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Abstract. Denote by B the class of transcendental meromorphic functions for which the set
of finite critical and asymptotic values is bounded, and by S that class of functions for which this
set is finite. We give some conditions on transcendental deficient functions of members of the class
B, including an improvement of a result of Langley and Zheng [10]. This leads to corresponding
results for the class S. It is also proved that no derivative of a finite lower order periodic function
has non-zero finite deficient values. We show by example that the finite lower order condition is
necessary here.

1. Introduction

The asymptotic and critical values of a meromorphic function f (where here
and henceforth meromorphic should be taken to be mean meromorphic in the plane)
together constitute the singular values of the inverse function f−1. These singular
values play a significant role in complex dynamics [1, 3, 13]. The class B consists of
all transcendental meromorphic functions for which the inverse has a bounded set of
finite singular values. The subclass S contains those functions for which this set of
singular values is finite. We consider slowly growing Nevanlinna deficient functions
of members of the classes B and S. All definitions and terminology are as in [6].

Theorem 1. Let f be a member of the class B of finite lower order, and let h
be a zero order transcendental meromorphic function with deficient poles; that is,
δ(∞, h) > 0. Then δ(0, f − h) = 0.

We shall obtain the following related theorem for functions h of small positive
order.

Theorem 2. Let 0 < δ, ν < 1 and let f be a member of the class B of finite
lower order λ. Then there exists ρ > 0 such that if h is a transcendental meromorphic
function of order less than ρ satisfying δ(∞, h) > 26ρ(h)1−ν then δ(0, f − h) < δ.

Moreover, for ε > 0 we may take ρ = δ(1+ε)/ν provided δ ≤ δ0(ε, λ) where δ0 is
positive and depends only on ε and λ.

The next result partially extends Theorem 1 to functions f ∈ B of arbitrary
order.

Theorem 3. Let f belong to the class B and let h be transcendental and mero-
morphic with deficient poles, and such that

T (r, h) = O(log r)P as r →∞
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for some P . Then δ(0, f − h) = 0.

Theorems 1, 2 and 3 together substantially improve a result from [10], in which it
was shown that if f is the class B and h is transcendental meromorphic with finitely
many poles such that T (r, h) = o(log r)2 as r →∞, then δ(0, f − h) = 0.

For h to be called a deficient function of f it is normally required that T (r, h) =
o(T (r, f)) as r →∞, but this is not necessary for Theorems 1, 2 or 3. Thus in each
case we are also considering whether f ∈ B can be a deficient function of h. Note,
however, that f − h is non-constant as we shall see that the deficiency of the poles
of h ensures that h /∈ B.

We can modify the hypotheses of the above three results by using the following
observation on deficient functions, the proof of which is given later.

Lemma 1. If f and h are meromorphic functions such that either

(1.1) T (r, h) = o(T (r, f)) or T (r, f) = o(T (r, h)) as r →∞
then

δ

(
0,

1

f − a
− 1

h− a

)
= δ(0, f − h) for all a ∈ C.

By applying this, Theorems 1, 2 and 3 immediately give the following corollary.

Corollary. Let a ∈ C and let f be a transcendental meromorphic function such
that the set of singular values of the inverse function f−1 does not accumulate at a.

(i) If f has finite lower order and h is a zero order transcendental meromorphic
function satisfying (1.1) and with deficient value a, then δ(0, f − h) = 0.

(ii) Suppose that 0 < δ, ν < 1 and that f has finite lower order. Then there exists
ρ > 0 such that, for all transcendental meromorphic functions h satisfying
(1.1) with order less than ρ and δ(a, h) > 26ρ(h)1−ν, we have δ(0, f − h) < δ.

(iii) If h is a transcendental meromorphic function satisfying (1.1), with deficient
value a, and such that T (r, h) = O(log r)P as r → ∞ for some P , then
δ(0, f − h) = 0.

If f is in the class S then it satisfies the condition in the above corollary for any
value of a. Note also that it was shown in [10] that a non-constant rational function
cannot be a deficient function of a member of the class S.

Turning our attention to periodic functions, we see from the example ez + a that
omitted values are possible. However, the derivative of this example has no non-zero
finite deficient values. In fact, this holds in general for all derivatives of meromorphic
periodic functions of finite lower order. Some counterexamples of infinite lower order
are constructed in section 7.

Theorem 4. Let f be a periodic meromorphic function of finite lower order.
Then f ′ has no non-zero finite deficient values.

2. Preliminaries

The following is included for completeness.

Proof of Lemma 1. We may assume that a = 0 and that T (r, h) = o(T (r, f)).
We need two simple estimates; firstly T (r, 1/f − 1/h) ≥ T (r, f − h)(1 + o(1)), and
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secondly

n

(
r,

hf

f − h

)
≤ n(r, 1/(f − h)) + 2n(r, h),

as the function hf/(f − h) has poles only where f and h both have poles or where
f − h = 0. It then follows that δ(0, 1/f − 1/h) ≥ δ(0, f − h), and since 1/(1/f) = f
we get equality. ¤

The only property of mappings in the class B on which this paper relies is that
described in the next lemma.

Lemma 2. ([3, 13]) Let f belong to the class B. Then there exist L > 0 and
M > 0 such that if |z| > L and |f(z)| > M then

∣∣∣∣
zf ′(z)

f(z)

∣∣∣∣ ≥
log |f(z)/M |

C

where C is a positive absolute constant.

Lemma 3. ([7]) Let S(r) be an unbounded positive non-decreasing function on
[r0,∞), continuous from the right, of order ρ and lower order λ. Let A > 1 and
B > 1. Then

S(Ar) < BS(r)

outside an exceptional set G satisfying

logdens G ≤ ρ

(
log A

log B

)
, logdens G ≤ λ

(
log A

log B

)
.

Lemma 4. ([5]) Let h be a meromorphic function of order ρ. If ρ < σ < 1/2
then

logdens{r > 0 : log L(r, h) > cos πσm(r, h)− πσ sin πσT (r, h)} ≥ 1− ρ/σ

where L(r, h) = min{|h(z)| : |z| = r}.
In particular, it follows from Lemma 4 that if h has deficient poles and order zero

then there exists a positive constant d such that

log L(r, h) > dT (r, h)

on a set of logarithmic density 1. A standard argument [12, p. 287] shows that such
functions h cannot belong to the class B.

The following lemma is a routine consequence of Fuchs’ small arcs lemma [4], the
version stated here is derived from [8, p. 721].

Lemma 5. ([11]) Let g be a non-constant meromorphic function and let 0 <
η < 1.

(i) There exist a constant K(η) ≥ 1 depending only on η and a subset Iη ⊆ [0,∞)
of lower logarithmic density at least 1− η such that if r ∈ Iη is large and Fr

is a subinterval of [0, 2π] of length m then
∫

Fr

∣∣∣∣
rg′(reiθ)

g(reiθ)

∣∣∣∣ dθ ≤ K(η)T (er, g)m log

(
2πe

m

)
.
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(ii) If g has finite lower order then there exist a positive constant L and a subset
Jη ⊆ [0,∞) of upper logarithmic density at least 1− η such that if r ∈ Jη is
large and Fr is a subinterval of [0, 2π] of length m then

∫

Fr

∣∣∣∣
rg′(reiθ)

g(reiθ)

∣∣∣∣ dθ ≤ LT (r, g)m log

(
2πe

m

)
.

The following Fuchs type result is key to the proof of Theorems 1 and 2.

Lemma 6. Let h be a meromorphic function.

(i) Suppose that h has order zero (respectively lower order zero) and let δ1, δ2 ∈
(0, 1). Then

∫ 2π

0

∣∣∣∣
rh′(reiθ)

h(reiθ)

∣∣∣∣ dθ < δ1T (r, h)

for all r outside an exceptional set E of upper (respectively lower) logarithmic
density at most δ2.

(ii) There exists a positive absolute constant K0 such that if the order of h satisfies
0 < ρ(h) < 1

32
then

(2.1)
∫ 2π

0

∣∣∣∣
rh′(reiθ)

h(reiθ)

∣∣∣∣ dθ < K0ρ(h)T (r, h)

outside an exceptional set of upper logarithmic density at most 1
4
.

Remark. It is standard (using for example [11, Lemma 6]) that Lemma 6(i)
implies that the integral is o(T (r, h)) as r → ∞ outside a set of zero logarithmic
density (respectively zero lower logarithmic density).

Proof of Lemma 6. For 0 < r < R, integrating the differentiated Poisson–Jensen
formula [9, p. 65] leads to

(2.2)
∫ 2π

0

∣∣∣∣
rh′(reiθ)

h(reiθ)

∣∣∣∣ dθ ≤ 8πRr

(R− r)2
(T (R, h) + O(1)) + 2

∑

|ck|<R

Hk,

where the ck are the zeroes and poles of h repeated according to multiplicity and

(2.3) Hk = r

∫ 2π

0

dθ

|reiθ − ck| = 2r

∫ π

0

dθ

|reiθ − |ck|| .

We proceed to estimate the Hk. Defining γk = |r−|ck||/r, for a given r, and following
Fuchs [4] we divide the ck into two classes:

(I) those ck for which γk < π/2, i.e., |r − |ck|| < πr/2,
(II) those ck for which γk ≥ π/2, i.e., |r − |ck|| ≥ πr/2.

For ck ∈ (II)

(2.4) Hk ≤ 2πr

|r − |ck|| ≤ 4 and so
∑

|ck|<R
ck∈(II)

Hk ≤ 4n(R),

where n(R) = n(R, h) + n(R, 1/h) is the number of ck lying in |z| ≤ R.



Deficiencies of certain classes of meromorphic functions 161

For ck ∈ (I), using (2.3) shows that

Hk ≤ 2r

∫ γk

0

dθ

|r − |ck|| + 2r

∫ π/2

γk

dθ

r sin θ
+ 2r

∫ π

π/2

dθ

r

≤ 2 + π + π log
πr

2|r − |ck|| .
(2.5)

To count the number of |ck| near r we define

µ(r, t) = #{|ck| < R : |r − |ck|| < t},
counting with multiplicities. Set R = α2n for α > 2. An application of Cartan’s
Lemma (formula (6.5.17) of [8, p. 367]) with hn = 2n−3δ2/3 gives that

(2.6) µ(r, t) <
n(R)t

ehn

=
48n(R)t

2n+1eδ2

, 0 < t < ∞,

for r ∈ [2n, 2n+1] outside an exceptional set En of linear measure at most 12hn =
2n−1δ2. Combining (2.5) and (2.6) yields

(2.7)
∑

|ck|<R
ck∈(I)

Hk ≤
∫ πr/2

t=0

(
2 + π + π log

πr

2t

)
dµ(r, t) ≤ 48π(1 + π)

eδ2

n(R),

for r ∈ [2n, 2n+1] \ En. Observe that

n(R) ≤ n(αr, h) + n(αr, 1/h) ≤ 2

log α
(T (α2r, h) + O(1)).

Using this, (2.4) and (2.7), the estimate (2.2) becomes

I =

∫ 2π

0

∣∣∣∣
rh′(reiθ)

h(reiθ)

∣∣∣∣ dθ

≤ 8πRr

(R− r)2
(T (R, h) + O(1)) +

(
8 +

96π(1 + π)

eδ2

)
n(R)

≤ 16

(
πα

(α− 2)2
+

1

log α

(
1 +

12π(1 + π)

eδ2

))
(T (α2r, h) + A),

(2.8)

for r ∈ [2n, 2n+1]\En and some constant A. Hence for 2m < s ≤ 2m+1 inequality (2.8)
holds for all r ∈ [1, s] outside a set of linear measure at most δ2(2

−1+2+. . .+2m−1) <
δ2s. Therefore (2.8) holds for all r > 0 outside an exceptional set E ′ with upper linear
density at most δ2. We now prove the two parts of the lemma separately.

(i) Assume that h has order zero (respectively lower order zero). Then Lemma
3 gives that T (α2r, h) + A ≤ 2T (r, h) outside a set E ′′ of upper (respectively
lower) logarithmic density zero. Hence E = E ′ ∪ E ′′ has upper (respectively
lower) logarithmic density at most δ2 and for r /∈ E,
∫ 2π

0

∣∣∣∣
rh′(reiθ)

h(reiθ)

∣∣∣∣ dθ ≤ 32

(
πα

(α− 2)2
+

1

log α

(
1 +

12π(1 + π)

eδ2

))
T (r, h).

The proof of part (i) is thus completed by choosing α sufficiently large.
(ii) Assume now that the order of h satisfies 0 < ρ(h) < 1

32
. Applying Lemma 3

gives that
T (α2r, h) + A ≤ eT (r, h) + A ≤ 3T (r, h)
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outside a set E ′′ of upper logarithmic density at most 2ρ(h) log α. Thus taking
δ2 = 1

8
and log α = 1

16ρ(h)
> 2, the upper logarithmic density of E ′ ∪ E ′′ does

not exceed 1
4
and by (2.8)

∫ 2π

0

∣∣∣∣
rh′(reiθ)

h(reiθ)

∣∣∣∣ dθ ≤ 48(16ρ(h))

(
πα log α

(α− 2)2
+ 1 +

96π(1 + π)

e

)
T (r, h)

for r /∈ E ′ ∪ E ′′. Since the term πα log α/(α − 2)2 is bounded for α > e2, we
can find an absolute constant K0 to complete the proof. ¤

3. Proof of Theorem 1

Let f and h be as in the hypothesis, but suppose that δ(0, f − h) > 0.

Lemma 7. There exist positive constants m, c and a set J of positive upper
logarithmic density such that, for r ∈ J ,

(3.1) log |f(z)− h(z)| < −cT (r, f − h)

on a subset Σr of S(0, r) of angular measure at least m. Furthermore, for z ∈ Σr,

(3.2) zf ′(z) = zh′(z) + o(1) as r →∞ in J.

Proof. Since δ(0, f − h) > 0 we can pick z0 with |z0| = r, for all large r, such
that

log |f(z0)− h(z0)| < −1

2
δ(0, f − h)T (r, f − h).

Let Ωr be that arc of S(0, r) with midpoint z0 and angular measure 2m. Choosing m
sufficiently small and applying Lemma 5(ii) to f − h gives a set J , of positive upper
logarithmic density, such that for r ∈ J the estimate (3.1) holds on Ωr. Furthermore,
by applying Lemma 5(ii) with Fr = Ωr, we see that the subset of Ωr on which∣∣∣∣

z(f ′(z)− h′(z))

f(z)− h(z)

∣∣∣∣ ≤ 2LT (r, f − h) log(πe/m)

must have measure at least m. Let Σr be this subset. Now (3.2) follows from (3.1)
for z ∈ Σr. ¤

The remark following Lemma 4 shows that we can find a positive constant d such
that

(3.3) log L(r, h) > dT (r, h)

on a set of logarithmic density 1. Let J ′ be that subset of J on which (3.3) holds
and note that J ′ has positive upper logarithmic density. Using Lemma 7 and (3.3)
gives that, for z ∈ Σr,

(3.4) f(z) →∞ and
zf ′(z)

f(z)
=

zh′(z)

h(z)
(1 + o(1)) + o(1), as r →∞ in J ′.

Hence the hypothesis of Lemma 2 is satisfied by f and z ∈ Σr for all sufficiently large
r ∈ J ′, and using Lemma 2, (3.1), (3.3) and (3.4) yields

dT (r, h) ≤ log |f(z) + o(1)| ≤ O

(∣∣∣∣
zf ′(z)

f(z)

∣∣∣∣
)
≤ O

(∣∣∣∣
zh′(z)

h(z)

∣∣∣∣
)

for z ∈ Σr as r →∞ in J ′. Since the angular measure of Σr is at least m, this leads
to a contradiction with Lemma 6(i) thus proving the theorem.
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4. Proof of Theorem 2

Let f , δ and ν be as in the hypothesis. Assume that the transcendental mero-
morphic function h satisfies δ(∞, h) > 26ρ(h)1−ν and δ(0, f − h) ≥ δ.

Let K0 be as in Lemma 6(ii) and let K1 be the constant K(1
8
) of Lemma 5(i);

then K1 ≥ 1. Define the constants C1 = 16CK0K1 and C2 = π/2CK0 where C is as
in Lemma 2. We may assume that C2 < 1

16
since Lemma 6(ii) continues to hold if

we demand that K0 > 8π/C. The function

φ(x) = C1e
4λ+1x log(C2e/x)

is strictly increasing for 0 < x < C2 and φ(C2/2) ≥ 4πK1 > δ so that we may define
ρν < C2/2 by φ(ρν) = δ.

We aim to show that ρ(h) ≥ ρ. We will then be done, because for ε > 0 and
δ less than some positive δ0(ε, λ) we see that φ(δ1+ε) < δ. Since we have ρ < C2/2
we may assume that ρ(h) < 1

32
. It follows that the lower order λ(f − h) is less than

λ + 1
32
.

By Theorem 1 and the above we have that 0 < ρ(h) < 1
32
. Applying Lemma 4

to h and taking σ = 8ρ(h) in the notation there now leads to

logdens

{
r > 0 : log L(r, h) >

√
2

2

(
m(r, h)

T (r, h)
− 8πρ(h)

)
T (r, h)

}
≥ 7

8
.

Therefore, recalling that δ(∞, h) > 26ρ(h)1−ν , we get that

(4.1) log L(r, h) >

√
2

2
(26− 8πρ(h)ν)ρ(h)1−νT (r, h) >

ρ(h)1−νT (r, h)

2

on a set of lower logarithmic density at least 7
8
. Hence h /∈ B and f−h is non-constant

[12, p. 287].
Applying Lemma 5(i) to f − h with η = 1

8
, followed by Lemma 3 with S(r) =

T (r, f − h), A = e and B = e4λ(f−h), we obtain a set H of upper logarithmic density
at least 5

8
such that, for r ∈ H,

(4.2)
∫

Fr

∣∣∣∣
r(f ′(reiθ)− h′(reiθ))

f(reiθ)− h(reiθ)

∣∣∣∣ dθ ≤ K1e
4λ+1T (r, f − h)m log

(
2πe

m

)
,

where Fr is any interval of length m. Let H ′ be that subset of H on which (4.1)
holds; then H ′ has upper logarithmic density at least 1

2
.

Choose m = C1ρ
ν/4K1 = 2πρν/C2 < π. Then

(4.3) K1e
4λ+1m log

(
2πe

m

)
=

φ(ρν)

4
=

δ

4
.

Lemma 8. There exist c > 0 and, for each r ∈ H, a subset Σr of S(0, r) of
angular measure at least m on which

(4.4) log |f(z)− h(z)| < −cT (r, f − h)

and

(4.5) zf ′(z) = zh′(z) + o(1) as r →∞ in H.
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Proof. Since δ(0, f − h) ≥ δ we can pick z0 with |z0| = r, for all large r, such
that

log |f(z0)− h(z0)| < −1

2
δT (r, f − h).

Let Ωr be that arc of S(0, r) with midpoint z0 and angular measure 2m. Using (4.2)
and (4.3) we see that for r ∈ H the estimate (4.4) holds on Ωr with c = δ/4. By
considering Fr = Ωr in (4.2) with m replaced by 2m, we see that the subset of Ωr on
which ∣∣∣∣

z(f ′(z)− h′(z))

f(z)− h(z)

∣∣∣∣ ≤ 2K1e
4λ+1T (r, f − h) log(πe/m)

must have measure at least m. Let Σr be this subset. Now (4.5) follows from (4.4)
for z ∈ Σr. ¤

It follows from Lemma 8 and (4.1) that, for z ∈ Σr,

(4.6) f(z) →∞ and
zf ′(z)

f(z)
=

zh′(z)

h(z)
(1 + o(1)) + o(1), as r →∞ in H ′.

The hypothesis of Lemma 2 is now satisfied by f and z ∈ Σr for all sufficiently large
r ∈ H ′. Therefore Lemma 2, (4.1), (4.4) and (4.6) now yield

(4.7)
ρ(h)1−νT (r, h)

2
≤ log |f(z) + o(1)| ≤ 2C

∣∣∣∣
zh′(z)

h(z)

∣∣∣∣
for z ∈ Σr as r →∞ in H ′.

By Lemma 6(ii) there exist large r ∈ H ′ satisfying (2.1). Since Σr has angular
measure at least m, upon integrating (4.7) and comparing with (2.1) we see that we
must have ρ(h)ν > m/4CK0 = ρν .

5. Proof of Theorem 3

Most of the proof of Theorem 3 will be contained in the next three lemmas.

Lemma 9. Suppose that for j = 1, . . . , N the functions ψj(r) are positive and
non-decreasing on [e,∞), continuous from the right and such that ψj(r) = O(log r)P

as r → ∞ for some P . Let α > 1 and δ > 0. Then there exist a constant B and a
set E of lower logarithmic density at most δ such that, for r /∈ E,

ψj(r
α) ≤ Bψj(r)

for each j = 1, . . . , N .

Proof. Define φj(s) = ψj(e
s) = O(sP ) for s ≥ 1. Then Lemma 3 applies to φj

(we may assume that ψj is unbounded) to give φj(αs) < Bφj(s) for s outside an
exceptional set Gj. The constant B is chosen so large that logdens Gj ≤ δ/N , so
that the lower logarithmic density of G =

⋃
Gj does not exceed δ. Taking E = {r ≥

e : log r ∈ G} and r = es /∈ E, we now have that, for each j,

ψj(r
α) = φj(αs) < Bφj(s) = Bψj(r).

Suppose now that logdens E > l > δ. Let χE be the characteristic function of E.
Then

L(r) =

∫ r

e

χE(t)
dt

t
> l log r − c
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for some constant c and all r ≥ e, and we calculate
∫

[1,s]∩G

dτ

τ
=

∫ r

e

dL(t)

log t
=

L(r)

log r
+

∫ r

e

L(t)

t(log t)2
dt > l log s + l − c,

so that logdens G ≥ l > δ, in contradiction to our choice of B. ¤
We apply the previous lemma to obtain the following new pointwise estimate for

the logarithmic derivative of a slowly growing meromorphic function.

Lemma 10. Let h be meromorphic such that T (r, h) = O(log r)P for some P
and let 0 < δ ≤ 1. Then

M

(
r,

zh′

h

)
= o(T (r, h))

for r outside a set of lower logarithmic density δ.

We remark that by applying, for example, [11, Lemma 6] we can in fact take
δ = 0 in the above statement.

Proof of Lemma 10. We may assume that h is transcendental. Define n(r) =
n(r, h) + n(r, 1/h). Then

(5.1) n(r) ≤ 2T (r2, h)

log r
+ o(1) = O(log r)P−1.

Using (5.1) and applying Lemma 9 to n(r) and T (r, h) with α = 2 in the notation
there, we obtain a set E of lower logarithmic density at most δ/2 such that

(5.2) n(r2) = O

(
T (r, h)

log r

)
for r /∈ E.

Since h has zero order, we see from the Weierstrass product representation [6] that

(5.3)
∣∣∣∣
h′(z)

h(z)

∣∣∣∣ ≤
∑ 1

|r − |ak|| ,

where r = |z| and the ak are the zeroes and poles of h repeated according to multi-
plicity. Suppose that r ∈ [2n−1, 2n) and let s = 2n and

µ(r, t) = #{|ak| < s(log s)P : |r − |ak|| < t}.

Cartan’s Lemma [8, p. 367, (6.5.17)] gives, with hn = δs/96,

µ(r, t)

t
<

96n(s(log s)P )

eδs

for 0 < t < ∞ and r ∈ [2n−1, 2n) \ Fn, where the exceptional set Fn has measure at
most δs/8. Since µ is integer-valued we have

µ(r, t) = 0 for t ≤ t0 =
eδs

96n(s(log s)P )
.
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Therefore, for r ∈ [2n−1, 2n) \ Fn,
∑

|ak|≤r(log r)P

|r − |ak||−1 ≤
∫ s(log s)P

t0

dµ(r, t)

t

≤ 96n(s(log s)P )

eδs

(
1 +

∫ s(log s)P

t0

dt

t

)

≤ 96n(r2)

eδr

(
1 + log

96n(r2)(log 2r)P

eδ

)
(5.4)

since s(log s)P ≤ r2 for r sufficiently large. Hence if 2m−1 < R < 2m then (5.4) holds
for r ∈ [1, R] outside a set of measure δ(1

4
+ 1

2
+ . . . + 2m−3) < 1

2
δR. Therefore (5.4)

holds for all r outside a set F of upper linear density δ/2. Using (5.1) and (5.2) this
gives

(5.5)
∑

|ak|≤r(log r)P

|r − |ak||−1 = O

(
T (r, h) log log r

r log r

)
= o

(
T (r, h)

r

)

for r /∈ E ∪ F , and furthermore logdens(E ∪ F ) ≤ δ.
We now consider those ak for which |ak| > r(log r)P . For such ak we have

|r − |ak|| > |ak|/2 for r large enough. Using this,

(5.6)
∑

|ak|>r(log r)P

|r − |ak||−1 ≤
∫ ∞

r(log r)P

2

t
dn(t) ≤ C

∫ ∞

r(log r)P

(log t)P−1

t2
dt

for some constant C by (5.1). We observe that

Iq =

∫ ∞

R

(log t)q

t2
dt = O

(
(log R)q

R

)
, for q ∈ R,

as for q ≤ 0 this is trivial, and since Iq = qIq−1 + (log R)q/R the above holds for all
q by induction. Using this and (5.6) now gives that

(5.7)
∑

|ak|>r(log r)P

|r − |ak||−1 = O

(
(log(r(log r)P ))P−1

r(log r)P

)
= o

(
1

r

)
.

The result now follows from (5.3), (5.5) and (5.7). ¤
The proof of the next lemma is due to James Langley.

Lemma 11. Let G be a transcendental meromorphic function and suppose that
0 is a deficient value of G. Then for all r outside a set of finite logarithmic measure
there exists some z with |z| = r such that |G(z)| = o(1) and |zG′(z)| = o(1) as
r →∞.

Proof. Write T (r) = T (r,G) and let p(s) = T (es)
1
2 . Applying Borel’s Lemma [6,

Lemma 2.4] to p(s) and taking r = es and R = r exp(T (r)−
1
2 ) gives

(5.8) T (R) < 4T (r)

for r outside a set of finite logarithmic measure. Let

Hr =

{
t ∈ [0, 2π] : log |G(reit)| < −1

2
δ(0, G)T (r)

}
.
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Then

(5.9)
1

2π

∫

Hr

log+ 1

|G(reit)| dt ≥ 1

2
δ(0, G)T (r)(1− o(1)).

Let m(r) be the measure of Hr. Lemma III of [2] gives that

(5.10)
1

2π

∫

Hr

log+ 1

|G(reit)| dt ≤ 11R

R− r
m(r)

(
1 + log+ 1

m(r)

)
T (R, 1/G).

Observing that R/(R−r) = T (r)
1
2 (1+o(1)), and using (5.8) and (5.9), the inequality

(5.10) becomes, for small m(r),

δ(0, G)(1− o(1)) ≤ 88m(r)
3
4 T (r)

1
2 (1 + o(1)),

and it follows that m(r) > T (r)−
3
4 for all r outside a set of finite logarithmic measure.

Now consider

H ′
r =

{
t ∈ Hr : log

∣∣∣∣
G′(reit)

G(reit)

∣∣∣∣ > T (r)
7
8

}
.

If H ′
r = Hr then

m(r,G′/G) ≥ m(r)

2π
T (r)

7
8 >

T (r)
1
8

2π
,

but this contradicts the standard estimate that m(r,G′/G) = O(log T (r) + log r)
outside a set of finite logarithmic measure. Therefore we can pick z = reit with
t ∈ Hr \H ′

r and this z satisfies the statement of the lemma. ¤
We now proceed to prove Theorem 3. Let f and h be as in the hypothesis, but

assume that δ(0, f−h) > 0. By the remark following Lemma 4 there exists a positive
constant d such that

log L(r, h) > dT (r, h)

on a set of logarithmic density 1. Using this, and applying Lemma 11 to f −h gives,
for each r in a set of logarithmic density 1, a point z = zr with |z| = r such that

f(z) = h(z) + o(1) and
zf ′(z)

f(z)
=

zh′(z)

h(z)
(1 + o(1)) + o(1)

as r →∞. Lemmas 2 and 10 combined with the above now give, for z = zr,

dT (r, h) < log |f(z) + o(1)| = O

(∣∣∣∣
zf ′(z)

f(z)

∣∣∣∣
)

= O

(∣∣∣∣
zh′(z)

h(z)

∣∣∣∣
)

= o(T (r, h))

as r → ∞ outside a set of small lower logarithmic density. This contradiction com-
pletes the proof of the theorem.

6. Proof of Theorem 4

We begin with the following elementary lemma.

Lemma 12. For r > 0 and small positive m, let L(φ) be the length of the
interval {

Re
(
reiθ

)
: θ ∈ [φ, φ + m]

}
.

Then L(φ) ≥ r
(
1− cos m

2

)
.
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Proof.

L(φ) =

{
r(1− cos(φ + m)), φ ∈ [−m

2
, 0

]
,

r(cos φ− cos(φ + m)), φ ∈ [
0, π

2
− m

2

]
.

L is clearly increasing over
[−m

2
, 0

]
. For φ ∈ (

0, π
2
− m

2

)
, we find that L′(φ) ≥ 0 and

so L is in fact increasing on
[−m

2
, π

2
− m

2

]
. By symmetry considerations we see that

this implies that L(φ) ≥ L
(−m

2

)
= r

(
1− cos m

2

)
for all φ. ¤

Now let f be a periodic meromorphic function of finite lower order and suppose
that f ′ has a non-zero finite deficient value. Without loss of generality we may take
both the period and the deficient value to be 1. Let δ be such that δ(1, f ′) > 3δ > 0.

Using Lemma 5 we find a small positive m and a set J ⊆ [0,∞) of upper loga-
rithmic density at least 1

2
such that, if r ∈ J is large and Fr is a subinterval of [0, 2π]

of length m, then

(6.1)
∫

Fr

∣∣∣∣
rf ′′(reiθ)

f ′(reiθ)− 1

∣∣∣∣ dθ < δT (r, f ′).

For large r ∈ J there exists z0 with |z0| = r and log |f ′(z0)− 1| ≤ −3δT (r, f ′). Let Ω
be an arc of S(0, r) with endpoint z0 and angular measure m. Then using (6.1) we
see that

(6.2) log |f ′(z)− 1| ≤ −2δT (r, f ′), z ∈ Ω.

For n ∈ A = Z ∩ [−2r, 2r] \ {0} the circle S(0, r) intersects S(n, r) at one
or two points with real part n

2
. For large r, Lemma 12 shows that the interval

{Re(z) : z ∈ Ω} has length greater than 2, and so it must contain N−1
2

, N
2
for some

N − 1, N ∈ A. Hence Ω meets both S(N − 1, r) and S(N, r), and we pick points of
intersection α and β respectively. Note that α + 1 ∈ S(N, r) and that reflection of
Ω in the line Re(z) = N

2
gives an arc Ω′ of S(N, r) that contains α + 1 and β. Using

(6.1) and the periodicity of f ′ and f ′′ we have,
∫

Ω′

∣∣∣∣
f ′′(z)

f ′(z)− 1

∣∣∣∣ |dz| < δT (r, f ′).

Since β ∈ Ω ∩ Ω′, the above and (6.2) yield

log |f ′(z)− 1| < −δT (r, f ′), z ∈ Ω ∩ Ω′.

Let γ be the path joining α to β along Ω followed by the path from β to α + 1 along
Ω′. Then the length of γ is at most 2mr and so

1 =

∣∣∣∣
∫

γ

(f ′(z)− 1)dz

∣∣∣∣ < 2mr exp(−δT (r, f ′)),

a contradiction for r sufficiently large.

7. Infinite order counterexamples

The entire periodic function
∫ ez

0

1− et

t
dt
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has derivative 1−eez which omits the value 1. In fact, there exist derivatives of entire
periodic functions having arbitrarily many deficient values. The rest of this section
is devoted to constructing such an example.

For an integer q ≥ 2 let

(7.1) F (z) =

∫ ez

0

1

w

(∫ w

0

e−tqdt

)
dw, F ′(z) =

∫ ez

0

e−tqdt,

then F is entire and periodic. It shall be useful to define the function G(z) = e−eqz

and the set S as the union of the sectors

Sk =

{
z :

∣∣∣∣arg z − 2πk

q

∣∣∣∣ ≤
π

2q

}
.

Lemma 13. Taking G(z) and Sk as above, the contribution to m(r, 1/G) of the
set where ez ∈ Sk is

Jk =
T (r,G)

q
(1 + o(1)), as r →∞.

To exhibit the deficiencies of F ′ let ω = e2πi/q, and for integer k let

Ik =

∫ ωk∞

0

e−tqdt = ωkI0

where the path of integration is given by t = ωks for s ∈ [0,∞). Note that Ik 6= 0,∞
and Ij 6= Ik for 0 ≤ j < k < q. By Cauchy’s Theorem

F ′(z) = Ik −
∫

γk

e−tqdt

where γk follows the circular arc from ez to ωk|ez| and then the ray ωks for s ∈
[|ez|,∞). If ez ∈ Sk, then for t lying on γk we have that

∣∣e−tq
∣∣ ≤ |G(z)|, so that

writing e−tq = qtq−1e−tq/qtq−1 and integrating by parts yields

|F ′(z)− Ik| ≤ |G(z)|
(

e|(q−1)z|

q
+

q − 1

q

∫

γk

|dt|
|t|q

)
= O(eqr|G(z)|)

as |z| = r →∞. Using this together with Lemma 13 now leads to

(7.2)
T (r,G)

q
(1 + o(1)) ≤ m

(
r,

1

F ′ − Ik

)
+ O(r), as r →∞.

If ez ∈ S and t lies on the straight line joining the origin to ez then |e−tq | ≤ 1 so
that |F ′(z)| ≤ |ez| by (7.1). If instead ez /∈ S and t lies on the straight line joining the
origin to ez we see that |e−tq | ≤ |G(z)| so that by (7.1) we have |F ′(z)| ≤ |ezG(z)|.
Therefore

T (r,G) ≥ T (r, F ′)− r.

Comparison with (7.2) now reveals that δ(Ik, F
′) ≥ 1/q for k = 0, . . . , q−1. Since F ′

is entire, the sum of the deficiencies cannot exceed 1 and so we must have equality
here.

Proof of Lemma 13. We first observe that if ez /∈ S then |G(z)| ≥ 1. Hence
these points contribute nothing to m(r, 1/G) and so T (r,G) = J0 + . . .+Jq−1 +O(1).
Thus it will suffice to prove that Jk = Jl + o(T (r,G)).
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We remark that

ez ∈ Sk ⇔
∣∣∣∣Im(z)− 2π

(
n +

k

q

)∣∣∣∣ ≤
π

2q
for some integer n.

From [6, p. 7] we have that

(7.3) T (r,G) ∼ eqr

√
2π3qr

.

Calculate, for z = reiθ ∈ Sk,

(7.4) log+ 1

|G(reiθ)| = eqr cos θ cos(qr sin θ)

and fix a small angle α > 0. Then for θ ∈ [α, 2π − α], we have log+ |G(reiθ)|−1 =
o(T (r,G)) by (7.3). Note also that the angular measure of {z : |Im z| ≤ 4π}
with respect to S(0, r) is O(1/r), so that the contribution to Jk from this region
is O(eqr/r) = o(T (r,G)).

Let J+
k and J−k denote the contributions to Jk from the upper and lower half

planes respectively. It now follows from the above that, for k = 0, . . . , q,

J+
k =

N∑
n=1

Hk,n + o(T (r,G))

where Hk,n is the contribution to Jk from

Ek,n = S(0, r) ∩
{

z : Re(z) > 0,

∣∣∣∣Im(z)− 2π

(
n +

k

q

)∣∣∣∣ ≤
π

2q

}

and N is the least integer exceeding 1 + (r/2π) sin α. In particular, 2πN ≈ r sin α
and N is independent of k.

Using (7.4) and changing from the angular variable θ to the scaled imaginary
part t = qr sin θ shows that

(7.5) Hk,n =

∫ 2π(nq+k)+π/2

2π(nq+k)−π/2

cos t
e
√

q2r2−t2

√
q2r2 − t2

dt.

For 0 < θ < 2α the variable t is positive but small compared to qr. Using this, and
the fact that the function ex/x is increasing for x > 1, it follows from (7.5) that
Hk+1,n ≤ Hk,n. Therefore J+

k+1 ≤ J+
k +o(T (r,G)) for k = 0, . . . , q. However J+

0 = J+
q

because S0 = Sq, and so we must have that J+
k = J+

l + o(T (r,G)) for all k, l.
This argument can be repeated to show that J−k+1 ≥ J−k + o(T (r,G)) and hence

equality (in this case t is negative so the inequality is reversed). ¤
The author wishes to express his gratitude to James Langley for his help and

guidance throughout this work.
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