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Main theme:

Relationship between representation theory 
of classical groups and geometry

Old subject: e.g. Gelfand et al 50’s-60’s

decomposition of the 
regular representation 

into irreducibles
⇔

integral transforms 
associated with 
homogeneous 
group spaces



Our setup as a toy model for the problem of quantization of 
the moduli space of flat connections on Riemann surfaces

A complete description is possible by elementary 
methods (no quantum groups arise)



Our main object of interest:

H!j :=
(
V j1 ⊗ . . .⊗ V jn

)SU(2)

the space of SU(2) invariant tensors - intertwiners

here      is the irreducible 
representation of dimension

V j
dim(V j) = 2j + 1

Finite-dimensional vector space

dim(H!j) =
2
π

∫ π

0
dθ sin2(θ/2)χj1(θ) . . . χjn(θ)

χj(θ) =
sin(j + 1/2)θ

sin θ/2where

multiplicity of the 
trivial representation 
in the tensor product



A convenient basis:

use uniqueness (up to normalization) 
of the 3-valent intertwiner

Example: n=4
j1 j2

j3j4

l|j1 − j2| ≤ l ≤ j1 + j2



is closely related to other important spaces:

        limit of the space of SU(2) WZW conformal blocks 
(states of SU(2) CS theory) on an n-punctured sphere

k →∞

Dimension is the               limit of the Verlinde formula k →∞

also arises as the quantization of a certain moduli spaceH!j

H!j



V j S2can be obtained as the quantization of      of radius j

canonical example of geometric quantization
or Kirillov’s orbit method

S2 is a symplectic manifold

ωj = j sin(θ)dθ ∧ dφ

∫

S2
ωj = 4π j =⇒ expect a finite-

dimensional Hilbert space

Action of SU(2) on      is Hamiltonian S2

moment map µ(θ,φ) = j #n(θ,φ) ∈ R3



(
V j1 ⊗ . . .⊗ V jn

)SU(2)
can be obtained as the quantization of

µ−1(0)/SU(2)i.e. symplectic reduction

where µ =
n∑

i=1

ji!ni

S!j := S2 ⊗ . . .⊗ S2//SU(2)

Note dim(S!j) = 2n− 6
similar to, but much simpler than the 
moduli spaces of flat connections on 

an n-punctured sphere



Moduli space of flat SU(2) connections on S2

g1

g2 gn

Tr(gi) = λi

M = {gi :
n∏

i=1

gi = 1}/ SU(2)

fixed conjugacy classes 
around punctures

gdifferent    ‘s do not  commute          quantum group=⇒

The difference between      and      is that 
between the Lie algebra and the group

MS!j

different    ‘s commute!!n



Geometric interpretation of the moduli space S!j

particularly relevant for n=4

!n1

!n2

!n3

!n4

if identify Ai = ji

then
4∑

i=1

ji!ni = 0

modulo rotations and translations, a tetrahedron 
with fixed face areas can be described by

{!n1,!n2,!n3,!n4 :
∑

i

ji!ni = 0}/ SU(2)

explicit description is 
possible for all areas equal



How to quantize     ?S!j

Apart from simple cases, no explicit description 
of the moduli space is available

Strategy: first quantize then reduce
=⇒ invariant tensors

Would like a more explicit description 
of the arising Hilbert space

Same as if first reduce and 
then quantize?



S2 is a Kaehler manifold

z = tan(θ/2)e−iφ holomorphic coordinate 
(stereographic projection)

symplectic form

where

holomorphic quantization is possible

Φ(z, z̄) = 2j log(1 + |z|2)

ωj = (2j/i)
dz ∧ dz̄

(1 + |z|2)2 = (1/i)∂∂̄Φ dz ∧ dz̄



V j space of sections of a Hermitian line bundle over S2

of curvature iωj

〈Ψ1,Ψ2〉 =
dj

2π

∫
d2z

(1 + |z|2)2(j+1)
Ψ1(z)Ψ2(z)

d2z := |dz ∧ dz̄|here

the group action

zk =
αz + β

−β̄z + ᾱ

where

(
T (kt)Ψ

)
(z) = (−β̄z + ᾱ)2jΨ(zk)

k =
(

α β
−β̄ ᾱ

)

leaves the inner product invariant



The holomorphic description of      is very 
useful because related to coherent states 

V j

Ψ(z) = 〈Ψ|j, z〉

where
|j, z〉 = |z〉⊗2j |z〉 = ezJ+ |1/2,−1/2〉

|j, z〉 =
j∑

m=−j

√
(2j)!

(j −m)!(j + m)!
zj−m|j,m〉

|j,m〉and           is the usual basis in V j



|j, z〉 are coherent states

〈j, z| !J |j, z〉
〈j, z|j, z〉 = j !n(z, z̄)

!n(z, z̄) -the corresponding point on S2

Decomposition of identity formula

1!j =
dj

2π

∫
d2z

(1 + |z|2)2(j+1)
|j, z〉〈j, z|

|j, z〉 an overcomplete basis of states in V j

〈j, z|j, z〉 = (1 + |z|2)2j



A similar (explicit) holomorphic 
quantization is possible for S!j

States - holomorphic functions Ψ(Z4, . . . , Zn)

Inner product
Zi cross-ratios

〈Ψ1|Ψ2〉 = 8π2
n∏

i=1

dji

2π

∫
d2Z K̂!j(Z, Z̄)Ψ1(Z)Ψ2(Z)

where

K̂!j(Z, Z̄) = lim
X→∞

|X|2∆3K!j(0, 1, X, Z4, . . . , Zn)

AdS/CFT n-point function

with appropriate behavior under permutations



K!j(z1, . . . , zn) =
∫

H3
dξ

n∏

i=1

K∆i(ξ, zi)

z1

z2

zn

ξ

K∆(ξ, z) =
ρ∆

(ρ2 + |z − y|2)∆

ξ = (ρ, y) H3upper half-space model coordinates of a point in 

∆i = 2(ji + 1)where



A coherent state interpretation of the inner product formula

can introduce coherent intertwiners |!j, Z〉 ∈ H!j

1H!j
= 8π2

n∏

i=1

dji

2π

∫
d2Z K̂!j(Z, Z̄)|"j, Z〉〈"j, Z|



Thus, the inner product formula implies

K̂!j(Z, Z̄) ∼ e−Φ!j(Z,Z̄)

Φ!j(Z, Z̄)where is the Kaehler potential on the moduli space S!j

(in the limit of large spins)

Can be checked explicitly, or can appeal to “quantization 
commutes with reduction” of Guillemin and Sternberg

As far as we know this interpretation of the 
boundary n-point functions is new

〈Ψ1|Ψ2〉 =
∫

ωke−Φ(Z,Z̄)Ψ1(Z)Ψ2(Z)

In general in holomorphic quantization



A sketch of the proof:

Consider SU(2) invariant states

Ψ(z1, . . . , zn) ∈
(
V j1 ⊗ . . .⊗ V jn

)SU(2)

being holomorphic such states are automatically SL(2,C) invariant

(T (gt)Ψ)(z1, . . . , zn) =
n∏

i=1

(cz + d)2jiΨ(zg
1 , . . . , zg

n)

the action of SU(2) can be continued to that of SL(2,C)

(T (gt)Ψ)(z1, . . . , zn) = Ψ(z1, . . . , zn)

g =
(

a b
c d

)
zg =

az + b

cz + d

where



Immediately get transformation properties

Ψ(zg
1 , . . . , zg

n) =
n∏

i=1

(cz + d)−2jiΨ(z1, . . . , zn)

In the inner product formula in V j1 ⊗ . . .⊗ V jn

restricted to invariant states can change coordinates

(z1, . . . , zn)→ (g, Z4, . . . , Zn)

where

g : (0g, 1g,∞g) = (z1, z2, z3) Zi =
(zi − z1)(z2 − z3)
(zi − z3)(z2 − z1)

〈ψ1|ψ2〉 =
n∏

i=1

di

2π

∫
d2zi

(1 + |zi|2)2(ji+1)
ψ1(z1, . . . , zn)ψ2(z1, . . . , zn)



Can now introduce new states

ψ(z1, . . . , zn) = ψ(0g, 1g,∞g, Zg
4 , . . . , Zg

n)

where

= d−2j1(c + d)−2j2c−2j3

n∏

i=4

(cZi + d)−2jiΨ(Z4, . . . , Zn)

Ψ(Z4, . . . , Zn) := lim
X→∞

X−2j1ψ(0, 1, X, Z4, . . . , Zn)

7

D. Moduli Space and Cross-Ratios

The integral in (14) is that over n copies of the complex plane. However, as we have seen
above, on physical states the integrand has very simple transformation properties under SL(2,C).
This suggests that the integral can be computed by a change of variables where one parametrizes
z1, . . . , zn by an element of PSL(2,C) together with certain cross-ratios Zi, i = 4, . . . , n.

Indeed, given the first three complex coordinates z1, z2, z3, there exists a unique PSL(2,C)
transformation that maps these points to 0, 1,∞ (and maps the points zi, i > 3 to Zi). Let us use
the inverse of this transformation to parametrize the unconstrained phase space by an element of
SL(2,C) together with Zi. Explicitly, given an SL(2,C) element g and n− 3 cross-ratios Zi we can
construct the n points {0, 1,∞, Zi}g on the complex plane. Explicitly:

z1 =
b

d
, z2 =

a+ b

c+ d
, z3 =

a

c
, zi =

aZi + b

cZi + d
i ≥ 4. (19)

This gives us a map

SL(2,C) × {Z4, . . . , Zn} → {z1, . . . , zn}, g × Zj → zi(g, Zj). (20)

which is such that (z1(g, Zj), · · · zn(g, Zj)) = (0g, 1g,∞g, Zg
i ). This map is 2 : 1 since −g and g give

the same image. The cross-ratios Zi, together with g (or a, b, c, d satisfying the relation ad−bc = 1)
can be used as (holomorphic) coordinates on our space {z1, . . . , zn}. This change of variables is
performed in details in appendix B where we find the following relation between the integration
measures

∫

Cn

n
∏

i=1

d2zi F (zi, zi) = 8π2
∫

Cn−3

n
∏

i=4

d2Zi

∫

SL(2,C)
dnormg

F (zi(g, Zj), zi(g, Zj))

|d|4|c+ d|4|c|4
∏n

i=4 |cZi + d|4 . (21)

Here dnormg is the Haar measure on SL(2,C), normalized so that its compact SU(2) part measure is
just the normalized measure on the unit three-sphere (see appendix B). As before, the convention
is that d2z = |dz ∧ dz̄|.

E. The physical inner product

Given the transformation property (18) we can describe the functions ψ(zi) by their values on
the moduli space parametrized by Zi. Explicitly:

ψ(zi) = ψ (0g, 1g,∞g, Zg
i ) = d−2j1(c+ d)−2j2c−2j3

n
∏

i=4

(cZi + d)−2ji Ψ(Zi), (22)

where we have defined a wave functional depending only on the cross ratios as given by the limit

Ψ(Zi) ≡ lim
X→∞

X−2j3ψ(0, 1,X,Zi). (23)

Now, starting from the expression (14) for the kinematical inner product, performing the change
of variables from z1, . . . , zn to SL(2,C)×{Z4, . . . , Zn}, and substituting the expression (22) for the
wave functional we can reduce the inner product of two physical states to a simple integral over
the cross-ratios only. We get

〈Ψ1,Ψ2〉 = 8π2
n
∏

i=1

dj
2π

∫ n
∏

i=4

d2Zi K̂! (Zi, Z̄i)Ψ1(Zi)Ψ2(Zi), (24)

Remains only to integrate over g

An analogous argument gives inner product of CS states 
as an integral over GC/G



For n=4 understand coherent intertwiners very explicitly

20

However, since the operator∆(a,b;c) is second-order, there are two linearly-independent solutions.
The question is then which linear combinations of them corresponds to the eigenvectors of∆12 that
we are after. The answer to this is as follows. When k respects the bounds max(|j12|, |j34|) ≤ k ≤
min(j1 + j2, j3 + j4) one of the solution of the arising hypergeometric equation is polynomial. This
is the eigenfunction we are looking for, and it is given by

P̂ (j34−j12, j34+j12)
k−j34

(Z) =
(k − j12)!

(k − j34)!(j34 − j12)!
F (−k + j34, k + j34 + 1; j34 − j12 + 1;Z). (89)

Here P (a,b)
n denotes the Jacobi polynomial and P̂ (a,b)

n (Z) ≡ P (a,b)
n (1 − 2Z) is the shifted Jacobi

polynomial (see appendix E for some useful facts about the shifted polynomials). This expression is
valid if j34 ≥ |j12|, and we can assume that this inequality is satisfied without any loss of generality.
Indeed, we can always assume that j12 ≥ 0 since otherwise we can exchange the role of 1 and 2 as
is implied by the equality

P̂ (j34−j12, j34+j12)
k−j34

(Z) = (−1)k−j34P̂ (j34+j12, j34−j12)
k−j34

(1− Z). (90)

We can also assume that j34 ≥ j12 since otherwise we can exchange (12) with (34) using to the
exchange identity

P̂ (j34−j12, j34+j12)
k−j34

(Z) =
(k − j12)!(k + j12)!

(k − j34)!(k + j34)!
(−Z)j12−j34P̂ (j12−j34, j12+j34)

k−j12
(Z), (91)

which is valid if j12 ≥ j34.
A special case where all formulae simplify considerably is when all representations are equal,

j1 = j2 = j3 = j4 = j, which correspond to a tetrahedron with all faces having the same area.
Then our eigenfunctions reduce to the shifted Legendre polynomial:

P̂ (0,0)
i (Z) = Pi(1− 2Z) =

i
∑

l=0

(

i
l

)2

(−Z)i−l(1− Z)l. (92)

Note that in this case the eigenvectors actually do not depend on the spin j. The dependence on
j will nevertheless reappear in the normalization of these states.

By construction the polynomials P̂ (j34−j12, j34+j12)
k−j34

are eigenstates of the operator ∆12. These
eigenvectors give, up to normalization, matrix elements of the change of basis between the holo-
morphic intertwiner |! , Z〉 and the usual orthonormal intertwiners |! , k〉12 that diagonalize ∆12.
More precisely, if we define the overlap4

Ck
! (Z) ≡ 〈! , k|! , Z〉 , (93)

the above discussion shows that it is proportional to the Jacobi polynomial:

Ck
! (Z) = Nk

! P̂ (j34−j12, j34+j12)
k−j34

(Z), (94)

where the non-trivial normalization coefficient is given by the integral

(

Nk
!

)−2
=

1

2π2

4
∏

i=1

dji

∫

d2Z K̂! (Z,Z)
∣

∣

∣
P̂ (j34−j12, j34+j12)
k−j34

(Z)
∣

∣

∣

2
. (95)

Our task is now to determine these normalization coefficients.

4 From now on when we work in the channel 12 drop the superscript 12 to avoid notation cluttering.

Define overlaps between coherent and usual intertwiners

Can show that
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is the shifted Jacobi polynomial

and

22

Now making use of the standard formula

∫ 1

0
un(1− u)m =

n!m!

(n+m+ 1)!
(103)

we recognized that the integral in question is proportional to the hypergeometric function

Ik! (Z) =
(k − j12)!(k + j34)!

(2k + 1)!(j34 − j12)!
F (−k + j34, k + j34 + 1; j34 − j12 + 1;Z). (104)

Thus we get the final expression in terms of the Jacobi polynomial (94) with the normalization
coefficient given by

Nk
! = (−1)s−2k

√

(2j1)!(2j2)!(2j3)!(2j4)!(k + j34)!(k − j34)!

(j1 + j2 + k + 1)!(j3 + j4 + k + 1)!(j1 + j2 − k)!(j3 + j4 − k)!(k + j12)!(k − j12)!
.

By writing the factorials in this formula as Γ-functions we can extend the definition of the normal-
ization coefficient Nk

! beyond its initial domain of validity j34 ≤ k ≤ min(j1 + j2, j3 + j4) (recall

that we are under the assumption j34 ≥ |j12|). Since 1/Γ(0) = 0 one sees however that Nk
! = 0

if k = j1 + j2 + 1 or k = j3 + j4 + 1. This implies that the Jacobi polynomial corresponding to
this value is not normalisable with respect to our norm

∫

d2ZK! , and so this particular Jacobi
polynomial is not part of the Hilbert space. To explore the other boundary k = j34 − 1 one first
needs to rewrite the overlap in terms of the hypergeometric function Ck

! = Ñk
! F and notice again

that the normalization coefficient Ñk
! vanishes at the boundary k = j34 − 1, as long as j34 > j12.

In the case all ji’s are equal to a given spin j, the expression (94) simplifies to

Ck
! (Z) =

(−1)2k

2j + k + 1

(2j)!(2j)!

(2j + k)!(2j − k)!
P̂k(Z). (105)

We will need this expression in section VII.

C. Other Channels

In the previous two subsections we have studied the channel 12 and the associated operator
J12 whose eigenstates |! , k〉12 provided a real basis in the 4-valent intertwiners Hilbert space. This
choice of the channel is somewhat distinguished by the fact that, with our choice (49) for the
cross-ratio coordinate Z, the second-order holomorphic operator ∆12 turned out to be precisely of
the hypergeometric type (87) so that the eigenstates – the real intertwiners – are just the Jacobi
polynomials (89).

It is also interesting and important to compute the other channel operators and their eigenstates.
Indeed, consider for example the channel 23. There is similarly an operator J23 and the basis in
Hj1,j2,j3,j4 given by its eigenstates |! , k〉23. The overlap 23〈! , k|! , l〉12 is the 6j-symbol, and this
is why the other basis in the Hilbert space is of interest. We can similarly find the holomorphic
representation of J23 by commuting it with the prefactor (83). With our choice (49) of the cross-
ratio, however, the resulting holomorphic operator is not exactly of the type (87). Indeed, the
computation is completely similar to the one performed in the 12 channel. We use:

∂3φ =
z24

z23z43
Z∂Zφ, ∂2φ =

z31
z23z21

Z∂Zφ, ∂3∂2φ(Z) =
1

z223

[

Z2(Z − 1)∂2
Zφ+ Z2∂Zφ

]

. (106)



Case of all equal areas One cross-ratio Z

The regular tetrahedron corresponds to
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times an oscillating exponent exp [4i jxc Im(Θ(Z))]. It is not hard to find xc. We have for the first
derivative Λ(1)(x) = (1/2) log[(1 + x)/(1 − x)] and thus xc(Z) = tanhRe(Θ(Z)). In other words

kc(Z) = 2j tanhRe(Θ(Z)). (151)

It is natural to expect that the corresponding value kc should be the classical value associated with
the tetrahedron in question, that is

k2c = j21 + j22 + 2j1j2 cos θ12, (152)

where θ12 is the dihedral angle between the faces 1 and 2. It is also natural to expect that the
phase factor 2Im(Θ(Z)) should be the conjugate variable to k, which is the angle ϕc between the
edges (12) and (34) of the classical tetrahedra determined by Z. Putting the real and imaginary
parts together, we should therefore expect the following relation between the cross-ratio parameter
Θ(Z) and the geometrical variables

e2Θ(Z) =
2j + kc
2j − kc

eiϕc . (153)

This formula is relates the two very different descriptions of the phase space of shapes of a classical
tetrahedron – the real one in terms of the k,φ parameters and the complex one in terms of the cross-
ratio coordinate Z. As is clear from this formula, the relation between the two descriptions is very
non-trivial. Here we have only identified the simplest case of this relation when all areas are equal,
leaving the general case to future studies. Below we shall check this geometrical interpretation in
the case of the equilateral tetrahedron.

Let us now explicitly write the exponent of (149) as a Gaussian peaked at x = xc times
some prefactor. The imaginary part of the quantity in the exponent is just 2kIm(Θ(Z)) = kφc

according to our real parametrization (153). For the real part we have Λ(x) − xRe(Θ(Z)) =
Λ(xc)−Λ(1)(xc)xc+(1/2)Λ(2)(xc)(x−xc)2 + . . .. The second derivative is Λ(2) = 1/(1−x2), while
Λ−Λ(1)x = (1/2) log(1−x2). Thus, going back to the parameter k, we see that the most essential
part of the asymptotics (149) written in terms of the coordinates kc,φc, see (153), is given by the
following Gaussian:

Ck
j (Z) ∝ 1

(

1− k2c
4j2

)2j exp

(

−2j
(k − kc)2

(4j2 − k2c )
+ ikcϕc

)

. (154)

An important feature of this state is the fact that its width

σ = (4j2 − k2c )/2j =
2j

cosh2Re(Θ(Z))
(155)

depends not only on j but also on the classical value kc(Z). This is in qualitative agreement with
the analysis performed in [17]. In this work a Gaussian ansatz for the semi-classical states was
postulated and the width was calculated by asking that it is independent of the channel used. This
led to an expression of the width in terms of matrix elements of the Hessian of the Regge action. It
would be interesting to check that this is indeed the case to provide an additional justification for
the hypothesis made in [17] as well as to relate our explicit parametrization to the Regge action.

The simplest example in which we can check everything is the regular equilateral tetrahedron,
which corresponds to the value Z = exp(iπ/3). In this case, the complex angle is easily computed:

Θ = ln

(

1 +
√
3√

2

)

+ i
π

4
.

Convenient to define z = (2Z − 1)/
√

3
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Unit disc as the moduli space of shapes



Can characterize this moduli space explicitly

Let    be the dihedral angle between faces 1 and 2θ

Let     be the angle between edges (12) and (34)φ

k := 2j cos(θ/2)Define

Symplectic form ω = dk ∧ dφ

30

to a quadratic equation

(k + j34)ω
2 + ω ((j34 + j12)(Z − 1) + (j34 − j12)Z) + (j34 − k)Z(Z − 1) = 0

whose solutions are ω±(Z) ≡ L(Z)±
√

Q(Z), where L,Q are a linear and quadratic function of Z
given by the following expressions:

L(Z) ≡ −(j34 + j12)(Z − 1) + (j34 − j12)Z

2(k + j34)
(139)

Q(Z) ≡ (j34 + j12)2(Z − 1)2 + (j34 − j12)2Z2 + 2(2k2 − j234 − j212)Z(Z − 1)

4(k + j34)2
. (140)

Recall now that for non-degenerate tetrahedra Z is complex. This means that in general ω± are
complex numbers and the corresponding on-shell actions S±(Z) ≡ SZ(ω±(Z)) are also complex.
In the semi-classical limit of uniformly large spin, only the root possessing the smallest real value
of SZ dominates, the other one being exponentially suppressed. Without loss of generality we can
assume that this root is ω+. Then we get

I(Z) ∼ 1

i
√

2πS(2)
+ (Z)

e−S+(Z)

ω+(Z)
, (141)

where S(2)
± (Z) ≡ ∂2

ωSZ(ω±(Z)).

C. The Equi-Area Case: Peakedness with respect to k

In the “equi-area” case where all four representations are equal ji = j, ∀i = 1, 2, 3, 4, all equa-
tions simplify considerably. Thus, the action (138) reduces to:

S(ω) = k ln
ω

(Z + ω)(1− Z − ω)
. (142)

The two roots are given by ω± = ±
√

Z(Z − 1). In order to compute the on-shell action it is
convenient to introduce a complex angle Θ(Z) such that Z = cosh2Θ(Z). Then the two roots are
given by:

ω± = ± sinhΘ coshΘ = ±1

2
sinh 2Θ. (143)

Changing Θ → −Θ (which does not affect Z) simply exchanges the two roots ω+ ↔ ω−. Then it
is easy to check that

(Z + ω±) = coshΘ e±Θ, (1− Z − ω±) = ∓ sinhΘ e±Θ, (144)

and so the on-shell action is given by:

S±(Z) = ∓2kΘ(Z) + ikπ(2l + 1), l ∈ Z. (145)

The Hessian of SZ at the stationary points can also be computed and we find

S(2)
± (Z) = ∓ 4k

sinh 2Θe±2Θ
. (146)

To show this introduce Θ(Z) via

e2Θ(Z) =
2j + k

2j − k
eiφThen

and the Kaehler potential
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same overlap function but now viewed as a function of the cross-ratio coordinate. To do this, it
is important to obtain an expression for the Kähler potential Φ! (Z, Z̄) on the constraint surface

parametrized by Z, for, as we shall see below, it is the wave-function e−(1/2)Φ! (Z,Z̄)Ck
! (Z) that is

peaked in Z.
Thus, let us first obtain an explicit expression for the equi-area integration kernel K̂(Z, Z̄) that,

as we know from the analysis of the section IV is essentially the (exponential of the) Kähler potential
on the constraint surface. A representation for K̂(Z, Z̄) as an integral over the orbits orthogonal
to the constraint surface was given earlier in (71), and the following discussion established that in
the semi-classical limit of large spins the Kähler potential on the constraint surface is essentially
given by the function Φ! (zi, zi), given by e.g. (66), evaluated on the constraint surface. In the
equi-area case this function can be computed explicitly. Thus, let us start with the function (63),
which in the case n = 4 is given by:

e−Φ•(zi,zi)
∣

∣

∣

n=4
=

|z12z34|2
∏4

i=1(1 + |zi|2)
=

∣

∣

∣

∣

N1 −N2

2

∣

∣

∣

∣

2 ∣
∣

∣

∣

N3 −N4

2

∣

∣

∣

∣

2

, (156)

where we have used (A6) to write the second equality. Using |N1 − N2|2 = 2(1 − cos θ12), where
θ12 is the dihedral angle between the faces 1 and 2, as well as the fact that in the equi-area case
on the constraint surface we have cosθ12 = cos θ34, and recalling the relation (152) between the
parameter kc and θ12, we can write the above formula as:

e−Φ•(zi,zi)
∣

∣

∣∑4
i=1 jiNi=0

≡ e−Φ•(Z,Z̄) = (1− x2c)
2, (157)

where, as before xc = kc/2j. Now, the semi-classical Kähler potential Φ! (Z, Z̄) in the equi-area
case is equal to 2jΦ•(Z, Z̄), see (66) and (64). Let us write an expression for this Kähler potential
in terms of the parameter Θ(Z). The quantity (1 − x2c) was computed in (155) and we get the
following simple expression:

Φj(Z, Z̄) = 8j ln [coshRe(Θ)] . (158)

Now, given the Kähler potential, we can compute the corresponding symplectic form

Ω! ≡ 1

i
∂Z∂Z̄Φj dZ ∧ dZ̄ = −2j

i

dΘ ∧ dΘ̄

cosh2Re(Θ)
(159)

= 4j
dRe(Θ) ∧ dIm(Θ)

cosh2Re(Θ)
= dkc(Z) ∧ dϕc(Z),

where in the last equality we have used the differential of (151) and the definition of ϕc = 2Im(Θ).
This demonstrates that kc and ϕc are canonically conjugate variables, as anticipated in theprevious
subsection.

We would now like to compute the inner product 〈$ , k|$ , l〉 of two real intertwiners as an integral
over the cross-ratio coordinate Z. In the semi-classical approximation of large spins the integration
kernel is found explicitly in (74), so we are interested in computing (in the equi-area case):

〈$ , k|$ , l〉 ∼ (2j)2√
π

∫

d2Z
√

Pf(Ω! )e
−(2j+1)Φ•(Z,Z̄)Ck

j (Z)C l
j(Z). (160)

To analyze this integral it is very convenient to switch toΘ coordinate instead of Z. The change of
variables is easy to work out. Indeed, we have dZ = sinh(2Θ)dΘ, and the Pfaffian of the symplectic
form is available from (159). Note that we get a factor of | sinh 2Θ|2 from the change of integration

Ck
!j
(Z)

the value of spin k at 
which             is peaked



Summary

• A toy model for the quantization of the moduli 
space of flat SU(2) connections was described. 
Different “holonomies” commute, quantization 
reduces to the classical representation theory. 
Everything can be described explicitly.

• A new interpretation for the boundary n-point 
functions of AdS_3/CFT_2 as the exponential of 
the Kaehler potential on the moduli space.

• “Quantum geometry” of the tetrahedron with 
fixed areas.


