exponent of convergence’ condition on certain
non-real zeroes. There is no restriction on the frequency of the real zeroes.

Theorem 2.8. Let f be an entire function satisfying either (I′) or (II′). Suppose
that the non-real zeroes of f (j) have finite exponent of convergence for some j ≥ 0. Then
log logM(r, f) = O(r log r) as r →∞.

The particular estimate for the rate of growth found in Theorem 2.8 has a long history in
this area, dating back at least to Levin and Ostrovskii [27]. It is through Shen’s generalisation
[34] of one of Levin and Ostrovskii’s results that Theorem 2.8 does not require a real function.

Our last theorem extends the theme of Theorem 2.6(i) and Theorem 2.7(i).

Theorem 2.9. Let 1 ≤ j < k < M <∞ and let f be a real entire function such that all
(respectively, all but finitely many) of the non-real zeroes of ff (j)f (k) are zeroes of f with
multiplicity at least k but at most M . Assume further that these non-real zeroes have finite
exponent of convergence. Then f ∈ LP (respectively, f ∈ U∗2p for some p).

Theorems 2.1 and 2.2 are proved in Section 4. A lemma based on iteration theory is
introduced in Section 5, and is used to establish Corollary 2.3 and Theorem 2.4. In Section 6,
Theorem 2.5 is proved and applied to give Theorems 2.6, 2.7 and 2.8. The proof of Theorem 2.9
is presented in Section 7.

3. Preliminaries

We begin with two established lemmas involving the Tsuji characteristic. The first is a version
of Hayman’s Alternative that goes back essentially to Levin and Ostrovskii [27].

Lemma 3.1. Let g be meromorphic on H and let c ∈ C \ {0}. If

N(r, 1/g) = O(log r) and N

(
r,

1

g′ − c

)
= O(log r), r →∞,

then T(r, g) = O(log r).

The next result will be used to provide a connection between the Nevanlinna and Tsuji
proximity functions. We define

m0π(r, g) =
1

2π

∫π
0

log+ |g(reiθ)| dθ. (3.1)

A meromorphic function is said to be real if it maps R into R ∪ {∞}. We note that if g is a
real meromorphic function on the plane then m(r, g) = 2m0π(r, g).
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Lemma 3.2 ([27]). If g is meromorphic on H and m(r, g) = O(log r) as r →∞, then∫∞
R

m0π(r, g)

r3
dr = O

(
logR

R

)
, R→∞.

The asymptotic values of a transcendental meromorphic function g are called the transcen-
dental singularities of g−1 (see [5, 30]). These are further classified as direct or indirect as
follows. Suppose that g(z) tends to α ∈ C as z goes to infinity along a path γ. For each ε > 0,
let C(ε) denote that component of the set {z : |g(z)− α| < ε} which contains an unbounded
subpath of γ. Two different asymptotic paths on which g → α are considered to determine
separate transcendental singularities if and only if the corresponding components C(ε) are
distinct for some ε > 0. The path γ determines an indirect transcendental singularity over α if
C(ε) contains infinitely many α-points of g for every ε > 0. Otherwise, the singularity is called
direct and C(ε), for all sufficiently small ε, contains no α-points. Transcendental singularities
over ∞ are defined and classified by considering 1/g. A transcendental singularity will be
referred to as “lying in a domain D” if C(ε) ⊆ D for small ε.

In subsequent sections we shall often want to limit the number of singularities of an inverse
function found in the upper half-plane. The following three lemmas will be used several times
for this purpose.

Lemma 3.3 (Denjoy-Carleman-Ahlfors Theorem [30, §XI.4]). A meromorphic function of
finite lower order has finitely many direct transcendental singularities.

Lemma 3.4 ([24]). Let g be a meromorphic function such that T(r, g) = O(log r) as r →∞.
Then there is at most one direct singularity of g−1 lying in H.

Lemma 3.5 ([5, 18]). Let g be a meromorphic function of finite lower order. Then any
indirect transcendental singularity of g−1 must be a limit point of critical values. In particular,
if g has finitely many critical values, then g−1 has no indirect transcendental singularities.

Lemma 3.5 is Hinchliffe’s extension of the Bergweiler-Eremenko Theorem to include functions
of finite lower order.

Nearly half a century after the Pólya-Wiman conjectures were posed, the first significant
progress was made by Levin and Ostrovskii [27]. They wrote the logarithmic derivative as the
product of two functions, one having few poles and one mapping the upper half-plane into
itself. Variations of this technique are central to the proofs of Theorems 1.1 and 1.2.

Lemma 3.6 ([6, 7, 24]). Let f be a real entire function with finitely many non-real zeroes.
Then the logarithmic derivative has a factorisation

L =
f ′

f
= φψ (3.2)

in which φ and ψ are real meromorphic functions satisfying the following:

(i) either ψ ≡ 1 or ψ(H) ⊆ H;
(ii) ψ has a simple pole at each real zero of f , and no other poles;
(iii) φ has finitely many poles, none of them real;
(iv) on each component of R \ f−1({0}) the number of zeroes of φ is either infinite or even;
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(v) if f ∈ U∗2p, then φ is a rational function, and if in addition f has at least one real zero,
then the degree at infinity of φ is even and satisfies

deg∞(φ) = lim
z→∞

log |φ(z)|
log |z|

≥ 2p; (3.3)

(vi) if f has infinite order, then φ is transcendental.

Parts (i)–(v) are proved in [24, Lemma 4.2], while part (vi) is [7, Lemma 5.1].
The next result is the Carathéodory inequality [28, Ch. I.6, Theorem 8′], which is essentially

the Schwarz lemma on a half-plane. It shows that away from the real axis ψ is neither too large
nor too small, so that in (3.2) the growth of f ′/f is dominated by that of φ.

Lemma 3.7 ([28]). Let ψ : H → H be analytic. Then

|ψ(i)| sin θ
5r

< |ψ(reiθ)| < 5r|ψ(i)|
sin θ

for r ≥ 1, θ ∈ (0, π).

Lemma 3.8 ([36]). Let u be a non-constant continuous subharmonic function on the plane.
For r > 0, let θ∗(r) be the angular measure of that subset of S(0, r) on which u(z) > 0, except
that θ∗(r) =∞ if u(z) > 0 on the whole circle S(0, r). Then, for r > 0,

B(r, u) = max{u(z) : |z| = r} ≤ 3

2π

∫2π

0

max{u(2reit), 0} dt

and, if r ≤ R/4 and r is sufficiently large,

B(r, u) ≤ 9
√

2B(R, u) exp

(
−π

∫R/2
2r

ds

sθ∗(s)

)
.

4. Proof of Theorems 2.1 and 2.2

Theorems 2.1 and 2.2 are proved by making a number of small alterations to the proofs
of the k = 2 cases of Theorems 1.1 and 1.2. The main difference is that we shall consider a
‘relaxed’ Newton function z − hf/f ′, where the constant h is no longer always taken to be 1.

We shall first prove both theorems in the infinite order case, as these results can quickly
be deduced from a theorem of Bergweiler, Eremenko and Langley [7]. We then tackle the
remaining finite order case, where we base our arguments on existing proofs, but cannot so
easily quote suitable results from the literature. This section is closely based on a set of notes
by Jim Langley that give a unified presentation of the proof of Wiman’s conjecture (see also
[24, §13]).

4.1. Infinite order case

The following is the theorem of Bergweiler, Eremenko and Langley mentioned above.

Lemma 4.1 ([7]). Let L̃ be a real meromorphic function on the plane such that all but
finitely many poles of L̃ are real and simple and have positive residues. Suppose that L̃ = φ̃ψ,
where φ̃ and ψ are real meromorphic functions such that: either ψ ≡ 1 or ψ(H) ⊆ H; every
pole of ψ is real and simple and is a simple pole of L̃; and φ̃ is transcendental with finitely
many poles. Then L̃+ L̃′/L̃ has infinitely many non-real zeroes.
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Let f be a real entire function of infinite order with only finitely many non-real zeroes. By
Lemma 3.6, we have the Levin-Ostrovskii factorisation L = f ′/f = φψ. For a < 1, let

φ̃ = (1− a)φ and L̃ = (1− a)L = φ̃ψ.

Then L̃, φ̃ and ψ satisfy the hypothesis of Lemma 4.1 by Lemma 3.6(i)–(iii) and (vi). Therefore,
Lemma 4.1 gives that

M̃ = L̃+
L̃′

L̃
= (1− a)

f ′

f
+
f

f ′

(
ff ′′ − (f ′)2

f2

)
=
f ′

f

(
ff ′′

(f ′)2
− a
)

has infinitely many non-real zeroes. Since M̃ does not vanish at a zero of L, this establishes the
infinite order case of Theorem 2.2. Setting a = 0 gives the infinite order case of Theorem 2.1.

4.2. Finite order case

We assume that f ∈ U∗2p for some p ≥ 1, and that ff ′′/(f ′)2 − a has finitely many non-real
zeroes, where a < 1. To prove Theorem 2.1, make these assumptions with a = 0. Let L = f ′/f .

Lemma 4.2. The Tsuji characteristic of the logarithmic derivative L satisfies

T(r, L) = O(log r), r →∞. (4.1)

Proof. Write g = 1/L; then g has finitely many zeroes in H, and g′ = 1− ff ′′/(f ′)2 takes
the value 1− a only finitely often in H. The result is now obtained using Lemma 3.1.

We make the following definitions.

h =
1

1− a
> 0,

G(z) = z − h f(z)

f ′(z)
= z − h

L(z)
, G′ = h

(
ff ′′

(f ′)2
− a
)
, (4.2)

W = {z ∈ H : G(z) ∈ H}, Y = {z ∈ H : L(z) ∈ H}. (4.3)

Observe that Y ⊆W , since h is positive. For h = 1, this key observation is due to Sheil-Small
[33], who was the first to consider these sets. He confirmed Wiman’s conjecture for functions
of finite order by adopting a geometric approach, and studying how the logarithmic derivative
f ′/f and the Newton function z − f/f ′ behave as mappings of the upper half-plane.

We shall modify Sheil-Small’s approach by using a relaxed Newton function G(z) as defined
in (4.2). These functions also arise when using the (relaxed) Newton method [3, §6] to find the
zeroes of f by iterating G (in this context, usually |h− 1| < 1). Theorems 2.1 and 2.2 will be
proved through a detailed study of how G maps components of W into H.

Lemma 4.3. The closure of Y contains no real zeroes of f .

Proof. This is from [33, p.181]. If x is a real zero of f , then it is a simple pole of L
with positive residue. Then since L is univalent near x and real on the real axis, we see that
ImL(z) < 0 for points in H near x. Thus x does not lie in the closure of Y .

Lemma 4.4 (cf [23, Lemma 4], [24, §5]). The function G has no asymptotic values in C \ R,
while the function L has only finitely many.
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Proof. Suppose that α ∈ C \ R is an asymptotic value of G. Since G has finitely many
non-real critical values by (4.2), the Bergweiler-Eremenko Theorem (Lemma 3.5) shows that
α must be a direct transcendental singularity of G−1. Therefore, there exist ε ∈ (0, 1) and a
component D of the set {z ∈ C : |G(z)− α| < ε} such that G(z) 6= α on D. Since G is real
meromorphic, we may assume that D ⊆ H. We define a continuous subharmonic function on
the plane by

v(z) =

{
log

ε

|G(z)− α|
, z ∈ D

0, z ∈ C \D.

Lemma 3.8 and (3.1) give that

B(r/2, v) ≤ 3

2π

∫π
0

log+ ε

|G(reit)− α|
dt ≤ 3m0π

(
r,

1

G− α

)
.

By (4.1) and (4.2), we have T(r, 1/(G− α)) = O(log r) as r →∞. Using this and Lemma 3.2,
together with the above, now leads to∫∞

1

B(r/2, v)

r3
dr ≤

∫∞
1

3m0π(r, 1/(G− α))

r3
dr <∞. (4.4)

We now let δ be small and positive, and claim that

G(z)→∞ as z →∞, δ < arg z < π − δ. (4.5)

Let L = f ′/f = φψ be the Levin-Ostrovskii factorisation described in Lemma 3.6. If f has at
least one real zero, then deg∞(φ) ≥ 2 by (3.3), and then (4.5) follows from Lemma 3.7 and
(4.2). Otherwise, f has no real zeroes, and so there exist real polynomials P and Q such that

f = PeQ, L = P ′/P +Q′, degQ ≥ 2p, (4.6)

using the fact that f ∈ U∗2p. Hence L is a rational function with a pole at infinity, and again
(4.5) follows from (4.2).

By (4.5), the angular measure of D ∩ S(0, r) is at most 2δ for all large r. Thus a standard
application of Lemma 3.8 gives that B(R, v) ≥ cRπ/2δ, for some positive constant c and all
sufficiently large R. As δ is arbitrarily small, this contradicts (4.4), showing that G cannot
have an asymptotic value in C \ R.

Suppose now that L has infinitely many non-real asymptotic values. Since L has finitely
many non-real poles, it follows from the Phragmén-Lindelöf principle [36, p.308] that L−1

must have at least two direct transcendental singularities over ∞ lying in H. By (4.1), this
stands in contradiction to Lemma 3.4.

Therefore, G has no asymptotic values in H by the previous lemma, and finitely many critical
values in H by (4.2). We use these facts to obtain the next result.

Lemma 4.5. For each component A of W there is a positive integer kA such that G maps
A onto H with valency kA; that is, each value w ∈ H is taken kA times in A. Furthermore, G′

has at least kA − 1 zeroes in A.

Lemma 4.5 is proved by the following standard argument (see [7, p.987–988] or [22, §11]).
Let γ ⊆ H be a bounded simple curve such that H∗ = H \ γ is simply-connected and contains
no singular values of G−1. Then each component of G−1(H∗) is mapped univalently onto H∗

by G, and G maps every component of W onto H with finite valency. The final assertion is
proved by an application of the Riemann-Hurwitz formula.
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We introduce some more notation before stating our next lemma. Denote by 2q the number
of distinct non-real zeroes of f and define

D(λ) = {z ∈ H : |z| < λ}, E(Λ) = {z ∈ H : |z| > Λ}.

Lemma 4.6. For sufficiently small positive λ, and sufficiently large positive Λ, there are at
least p+ q pairs of bounded components Kj ⊆ Vj ⊆ H such that the following conditions are
satisfied:

(i) Kj is a component of the set L−1(D(λ)), mapped univalently onto D(λ) by L;
(ii) Vj is a component of the set G−1(E(Λ)), mapped univalently onto E(Λ) by G;

(iii) the Vj are pairwise disjoint;
(iv) ∂Kj ∩ ∂Vj contains one zero of L.

Proof. Let Z be a finite set of zeroes of L and let λ and 1/Λ be small. The arguments of
[22, Lemma 14.1] and [24, Lemma 8.1] contain an elementary analysis of the behaviour of L
near its zeroes. This shows that each ζ ∈ Z gives rise to pairs {Kj , Vj} as in the statement of
the lemma, with ζ ∈ ∂Kj ∩ ∂Vj , as follows:

1. If ζ ∈ Z ∩H is a zero of L of multiplicity m, then there exist m such pairs {Kj , Vj}.
2. If ζ ∈ Z ∩ R is a zero of even multiplicity m, then there exist m/2 such pairs. In this

case, the sign of L(x) does not change as real x passes through ζ from left to right.
3. Now suppose that ζ ∈ Z ∩ R is a zero of L of odd multiplicity m. If L(m)(ζ) > 0, then

there exist (m+ 1)/2 pairs {Kj , Vj} and L(x) has a positive sign change at ζ; that is,
L(x) changes from negative to positive as x passes through ζ from left to right. If instead
L(m)(ζ) < 0, then ζ gives rise to (m− 1)/2 pairs {Kj , Vj} and L(x) has a negative sign
change at ζ.

Provided that λ and 1/Λ are chosen small enough, the components arising from distinct
zeroes are disjoint. It remains to show that L has sufficiently many zeroes that we can find at
least p+ q components Kj . The required argument is exactly the final two paragraphs of the
proof of [24, Lemma 8.1], using again the factorisation L = φψ from Lemma 3.6.

We are now ready to complete the proof as in [24, p.134-135]. Choose θ ∈ (π/4, 3π/4) such
that the ray γ(s) = seiθ, s ∈ (0,∞), contains no singular values of L−1. This is possible because
L has countably many critical values and, by Lemma 4.4, finitely many asymptotic values in
H. For each Kj , choose zj ∈ Kj with L(zj) ∈ γ, and continue L−1 along γ in the direction of
infinity. Let Γj be the image of this continuation starting at zj . Then Γj is a path in Y on
which L(z)→∞, where Y is defined by (4.3). Hence, Γj tends either to infinity or to a pole
of L, which must be a zero of f in H by Lemma 4.3. Since Kj ⊆ Y ⊆W , each Kj lies in some
component A of W . A component Aν of W will be called type (α) if there exists Kj ⊆ Aν such
that Γj tends to infinity, and type (β) otherwise.

Lemma 4.7. Let nν denote the number of Kj contained in a component Aν of W .
If Aν is type (α), then nν is at most the number of zeroes of G′ in Aν .
If Aν is type (β), then nν is at most the number of distinct zeroes of f in Aν .

Proof. First suppose that Aν is type (α). By Lemma 4.5, it will suffice to show that
nν ≤ kAν − 1. But the fact that the valency kAν of G on Aν exceeds the number nν is made
clear by the following observation: each of the nν sets Kj ⊆ Aν corresponds to a bounded
component Vj ⊆ Aν which is mapped onto E(Λ) by G, while we also have a path tending to
infinity in Aν on which L(z)→∞ and consequently G(z)→∞, by (4.2).
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Now suppose instead that Aν is type (β). For each Kj contained in Aν , the path Γj must
tend to a zero wj of f in H. Since L has a simple pole at wj , the wj corresponding to different
Kj must be distinct. Moreover, using (4.2) gives that G(wj) = wj ∈ H, so that wj ∈ Aν .

This completes the proof of Theorem 2.2, since Lemma 4.6 gives p+ q components Kj , but
by (4.2) and Lemma 4.7, the number of Kj does not exceed q plus the number of zeroes of
ff ′′/(f ′)2 − a in H.

To prove Theorem 2.1, we put a = 0 and note that G′ does not vanish at any zero of f ′

by (4.2). Hence, using (4.2) again, the number of zeroes of G′ in Aν is at most the number
of distinct zeroes of f in Aν plus the number of zeroes of f ′′ in Aν that are not zeroes of f ′.
Lemma 4.6 still provides p+ q components Kj , but now Lemma 4.7 shows that this cannot
exceed q plus the number of zeroes of f ′′ in H that are not critical points of f .

5. An iteration argument

A well-known fact from complex dynamics is that, as a meromorphic function is iterated,
each attracting fixed point draws in a singularity of the inverse function. We shall use this
idea to establish a useful lemma. See [19] for an earlier instance of the application of this
sort of iteration theory argument to the present context. For a rational function F , we denote
by sing(F−1) the set of critical values of F , including ∞ if F has any multiple poles. For
a transcendental function, sing(F−1) consists of these critical values together with any finite
asymptotic values of F . We now define the sets

A(F ) = {z ∈ C \ R : F (z) = z and either 0 < |F ′(z)| < 1 or F ′(z) = −1} (5.1)

and

C(F ) = {z ∈ C \ R : z ∈ sing(F−1), |F (z)− z|+ |F ′(z)| > 0}, (5.2)

so that C(F ) contains the non-real singularities of the inverse function F−1 that are not
superattracting fixed points of F .

Lemma 5.1. Let F be a real meromorphic function on the plane. If C(F ) is finite, then so
is A(F ) and |A(F )| ≤ |C(F )|.

Proof. Let zj ∈ A(F ). We suppose first that |F ′(zj)| < 1. It then follows that zj lies in a
component Cj of the Fatou set of F (see [3, 29]), and that

Fn(z)→ zj as n→∞, z ∈ Cj , (5.3)

where Fn denotes the nth iterate of F . If we suppose instead that F ′(zj) = −1, then there
must exist at least two components of the Fatou set on which Fn(z)→ zj and which include
zj in their boundary [29, §10]. These components are Leau domains, and in this case we let
Cj be the union of all these Leau domains, so that we again have (5.3).

It follows from (5.3) that distinct points zj ∈ A(F ) give rise to disjoint subsets Cj of the
Fatou set. Since F is real, we see also that no Cj can meet the real axis, and that ∞ /∈ Cj .

It is well known [3, §4.3] that each set Cj must contain a point of sing(F−1), say wj . By the
previous paragraph, wj ∈ C \ R. If wj is a fixed point of F , then wj = zj by (5.3), in which
case |F ′(wj)| = |F ′(zj)| > 0 since zj ∈ A(F ). Hence, wj ∈ C(F ) and the result follows.
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5.1. Proof of Corollary 2.3

As in the statement of the corollary, we take a ≤ 1
2 and let f be a real entire function such

that f ′/f is of finite lower order and ff ′′/(f ′)2 − a has only finitely many non-real zeroes.
We aim to show that f has only finitely many non-real zeroes. Let G be defined by (4.2),

where h = (1− a)−1 and so 0 < h ≤ 2. By (4.2) and our hypotheses on f , we see that G has
finite lower order and G′ has finitely many non-real zeroes. Lemmas 3.3 and 3.5 now show that
G−1 has finitely many direct, and no indirect, transcendental singularities over C \ R. Thus
the set C(G) is finite, and Lemma 5.1 implies that A(G) is also finite.

If ζ ∈ C \ R is a zero of f of multiplicity m, then G(ζ) = ζ and

G′(ζ) = 1− h
(
f

f ′

)′
(ζ) = 1− h

m
∈ [−1, 1).

Hence, assuming that ζ is not one of the finitely many non-real zeroes of G′, we have that
ζ ∈ A(G). We therefore deduce that f has a finite number of non-real zeroes. Theorem 2.2 now
gives that f ∈ U∗2p for some p.

Next suppose that ff ′′/(f ′)2 6= a on H. Then by (4.2), the zeroes of G′ are all real. Since
f ∈ U∗2p, Lemma 4.4 applies and shows that G has no asymptotic values in C \ R. Thus C(G) is
empty. Therefore, Lemma 5.1 shows that A(G) is also empty, and so f cannot have any zeroes
ζ ∈ C \ R. Hence, f must belong to the class LP by Theorem 2.2 (recall that U0 = LP ).

5.2. Proof of Theorem 2.4

Let k ≥ 2 and let f be a real entire function such that f (k−1)/f (k−2) is of finite lower order
(we exclude the case where f (k−2) ≡ 0). Assume that all but finitely many of the non-real
zeroes of ff (k) are also zeroes of f (k−2) and f (k−1). Write

Fk(z) = z − f (k−2)(z)

f (k−1)(z)
, F ′k = −f

(k−2)f (k)

(f (k−1))2
. (5.4)

Then Fk is the Newton function of f (k−2) and is, in particular, a real meromorphic function of
finite lower order.

Lemma 5.2. If ζ is a non-real zero of f (k−2) of multiplicity m ≥ 2, then ζ ∈ A(Fk), where
A(Fk) is defined by (5.1) and (5.4).

Proof. Observe that Fk(ζ) = ζ, and calculate that F ′k(ζ) = 1− 1/m. Hence, 1
2 ≤ F

′
k(ζ) < 1

and thus ζ ∈ A(Fk).

By Lemma 5.2, all but finitely many of the non-real zeroes of ff (k) are members of A(Fk),
because of our assumption about these zeroes.

Our next task is to prove that C(Fk) is finite. The main observation here is that by (5.4), all
but finitely many of the non-real critical points of Fk are also fixed points of Fk. Using (5.2),
this immediately implies that C(Fk) contains only a finite number of critical values of Fk. A
second consequence of our observation is that the set of critical values of Fk can have no limit
points in C \ R. Therefore, by Lemma 3.5 there are no indirect transcendental singularities of
F−1
k lying in C \ R. Hence, using Lemma 3.3 we see that Fk has only finitely many non-real

asymptotic values, and so C(Fk) is indeed finite.
An application of Lemma 5.1 now shows that ff (k) has finitely many non-real zeroes.

Theorem 1.2 then implies that f has finite order, and hence f ∈ U∗2p for some p.

We prove next that f ∈ LP if all the non-real zeroes of ff (k) are zeroes of f (k−2) and
f (k−1). For such a function f , Lemma 5.2 shows that all the non-real zeroes of ff (k) lie in
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A(Fk). Therefore, by Theorem 1.1 and Lemma 5.1, it will suffice to show that C(Fk) = ∅ in
this case. By (5.4), a non-real zero of F ′k is now necessarily a zero of f (k−2), and so a fixed
point of Fk. Using (5.2), it follows that no critical values of Fk belong to C(Fk), and it just
remains to show that Fk has no non-real asymptotic values. Since the class U∗2p is closed under

differentiation [9, Corollary 2.12], we have that f (k−2) ∈ U∗2p. Therefore all the statements made

when proving Theorems 2.1 and 2.2 in Section 4.2 remain valid with f (k−2) in place of f and
a = 0. In particular, if we replace f with f (k−2) and set a = 0, then the function G defined in
(4.2) becomes Fk. The result we require is then provided by Lemma 4.4.

6. Theorem 2.5 and applications

In this section, we will establish Theorem 2.5 and apply it to prove Theorems 2.6, 2.7 and 2.8.

6.1. Proof of Theorem 2.5

We shall first obtain a normal families result for functions satisfying (I′) or (II′). This leads
to a lower bound for the distance between the distinct zeroes of such functions, from which
a careful counting argument gives the first estimate of (2.2). The half-plane versions of some
standard value distribution results then complete the proof of Theorem 2.5.

Lemma 6.1. Let k ≥ 2, let a ∈ C \ { 1
2 , 1} and let G be a family of functions analytic on a

domain Ω. Suppose that for each g ∈ G, either
(i) every zero of gg(k) in Ω is a zero of g with multiplicity at least k; or

(ii) gg′′ − a(g′)2 has no zeroes in Ω.
Then F = {g/g′ : g ∈ G} is a normal family on Ω.

Remark. In fact, Lemma 6.1 holds for a family of meromorphic functions provided that
every member satisfies condition (ii) and 1

a−1 /∈ N as well as a 6= 1
2 , 1. The proof needs only

minor modification, but we will not need this result.

Proof of Lemma 6.1. This is an application of a theorem of Bergweiler and Langley from [8],
where the differential operators Ψk are defined by

Ψ1(y) = y, Ψk+1(y) = yΨk(y) +
d

dz
(Ψk(y)).

We repeat the observation made in [8] that an easy proof by induction yields Ψk(g′/g) = g(k)/g.
We may assume that either every g ∈ G satisfies (i) or that every g ∈ G satisfies (ii). Suppose

first that each g ∈ G satisfies condition (i) and let G = g′/g. Then we see that Ψk(G) = g(k)/g
does not vanish in Ω. Moreover, the poles of G are simple and have integer residues not less
than k. Therefore, the family F0 = {g′/g : g ∈ G} satisfies the hypotheses of [8, Theorem 1.3],
and hence both F0 and F are normal on Ω.

Next, suppose instead that each g ∈ G satisfies condition (ii). We may assume that a 6= 0,
otherwise every g ∈ G satisfies (i) with k = 2. This time we set G = (1− a)g′/g. We see that

Ψ2(G) = G2 +G′ = (1− a)

(
(1− a)

(
g′

g

)2

+
gg′′ − (g′)2

g2

)
=

1− a
g2

(gg′′ − a(g′)2),

and so Ψ2(G) has no zeroes in Ω. Condition (ii) implies that g has only simple zeroes, so
that G has only simple poles, each with residue 1− a. Since 1− a is neither zero nor one,
and 2(1− a) 6= 1, we find that the family F1 = {(1− a)g′/g : g ∈ G} satisfies the hypotheses
of [8, Theorem 1.3] with k = 2. Therefore, F1 is normal on Ω and the result follows.
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The next lemma is essentially contained in [10, Lemma 2.1]. We use the notation

D(w, r) = {z ∈ C : |z − w| < r}, E(R) = {z ∈ H : |z| > R}. (6.1)

Lemma 6.2. Let R ≥ 0, d > 0 and 0 < c < 1. Suppose that u is meromorphic on H such
that the family {

u(z0 + (c Im z0)z)

c Im z0
: z0 ∈ E(R)

}
is normal on the unit disc, and |u′(ζ)| ≥ d whenever u(ζ) = 0 with ζ ∈ E(R).

Then there exists b > 0 with the following property: any pair z1, z2 ∈ H of distinct zeroes of
u satisfies |z1 − z2| ≥ b Im z1.

Proof. Let z1 ∈ H be a zero of u. Since u has only a finite number of zeroes lying in
{z ∈ H : |z| ≤ R}, there is no loss of generality in assuming that z1 ∈ E(R). By equicontinuity,
there exists a positive constant δ, independent of the choice of z1, such that∣∣∣∣u(z1 + (c Im z1)z)

c Im z1

∣∣∣∣ ≤ 1 for z ∈ D(0, 2δ);

equivalently, |u(z)| ≤ c Im z1 for z ∈ D(z1, 2δc Im z1). Now assume that z2 is a zero of u with
0 < |z1 − z2| ≤ δc Im z1. The function

h(z) =
u(z)

(z − z1)(z − z2)

is analytic on D(z1, 2δc Im z1), and satisfies

|h(z)| ≤ c Im z1

(2δc Im z1)(δc Im z1)

on the boundary of D(z1, 2δc Im z1), and so on the whole disc by the maximum principle. Thus,

d ≤ |u′(z1)| = |(z1 − z2)h(z1)| ≤ |z1 − z2|
2δ2c Im z1

,

which gives the required lower bound for |z1 − z2|.

Lemma 6.3. Let b > 0 and suppose that u is meromorphic on H such that any pair
z1, z2 ∈ H of distinct zeroes of u satisfies |z1 − z2| ≥ b Im z1. If the zeroes of u have bounded
multiplicities, then N(r, 1/u) = O(log r) as r →∞.

Proof. We begin by claiming that, for r > 1,{
z : |z| ≥ 1,

∣∣∣∣z − ir

2

∣∣∣∣ ≤ r

2

}
⊆ Dr =

{
x+ iy :

1

r
≤ y ≤ r, |x| ≤ √ry

}
. (6.2)

To prove this claim, suppose that x+ iy lies in the set on the left-hand side of (6.2). By
calculating that S(0, 1) intersects S(ir/2, r/2) at points with imaginary part 1/r, we get that
1/r ≤ y ≤ r. We also have

x2 +
(
y − r

2

)2

≤ r2

4
, which implies that |x| ≤

∣∣ry − y2
∣∣1/2 ≤ √ry.

Cover the upper half-plane with squares

Ap,q =
{
z : 2p−1 ≤ Im z ≤ 2p, |Re z − 2p−1q| ≤ 2p−2

}
, p, q ∈ Z.
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Observe that each square Ap,q has side length 2p−1 and contains at most N zeroes of u, where N
is independent of p and q. This is because the distinct zeroes in Ap,q are separated by a distance
of at least 2p−1b and have bounded multiplicities. It now follows from (6.2) that n(r, 1/u) is at
most N times the number of squares Ap,q that meet Dr. To count these squares, first note that
row p meets Dr if and only if 2p ≥ 1/r and 2p−1 ≤ r; or equivalently, −L ≤ p ≤ L+ 1, where
L is the greatest integer not exceeding log2 r. When row p meets Dr, the square Ap,q does so
if and only if

2p−1

(
|q| − 1

2

)
≤
√
r2p,

and there can be at most 4
(
2−p/2

√
r
)

+ 2 such integers q. Hence, the number of squares Ap,q
that intersect Dr does not exceed

L+1∑
p=−L

(
4
(

2−p/2
√
r
)

+ 2
)
≤ 4
√
r

2L/2

1− 2−1/2
+ 4L+ 4 ≤ 4r

1− 2−1/2
+ 4 log2 r + 4.

Therefore, n(r, 1/u) = O(r) as r →∞, and recalling definition (2.1) completes the proof.

We are now able to apply the preceding sequence of lemmas to establish Theorem 2.5. To this
end, let f be analytic on H and satisfy either (I′) or (II′). Fix c ∈ (0, 1). Then for a sufficiently
large choice of R, the family

G = {f(z0 + (c Im z0)z) : z0 ∈ E(R)} (6.3)

of analytic functions on the unit disc satisfies the hypothesis of Lemma 6.1. Hence,

F =

{
f(z0 + (c Im z0)z)

(c Im z0)f ′(z0 + (c Im z0)z)
: z0 ∈ E(R)

}
(6.4)

is a normal family on the unit disc by Lemma 6.1.
We note that the multiplicities of the non-real zeroes of f are bounded above by some

constant M0. In case (II′) this follows from the fact that f has only finitely many non-real
multiple zeroes. We now write u = f/f ′. If ζ is a non-real zero of u, then ζ must also be a
zero of f , say of multiplicity m, and so u′(ζ) = 1/m ≥ 1/M0. Therefore Lemma 6.2 applies to
u with d = 1/M0, since we have shown that (6.4) is normal on the unit disc. Upon combining
the conclusion of Lemma 6.2 with the observation that u has only simple zeroes, we obtain
from Lemma 6.3 that

N(r, 1/f) ≤M0N(r, 1/u) = O(log r), r →∞. (6.5)

This establishes the first estimate of (2.2).
We now assert that

T(r, f ′/f) = O(log r), r →∞. (6.6)

In the case that f satisfies (II′), we can use Hayman’s Alternative (Lemma 3.1) to deduce
(6.6) because N(r, 1/u) = O(log r) by (6.5), while the function u′ − (1− a) has finitely many
non-real zeroes by (II′).

Now suppose instead that f satisfies (I′). Observe that it will suffice to show that (6.6)
holds as r →∞ outside a set of finite measure, because the Tsuji characteristic differs from
a non-decreasing continuous function by a bounded additive term [11, p.27]. Hence, if (6.6)
fails to hold, then there must exist a set J of infinite measure such that log r = o(T(r, f ′/f))
as r →∞ through values in J . Since f is analytic on H and satisfies (I′), we get from (6.5)
that

N(r, 1/f) + N(r, 1/f (k)) + N(r, f) = O(log r) = o(T(r, f ′/f)) as r →∞ on J.
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Since the lemma of the logarithmic derivative holds for the Tsuji characteristic (see [27, p.332]
or [11, p.108]), we can now apply the standard Tumura-Clunie argument [13, Thm 3.10, p.74]
on J to obtain a contradiction. Here we use the fact that all the exceptional sets arising in the
proof have finite measure, and that the exceptional cases encountered all imply (6.6) anyway.
See also Lemma 1 of [17] and the remark of [17, p.476].

Write Lj = f (j+1)/f (j), so that T(r, L0) = O(log r) as r →∞, by (6.6). Using the relation

Lj+1 = Lj +
L′j
Lj
, (6.7)

together with the lemma of the logarithmic derivative on a half-plane [11, p.108], a proof by
induction now shows that T(r, Lj) = O(log r) as r →∞, which is the second estimate of (2.2).

Remark. Theorem 2.5 states that f has very few zeroes from the viewpoint of the Tsuji
characteristic. However, f could have many non-real zeroes in the Nevanlinna sense; in fact,
these zeroes could have infinite exponent of convergence. This difference can arise when the
zeroes are concentrated near the real axis. We remark, however, that the condition on the
separation of the zeroes in Lemma 6.3 is not strong enough to conclude that the zeroes form
an A-set as studied, for example, in [17] and [34].

6.2. Proof of Theorem 2.6

The proofs of parts (i) and (ii) are similar but for clarity they are presented separately.

Part (i). Suppose that all but finitely many of the non-real zeroes of ff (k−1)f (k) are zeroes of
f with multiplicity at least k but at most M . To show that f ∈ U∗2p for some p, it will

suffice by Theorem 1.2 to show that ff (k) has only finitely many non-real zeroes. Define
Fk by (5.4), and note that all but finitely many of the non-real zeroes of ff (k) belong to
A(Fk) by Lemma 5.2. Hence, by Lemma 5.1 it will suffice to prove that C(Fk) is finite.
As in Section 5.2, the hypothesis on f and (5.4) imply that all but a finite number of the
non-real critical points of Fk are fixed points of Fk, so that C(Fk) contains only finitely
many critical values of Fk by (5.2). It remains to show that Fk does not have infinitely
many non-real asymptotic values.
The function f satisfies condition (I′), so Theorem 2.5 and (5.4) give that

T(r, Fk) = T(r, f (k−1)/f (k−2)) +O(1) = O(log r) as r →∞.

Lemma 3.4 now shows that there is at most one direct transcendental singularity of F−1
k

lying in H. Observe that our hypothesis on f implies that Fk has a finite number of
poles in H. Hence, using the Phragmén-Lindelöf principle [36, p.308], it follows that
between any pair of paths on which Fk tends to distinct finite values there must lie a
direct transcendental singularity over infinity. Therefore, Fk has at most four non-real
finite asymptotic values. This completes the proof that f ∈ U∗2p.
Now assume that all of the non-real zeroes of ff (k−1)f (k) are zeroes of f with multiplicity
at least k but at most M . We have already shown that f ∈ U∗2p, so f has finite order

and, in particular, f (k−1)/f (k−2) must have finite lower order. We conclude that f ∈ LP
by Theorem 2.4.

Part (ii). Suppose that f ′ and ff ′′ − a(f ′)2 both have only finitely many non-real zeroes. We
aim to show that the zeroes of f are real with finitely many exceptions, so that f ∈ U∗2p
for some p by Theorem 2.2. We define G by (4.2) with h = (1− a)−1, so that h ∈ (0, 2).
Then G has finitely many non-real critical points by (4.2) and our assumptions on f .
Note that if ζ ∈ C \ R is a zero of f , but is not one of the finitely many non-real zeroes



Page 16 of 25 DANIEL A. NICKS

of G′ or f ′, then by (4.2),

G(ζ) = ζ and G′(ζ) = 1− h
(
f

f ′

)′
(ζ) = 1− h ∈ (−1, 1),

and so ζ ∈ A(G). Therefore, to show that f has finitely many non-real zeroes, it will again
suffice by Lemma 5.1 to show that C(G) is finite. As G has a finite number of non-real
critical values, we only need to bound the number of non-real asymptotic values.
Using the fact that f satisfies condition (II′), we deduce from Theorem 2.5 that
T(r,G) = O(log r) as r →∞. The proof that G has at most four non-real asymptotic
values is now exactly as in part (i), using the fact that non-real poles of G can only occur
at the finitely many non-real zeroes of f ′. This completes the proof that f ∈ U∗2p, and
we note that this certainly implies that f ′/f is of finite lower order. Under the stronger
assumption that ff ′′ − a(f ′)2 has no non-real zeroes, Corollary 2.3 immediately gives
that f ∈ LP .

6.3. Proof of Theorem 2.7

We will use the following simple lemma.

Lemma 6.4. Let g be a meromorphic function on the plane and let Lj = g(j+1)/g(j). Then
the order of Lj+1 does not exceed the order of Lj .

Proof. Assume that Lj has finite order, otherwise there is nothing to prove. Equation (6.7)
holds for the Lj , and so T (r, Lj+1) ≤ 4T (r, Lj) +O(log r) as r →∞, using the lemma of the
logarithmic derivative.

To prove Theorem 2.7, suppose that f is a real entire function such that either
(i) condition (I′) holds and the zeroes of f (j) have finite exponent of convergence for some

0 ≤ j ≤ k − 1; or
(ii) condition (II′) holds and the zeroes of f (j) have finite exponent of convergence for j = 0

or j = 1.
In either case, let L∗ = f ′/f if j = 0, and let L∗ = f (j−1)/f (j) if j > 0. Then the poles of L∗

have finite exponent of convergence, and so there exists K ≥ 3 such that

I1 =

∫∞
1

N(t, L∗)

tK
dt <∞.

Theorem 2.5 gives that T(r, L∗) = O(log r) as r →∞. Hence, by Lemma 3.2 and the sentence
preceding it, we have

I2 =

∫∞
1

m(t, L∗)

t3
dt <∞.

Since T (r, L∗) is an increasing function of r, we see that for r ≥ 1,

T (r, L∗)

(2r)K
r ≤

∫2r

r

T (t, L∗)

tK
dt ≤ I1 + I2,

from which we deduce that L∗ has finite order.
In case (ii), the function L∗ is either f ′/f or f/f ′, and so f ′/f must have finite order. The

proof is then completed by applying Corollary 2.3.
To conclude the proof in case (i), we first appeal to Lemma 6.4 to establish that the order of

f (k−1)/f (k−2) does not exceed that of L∗. Then f (k−1)/f (k−2) certainly has finite lower order,
and the required results follow from Theorem 2.4.
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6.4. Proof of Theorem 2.8

As in the statement of the theorem, suppose that f is an entire function satisfying either
(I′) or (II′), and assume that the non-real zeroes of f (j) have finite exponent of convergence
for some j ≥ 0.

There exists an entire function Π whose zeroes are precisely the non-real zeroes of f (j), and
whose order is equal to the exponent of convergence of these zeroes and so is finite. (Here Π may
be formed as a Weierstrass product, see [13, p.24–30].) Pick three distinct values a1, a2, a3 ∈ C.
Checking a straightforward set inclusion shows that n(r, 1/(Π− aν)) ≤ n(r, 1/(Π− aν)), and
since Π has finite order, it follows that there exists K > 0 such that

N(r, 1/(Π− aν)) ≤ N(r, 1/(Π− aν)) = O(rK).

The second fundamental theorem for the Tsuji characteristic now gives

T(r,Π) ≤
3∑

ν=1

N(r, 1/(Π− aν)) +O(log r + logT(r,Π)) = O(rK)

as r →∞ outside a set of finite measure. It follows that in fact T(r,Π) = O(rK) as r →∞
without an exceptional set, because T(r,Π) differs from a non-decreasing continuous function
by a bounded additive term [11, p.27]. Using this, the lemma of the logarithmic derivative [11,
p.108] gives that m(r,Π′/Π) = O(log r) as r →∞.

Define the entire function g by f (j) = Πg, so that g has only real zeroes. Then

m

(
r,
g′

g

)
≤ m

(
r,
f (j+1)

f (j)

)
+ m

(
r,

Π′

Π

)
+O(1) = O(log r), (6.8)

as r →∞, by using the above and Theorem 2.5. Since g satisfies (6.8) and has only real zeroes,
Theorem 1A of [34] states that log logM(r, g) = O(r log r) as r →∞. As Π has finite order, it
follows that

log logM(r, f (j)) = O(r log r), r →∞.

After integrating a total of j times, this leads to the required estimate for M(r, f).

7. Proof of Theorem 2.9

For functions of finite order, Theorem 2.9 follows immediately from Theorem 2.4. Therefore
to prove Theorem 2.9 in full, it will suffice to show that any function satisfying the more general
hypotheses has finite order. Note further that the j = k − 1 case of Theorem 2.9 is contained
in Theorem 2.6(i).

Henceforth, we shall assume that f is an infinite order function that satisfies the more
general hypotheses of Theorem 2.9 with j ≤ k − 2. We aim to demonstrate a contradiction
with Theorem 1.2 by showing that ff (k) has only finitely many non-real zeroes. The proof will
then be complete.

We will again study a suitable Newton function. Let

F (z) = z − f (k−2)(z)

f (k−1)(z)
, F ′ =

f (k)f (k−2)

(f (k−1))2
. (7.1)

The next result is absolutely central to Theorem 2.9, but we postpone its proof to Section 7.2.
Instead, we first describe how we may obtain the desired contradiction from it by applying the
ideas of Section 5.

Proposition 7.1. F−1 has no indirect transcendental singularities over C \ R.
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In fact, once Proposition 7.1 is established, it is easy to show that F has only a finite
number of non-real asymptotic values. To do this, observe that f satisfies condition (I′), so
that T(r, F ) = O(log r) by Theorem 2.5. Then Lemma 3.4 gives that F−1 has at most two
direct transcendental singularities over C \ R.

Using (7.1) and the hypotheses on f , we see that all but finitely many of the non-real critical
points of F are also fixed points. Hence, the set C(F ) defined by (5.2) is finite. Lemma 5.1 now
gives that the set A(F ) of (5.1) must also be finite. Since Lemma 5.2 applies to zeroes of f
with multiplicity at least k, we find that the non-real zeroes of ff (k) belong to A(F ) with only
finitely many exceptions. This leads us to deduce that ff (k) has only finitely many non-real
zeroes. As indicated earlier, this contradiction with Theorem 1.2 is enough to complete the
proof of Theorem 2.9.

7.1. An estimate required for Proposition 7.1

Write, for m = 0, 1, . . . , k,

Lm =
f (m+1)

f (m)
.

Then because f satisfies condition (I′), we get from Theorem 2.5 that

T(r, Lm) = O(log r), as r →∞. (7.2)

This section is devoted to proving the following result, which will later be used in the proof
of Proposition 7.1. Both these proofs will use many ideas from [22].

Proposition 7.2. Let δ > 0 and P > 0. Then, for 0 ≤ m ≤ k, we have

|Lm(z)| =
∣∣∣∣f (m+1)(z)

f (m)(z)

∣∣∣∣ > |z|P , |z| = r, δ ≤ arg z ≤ π − δ, (7.3)

on a set of values of r with logarithmic density 1.

In fact, Proposition 7.2 holds for any real entire function f of infinite order that satisfies (I′)
and has non-real zeroes with finite exponent of convergence.

Following [22, §4], we use a Levin-Ostrovskii factorisation

Lm = φmψm (7.4)

similar to that described for L0 in Lemma 3.6, but where φm may have infinitely many poles.

Lemma 7.3. For each 0 ≤ m ≤ k, there exist real meromorphic functions φm and ψm
satisfying (7.4) such that

(i) either ψm ≡ 1 or ψm(H) ⊆ H;
(ii) φm has only simple poles, all of which are zeroes of f (m) and only finitely many of which

are real; and
(iii) φm has finite order.

Proof. The real meromorphic function ψm is formed as a product using the real zeroes of
f (m) as in [22, §4]. The function φm is then defined by (7.4), and properties (i) and (ii) follow
from this construction.

From part (i) and Lemma 3.7, we get that m0π(r, 1/ψm) = O(log r) as r →∞, where
m0π(r, 1/ψm) is defined by (3.1). Using this, (7.2) and (7.4), and applying Lemma 3.2, gives
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that ∫∞
1

m0π(r, φm)

r3
dr ≤

∫∞
1

m0π(r, Lm) +m0π(r, 1/ψm)

r3
dr <∞. (7.5)

Following [22, Lemma 4.1], we now claim that there exists q ≥ 1 such that, for 0 ≤ m ≤ k,

n(r, φm) ≤
∑

0≤µ<m

n(r, 1/φµ) +O(rq) as r →∞. (7.6)

To prove this we need only consider the non-real poles of φm, since φm has only finitely many
real poles by part (ii). When m = 0, the estimate (7.6) follows from noting that the (simple)
non-real poles of φ0 are non-real zeroes of f , and so have finite exponent of convergence. Now
suppose that m ≥ 1 and z0 is a non-real pole of φm. Then z0 is a simple pole of φm and a
zero of f (m). Let 0 ≤ p ≤ m be the least integer such that f (p)(z0) = 0. Then either p ≥ 1 and
φp−1(z0) = 0; or else z0 is a non-real zero of f , and these have finite exponent of convergence.
This completes the proof of (7.6), as claimed.

We now prove part (iii) of the lemma by induction on m. Suppose that φν has finite order
for ν = 0, 1, . . . ,m− 1 (we assume nothing when m = 0). Then from (7.6) we have that, for
some qm ≥ 1,

N(r, φm) = O(rqm) as r →∞.

Hence, using (7.5) and the fact that φm is a real function,∫∞
1

T (r, φm)

rqm+2
dr ≤

∫∞
1

2m0π(r, φm)

r3
dr +

∫∞
1

N(r, φm)

rqm+2
dr <∞.

Since T (r, φm) is increasing, it follows that φm has finite order.

As each of the functions φm has finite order, we can apply [12, Corollary 2] to show that,
for 0 ≤ m ≤ k,

log+

∣∣∣∣φ′m(z)

φm(z)

∣∣∣∣ = O(log r) (7.7)

as |z| = r →∞ outside a set of finite logarithmic measure.
Lemma 7.3(i) states that if ψm 6≡ 1, then ψm(H) ⊆ H. In this case, an analytic branch of

logψm may be defined on H. By Bloch’s Theorem, the image of D
(
z, Im z

2

)
under logψm must

contain a disc of radius at least CB |(logψm)′(z)| Im z
2 , where CB is Bloch’s Constant. As this

image is contained in logH, the radius of such a disc cannot exceed π/2 and therefore∣∣∣∣ψ′m(z)

ψm(z)

∣∣∣∣ ≤ π

CB Im z
. (7.8)

Using (7.4) and the definition of the Lm, we obtain the identity

Lm = Lm−1 +
L′m−1

Lm−1
= Lm−1 +

φ′m−1

φm−1
+
ψ′m−1

ψm−1
,

which immediately leads to

log+|Lm(z)| ≥ log+|Lm−1(z)| − log+

∣∣∣∣φ′m−1(z)

φm−1(z)

∣∣∣∣− log+

∣∣∣∣ψ′m−1(z)

ψm−1(z)

∣∣∣∣− log 3. (7.9)

If we now take z with |z| = r and δ ≤ arg z ≤ π − δ, and repeatedly use (7.9) together with
(7.7) and (7.8), then we conclude that

log+|Lm(z)| ≥ log+|L0(z)| −O(log r) (7.10)

as r →∞ outside a set of finite logarithmic measure. As a result of (7.10), we see that it will
suffice to prove Proposition 7.2 with m = 0. We shall now concentrate on this particular case.
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Let Π be a real entire function of finite order whose zeroes are precisely the non-real zeroes
of f . For example, Π may be formed as a Weierstrass product [13, p.24–30] because the non-real
zeroes of f are assumed to have finite exponent of convergence. Define g by

f = Πg;

then g is real entire and has only real zeroes. We take the Levin-Ostrovskii factorisation
g′/g = φψ as described in Lemma 3.6. The function φ is entire by Lemma 3.6(i) and (iii),
as g has no non-real zeroes. Moreover, φ is transcendental by Lemma 3.6(vi) because f , and
hence also g, are of infinite order. Observe that

L0 =
f ′

f
=

Π′

Π
+
g′

g
=

Π′

Π
+ φψ. (7.11)

We show next that the order of φ does not exceed 1. The characteristic T (r, φ) of the real
entire function φ is equal to 2m0π(r, φ), and because this is increasing we obtain the inequality

T (R,φ)

(2R)3
R ≤

∫2R

R

2m0π(r, φ)

r3
dr. (7.12)

Since Π has finite order, we can use the Tsuji half-plane versions of the second fundamental
theorem and the lemma of the logarithmic derivative to show that m(r,Π′/Π) = O(log r), as in
Section 6.4. Together with (7.2) and (7.11), this gives that m(r, φψ) = O(log r). We see from
Lemma 3.6(i) and Lemma 3.7 that m0π(r, 1/ψ) = O(log r). Using these estimates and applying
Lemma 3.2 to φψ, we deduce that∫∞

R

m0π(r, φ)

r3
dr ≤

∫∞
R

m0π(r, φψ) +m0π(r, 1/ψ)

r3
dr = O

(
logR

R

)
as R→∞. Comparing this estimate with (7.12) reveals that T (R,φ) = O(R logR), so that the
order of φ is indeed no greater than 1.

By combining the next lemma with the fact that φ is transcendental, we are able to find
points of large modulus that satisfy the inequality in Proposition 7.2 when m = 0.

Lemma 7.4. Given ε > 0 and δ > 0, we can find σ ∈ (0, δ] and a set E1 ⊆ [1,∞) of upper
logarithmic density at most ε with the following property. For each r /∈ E1, there exists
θ = θ(r) ∈ (σ, π − σ) such that

log |L0(reiθ)| > T (r, φ)

2
−O(log r) as r →∞.

Proof. We begin by calling upon two standard growth estimates that both hold outside
small exceptional sets. As the function Π has finite order, [12, Corollary 2] tells us that

log+

∣∣∣∣Π′(z)Π(z)

∣∣∣∣ = O(log r) (7.13)

as |z| = r →∞ outside a set of finite logarithmic measure. Meanwhile, the order of the entire
function φ does not exceed 1, and so a standard result of [14] gives that, provided C > 1,

logM(r, φ) ≤ 3T (2r, φ) ≤ 3CT (r, φ) (7.14)

outside a set of upper logarithmic density at most log 2/ logC. We set C = 21/ε; then (7.13)
and (7.14) both hold outside a set E1 with upper logarithmic density at most ε. We now take
σ = min

{
π

24C , δ
}

and claim that, for each r /∈ E1, we can pick θ ∈ (σ, π − σ) such that

log |φ(reiθ)| > T (r, φ)

2
. (7.15)
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Otherwise, if no such θ exists, then we could obtain a contradiction as follows, by using (7.14)
and the fact that φ is a real function:

T (r, φ) =
1

2π

∫2π

0

log+
∣∣φ (reit)∣∣ dt ≤ 4σ

2π
3CT (r, φ) +

T (r, φ)

2
≤ 3T (r, φ)

4
.

We can now complete the proof of the lemma by using (7.11), (7.13), (7.15) and Lemma 3.7,

log |L0(reiθ)| ≥ log |φ(reiθ)|+ log |ψ(reiθ)| − log+

∣∣∣∣Π′(reiθ)Π(reiθ)

∣∣∣∣− log 2

>
T (r, φ)

2
−O(log r)

as r →∞ outside E1.

Lemma 7.5. Given ε > 0 and σ > 0, we can find λ > 1 such that ff (k) has no zeroes in

A(r) = {z : r/λ < |z| < λr, σ/2 < arg z < π − σ/2}

for all r outside a set E2 of upper logarithmic density at most ε.

Proof. Fix c ∈ (0, 1) and let G and F be the families of functions on the unit disc given by
(6.3) and (6.4) respectively, where E(R) is as in (6.1). As f satisfies condition (I′), a sufficiently
large choice of R ensures that each member of G satisfies hypothesis (i) of Lemma 6.1, and so
we deduce that F is normal on the unit disc. We now write u = f/f ′. The argument following
(6.4) shows that u satisfies the hypothesis of Lemma 6.2.

Denote by z1, z2, . . . those distinct zeroes of ff (k) that lie in {z : σ/2 < arg z < π − σ/2}.
Applying Lemma 6.2 to u gives b > 0 such that, if zp, zq are distinct zeroes of f , then

|zp − zq| ≥ b Im zp ≥ b sin(σ/2)|zp|.

Since all but finitely many of the zn are zeroes of f , we may assume that the above inequality
holds for all distinct pairs zp, zq by reducing b if necessary. It follows that the number of the
zn that lie in any annulus {z : r < |z| < 2r} has an upper bound independent of r. Therefore,
we can find a constant B such that

#{zn : |zn| < r} ≤ B log r, r ≥ 2.

We now take λ = exp(ε/2B) and

E2 =

∞⋃
n=1

[
|zn|
λ
, λ|zn|

]
.

Denoting the upper logarithmic density of E2 by l, we have

l ≤ lim sup
r→∞

1

log r

∑
|zn|<λr

∫λ|zn|
|zn|/λ

dt

t
≤ lim sup

r→∞

B log λr

log r
2 log λ = ε.

It just remains to note that if w ∈ A(r) and ff (k)(w) = 0, then w = zn for some n. In this
case, r/λ < |zn| < λr and hence r ∈ E2.

Lemma 7.6 ([22, Lemma 2.4]). Let s > 0 and let h be analytic on D(0, 2s) with
h(z)h(k)(z) 6= 0 there. Then G = h′/h satisfies

logM(s,G) ≤ c0(1 + log+|G(0)|),

in which c0 > 0 depends only on s.
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The estimate for L0 provided by Lemma 7.4 is valid at only one point for each value of the
modulus r. We now aim to use Lemmas 7.5 and 7.6 to extend this estimate to a large arc of
the circle |z| = r.

Choose ε > 0 small, let σ and E1 be as in Lemma 7.4, and let λ and E2 be as in Lemma 7.5.
Let r ≥ 1 with r /∈ E1 ∪ E2, and take θ = θ(r) as given by Lemma 7.4. Define the scaled
functions

fr(z) = f(rz), Gr(z) =
f ′r(z)

fr(z)
= rL0(rz). (7.16)

Lemma 7.5 gives that ff (k) has no zeroes in A(r), and so frf
(k)
r is non-zero on A(1). Therefore,

repeated application of Lemma 7.6 gives a constant c1, depending only on λ and σ, such that

log+|Gr(eiθ)| ≤ c1(1 + log+|Gr(eit)|)

for all t ∈ [δ, π − δ]. It is clear from (7.16) that |L0(rz)| ≤ |Gr(z)| ≤ r|L0(rz)|, and so we can
re-write the above as

log+|L0(reiθ)| ≤ c1(1 + log r + log+|L0(reit)|), t ∈ [δ, π − δ].

Combining this with the result of Lemma 7.4 gives that

log+|L0(reit)| ≥ c2T (r, φ)−O(log r), t ∈ [δ, π − δ], (7.17)

as r →∞ outside E1 ∪ E2, and where the constant c2 is independent of r and t.
By recalling (7.10) and the fact that φ is transcendental, the estimate (7.17) shows that (7.3)

holds for r outside an exceptional set with upper logarithmic density at most 2ε. Since ε may
be chosen arbitrarily small, this completes the proof of Proposition 7.2.

7.2. Proof of Proposition 7.1

Assume that F−1 has an indirect transcendental singularity over some α ∈ H. Our strategy
for demonstrating a contradiction is based upon [22, §10] and will be as follows. First, we find
a sequence of asymptotic values βn such that F (z)→ βn as z tends to infinity on a path Γn.
From (7.1), we have that

Lk−2(z) =
f (k−1)(z)

f (k−2)(z)
=

1

z − F (z)
. (7.18)

Hence, Proposition 7.2 shows that F (z) ≈ z in most of the plane. It follows that the region
where F is near βn must be narrow, and this fact can be used to deduce that F → βn quickly on
Γn. Via (7.18), this leads to a good description of how Lk−2 behaves like (z − βn)−1 on Γn. By
integrating this, we discover the asymptotics of f (k−2) on Γn, and then also of f (j) and f (j−1) by
further integration. The hypothesis on the zeroes of f (j) implies that 1/Lj−1 = f (j−1)/f (j) has
only finitely many non-real poles. This lack of poles, together with our asymptotic knowledge
of this function, allows us to show that 1/Lj−1 grows rapidly in the upper half-plane. The
contradiction between this fast rate of growth and the estimate of (7.2) will ultimately establish
Proposition 7.1.

Following the above outline, the details of the proof will now be presented under the
assumption that F−1 has an indirect transcendental singularity over α ∈ H. We are guided
by [22, §10] throughout.

Recall that the non-real critical values of F form a discrete set because, by (7.1), all but
finitely many of the non-real critical points are fixed points. The proof of [22, Lemma 10.3]
uses this fact to show that, for n = 0, 1, 2, . . ., there exist pairwise distinct βn ∈ H and pairwise
disjoint simple paths to infinity Γn ⊆ H such that

F (z)→ βn as z →∞ on Γn.
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We now appeal to the argument of Lemmas 10.4, 10.5 and 10.6 of [22] — these rely on [22,
Lemma 9.2], the conclusion of which is provided in our case by Proposition 7.2 and (7.18). By
doing so, we are able to find constants An ∈ C \ {0} and error functions τn such that

f (k−2)(z) = An(z − βn) + τn(z), τn(z) = O(|z|−1), (7.19)

as z →∞ on Γn (this is Lemma 10.4 and (42) of [22]). Furthermore, for any K ∈ N,∫
Γn

|uKτn(u)||du| <∞. (7.20)

This assertion is part of [22, Lemma 10.6] and means that the error term τn decays quickly
on Γn. The next lemma is essentially Lemma 10.7 of [22].

Lemma 7.7. Let 0 ≤ m ≤ k − 2. Then, as z →∞ on Γn,

f (m)(z) =
An(z − βn)k−m−1

(k −m− 1)!
+O(|z|k−m−3).

Proof. If m = k − 2, then the result is an immediate consequence of (7.19). Now assume
that m ≤ k − 3. Fix z0 ∈ Γn and write

h(z) = f (m)(z)− An(z − βn)k−m−1

(k −m− 1)!
.

Then (7.19) gives that h(k−m−2)(z) = τn(z). Taylor’s formula with the integral form of the
remainder gives a polynomial Q of degree at most k −m− 3 such that

h(z) = Q(z) +

∫z
z0

(z − u)k−m−3

(k −m− 3)!
τn(u) du.

Using (7.20) now shows that h(z) = O(|z|k−m−3) as z →∞ on Γn, as required.

Recalling our assumption that 1 ≤ j ≤ k − 2, we apply Lemma 7.7 with m = j − 1 and m = j
to show that, as z →∞ on Γn,

f (j−1)(z)

f (j)(z)
=

(z − βn)k−j +O(|z|k−j−2)

(k − j)(z − βn)k−j−1 +O(|z|k−j−3)
=
z − βn
k − j

+O(|z|−1). (7.21)

By the hypothesis on the non-real zeroes of f (j), there exists a large r1 such that E(r1) =
{z ∈ H : |z| > r1} contains no poles of f (j−1)/f (j). We can now choose simple paths Γ∗n in
E(r1), each tending to infinity and pairwise disjoint apart from a common starting point,
such that (7.21) holds as z →∞ on Γ∗n. Relabelling if necessary, we obtain pairwise disjoint
simply-connected subdomains D1, D2, . . . of E(r1), with Dn bounded by Γ∗n−1 and Γ∗n. Set

Hn(z) =
f (j−1)(z)

f (j)(z)
− z − βn

k − j
. (7.22)

The construction of the Dn shows that Hn is analytic on the closure Dn. Furthermore, by
considering (7.21), we see that Hn tends to zero as z →∞ on Γ∗n, while Hn tends to the
non-zero value βn−βn−1

k−j as z →∞ on Γ∗n−1. Therefore, Hn must be unbounded on Dn by the
Phragmén-Lindelöf principle [36, p.308].

Let N be a large integer. Take c∗ > 0 large, and for n = 1, . . . , N define

un(z) =

 log+

∣∣∣∣Hn(z)

c∗

∣∣∣∣ , z ∈ Dn

0, z ∈ C \Dn.
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Then each un is a continuous subharmonic function on the plane that is both non-negative and
non-constant. Let θn(s) be the angular measure of the intersection of Dn with the circle S(0, s).
Applying Lemma 3.8 to un, with r2 large and 1 ≤ n ≤ N , gives∫r

r2

π ds

sθn(s)
≤ logB(2r, un) +O(1) ≤ log

(
1

2π

∫π
0

un(4reit) dt

)
+O(1)

≤ log (m0π(4r,Hn)) +O(1)

≤ log+

(
m0π

(
4r,

f (j−1)

f (j)

))
+ o(log r)

as r →∞, using (7.22). Summing this over n, and combining with the the Cauchy-Schwarz
inequality

N2 ≤
N∑
n=1

θn(s)

N∑
n=1

1

θn(s)
≤

N∑
n=1

π

θn(s)
,

yields

N2 log r ≤ N log+

(
m0π

(
4r,

f (j−1)

f (j)

))
+ o(log r), r →∞.

Since f (j)/f (j−1) = Lj−1, this implies that

(N − o(1)) log r ≤ log+(m0π(4r, 1/Lj−1)), r →∞,

and so, for all large r,

m0π(r, 1/Lj−1) ≥ rN−1. (7.23)

However, (7.2) gives that T(r, 1/Lj−1) = O(log r) as r →∞. Therefore, by Lemma 3.2 the
integral ∫∞

1

m0π(r, 1/Lj−1)

r3
dr

converges. As N is large, this clear contradiction with (7.23) is enough to complete the proof
of Proposition 7.1.
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Amer. Math. Soc. 234 (1977), 497-503.
17. S. Hellerstein and C. C. Yang, ‘Half-plane Tumura-Clunie theorems and the real zeros of successive

derivatives’, J. London Math. Soc. (2) 4 (1972), 469-481.
18. J. D. Hinchliffe, ‘The Bergweiler-Eremenko theorem for finite lower order’, Result. Math. 43 (2003),

121-128.
19. A. Hinkkanen, ‘Iteration and the zeros of the second derivative of a meromorphic function’, Proc. London

Math. Soc. (3) 65 (1992), 629-650.
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