Moduli space of shapes of a tetrahedron and $\mathrm{SU}(2)$ intertwiners

K. Krasnov (Nottingham) based on 0905.3627 (with L. Freidel and E. Livine)

Main theme:

Relationship between representation theory of classical groups and geometry

Old subject:

e.g. Gelfand et al 50's-60's

decomposition of the regular representation into irreducibles
integral transforms associated with homogeneous group spaces

Our setup as a toy model for the problem of quantization of the moduli space of flat connections on Riemann surfaces

A complete description is possible by elementary methods (no quantum groups arise)

Our main object of interest:

$$
\mathcal{H}_{\vec{j}}:=\left(V^{j_{1}} \otimes \ldots \otimes V^{j_{n}}\right)^{\mathrm{SU}(2)}
$$

the space of $\operatorname{SU}(2)$ invariant tensors - intertwiners
here V^{j} is the irreducible representation of dimension

$$
\operatorname{dim}\left(V^{j}\right)=2 j+1
$$

Finite-dimensional vector space

$$
\operatorname{dim}\left(\mathcal{H}_{\vec{j}}\right)=\frac{2}{\pi} \int_{0}^{\pi} d \theta \sin ^{2}(\theta / 2) \chi^{j_{1}}(\theta) \ldots \chi^{j_{n}}(\theta)
$$

where

$$
\chi^{j}(\theta)=\frac{\sin (j+1 / 2) \theta}{\sin \theta / 2}
$$

A convenient basis:
use uniqueness (up to normalization) of the 3 -valent intertwiner

Example: $\mathrm{n}=4$

$$
\left|j_{1}-j_{2}\right| \leq l \leq j_{1}+j_{2}
$$

$\mathcal{H}_{\vec{j}}$ is closely related to other important spaces:
$k \rightarrow \infty$ limit of the space of $\mathrm{SU}(2) \mathrm{WZW}$ conformal blocks (states of $\mathrm{SU}(2) \mathrm{CS}$ theory) on an n-punctured sphere

Dimension is the $k \rightarrow \infty$ limit of the Verlinde formula
$\mathcal{H}_{\vec{j}}$ also arises as the quantization of a certain moduli space
V^{j} can be obtained as the quantization of S^{2} of radius j

canonical example of geometric quantization or Kirillov's orbit method

S^{2} is a symplectic manifold

$$
\begin{gathered}
\omega_{j}=j \sin (\theta) d \theta \wedge d \phi \\
\int_{S^{2}} \omega_{j}=4 \pi j \quad \Longrightarrow \quad \begin{array}{l}
\text { expect a finite- } \\
\text { dimensional Hilbert space }
\end{array}
\end{gathered}
$$

Action of $\mathrm{SU}(2)$ on S^{2} is Hamiltonian moment map $\quad \mu(\theta, \phi)=j \vec{n}(\theta, \phi) \in \mathbb{R}^{3}$
$\left(V^{j_{1}} \otimes \ldots \otimes V^{j_{n}}\right)^{\mathrm{SU}(2)}$
can be obtained as the quantization of
$\mathcal{S}_{\vec{j}}:=S^{2} \otimes \ldots \otimes S^{2} / / \mathrm{SU}(2)$
i.e. symplectic reduction $\mu^{-1}(0) / \mathrm{SU}(2)$

$$
\text { where } \quad \mu=\sum_{i=1}^{n} j_{i} \vec{n}_{i}
$$

Note $\quad \operatorname{dim}\left(\mathcal{S}_{\vec{j}}\right)=2 n-6$
similar to, but much simpler than the moduli spaces of flat connections on
an n-punctured sphere

Moduli space of flat $\mathrm{SU}(2)$ connections on S^{2}

fixed conjugacy classes around punctures
$\operatorname{Tr}\left(g_{i}\right)=\lambda_{i}$

$$
\mathcal{M}=\left\{g_{i}: \prod_{i=1}^{n} g_{i}=1\right\} / \operatorname{SU}(2)
$$

different g 's do not commute \Longrightarrow quantum group

The difference between $\mathcal{S}_{\vec{j}}$ and \mathcal{M} is that between the Lie algebra and the group different \vec{n} 's commute!

Geometric interpretation of the moduli space $\mathcal{S}_{\vec{j}}$
particularly relevant for $n=4$

if identify $A_{i}=j_{i}$
then $\quad \sum_{i=1}^{4} j_{i} \vec{n}_{i}=0$
modulo rotations and translations, a tetrahedron with fixed face areas can be described by
explicit description is

$$
\left\{\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}, \vec{n}_{4}: \sum_{i} j_{i} \vec{n}_{i}=0\right\} / \mathrm{SU}(2)
$$

How to quantize $\mathcal{S}_{\vec{j}}$?
Apart from simple cases, no explicit description of the moduli space is available

Strategy: first quantize then reduce $\Longrightarrow \quad$ invariant tensors

Would like a more explicit description of the arising Hilbert space

Same as if first reduce and then quantize?
S^{2} is a Kaehler manifold

$$
z=\tan (\theta / 2) e^{-i \phi}
$$

holomorphic coordinate (stereographic projection)
symplectic form

$$
\omega_{j}=(2 j / \mathrm{i}) \frac{d z \wedge d \bar{z}}{\left(1+|z|^{2}\right)^{2}}=(1 / \mathrm{i}) \partial \bar{\partial} \Phi d z \wedge d \bar{z}
$$

where

$$
\Phi(z, \bar{z})=2 j \log \left(1+|z|^{2}\right)
$$

holomorphic quantization is possible
V^{j} space of sections of a Hermitian line bundle over S^{2} of curvature $\mathrm{i} \omega_{j}$

$$
\left\langle\Psi_{1}, \Psi_{2}\right\rangle=\frac{d_{j}}{2 \pi} \int \frac{d^{2} z}{\left(1+|z|^{2}\right)^{2(j+1)}} \overline{\Psi_{1}(z)} \Psi_{2}(z)
$$

here $\quad d^{2} z:=|d z \wedge d \bar{z}|$
the group action

$$
\left(T\left(k^{t}\right) \Psi\right)(z)=(-\bar{\beta} z+\bar{\alpha})^{2 j} \Psi\left(z^{k}\right)
$$

where

$$
k=\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right) \quad z^{k}=\frac{\alpha z+\beta}{-\bar{\beta} z+\bar{\alpha}}
$$

leaves the inner product invariant

The holomorphic description of V^{j} is very useful because related to coherent states

$$
\Psi(z)=\langle\Psi \mid j, z\rangle
$$

where

$$
\begin{aligned}
& |j, z\rangle=|z\rangle^{\otimes 2 j} \quad|z\rangle=e^{z J_{+}}|1 / 2,-1 / 2\rangle \\
& |j, z\rangle=\sum_{m=-j}^{j} \sqrt{\frac{(2 j)!}{(j-m)!(j+m)!}} z^{j-m}|j, m\rangle \\
& \text { and }|j, m\rangle \text { is the usual basis in } V^{j}
\end{aligned}
$$

$|j, z\rangle$ are coherent states

$$
\frac{\langle j, z| \vec{J}|j, z\rangle}{\langle j, z \mid j, z\rangle}=j \vec{n}(z, \bar{z})
$$

$\vec{n}(z, \bar{z})$-the corresponding point on S^{2}
Decomposition of identity formula

$$
1_{\vec{j}}=\frac{d_{j}}{2 \pi} \int \frac{d^{2} z}{\left(1+|z|^{2}\right)^{2(j+1)}}|j, z\rangle\langle j, z|
$$

$|j, z\rangle$ an overcomplete basis of states in V^{j}

$$
\langle j, z \mid j, z\rangle=\left(1+|z|^{2}\right)^{2 j}
$$

A similar (explicit) holomorphic quantization is possible for $\mathcal{S}_{\vec{j}}$

States - holomorphic functions $\Psi\left(Z_{4}, \ldots, Z_{n}\right)$ with appropriate behavior under permutations

Z_{i} cross-ratios

Inner product

$$
\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle=8 \pi^{2} \prod_{i=1}^{n} \frac{d_{j_{i}}}{2 \pi} \int d^{2} Z \hat{K}_{\vec{j}}(Z, \bar{Z}) \overline{\Psi_{1}(Z)} \Psi_{2}(Z)
$$

where

$$
\hat{K}_{\vec{j}}(Z, \bar{Z})=\lim _{X \rightarrow \infty}|X|^{2 \Delta_{3}} K_{\vec{j}}\left(0,1, X, Z_{4}, \ldots, Z_{n}\right)
$$

$$
K_{\vec{j}}\left(z_{1}, \ldots, z_{n}\right)=\int_{H^{3}} d \xi \prod_{i=1}^{n} K_{\Delta_{i}}\left(\xi, z_{i}\right)
$$

where $\quad \Delta_{i}=2\left(j_{i}+1\right)$

$$
K_{\Delta}(\xi, z)=\frac{\rho^{\Delta}}{\left(\rho^{2}+|z-y|^{2}\right)^{\Delta}}
$$

$\xi=(\rho, y)$ upper half-space model coordinates of a point in H^{3}

A coherent state interpretation of the inner product formula
can introduce coherent intertwiners $|\vec{j}, Z\rangle \in \mathcal{H}_{\vec{j}}$

$$
1_{\mathcal{H}_{\vec{j}}}=8 \pi^{2} \prod_{i=1}^{n} \frac{d_{j_{i}}}{2 \pi} \int d^{2} Z \hat{K}_{\vec{j}}(Z, \bar{Z})|\vec{j}, Z\rangle\langle\vec{j}, Z|
$$

In general in holomorphic quantization

$$
\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle=\int \omega^{k} e^{-\Phi(Z, \bar{Z})} \overline{\Psi_{1}(Z)} \Psi_{2}(Z)
$$

Thus, the inner product formula implies (in the limit of large spins)

$$
\hat{K}_{\vec{j}}(Z, \bar{Z}) \sim e^{-\Phi_{\vec{j}}(Z, \bar{Z})}
$$

where $\Phi_{\vec{j}}(Z, \bar{Z})$ is the Kaehler potential on the moduli space $\mathcal{S}_{\vec{j}}$
Can be checked explicitly, or can appeal to "quantization commutes with reduction" of Guillemin and Sternberg

As far as we know this interpretation of the boundary n-point functions is new

A sketch of the proof:
Consider SU(2) invariant states

$$
\Psi\left(z_{1}, \ldots, z_{n}\right) \in\left(V^{j_{1}} \otimes \ldots \otimes V^{j_{n}}\right)^{\mathrm{SU}(2)}
$$

the action of $\operatorname{SU}(2)$ can be continued to that of $\operatorname{SL}(2, C)$

$$
\left(T\left(g^{t}\right) \Psi\right)\left(z_{1}, \ldots, z_{n}\right)=\prod_{i=1}^{n}(c z+d)^{2 j_{i}} \Psi\left(z_{1}^{g}, \ldots, z_{n}^{g}\right)
$$

where

$$
g=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \quad z^{g}=\frac{a z+b}{c z+d}
$$

being holomorphic such states are automatically $\operatorname{SL}(2, C)$ invariant

$$
\left(T\left(g^{t}\right) \Psi\right)\left(z_{1}, \ldots, z_{n}\right)=\Psi\left(z_{1}, \ldots, z_{n}\right)
$$

Immediately get transformation properties

$$
\Psi\left(z_{1}^{g}, \ldots, z_{n}^{g}\right)=\prod_{i=1}^{n}(c z+d)^{-2 j_{i}} \Psi\left(z_{1}, \ldots, z_{n}\right)
$$

In the inner product formula in $V^{j_{1}} \otimes \ldots \otimes V^{j_{n}}$

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\prod_{i=1}^{n} \frac{d_{i}}{2 \pi} \int \frac{d^{2} z_{i}}{\left(1+\left|z_{i}\right|^{2}\right)^{2\left(j_{i}+1\right)}} \overline{\psi_{1}\left(z_{1}, \ldots, z_{n}\right)} \psi_{2}\left(z_{1}, \ldots, z_{n}\right)
$$

restricted to invariant states can change coordinates

$$
\left(z_{1}, \ldots, z_{n}\right) \rightarrow\left(g, Z_{4}, \ldots, Z_{n}\right)
$$

where

$$
g:\left(0^{g}, 1^{g}, \infty^{g}\right)=\left(z_{1}, z_{2}, z_{3}\right) \quad Z_{i}=\frac{\left(z_{i}-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z_{i}-z_{3}\right)\left(z_{2}-z_{1}\right)}
$$

Can now introduce new states

$$
\begin{aligned}
& \psi\left(z_{1}, \ldots, z_{n}\right)=\psi\left(0^{g}, 1^{g}, \infty^{g}, Z_{4}^{g}, \ldots, Z_{n}^{g}\right) \\
& \quad=d^{-2 j_{1}}(c+d)^{-2 j_{2}} c^{-2 j_{3}} \prod_{i=4}^{n}\left(c Z_{i}+d\right)^{-2 j_{i}} \Psi\left(Z_{4}, \ldots, Z_{n}\right)
\end{aligned}
$$

where

$$
\Psi\left(Z_{4}, \ldots, Z_{n}\right):=\lim _{X \rightarrow \infty} X^{-2 j_{1}} \psi\left(0,1, X, Z_{4}, \ldots, Z_{n}\right)
$$

Remains only to integrate over g
$\int_{\mathbb{C}^{n}} \prod_{i=1}^{n} \mathrm{~d}^{2} z_{i} F\left(z_{i}, \overline{z_{i}}\right)=8 \pi^{2} \int_{\mathbb{C}^{n-3}} \prod_{i=4}^{n} \mathrm{~d}^{2} Z_{i} \int_{\mathrm{SL}(2, \mathrm{C})} \mathrm{d}^{\text {norm }} g \frac{F\left(z_{i}\left(g, Z_{j}\right), \overline{z_{i}\left(g, Z_{j}\right)}\right)}{|d|^{4}|c+d|^{4}|c|^{4} \prod_{i=4}^{n}\left|c Z_{i}+d\right|^{4}}$.

An analogous argument gives inner product of CS states as an integral over $G_{\mathbb{C}} / G$

For $\mathrm{n}=4$ understand coherent intertwiners very explicitly
Define overlaps between coherent and usual intertwiners

$$
C_{\vec{\jmath}}^{k}(Z) \equiv\langle\vec{\jmath}, k \mid \vec{\jmath}, Z\rangle
$$

Can show that

$$
C_{\vec{J}}^{k}(Z)=N_{\vec{J}}^{k} \hat{P}_{k-j_{34}}^{\left(j_{34}-j_{12}, j_{34}+j_{12}\right)}(Z)
$$

where $\hat{P}_{n}^{(a, b)}(Z) \equiv P_{n}^{(a, b)}(1-2 Z)$ is the shifted Jacobi polynomial
and

$$
N_{\vec{\jmath}}^{k}=(-1)^{s-2 k} \sqrt{\frac{\left(2 j_{1}\right)!\left(2 j_{2}\right)!\left(2 j_{3}\right)!\left(2 j_{4}\right)!\left(k+j_{34}\right)!\left(k-j_{34}\right)!}{\left(j_{1}+j_{2}+k+1\right)!\left(j_{3}+j_{4}+k+1\right)!\left(j_{1}+j_{2}-k\right)!\left(j_{3}+j_{4}-k\right)!\left(k+j_{12}\right)!\left(k-j_{12}\right)!}}
$$

The regular tetrahedron corresponds to $Z=\exp (i \pi / 3)$
Convenient to define $z=(2 Z-1) / \sqrt{3}$
so that the regular tetrahedron corresponds to $z=\mathrm{i}$
and then map upper half z-plane to the unit disc $w=\frac{i-z}{i+z}$
Unit disc as the moduli space of shapes

Can characterize this moduli space explicitly
Let θ be the dihedral angle between faces I and 2
Let ϕ be the angle between edges (I2) and (34)
Define $k:=2 j \cos (\theta / 2)$
the value of spin k at which $C_{\vec{j}}^{k}(Z)$ is peaked

Symplectic form $\quad \omega=d k \wedge d \phi$
To show this introduce $\Theta(Z)$ via $Z=\cosh ^{2} \Theta(Z)$
Then $\quad e^{2 \Theta(Z)}=\frac{2 j+k}{2 j-k} e^{i \phi}$
and the Kaehler potential $\Phi_{j}(Z, \bar{Z})=8 j \ln [\cosh \operatorname{Re}(\Theta)]$

Summary

- A toy model for the quantization of the moduli space of flat $S U(2)$ connections was described. Different "holonomies" commute, quantization reduces to the classical representation theory. Everything can be described explicitly.
- A new interpretation for the boundary n-point functions of AdS_3/CFT_2 as the exponential of the Kaehler potential on the moduli space.
- "Quantum geometry" of the tetrahedron with fixed areas.

