Colour/Kinematics Duality and

 the Drinfeld Double of the Lie algebra of DiffeomorphismsBased on 1603.02033 with Chih-Hao Fu

Kirill Krasnov
(Nottingham)

3 Single Cask Whiskies: Morning After

Kirill Krasnov

Take home message

"Why" C/K works at 4 points:

There is a non-trivial Lie-algebraic structure encoded by the YM Feynman rules
C / K at 4 points is just the Jacobi identity

Directly related to the diffeomorphisms!
Certain natural structure built from the algebra of vector fields with its Lie bracket and the metric

Why I got interested in the subject

I am interested in Lagrangian formulations of GR and YM that "simplify things"

Colour-Kinematics, while an on-shell statement, suggests that there is a cubic formulation of YM with some remarkable properties

So this project resulted from the desire to understand colour/kinematics off-shell

Difference with the "normal" viewpoint

Strong on-shell viewpoint in this community: this is what simplifies computations

On-shell kinematic numerators are more or less equivalent to colour-ordered amplitudes: both provide the ($\mathrm{n}-3$)! basis in which all amplitudes can be decomposed

But there exists a hint of off-shell Lie-algebraic structure: the self-dual sector story of Monteiro and O'Connell

What we don't have

Usual Feynman rules do not lead to C / K dual numerators beyond 4 points

The structure that we observe at 4 points suggests that one must modify the Feynman rules

Higher point vertices required, but this time with clear Lie algebraic interpretation

Certain problem at 4 points prevents us from making the next step

Plan

- A Lie-algebraic viewpoint on YM Feynman rules
- Drinfeld Double
- 5 points and modification of Feynman rules
- Prospects and conclusions

Part I:YM Feynman rules

$$
L=\frac{1}{4}\left(F_{\mu \nu}^{a}\right)^{2} \quad \Rightarrow
$$

$$
L^{2}=\frac{1}{2}\left(\partial_{\mu} A_{\nu}^{a}\right)^{2}-\frac{1}{2}\left(\partial^{\mu} A_{\mu}^{a}\right)^{2}
$$

$$
L^{3}=f^{a b c} \partial^{\mu} A^{\nu a} A_{\mu}^{b} A_{\nu}^{c}
$$

$$
L^{4}=\frac{1}{4} f^{a b c} f^{c e f} A^{\mu a} A^{\nu b} A_{\mu}^{e} A_{\nu}^{f}
$$

Gauge-fixing

$$
L_{\text {g.f. }}=\frac{1}{2}\left(\partial^{\mu} A_{\mu}^{a}\right)^{2}
$$

Ghosts not relevant as consider only tree level

Propagator

$$
\left\langle A_{\mu}^{a} A_{\nu}^{b}\right\rangle=\frac{i}{k^{2}} \stackrel{\mu}{\bar{a}}
$$

Cubic vertex factor

$$
\left\langle A_{\mu}^{a}\left(k_{1}\right) A_{\nu}^{b}\left(k_{2}\right) A_{\rho}^{c}\left(k_{3}\right)\right\rangle=f^{a b c} v_{\mu \nu \rho}\left(k_{1}, k_{2}, k_{3}\right)
$$

Convenient to use placeholders - vector fields

$$
\left(\xi_{1} \xi_{2}\right) \equiv \eta_{\mu \nu} \xi_{1}^{\mu} \xi_{2}^{\nu} \quad v_{\mu \nu \rho}\left(k_{1}, k_{2}, k_{3}\right) \xi_{1}^{\mu} \xi_{2}^{\nu} \xi_{3}^{\rho} \equiv v\left(\xi_{1}, \xi_{2}, \xi_{3}\right)
$$

$$
\begin{aligned}
v\left(\xi_{1}, \xi_{2}, \xi_{3}\right) & =\left(\xi_{1} k_{2}\right)\left(\xi_{2} \xi_{3}\right)-\left(\xi_{2} k_{1}\right)\left(\xi_{1} \xi_{3}\right) \\
+\left(\xi_{2} k_{3}\right)\left(\xi_{3} \xi_{1}\right)-\left(\xi_{3} k_{2}\right)\left(\xi_{2} \xi_{1}\right) & +\left(\xi_{3} k_{1}\right)\left(\xi_{1} \xi_{2}\right)-\left(\xi_{1} k_{3}\right)\left(\xi_{3} \xi_{2}\right)
\end{aligned}
$$

Symmetry

Vertex factor completely symmetric

Kinematic factor anti-symmetric

Interpreting kinematic factor as a bracket

Define a bracket on vector fields
$[\cdot, \cdot]_{Y M}: T M \times T M \rightarrow T M$

Does not satisfy Jacobi!

via
$v\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=\left(\left[\xi_{1}, \xi_{2}\right]_{Y M} \xi_{3}\right)$
Explicitly, using momentum conservation $k_{3}=-k_{1}-k_{2}$

$$
\left[\xi_{1}, \xi_{2}\right]=2\left(\xi_{1} k_{2}\right) \xi_{2}-2\left(\xi_{2} k_{1}\right) \xi_{1}+\left(\xi_{1} \xi_{2}\right)\left(k_{1}-k_{2}\right)+\left(\xi_{1} k_{1}\right) \xi_{2}-\left(\xi_{2} k_{2}\right) \xi_{1}
$$

Can introduce such a bracket for any theory where the cubic vertex factor factorises into the product of anti-symmetric structure constant and the kinematic factor - e.g. NLSM

Lie bracket

There exists a different bracket that does satisfy Jacobi

$$
\begin{aligned}
& {[\cdot, \cdot]: T M \times T M \rightarrow T M} \\
& {\left[\xi_{1}, \xi_{2}\right]=\left(\xi_{1} k_{2}\right) \xi_{2}-\left(\xi_{2} k_{1}\right) \xi_{1}}
\end{aligned}
$$

Relation between two brackets

$$
\begin{array}{r}
v\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \equiv\left(\left[\xi_{1}, \xi_{2}\right]_{Y M} \xi_{3}\right)= \\
\left(\left[\xi_{1}, \xi_{2}\right] \xi_{3}\right)+\left(\left[\xi_{2}, \xi_{3}\right] \xi_{1}\right)+\left(\left[\xi_{3}, \xi_{1}\right] \xi_{2}\right)
\end{array}
$$

Some terminology:
Diffeos are seen relevant already in YM :
May be this is why double copy works?

$$
v\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=v\left(\xi_{2}, \xi_{3}, \xi_{1}\right)=-v\left(\xi_{2}, \xi_{1}, \xi_{3}\right)
$$

completely anti-symmetric and thus 3-cochain, i.e. object in $\Lambda^{3} \mathfrak{g}^{*}$

Interpreting the 4-vertex

$$
\begin{aligned}
\left\langle A_{\mu}^{a}\left(k_{1}\right) A_{\nu}^{b}\left(k_{2}\right)\right. & \left.A_{\rho}^{c}\left(k_{3}\right) A_{\sigma}^{d}\left(k_{4}\right)\right\rangle
\end{aligned}=f^{a b e} f^{e c d} v_{\mu \nu \rho \sigma}^{s} .
$$

The 4-cochain

This is formed by multiplying/dividing by the missing propagators

$$
\begin{aligned}
v\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) & :=\left(k_{1}+k_{2}\right)^{2} v^{s}\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \\
+\left(k_{2}+k_{3}\right)^{2} v^{t}\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) & +\left(k_{3}+k_{1}\right)^{2} v^{u}\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)
\end{aligned}
$$

with the obvious notation

$$
v^{s}\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right):=v_{\mu \nu \rho \sigma}^{s} \xi_{1}^{\mu} \xi_{2}^{\nu} \xi_{3}^{\rho} \xi_{4}^{\sigma}
$$

Explicitly

$$
v^{s}\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)=\left(\xi_{1} \xi_{3}\right)\left(\xi_{2} \xi_{4}\right)-\left(\xi_{2} \xi_{3}\right)\left(\xi_{1} \xi_{4}\right)
$$

The resulting $v_{4}\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)$ is 4-cochain, i.e. object in $\Lambda^{4} \mathfrak{g}^{*}$

An identity

$$
\left(k_{1}+k_{2}\right)^{2}-\left(k_{2}+k_{3}\right)^{2}=k_{1}^{2}+2\left(k_{1} k_{2}\right)-k_{3}^{2}-2\left(k_{2} k_{3}\right)
$$

By momentum conservation also equals

$$
\left(k_{3}+k_{4}\right)^{2}-\left(k_{1}+k_{4}\right)^{2}=k_{3}^{2}+2\left(k_{3} k_{4}\right)-k_{1}^{2}-2\left(k_{1} k_{4}\right)
$$

Adding get

$$
\left(k_{1}+k_{2}\right)^{2}-\left(k_{2}+k_{3}\right)^{2}=\left(\left(k_{1}-k_{3}\right)\left(k_{2}-k_{4}\right)\right)
$$

Hence

$$
\begin{aligned}
-v_{4}\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) & =\left(\left(k_{1}-k_{2}\right)\left(k_{3}-k_{4}\right)\right)\left(\xi_{1} \xi_{2}\right)\left(\xi_{3} \xi_{4}\right) \\
+\left(\left(k_{2}-k_{3}\right)\left(k_{1}-k_{4}\right)\right)\left(\xi_{2} \xi_{3}\right)\left(\xi_{1} \xi_{4}\right) & +\left(\left(k_{3}-k_{1}\right)\left(k_{2}-k_{4}\right)\right)\left(\xi_{3} \xi_{1}\right)\left(\xi_{2} \xi_{4}\right)
\end{aligned}
$$

Explanation of the C/K duality in the self-dual sector

Lemma I: On vector fields - polarisations of same helicity, YM bracket coincides with the Lie bracket

Lemma 2: Vector fields - polarisations of same helicity form a sub algebra wrt Lie bracket

These are just the area preserving diffeos of Riccardo and Donal
Since 4-valent vertex is irrelevant in self-dual sector computations (e.g. Berends-Giele current), above lemmas imply C / K duality in the self-dual sector

Consistent with finding diffeos as relevant in YM self-dual sector by Monteiro O'Connell

Jacobi for the YM bracket

Can now compute the Jacobiator of the YM bracket $J: \Lambda^{3} \mathfrak{g} \rightarrow \mathfrak{g}$

$$
\begin{array}{r}
{\left[\xi_{1}, \xi_{2}, \xi_{3}\right]:=\left[\left[\xi_{1}, \xi_{2}\right]_{Y M}, \xi_{3}\right]_{Y M}} \\
\left.+\left[\left[\xi_{2}, \xi_{3}\right]_{Y M}, \xi_{1}\right]_{Y M}+\left[\xi_{3}, \xi_{1}\right]_{Y M}, \xi_{2}\right]_{Y M} \\
J\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right):=\left(\left[\xi_{1}, \xi_{2}, \xi_{3}\right] \xi_{4}\right)
\end{array}
$$

$$
J\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)=
$$

Result

$$
\begin{aligned}
J\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) & =-v_{4}\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \\
+\left(\xi_{1} k_{1}\right) v\left(\xi_{2}, \xi_{3}, \xi_{4}\right) & -\left(\xi_{2} k_{2}\right) v\left(\xi_{1}, \xi_{3}, \xi_{4}\right) \\
+\left(\xi_{3} k_{3}\right) v\left(\xi_{1}, \xi_{2}, \xi_{4}\right) & -\left(\xi_{4} k_{4}\right) v\left(\xi_{1}, \xi_{2}, \xi_{3}\right)
\end{aligned}
$$

Modulo on-shell vanishing terms, the Jacobiator is cancelled by the contribution of the 4 -valent vertex

This is why C/K duality works at 4 points

Is there some algebraic structure that "explains" the above Jacobi-like identity?

Part II: Drinfeld Doubles

Vast subject, can't possibly even begin to review here
This is the classical counterpart of the quantum group
In one of the several possible axiomatic versions, a Lie-algebra structure on some Lie algebra and its dual

$$
D=\mathfrak{g} \oplus \mathfrak{g}^{*} \quad \text { as vector space }
$$

There is a canonical metric on the Drinfeld Double
Let us choose a basis in both spaces $\quad e_{i} \in \mathfrak{g}, \quad e^{i} \in \mathfrak{g}^{*}$
Then the metric is given by

$$
G:=e_{i} \otimes e^{i}+e^{i} \otimes e_{i} \in D^{*} \otimes D^{*}
$$

Bracket on the double

The bracket on D is such that the metric G is invariant

$$
\langle X, Y\rangle:=G(X, Y) \quad\langle[Z, X], Y\rangle+\langle X,[Z, Y]\rangle=0
$$

The bracket on D reduces to the bracket on \mathfrak{g}
The simplest possible double is when $\left[\mathfrak{g}^{*}, \mathfrak{g}^{*}\right]=0$
Then get $\left[\mathfrak{g}, \mathfrak{g}^{*}\right]$ from the requirement that the metric
G is invariant
Explicitly if $\left[e_{i}, e_{j}\right]=C_{i j}^{k} e_{k}$
Then $\left\langle\left[e_{i}, e^{j}\right], e_{k}\right\rangle=-\left\langle e^{j},\left[e_{i}, e_{k}\right]\right\rangle=-\left\langle e^{j}, C_{i k}^{l} e_{l}\right\rangle=-C_{i k}^{j}$
$\Rightarrow \quad\left[e_{i}, e^{j}\right]=-C_{i k}^{j} e^{k}$
Theorem: the bracket so constructed satisfies Jacobi identity

Drinfeld Double of the Lie algebra of vector fields

$$
D=T M \oplus \Lambda^{1} M
$$

$$
\begin{aligned}
& {\left[\xi_{1}, \xi_{2}\right]=\mathcal{L}_{\xi_{1}} \xi_{2}-\mathcal{L}_{\xi_{2}} \xi_{1}} \\
& {[\xi, \eta]=\mathcal{L}_{\xi} \eta+\eta(\partial \xi)} \\
& {\left[\eta_{1}, \eta_{2}\right]=0}
\end{aligned}
$$

This term depends on a volume form on M

Have an invariant metric on D

$$
G(\xi, \eta)=\int_{M} d v\left(i_{\xi} \eta\right)
$$

In momentum space

$$
[\xi, \eta]=\left(\xi\left(k_{1}+k_{2}\right)\right) \eta+(\xi \eta) k_{1}
$$

Interpreting the YM bracket

We have metric $g: T M \rightarrow \Lambda^{1} M \quad \xi^{\mu} \rightarrow \xi_{\mu}^{*}=g_{\mu \nu} \xi^{\nu}$
Consider elements of the form $\quad \xi+\xi^{*} \in D$
The pairing of two such elements with DD metric

$$
\left\langle\xi_{1}+\xi_{1}^{*}, \xi_{2}+\xi_{2}^{*}\right\rangle=2\left(\xi_{1} \xi_{2}\right)
$$

is multiple of their metric pairing
Let us compute their DD bracket

$$
\begin{array}{r}
\left\langle\left[\xi_{1}+\xi_{1}^{*}, \xi_{2}+\xi_{2}^{*}\right], \xi_{3}+\xi_{3}^{*}\right\rangle=\left\langle\left[\xi_{1}, \xi_{2}\right], \xi_{3}^{*}\right\rangle \\
+\left\langle\left[\xi_{1}, \xi_{2}^{*}\right], \xi_{3}\right\rangle+\left\langle\left[\xi_{1}^{*}, \xi_{2}\right], \xi_{3}\right\rangle
\end{array}
$$

using the invariance of the metric
Precisely the YM bracket

$$
=\left\langle\left[\xi_{1}, \xi_{2}\right], \xi_{3}^{*}\right\rangle+\left\langle\left[\xi_{3}, \xi_{1}\right], \xi_{2}^{*}\right\rangle+\left\langle\left[\xi_{2}, \xi_{3}\right], \xi_{1}^{*}\right\rangle
$$

Orthogonal complement

To elements of the form $\xi+\xi^{*} \in D$

$$
\text { are elements of the form } \quad \xi-\xi^{*} \in D
$$

$$
D=\mathfrak{u} \oplus \mathfrak{u}^{\perp} \quad \begin{array}{ll}
\xi+\xi^{*} \in \mathfrak{u} \\
& \xi-\xi^{*} \in \mathfrak{u}^{\perp}
\end{array}
$$

The key point is that \mathfrak{u} is not sub algebra

$$
\begin{aligned}
&\left\langle\left[\xi_{1}+\xi_{1}^{*}, \xi_{2}+\xi_{2}^{*}\right], \xi_{3}-\xi_{3}^{*}\right\rangle=-\left\langle\left[\xi_{1}, \xi_{2}\right], \xi_{3}^{*}\right\rangle \\
&+\left\langle\left[\xi_{3}, \xi_{1}\right], \xi_{2}^{*}\right\rangle+\left\langle\left[\xi_{2}, \xi_{3}\right], \xi_{1}^{*}\right\rangle
\end{aligned}
$$

Explicitly
$\left.\left[\xi_{1}+\xi_{1}^{*}, \xi_{2}+\xi_{2}^{*}\right]\right|_{\mathfrak{u}^{\perp}}=\left(\xi_{1} \xi_{2}\right)\left(k_{1}-k_{2}\right)+\left(\xi_{1} k_{1}\right) \xi_{2}-\left(\xi_{2} k_{2}\right) \xi_{1}$

Jacobi identity

$$
0=J\left(\xi_{1}+\xi_{1}^{*}, \xi_{2}+\xi_{2}^{*}, \xi_{3}+\xi_{3}^{*}, \xi_{4}+\xi_{4}^{*}\right)=
$$

Exactly the Jacobi-like identity seen from YM Feynman rules

Part III: 5 points

The problem

$$
=-\left(\left(k_{1}-k_{2}\right)\left(k_{3}-k_{4}\right)\right)\left(\xi_{1} \xi_{2}\right)\left(\xi_{3} \xi_{4}\right)
$$

+ terms vanishing on-shell

Different!

$\left(k_{1}+k_{2}\right)^{2} v^{s}\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)$

$$
=\left(k_{1}+k_{2}\right)^{2}\left(\left(\xi_{1} \xi_{3}\right)\left(\xi_{2} \xi_{4}\right)-\left(\xi_{1} \xi_{4}\right)\left(\xi_{2} \xi_{3}\right)\right)
$$

Only the sums are the same

C/K at 5 points

C/K duality does not hold for Feynman rule produced numerators
Taking the sum of 3 numerators, some terms coming from 4 -valent vertices can be combined into objects with Lie-algebra interpretation, but some can't

One can only conclude that $n_{12}^{3}+n_{23}^{1}+n_{31}^{2} \sim\left(k_{4}+k_{5}\right)^{2}$
To proceed further I will assume that there exists a Lie-algebraic structure where

$$
\begin{aligned}
& \left(k_{1}+k_{2}\right)^{2} v^{s}\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \\
& \quad+\text { terms vanishing on-shell }
\end{aligned}
$$

See comments
later on how to achieve this

With this assumption all terms receive Lie-algebraic interpretation $n_{12}^{3}+n_{23}^{1}+n_{31}^{2}=$ these terms arise without any assumptions made

What is missing here?
for these terms the assumption was needed

The sum of 3 numerators cannot be zero because the double projection on \mathfrak{u}^{\perp} terms are missing

These terms should be added as the new 5 -valent vertex changing the Feynman rules but not changing the amplitudes
as in Bern et al 'l0
Thus confirms that need to change Feynman rules for the C / K to work

If this idea can be made to work, the numerators would be given by successive commutators

One way to achieve the presentation desired

$$
\left[\xi_{1}, \xi_{2}\right]_{\mu}^{*}:=\left(\eta_{\mu \rho} \eta_{\nu \sigma}-\eta_{\mu \sigma} \eta_{\nu \rho}+\epsilon_{\mu \nu \rho \sigma}\right)\left(k_{1}+k_{2}\right)^{\nu} \xi_{1}^{\rho} \xi_{2}^{\sigma}
$$

Then

$$
\left.\left.-\left(\left[\xi_{1}, \xi_{2}\right]^{*} \xi_{3}, \xi_{3}\right]^{*}\right)=\frac{\left(k_{1}+k_{2}\right)^{2}\left(\left(\xi_{1} \xi_{3}\right)\left(\xi_{2} \xi_{4}\right)-\left(\xi_{1} \xi_{4}\right)\left(\xi_{2} \xi_{3}\right)\right.}{\text { this is just } v^{s}\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)}+\left(\epsilon \xi_{1} \xi_{2} \xi_{3} \xi_{4}\right)\right)
$$

Summary

- Non-trivial Lie-algebraic structure behind the YM Feynman rules:

YM cubic vertex is just the Drinfeld double bracket on

$$
\xi+\xi^{*} \in D
$$

- C/K works at 4 points because of the Drinfeld double Jacobi
- May be can represent the individual parts of the 4 -valent vertex in Lie-algebraic terms
- If this is possible, then numerators would be given by successive commutators (and correspond to Feynman rules modified by new vertices)

