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REAL MEROMORPHIC FUNCTIONS AND A RESULT OF
HINKKANEN AND ROSSI

DANIEL A. NICKS

Abstract. Let f be a transcendental meromorphic function such
that all but finitely many of the poles of f and zeroes of f ′ are real.

Generalising a result of Hinkkanen and Rossi (Proc. Amer. Math.

Soc. 92 (1984) 72–74), we characterize those f such that f ′ takes

some nonzero value only finitely often, and show that all but fi-
nitely many of the zeroes of f ′′ are real in this case. We also

prove a related asymptotic result about real meromorphic func-
tions with a nonzero deficient value α and only finitely many
nonreal zeroes, poles and α-points.

1. Introduction

The starting point for this paper is the following theorem of Hinkkanen
and Rossi [12]. Here and henceforth, meromorphic should be taken to mean
meromorphic in the plane unless stated otherwise.

Theorem A ([12]). Suppose that f is a nonentire real transcendental mero-
morphic function with only real poles, and that the zeroes of f and f ′ are real.
If f ′ omits a nonzero value α, then the omitted value is real and

(1.1) f(z) = αz − λ tan(cz + d) + A,

where λ, c, d and A are real and λ, c �= 0. Furthermore, the zeroes of f ′ ′ are
real.

A meromorphic function f is said to be real if f(z) is real or infinite when-
ever z is real. Theorem A arose from an endeavour to determine all mero-
morphic functions f with only real poles for which f , f ′ and f ′ ′ each have
only real zeroes. Hellerstein, Shen and Williamson ([7], [8], [9]) settled this
question for all entire functions and for those meromorphic functions that are
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not a constant multiple of a real function. Further, they proved in [10] that
Theorem A holds in the α = 0 case, under the additional assumptions that f
has at least one zero and f ′ ′ has only real zeroes.

We aim to generalize Theorem A by considering functions with arbitrary
zeroes and finitely many nonreal poles and critical points. In addition, the
derivative must either take some nonzero value only finitely often, or at least
have a nonzero finite deficient value. The notation and techniques of the value
distribution theory of meromorphic functions [5] will be used throughout this
paper.

The first result below characterizes all real functions that fail to satisfy
Hinkkanen and Rossi’s hypothesis at finitely many points. In this case, the
restriction on the zeroes of f is shown to be a consequence rather than a
prerequisite.

Theorem 1. Suppose that f is a real transcendental meromorphic function
such that all but finitely many of the zeroes and poles of f ′ are real, and
f ′(z) = α only finitely often for some finite nonzero α. Then f can be written
in the form

(1.2) f(z) = αz + iλ
P (z)eicz − P (z)e−icz

P (z)eicz + P (z)e−icz
+ A,

where α, λ and A are real constants, αλ �= 0, c > 0 and P is a polynomial
with zeroes a1, . . . , aN (repeated to multiplicity) such that aj �= ak.

In the converse direction, if f is given by (1.2) then all but finitely many
of the zeroes and poles of f and f ′ ′ are real and the equation f ′(z) = α has
at most 2N solutions, counting with multiplicities. Moreover, all but finitely
many of the zeroes of f ′ are real if and only if either 0 < λc/α < 1 or

(1.3) λc = α and
N∑

j=1

Imaj

|x − aj |2 < 0 as real x → ±∞.

Note that if λc = α then the condition (1.3) is satisfied if
∑

Imaj < 0 and
is not satisfied if

∑
Imaj > 0.

Before proceeding, we shall briefly consider some examples. If we take
P (z) ≡ eid, then we see that (1.2) simply reduces to (1.1). Choosing instead
P (z) = z + i and c = 1 gives

f(z) = αz + λ
z sinz + cosz

sin z − z cosz
+ A, f ′(z) = α − λ

z2

(sin z − z cosz)2
.

In this case, the derivative omits α, showing that the relevant part of Theo-
rem 1 cannot be changed to “f ′(z) = α has 2N solutions.”

Kohs and Williamson proved in [14] that Hinkkanen and Rossi’s Theo-
rem A essentially continues to hold without the demand that f is real and
transcendental. By an extension of the method of Kohs and Williamson, we
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show that in the statement of Theorem 1 we may replace the assumption that
the function is real by the condition that it has infinitely many poles.

Theorem 2. Let g be a transcendental meromorphic function such that
all but finitely many of the zeroes and poles of g′ are real, and g′(z) = β only
finitely often for some finite nonzero β. Then all but finitely many of the
zeroes of g′ ′ are real and either
(i) there exists a constant c0 such that f = g/β + c0 is a real function satis-

fying the hypothesis of Theorem 1 with α = 1; or
(ii) we have g(z) = R(z)eicz + βz + d, where R is rational, c and d are con-

stants and c is real.

The following example demonstrates that case (ii) can occur, and hence
also that Theorem 1 may fail for strictly nonreal functions with finitely many
poles. Let α be nonzero and take

g(z) = αz +
3 − iz

z − i
αeiz, g′(z) = α +

(
z + i

z − i

)2

αeiz.

Then g has only one pole and clearly cannot be written in the form (1.2).
However, the derivative only takes the value α at one point and has finitely
many nonreal zeroes. To establish this last claim, write

(z − i)2g′(z)
αeiz/2

= (z − i)2e−iz/2 + (z + i)2eiz/2.

It will be shown in Lemma 6 that functions of this form have only finitely
many nonreal zeroes.

We now weaken the hypotheses of Theorems A and 1 by allowing f ′(z) = α
infinitely often, and just requiring α to be a deficient value of f ′. Under these
conditions, f has the same asymptotic behavior away from the real axis as
was found in the two earlier theorems.

Theorem 3. Let f be a real transcendental meromorphic function of pos-
itive lower order. Assume that f ′ has a nonzero finite deficient value α and
that all but finitely many of the poles of f , and the zeroes and α-points of f ′,
are real. Then α is real and, for ε > 0,

f(z) ∼ αz as z → ∞ with ε < | arg z| < π − ε.

An example of such a function where the derivative does have infinitely
many α-points is given by

h(z) =
1
3

tan3 z − 3 tanz + 4z, h′(z) = (tan2 z − 1)2.

Observe that h has only real poles and the derivative has only real zeroes.
Since tan2 z omits −1, we see that h′(z) = 4 if and only if tan z = ±

√
3. As

all the zeroes of tanz ±
√

3 are real and simple it follows that h′(z) = 4 only
for real z, and that 4 is a deficient value of h′ with δ(4, h′) = 1

2 .
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Theorem 3 follows from our final result.

Theorem 4. Let g be a real transcendental meromorphic function of pos-
itive lower order. Assume that g has a nonzero real finite deficient value α
and that all but finitely many of the zeroes, poles and α-points of g are real.
Then, for ε > 0,

g(z) ∼ α as z → ∞ with ε < | arg z| < π − ε.

Remarks. We mention the following points for completeness.
(1) If instead α is nonreal, then the function g can only take the values α

and α finitely often. In this case, (g − α)/(g − α) has finitely many zeroes
and poles and it can be shown that

g(z) =
αP (z)eicz + αP (z)e−icz

P (z)eicz + P (z)e−icz
,

where c is real and P is a polynomial.
(2) For any g with zero lower order and a deficient value α, there exist by [3] a

positive constant d and a set of radii r with upper logarithmic density one
such that log |g(reiθ) − α| < −dT (r, g). That is, g(z) ∼ α on whole circles
of suitable radius.

To deduce Theorem 3, first note that if α were nonreal then the real func-
tion f ′ could have no real α-points. Hence, the transcendental derivative f ′

would take the values α and α only finitely often, but this is not possible [5,
p. 59]. Using the fact that f and f ′ have equal lower order [6], Theorem 3 is
now established by applying Theorem 4 to f ′ and integrating.

2. Preliminaries

The following lemma is contained in a more general result due to Edrei [1].

Lemma 1 ([1]). Let f be meromorphic with only finitely many nonreal
zeroes and poles and only finitely many nonreal roots of f (n)(z) = α, for some
n ≥ 0 and α ∈ C \ {0}. If

δ(0, f) + δ(∞, f) + δ
(
α,f (n)

)
> 0

then the order of f does not exceed one.

Hille’s method. The proof of Theorem 1 involves studying the solutions of
differential equations of the form

(2.1) w′ ′ + b(z)w = 0

where b(z) is a rational function. Hille’s method [11, Section 5.6] can be used
to give an asymptotic description of these solutions if b(z) ∼ dzn as z → ∞
where n ≥ −1. We shall only consider the n = 0 case, so that as z → ∞ we
have b(z) = d + O(|z|−1) for a nonzero constant d.
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The critical rays are defined to be those rays arg z = θ for which either
θ = −(argd)/2 or θ = π − (argd)/2. Now assume that arg z = θ0 is a critical
ray, let δ > 0 and let R1 be large and positive. Define the region

S1 = {z : |z| > R1, | arg z − θ0| < π − δ}
and the transformation

Z =
∫ z

R1eiθ0

b(t)1/2 dt = d1/2z + O(log |z|), z ∈ S1, z → ∞.

By Hille’s method, there then exist principal solutions u+(z) and u−(z)
of (2.1) on S1 given by

u±(z) = b(z)−1/4 exp
(

±iZ + o(1)
)
.

These principal solutions are analytic in S1 and have no zeroes there. However,
any linear combination μu+ + νu−, where μ and ν are nonzero constants, has
infinitely many zeroes near the critical ray arg z = θ0.

3. Proof of Theorem 1—Part one

Let f be a real transcendental meromorphic function such that all but
finitely many of the zeroes and poles of f ′ are real, and f ′(z) = α only finitely
often for some finite nonzero α. This section is devoted to proving that f
can be written in the form (1.2) with α, λ and A real, λ �= 0, c > 0 and P a
polynomial without a pair of complex conjugate roots.

It is immediate that α is real, since otherwise the real transcendental de-
rivative f ′ only takes the values α and α finitely often. Let

(3.1) H(z) = f(z) − αz

and note that by Lemma 1 the order of H satisfies ρ(H) = ρ(f ′) ≤ 1.
Our aim is to write f in the form (1.2) by expressing H as a quotient of

solutions to the differential equation (2.1), in which the function b(z) is equal
to half the Schwarzian derivative of H .

Lemma 2. The Schwarzian derivative

S(H) =
H ′ ′ ′

H ′ − 3
2

(
H ′ ′

H ′

)2

is rational.

Proof. Since H has finite order the lemma of the logarithmic derivative
gives that m(r,S(H)) = O(log r). Recall that the Schwarzian derivative S(H)
has poles only at the multiple points of H . Therefore, to show that S(H)
is rational we shall show that H has only finitely many multiple points. As
H ′ = f ′ − α has finitely many zeroes, our task is reduced to showing that H
has only finitely many multiple poles.
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Define the real function g(z) by

(3.2) f ′ = α + 1/g.

Denote by a1, . . . , aN the poles of g and by b1, . . . , bM and c1, c2, . . . , respec-
tively the nonreal and real zeroes of g + 1/α, all repeated according to multi-
plicity. The sequence cn must be infinite as f ′ cannot take the values 0 and α
both only finitely often. Lemma 1 gives ρ(g) = ρ(f ′) ≤ 1, so that we have the
Weierstrass product representation [5, p. 21]

g(z) +
1
α

= zpeaz+b

∏M
n=1(z − bn)∏N
n=1(z − an)

∞∏
n=1
cn �=0

(
1 − z

cn

)
ez/cn

for some real constants a and b, and p = #{n : cn = 0}. We calculate

(3.3)
(

g′

g + 1/α

)′
=

N∑
n=1

1
(z − an)2

−
M∑

n=1

1
(z − bn)2

−
∞∑

n=1

1
(z − cn)2

.

If z is restricted to real values with |z| large, then the expression in (3.3) is
negative, as can be seen by truncating the infinite sum to a large number of
terms.

By (3.1) and (3.2), the multiple poles of H correspond to zeroes of g of
order greater than 2. At these zeroes, the left-hand side of (3.3) vanishes, and
hence there can only be finitely many of them on the real axis. Since H has
only finitely many nonreal poles, this completes the proof. �

Let

(3.4) b(z) =
1
2
S(H)(z).

Theorem 6.1 of [15] states that if D ⊆ C is a simply-connected domain on
which b is analytic, then (2.1) has two linearly independent analytic solu-
tions w1, w2 on D such that H = w1/w2 there. We may assume that these
solutions are normalized by w1w

′
2 − w′

1w2 = 1. It follows that, on D,

H ′ =
−1
w2

2

,
H ′

H
=

−1
w1w2

,
H ′

H2
=

−1
w2

1

,

and therefore w2
1 , w1w2 and w2

2 all have meromorphic extensions to the com-
plex plane. Hence, if v1, v2 are any solutions of (2.1) on D then v2

1 , v1v2

and v1/v2 each extend meromorphically to the whole complex plane. Fur-
thermore, these extensions have order at most one, and v2

1 has poles only at
the (finitely many) poles of b. The latter claim can be proved by noting that
v2
1 is a solution of 4b(z)w2 + 2ww′ ′ − (w′)2 = 0.

It is through studying equation (2.1) and its solutions that we will be able
to express f = H + αz in the form (1.2).

Lemma 3. The rational function b(z) has a nonzero real value at infinity.
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Proof. That b(z) is rational and real follows from (3.4). Moreover, b(z)
does not vanish identically because H is not a Möbius map. Hence, we must
show that b(∞) �= 0, ∞. As the order of H does not exceed one, Corollary 1
of [4] gives a ray on which∣∣∣∣H

′ ′

H ′

∣∣∣∣ ≤ |z|ε,
∣∣∣∣H

′ ′ ′

H ′

∣∣∣∣ ≤ |z|2ε.

Therefore, using (3.4) again, the rational function b(z) must be finite at in-
finity.

Suppose now that b(z) = O(|z|−2) as z → ∞. Let N ⊆ C be a simply-
connected neighborhood of infinity such that b is analytic on N ∗ = N \ {∞}
and N0 = N ∗ \ R≥0 is also simply-connected. In this case, equation (2.1) has
a regular singular point at infinity [11, Sections 5.2–5.3] and therefore has a
pair of linearly independent solutions on N of the form either

(i) zσ1g1(z) and zσ2g2(z); or
(ii) zσ1g1(z) and zσ2g2(z) + c1z

σ1g1(z) log z,

where g1, g2 are analytic on N . By the discussion preceding this lemma, the
quotient of any two solutions must be meromorphic on N ∗ and so we must
have case (i). Then zσ1−σ2(g1/g2) is meromorphic on N ∗ and so σ1 − σ2 is
an integer. The discussion above also gives that on N0 we can write H as the
quotient of two linear combinations of zσ1−σ2g1 and g2. This means that H
can be meromorphically extended to infinity, contradicting the fact that it is
transcendental.

Now suppose instead that b(z) = cz−1(1 + o(1)) as z → ∞ where c �= 0.
For F a solution of (2.1), put

(3.5) z = u2, h(u) = u−1/2F (u2).

Then h solves

(3.6) h′ ′ + c0(u)h = 0,

where

c0(u) = 4u2b(u2) − 3/(4u2) = 4c
(
1 + o(1)

)
, u → ∞.

By applying Hille’s method, we can find a principal solution to equation (3.6)
that tends to zero exponentially fast as u goes to infinity in a sector with
angular opening π − 2δ. Using (3.5), this leads to an exponentially decaying
solution v(z) to (2.1) on a sector D of angular opening 2π − 4δ. By the
discussion preceding this lemma, v2 extends to be meromorphic on the plane
with finitely many poles and order not exceeding one. As v2 is bounded on D
the Phragmén–Lindelöf principle implies that v2 is rational, contradicting the
exponential decay of v on D. �



612 D. A. NICKS

Let C be the nonzero real value taken by b at infinity, and choose c so that
c2 = C. We again use Hille’s method to find solutions of (2.1) on

S1 = {z : |z| > R1, | arg z − θ0| < π − δ},

where arg z = θ0 is a critical ray, R1 is large and 0 < δ < π/4. We obtain
principal solutions

(3.7) u±(z) = b(z)−1/4 exp
(

±icz + O(log |z|)
)
, z → ∞,

which are analytic and non-zero on S1.
The next lemma shows that we may take c to be real and positive.

Lemma 4. The value C is positive.

Proof. Suppose that C < 0 and so c is purely imaginary. In this case, the
critical ray arg z = θ0 lies along the imaginary axis and if μ, ν are nonzero
constants then μu+ + νu− has infinitely many zeroes near this critical ray.

By the discussion of (3.4) above, H = w1/w2 and H ′ = −1/w2
2 on S1,

where w1 and w2 are linear combinations of u+ and u−. Since H has only
finitely many nonreal poles, w2 must be a multiple of a principal solution,
w2 = κu±. Then using (3.7), we see that H ′(z) = −1/(κu±)2 tends to either
zero or infinity as |z| → ∞ with z real. Hence, H ′(z) + α = 0 has only finitely
many real roots. On recalling that f ′ = H ′ +α has only finitely many nonreal
zeroes, we uncover a contradiction: the transcendental derivative f ′ takes
both of the values 0 and α only finitely often. �

We now choose c =
√

C > 0.

Lemma 5. We can write

(3.8) H(z) =
kP (z)eicz + lQ(z)e−icz

P (z)eicz + Q(z)e−icz
,

where k, l ∈ C and P and Q are polynomials without common zeroes.

Proof. For z ∈ S1, let

v±(z) = u±(z)e∓icz.

Referring again to the discussion preceding Lemma 3, we find that the func-
tions v2

± extend to be meromorphic on the plane, with finitely many poles and
orders not exceeding one. Also, (3.7) gives that if z ∈ S1 then v2

± = O(|z|M )
for some M , so that the Phragmén–Lindelöf principle shows these functions
to be rational. Moreover, as v± is analytic on S1, we can write

(3.9) v2
± =

r±
s±

,

where r± and s± are polynomials and s± has no zeroes in S1. In particular,
we may define an analytic branch of (s+s−)1/2 on S1.
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The discussion of (3.4) above gives that, on S1, we can write H as a quotient
of solutions of (2.1),

(3.10) H =
μ1u+ + ν1u−
μ2u+ + ν2u−

=
μ1v+eicz + ν1v−e−icz

μ2v+eicz + ν2v−e−icz
.

Multiplying through by (s+s−)1/2 and then taking P = μ2v+(s+s−)1/2 and
Q = ν2v−(s+s−)1/2 we see that (3.10) becomes (3.8) on S1. These functions P
and Q are analytic on S1 and by (3.9) both P 2 and Q2 are polynomial. Nei-
ther P nor Q can vanish identically, since if μ2ν2 = 0 then H ′(z) = r(z)e±2icz

for some rational function r(z), and this contradicts the reality of H .
We may assume that the polynomials P 2 and Q2 have no common zeroes in

the plane. To see this, suppose that P 2(z0) = Q2(z0) = 0. If z0 ∈ S1, then P
and Q are analytic at z0 and we may divide both by (z − z0). Otherwise,
z0 /∈ S1 and we may divide both P and Q by a branch of (z − z0)1/2 that is
analytic on S1.

We complete the proof by showing that P and Q are themselves polynomial,
so that (3.8) must hold on the whole plane by the Identity Theorem. We
shall prove that P and Q may be analytically continued along any path, and
then the Monodromy Theorem shows P and Q to be analytic, and hence
polynomial, on the plane.

Let

γ : [0, ∞) → C, γ(0) ∈ S1

be a path starting in S1. Suppose that 0 < t0 < ∞ is maximal such that both P
and Q can be analytically continued along the path γ(t) for 0 ≤ t < t0. As P 2

and Q2 are polynomial the point γ(t0) must be a zero of either P 2 or Q2.
Suppose that P (γ(t0))2 = 0 (the proof is identical if instead Q(γ(t0))2 = 0).
Then γ(t0) is not a zero of Q2, and so Q admits analytic continuation along
γ(t) for t < t0 + ε. Since H is meromorphic on the plane, (3.8) defines a
meromorphic continuation of P along γ(t) for t < t0 + ε; namely,

P (γ(t)) =
l − H(γ(t))
H(γ(t)) − k

Q(γ(t))e−2icγ(t).

As P 2 is a polynomial this continuation must be analytic, contradicting the
maximality of t0. �

The function H is real and satisfies (3.8) so we must have that, for real x,

(3.11) Im
(
k|P (x)|2 + l|Q(x)|2 + kP (x)Q(x)e2icx + lP (x)Q(x)e−2icx

)
= 0.

Let R(x) = Re(P (x)Q(x)) and I(x) = Im(P (x)Q(x)) and observe that these
are real polynomials, not both vanishing identically. Now calculate the left-
hand side of (3.11) writing k = kr + iki and l = lr + ili. Noting that the
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coefficients of sin2cx and cos2cx must vanish because P , Q, R and I are all
polynomials, this leads to

ki|P (x)|2 + li|Q(x)|2 = 0,(3.12)
(kr − lr)R(x) − (ki + li)I(x) = 0,(3.13)
(kr − lr)I(x) + (ki + li)R(x) = 0.(3.14)

Inspection of (3.13) and (3.14) yields kr = lr and ki = −li. Hence, l = k and k
must be nonreal, otherwise H would be constant. Now (3.12) shows that, for
real z,

(3.15) P (z)P (z) = Q(z)Q(z),

and in fact this holds on the whole plane, as both sides are polynomials in z.
Since P and Q have no common zeroes, it follows that z0 is a zero of P if and
only if z0 is a zero of Q of equal multiplicity. Therefore,

P (z) = βQ(z)

for some β and (3.15) gives that |β| = 1. Using the fact that β1/2 = β−1/2

allows us to assume that β = 1 by replacing P and Q by P1 = β1/2P and
Q1 = β1/2Q and relabeling.

By writing k = l = A+λi and using (3.1), equation (3.8) now becomes (1.2).

4. Proof of Theorem 1—Part two

In this section, f is assumed to be given by (1.2) where α, λ and A are
real, αλ �= 0, c > 0 and P is a polynomial with zeroes a1, . . . , aN (repeated to
multiplicity) such that aj �= ak. We aim to prove that f and f ′ ′ have only
finitely many nonreal zeroes and poles, and that the equation f ′(z) = α has
at most 2N solutions, counting with multiplicities. We show further that all
but finitely many of the zeroes of f ′ are real if and only if either 0 < λc/α < 1
or condition (1.3) is satisfied.

Together with the result established in the previous section, this completes
the proof of Theorem 1.

It will be useful to write Q(z) = P (z) and to differentiate (1.2) to obtain

(4.1) f ′ − α = 2iλ
P ′Q − PQ′ + 2icPQ

(Peicz + Qe−icz)2

and

(4.2) f ′ ′ =
p0(z)eicz + p1(z)e−icz

(Peicz + Qe−icz)3
,

where p0 and p1 are polynomials. Since f ′ ′ is a real function it is easily seen
that p1(z) = p0(z).
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The assertion that the equation f ′(z) = α has at most 2N solutions is
proved simply by observing that the numerator of the right-hand side of (4.1)
is a polynomial of degree 2N .

From (1.2), we see that if z0 is a pole of f then z0 satisfies

P (z0)eicz0 + P (z0)e−icz0 = 0,

and if z1 is a zero of f then z1 satisfies

(αz1 + A + iλ)P (z1)eicz1 + (αz1 + A − iλ)P (z1)e−icz1 = 0.

Similarly, from (4.2) we see that if z2 is a zero of f ′ ′ then z2 satisfies

p0(z2)eicz2 + p0(z2)e−icz2 = 0.

Therefore, the fact that f and f ′ ′ have only finitely many nonreal zeroes and
poles follows from the next lemma.

Lemma 6. If p(z) �≡ 0 is a polynomial, then F (z) = p(z)eiz + p(z)e−iz has
only finitely many nonreal zeroes.

Proof. For real x,

(4.3) F (x) = 2Re(p(x)) cosx − 2 Im(p(x)) sinx.

Let m be a large positive or negative integer. If Re(p(x)) �≡ 0, then (4.3)
shows that F (x) changes sign over the interval [mπ, (m + 1)π]. Otherwise,
Im(p(x)) �≡ 0 and F (x) changes sign over [(m − 1

2 )π, (m+ 1
2 )π]. In either case,

denoting by n(t) the number of nonreal zeroes of F in {z : |z| ≤ t}, we have
that n(t,1/F ) ≥ n(t) + 2t/π − O(1). Hence,∫ r

0

n(t)
t

dt ≤ T (r,F ) − 2r

π
+ O(log r) = O(log r), r → ∞,

using the fact that T (r,F ) = 2r/π + O(log r) because p(z)eiz is large where
p(z)e−iz is small. This implies that n(t) is bounded and so F has finitely
many nonreal zeroes. �

Lemma 7. All but finitely many of the zeroes of f ′ are real if and only if
either 0 < λc/α < 1 or condition (1.3) holds.

Proof. Define the real functions

(4.4) g1 =
P

Q
e2icz +

Q

P
e−2icz

and

g2 =
2λi

α

(
Q′

Q
− P ′

P
− 2ic

)
− 2(4.5)

=
4λc

α
− 2 +

4λ

α

N∑
j=1

Imaj

(z − aj)(z − aj)
.
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Then by (4.1)

f ′ =
αPQ

(Peicz + Qe−icz)2
(g1 − g2)

so that f ′ and g1 − g2 have the same zeroes with finitely many exceptions. To
see this, note that g1(z) = −2 at a zero of Peicz +Qe−icz , but that g2(z) = −2
only finitely often.

Fix an analytic branch of log(P/Q) on the simply-connected domain

D = {z : |z| > R, Im z < 1},

where R is large, and choose a real number φ such that

(4.6) ε(z) = φ − i log
(

P (z)
Q(z)

)
= o(1) as z → ∞ in D.

The function ε(z) is real on the real axis; hence for a large positive or negative
integer n we can find a real number xn such that 2cxn + ε(xn) = nπ + φ.
Using (4.4) and (4.6), we can now write

g1(z) = 2cos
(
2cz − φ + ε(z)

)
, z ∈ D,(4.7)

g1(xn) = 2(−1)n and xn ∼ nπ + φ

2c
as n → ±∞.(4.8)

Assume now that either 0 < λc/α < 1 or condition (1.3) holds. Then (4.5)
gives |g2(x)| < 2 for all large real x and so (4.8) shows that g1 − g2 changes
sign over [xn, xn+1]. Therefore, g1 − g2 has at least 4ct/π − O(1) real zeroes
in {z : |z| ≤ t}, and the same is true of f ′. Using (4.1), we calculate

T (r, f ′) = 2T (r,Peicz + Qe−icz) + O(log r) =
4cr

π
+ O(log r), r → ∞,

using the fact that Peicz is large where Qe−icz is small and vice versa. By
an argument similar to that used at the end of the proof of Lemma 6, this is
sufficient to show that all but finitely many of the zeroes of f ′ are real.

We tackle the proof of the converse in two cases.
(i) Suppose first that either λc/α < 0 or λc/α > 1. Then by (4.5) and (4.7)

for real x of large absolute value, we have |g1(x)| ≤ 2 and |g2(x)| > 2.
Therefore, both g1 − g2 and f ′ have only finitely many real zeroes. Hence,
f ′ has infinitely many nonreal zeroes as it cannot have only finitely many
zeroes and α-points in the plane.

(ii) Now suppose instead that λc = α but that (1.3) fails to hold. Then
g2(x) > 2 either for all large positive x or for all large negative x. For
such x, we have |g1(x)| ≤ 2 by (4.7). Hence, g1 − g2 either has only finitely
many positive zeroes, or only finitely many negative zeroes.

Using (4.5) and (4.8) gives that

g1(x2n) − 2 = 0 and g2(z) − 2 = o(1) as z → ∞,
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and we see from (4.7) that |g1 − 2| is bounded away from zero on a small
circle about x2n. Hence, it follows from Rouché’s Theorem that g1 − g2 has
at least one zero near each point x2n, for n sufficiently large. Combining
this with the result of the previous paragraph shows that g1 − g2 has
infinitely many nonreal zeroes, and the same is true of f ′. �

5. Proof of Theorem 2

The following lemma is the key to the proof of Theorem 2.

Lemma 8. Let F be meromorphic such that all but finitely many of the
zeroes and poles of F are real, and F (z) = 1 only finitely often. If F has
infinitely many multiple poles, then F is real.

Proof. The order of F does not exceed one by Lemma 1. Hence, we can
write

F (z) =
h(z)P1(z)eiaz

k(z)P2(z)
,

where h and k are real entire functions of order at most one with only real
zeroes and no common zeroes; the polynomials P1 and P2 have no real ze-
roes; and a is a real constant. Furthermore, there exists an unbounded real
sequence (xn) of multiple zeroes of k. Since F takes the value 1 only finitely
often we can also write

(5.1) F (z) = 1 +
P3(z)eibz

g(z)P2(z)
,

where g is a real entire function with only real zeroes, P3 is a polynomial
and b is a real constant. Equating these two expressions for F (z) yields

(5.2) h(z)P1(z) − k(z)P2(z)e−iaz =
k(z)P3(z)ei(b−a)z

g(z)
.

Observe that if the right-hand side of (5.2) vanishes then either k or P3 must
vanish, but that the left-hand side cannot vanish at a zero of k. Hence,

(5.3) h(z)P1(z) − k(z)P2(z)e−iaz = CP3(z)eDz

for some constants C and D. Note that C �= 0 as otherwise F (z) ≡ 1. Evalu-
ating (5.3) and its derivative at each of the points xn gives

(5.4) h(xn)P1(xn) = CP3(xn)eDxn

and
h′(xn)P1(xn) + h(xn)P ′

1(xn) = C
(
P ′

3(xn) + DP3(xn)
)
eDxn ,

which lead to
h′(xn)
h(xn)

+
P ′

1(xn)
P1(xn)

=
P ′

3(xn)
P3(xn)

+ D.
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Therefore, D must be real because h is a real function and P ′
j(xn)/Pj(xn) → 0

as |xn| → ∞. From (5.2) and (5.3) we see that

k(z)ei(b−a)z = Cg(z)eDz,

so that Cei(a−b)z is real for all real z. Thus, a = b and C is real. Now (5.4)
shows that P1(xn)/P3(xn) is real for every xn and therefore P1/P3 is a real
function. Dividing equation (5.3) by P3 gives that the function P2e

−iaz/P3 is
real and hence (5.1) shows that F must also be real. �

Let the function g be as in the hypothesis of Theorem 2. Assume first
that g has infinitely many poles and apply Lemma 8 with F = g′/β. This
gives that on the real axis g/β has constant imaginary part and it follows
immediately that we have case (i) of the theorem.

Now suppose instead that g has only finitely many poles. By Lemma 1,
the order of g′ is at most one and it follows that

g′(z) − β = R1(z)eicz

for some rational function R1 �≡ 0. We show next that c is real. Suppose not,
then g′(x) tends to either β or infinity as real x → ±∞ and so g′ must have
finitely many real zeroes. But then g′ takes each of the values 0, β and ∞
only finitely often, implying that g′ is rational and hence c = 0.

Repeated integration by parts now shows that we have case (ii) of the
theorem.

Finally, the assertion about the zeroes of g′ ′ follows from Theorem 1 in
case (i) and by straightforward differentiation in case (ii).

6. Proof of Theorem 4

Let g be as in the hypothesis and assume without loss of generality that
α = 1. We begin with a simple estimate of the logarithmic derivative.

Lemma 9. Let F be a meromorphic function of order at most ρ with all
but finitely many of its zeroes and poles real. Let δ > 0 and η > 0. Then∣∣∣∣F

′(z)
F (z)

∣∣∣∣ = o(|z|ρ−1+η) as z → ∞, δ < | arg z| < π − δ.

Proof. Let z be such that |z| = r and δ < | arg z| < π − δ. The differentiated
Poisson–Jensen formula [13, p. 65] gives∣∣∣∣F

′(z)
F (z)

∣∣∣∣ ≤ 4
r

(
m(2r,F ) + m(2r,1/F )

)
+

∑
|zj |<2r

2
|z − zj | ,

where the zj are the zeroes and poles of F repeated according to multiplicity.
For the finitely many nonreal zj , we have |z − zj | −1 = O(r−1) as r → ∞, while
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for the real zj we have |z − zj | ≥ | Imz| ≥ r sin δ. Therefore, as r → ∞,∣∣∣∣F
′(z)

F (z)

∣∣∣∣ ≤ o(rρ−1+η) +
2

r sin δ

(
n(2r,F ) + n(2r,1/F )

)
= o(rρ−1+η). �

By Lemma 1, the order of g is at most one. Hence, taking 0 < ε1 < ε/4
and η > 0 both small and applying Lemma 9 gives that

(6.1)
∣∣∣∣g

′(z)
g(z)

∣∣∣∣ = o(|z|η) as z → ∞, ε1 < | arg z| < π − ε1.

Define σ ∈ (1,2) by

(6.2) σ = 1 +
λ sin(ε/2)

8
,

where λ = λ(g) is the lower order of g. Applying [16, Lemma 5] to g − 1, we
can find a small positive constant m and a set J of lower logarithmic density
greater than 1/σ such that if r ∈ J is large and Fr is a subinterval of [0,2π]
of length m then ∫

Fr

∣∣∣∣ rg′(reiθ)
g(reiθ) − 1

∣∣∣∣dθ ≤ δ(1, g)
4

T (r, g).

By the definition of deficiency, for large r ∈ J there exists z0 with |z0| = r and

log |g(z0) − 1| ≤ − δ(1, g)
2

T (r, g).

It follows that g is near 1 on any arc of angular measure m with z0 as one
endpoint. In particular, because g is real and ε1 is small we can find, for large
r ∈ J , an arc

Ω(r) ⊆ A(r) = {z : |z| = r,2ε1 < arg z < π − 2ε1}
of angular measure m/2 on which

(6.3) log |g(z) − 1| < −c1T (r, g),

denoting by c1, c2, . . . positive constants not depending on r.
It is now claimed that we can choose by induction a sequence (rk) in J

satisfying 2rk < rk+1 < rσ
k . Otherwise, there exists a large rk ∈ J such that

(2rk, rσ
k ) ∩ J = ∅. Taking l such that 1/σ < l < logdensJ then leads to the

following contradiction

l log rσ
k <

∫
[1,rσ

k ]∩J

dt

t
≤

∫ 2rk

1

dt

t
= (1/σ) log rσ

k + log2.

We deduce immediately that

(6.4)
∞⋃

k=1

(rk, rσ
k ) contains all large r.
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Define two sequences of arcs by Ωk = Ω(rk) and Ak = A(rk). Applying
Lemma 9 to g − 1 gives that on Ωk we have |g′/(g − 1)| = o(rη

k) as rk → ∞.
Hence, for z ∈ Ωk, using (6.3) twice yields

log
∣∣∣∣g

′(z)
g(z)

∣∣∣∣ ≤ log |g′(z)| + o(1)

≤ log |g(z) − 1| + O(log rk) < −c2T (rk, g), rk → ∞.

We show next that a similar bound holds on the whole of the arc Ak. To
do this, let Dk = {z : rk/2 < |z| < 2rk, ε1 < arg z < π − ε1} and note that by
conformal invariance

ω(z,Ωk,Dk \ Ωk) > c3, z ∈ Ak.

Thus, using (6.1) and the above, the Two Constants Theorem now gives

(6.5) log
∣∣∣∣g

′(z)
g(z)

∣∣∣∣ < −c4T (rk, g), z ∈ Ak.

Let

Sk = {z : rk < |z| < r2
k, 2ε1 < arg z < π − 2ε1},

S′
k = {z : rk < |z| < rσ

k , ε < arg z < π − ε}.

Lemma 10. For large k, the harmonic measure of the arc Ak satisfies

ω(z,Ak, Sk) ≥ 1

2πr
4(σ−1)/ sin(ε/2)
k

=
1

2πr
λ/2
k

, z ∈ S′
k.

The proof of Lemma 10 is simply an application of the following lemma
that goes back to Nevanlinna.

Lemma 11 ([2, Lemma E]). Let D be a domain bounded by a Jordan curve C
consisting of a Jordan arc A and its complement B in C. Let Γ be a rectifiable
curve in D joining a point a ∈ A to a point in B. Let z be a point on Γ and
let ρB(z) denote the distance of z from B. Then

ω(z, A,D) ≥ 1
2π

exp
{

−4
∫ z

a

|dζ|
ρB(ζ)

}
,

where the integral is taken along Γ.

Proof of Lemma 10. The equality in the statement of the result simply
follows from (6.2).

Let rk be large, ζ ∈ S′
k and let w be a nearest point to ζ of B = ∂Sk \ Ak.

Then either argw = 2ε1 or argw = π − 2ε1. Using the fact that ε − 2ε1 > ε/2
it follows that

ρB(ζ) = |ζ − w| ≥ |ζ| sin(ε/2).
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For z ∈ S′
k, choose the path Γ(t) = teiarg z for t ∈ [rk, r2

k]. Then applying
Lemma 11 yields

ω(z,Ak, Sk) ≥ 1
2π

exp
{

−4
∫ |z|

rk

dt

t sin(ε/2)

}
=

1
2π

(
rk

|z|

)4/ sin(ε/2)

,

which gives the required result upon noting that |z| < rσ
k . �

Using (6.1), (6.5) and Lemma 10, the Two Constants Theorem now gives
that, for z ∈ S′

k,

(6.6) log
∣∣∣∣g

′(z)
g(z)

∣∣∣∣ ≤ −c4T (rk, g)

2πr
λ/2
k

+ O(log rk) < −c5r
λ/4
k , rk → ∞.

Pick a point zk ∈ Ωk for each k. For large k, there are no zeroes or poles of g
in Sk and so for z ∈ S′

k we can write

g(z) = g(zk) exp
(∫ z

zk

g′(w)
g(w)

dw

)
= 1 + o(1), k → ∞,

using (6.3) and (6.6). By (6.4), if z is large and ε < arg z < π − ε then z ∈ S′
k

for some k which tends to infinity with z. Hence, by the above,

g(z) ∼ 1 as z → ∞, ε < arg z < π − ε.

Since g is real this completes the proof.
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