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Review of some of modern developments in the subject
(designed for a mathematical audience)

Why mathematicians are an appropriate audience?

(Perturbative) QG is a mess if approached in a brute force way

Simplicity every time one gets through the mess

Everything this subject needs is some level of 
mathematical sophistication?



Why is it relevant to study this subject now?

Abandoned in the 80’s in favour of other approaches to 
quantum gravity, notably string theory

Supersymmetry (needed by superstring) was widely expected 
to be discovered by the new generation of accelerators

No SUSY was discovered at LHC 

Possible that the Standard Model of elementary particles 
+ Gravity is everything there is up to the Planck scale

It is time to re-evaluate the status of the field theoretic 
version of quantum gravity



New beautiful results about “gravitons” in the last 10 years

“On-shell methods” Simplicity points to some 
underlying structure yet to be 

discovered

New gauge-theoretic formulation of gravity

Simplifies perturbation theory

Suggests a fresh look at old problems

Outline of the talk

Review of gravitational perturbation theory and quantization



Classical General Relativity Spacetime dimension D=4

Consider “pure gravity”

World without 
material sources

dynamical theory of a spacetime metric

SEH[g] =
1

16⇡G

Z p
�det(g)(R� 2�)

Einstein-Hilbert action

Rµ⌫ = ⇤gµ⌫

R

⇤

G

- scalar curvature

- cosmological constant

- Newton’s constant

Einstein metrics are critical 
points of EH functional 

Highly non-linear second order PDE on gµ⌫



Perturbation theory Set ⇤ = 0 for now

Physically well-motivated 
because       is small⇤

⌘µ⌫ = diag(�1, 1, 1, 1)

Minkowski metric

is a solution of field equations

Expand gµ⌫ = ⌘µ⌫ + hµ⌫

2 := 32⇡G

L(2) = �1

2
(@⇢hµ⌫)

2 +
1

2
(@µh)

2 + (@⌫hµ⌫)
2 + h@µ@⌫hµ⌫

where h := ⌘µ⌫hµ⌫

 = 1set from now on



Gravitons

Define h̄µ⌫ := hµ⌫ � 1

2
h⌘µ⌫

Linearized field equations

⇤h̄µ⌫ + ⌘µ⌫@
µ@⌫ h̄µ⌫ � 2@(µ@

⇢h̄⌫)⇢ = 0

where

⇤ := @µ@µ

Everything is invariant under diffeomorphisms

�hµ⌫ = 2@(µ⇠⌫)

Can “fix the gauge”
@⌫ h̄µ⌫ = 0

Field equations become
⇤h̄µ⌫ = 0

solutions-
plane waves-

gravitons



Mode expansion

hk

µ⌫

= a+
k

✏+
µ⌫

(k)eikx + a�
k

✏�
µ⌫

(k)eikx

amplitudes of two 
different polarizations

two polarization tensors

only two polarizations propagate

(✏±µ⌫(k))
2 = 0

✏+µ⌫(k)✏
�µ⌫(k) = 1

Polarization tensors satisfy

Positive 
Negative helicity = Self-dual 

Anti-self-dual
part of Weyl is 
non-vanishing ( ) ( )only

2+2 numbers per spatial 
point as initial data



Einstein gravity perturbatively: Nasty mess... Expansion around an 
arbitrary background gµ⇥

quadratic order (together with 
the gauge-fixing term)

cubic order
from Goroff-Sagnotti 

“2-loop” paper

even in flat space, the corresponding vertex has about 100 terms! 



quartic order

Imagine having to do 
calculations with these 
interaction vertices!



Perturbative quantization
Want to evaluate the “path integral” for the theory “perturbatively”

Compare to
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field theory in 
zero dimensions

graph combinatorics



Perturbative quantization in field theory

Want to compute “correlation functions”

hhµ1⌫1(x1) . . . hµn⌫n(xn)i :=
Z

Dhhµ1⌫1(x1) . . . hµn⌫n(xn)e
iS[h]

interpreting this as a Gaussian integral plus perturbation

Similar sum over graphs with “Feynman rules”

1

↵

! Gµ⌫,↵�(x� y) “propagator”

satisfies
✓
�

⇢
µ�

�
⌫ � 1

2
⌘µ⌫⌘

⇢�

◆
⇤G⇢�,↵�(x� y) = �

4(x� y)

Need to multiply propagators, vertex contributions, 
then integrate over positions of vertices



Scattering amplitudes

Fourier transformed correlation functions

hhµ1⌫1(k1) . . . hµn⌫n(kn)i

Have simple poles at k2i = 0

Residues at those poles are graviton scattering amplitudes

Projecting on polarization tensors

where hi = ±
✏±µ⌫(k) polarization tensors

“helicity”

Objects of main interest 

M(1h1 . . . nhn) := ✏h1
µ1⌫1

(k1) . . . ✏
hn
µn⌫n

(kn)hhµ1⌫1(k1) . . . h
µn⌫n(kn)i



In 1963 I gave [Walter G. Wesley] a student of mine the problem of computing the cross section for a 
graviton-graviton scattering in tree approximation, for his Ph.D. thesis. The relevant diagrams are 
these: 

In 1963 I gave [Walter G. Wesley] a student of mine the problem of computing the cross section for a

graviton-graviton scattering in tree approximation, for his Ph.D. thesis [28]. The relevant diagrams are

these:

Given the fact that the vertex function in diagram 1 contains over 175 terms and that the vertex functions

in the remaining diagrams each contain 11 terms, leading to over 500 terms in all, you can see that this

was not a trivial calculation, in the days before computers with algebraic manipulation capacities were

available. And yet the final results were ridiculously simple. The cross section for scattering in the

center-of-mass frame, of gravitons having opposite helicities, is

d⇥/d� = 4G2E2 cos12 1
2�/ sin4 1

2�

where G is the gravity constant and E is the energy [28].

In string theory there is only one diagram, namely

and its contribution to the graviton-graviton amplitude is relatively easy to compute, giving the same

result as that obtained by my student.

The other “pretty” feature of string theory concerns the topological transitions. In conventional quan-

tum gravity topological transitions are impossible. I say this despite occasional efforts that have been

made in the past to sum “amplitudes” for different spacetime topologies in “Euclidean quantum gravity,”

6

Given the fact that the vertex function in diagram 1 contains over 175 terms and that the vertex functions 
in the remaining diagrams each contain 11 terms, leading to over 500 terms in all, you can see that this 
was not a trivial calculation, in the days before computers with algebraic manipulation capacities were 
available. And yet the final results were ridiculously simple.

From: Bryce DeWitt

Quantum Gravity, 
Yesterday and Today

arXiv:0805.2935

First calculations

In modern notations

M(1�, 2�, 3+, 4+) =
1

4
s12

s12
s23

s12
s24

where sij := (ki + kj)
2

Amplitudes for more gravitons are very difficult to obtain
- too many diagrams to consider



Renormalization

In any field theory “loop diagrams” diverge

E.g. scalar field with interaction
�

3!
�3

v wx

y

�(v � w) :=
1

2

Z
d

4
xd

4
y P (v � x)P (x� y)2P (y � w)

Propagator
P (x� y) is a distribution

⇤P (x� y) = �

4(x� y)

Product of propagators is ill-defined

Need to “regularize”



Dimensional regularization Gelfand 50’s

P (x) ⇠ 1

|x|2

Z
d

d

x

1

|x|2↵ e
ikx = ⇡

d/2� (d/2� ↵)

�(↵)

✓
1

4
k

2

◆
↵�d/2

This has poles when ↵� d/2 = n = 0, 1, . . .

1

|x|2↵ ⇠ 1

d/2� ↵+ n

⇡

d/2

�(d/2 + n)

1

22nn!
⇤n

�

d(x)

E.g. d = 4� ✏

P

2
(x) ⇠ 1

✏

�

4
(x) + non� singular terms

Fourier 
transform



Renormalization

The singular “divergent” part of diagrams is “local”, and can 
be absorbed into a “renormalization” of parameters (fields) 

� ! Z��

� ! Z��
Z = 1 +

c

✏
+ . . .

This is enough in “renormalizable” field theories

After this is done, finite parts are unambiguously 
computed in terms of renormalized parameters

Non-trivial mathematical structure: Connes and 
Kreimer Hopf algebra behind renormalization

multiplicative 
renormalization



Non-renormalizability of quantum gravity

“Dimensionful” coupling constant  ⇠
p
G ⇠ Length

Can do more interesting renormalizations

hµ⌫ ! Zhhµ⌫ + 2

✓
↵

✏
Rµ⌫(h) +

�

✏
⌘µ⌫R(h)

◆
+ . . .{

new
This is sufficient at 1-loop order ‘t Hooft, Veltman 74’

At two loops there is a divergence that 
cannot be removed by any renormalization

Goroff, Sagnotti ’86 
van de Ven ’91

2

✏

Z
(Wµ⌫

⇢�)3 Wµ⌫⇢� - Weyl tensor

Need to add this term to the Lagrangian, and 
then an infinite number of other terms

very difficult calculation: 
numerical work



New developments
Witten ’03 

twistor string

Consider tree-level graviton 
scattering amplitude M(1h1 . . . nhn)

Can be seen to be a meromorphic function of ki

with simple poles at

k2i = 0with  
X

i2I

ki

!2

= 0
I - some subset 

of momenta

Can show that vanishes when all hi are plus or all are minus
At least one plus and at least one minus

Label 1�, 2+ Choose
q : q2 = 0, k1,2 · q = 0

q necessarily complex

Then helicities can be chosen to be

✏�µ⌫(k1) = ✏+µ⌫(k2) = qµq⌫

Part II:

Scattering amplitudes



BCFW analytic continuation Britto, Cachazo,  
Feng, Witten ’05

Continue k1 ! k1(z) = k1 + zq
k2 ! k2(z) = k2 � zq

Clearly
X

i

ki = 0 still holds
Also
k1(z)

2 = k2(z)
2 = 0

Consider M(z)
. . .

1� 2+

maximum (n� 3) propagators in between

1/z for each propagator

(n� 2) vertices

z2 for each vertex

Expect

M(z) ⇠ z2(n�2)

z(n�3)
⇠ zn�1

In fact
M(z) ⇠ 1/z2

z ! 1as Arkani-Hamed, Kaplan ’08

much “softer” high-energy behaviour than expected

“Softest” UV behaviour known among all QFT’s



Recursion relation
. . .

1� 2+

L R

One knows all poles of M(z)

where

zL = �
 
X

i21+L

ki

!2

/

 
q ·
X

i2L

ki

!

0 =

 
k1 + zq +

X

i2L

ki

!2

=

 
q ·
X

i2L

ki

!
(z � zL)

Residues are

R(zL) =
1�

q ·
P

i2L ki
�ML(zL)MR(zL)

amplitudes for smaller 
number of particles

Have
Z

|z|=1

dz

z
M(z) = 0 = M(0) +

X

zL

R(zL)

zL

because M(z) ! 0 as z ! 1

M(0) =
X

L

ML(zL)MR(zL)�P
i21+L ki

�2
can get any amplitude recursively 

from the 3-graviton ones



Explicit formula for anyM(1h1 , . . . , nhn) Cachazo, He, Yuan ’13

Consider n equations on an n-punctured sphere
zi, i = 1, . . . , n
puncture locations

X

j 6=i

sij
zi � zj

= 0

sij = (ki + kj)
2

X

i

ki = 0, k2i = 0Using easy to show

only (n-3) linearly independent
SL(2,C) invariant

Can also show that (n� 3)! solutions
Claim

M({k, h}) =
Z Q

i d
2zi

vol SL(2,C)
Y

i

�0

0

@
X

j 6=i

sij
zij

1

AE2
({k, h, z})

zij := zi � zj

“scattering equations”

measure integrand



Measure can be shown to reduce to

X

solutions

(z
pq

)(z
qr

)(z
rp

)(z
ij

)(z
jk

)(z
ki

)

|�|ijk
pqr

where |�|ijkpqr minor obtained by removing 3 rows 3 columns from

�ij =

⇢
sij/z2ij , i 6= j

�
P

k 6=i sik/z
2
ik, i = j

sum of any row or column zero

compare matrix tree theorems

Integrand

E2({k, h, z}) = 1

z2ij
| |ijij

 =

✓
A B

�BT C

◆

anti-symmetric                 matrix2n⇥ 2n

Aij =

⇢
sij/zij , i 6= j

0, i = j

Cij =

⇢
(qi � qj)2/zij , i 6= j

0, i = j

Bij =

⇢
(qi � kj)2/zij , i 6= j

�
P

l 6=i(qi � kl)2/zil, i = j

✏µ⌫(ki) = qµi q
⌫
j

where q’s are “square roots” 
of polarization tensors 



Scattering amplitudes summary

At large (complex) momenta graviton scattering amplitudes 
are much better behaved than naive arguments suggest

Gravity is best behaved QFT in this sense
But it is also worst behaved - non-renormalizability 

Graviton scattering amplitudes can be obtained recursively
BCFW recursion relations

Closed formula for tree-level amplitudes is possible
This means that one can characterize the space of (perturbative) solutions of GR completely

Space of solutions = phase space Quantization?



Gauge-theoretic formulation of GR

Given an SU(2) connection Ai

one can define a spacetime metric 

This metric owes its existence to the isomorphism

SO(6,C) ⇠ SL(4,C)
Dynkin diagrams

sl(n+ 1) so(2n)

Very important for 
twistor theory

connection as a 
“potential” for the metric



Proof: Consider the 6-dimensional space ⇤2 of 2-forms in R

The wedge product makes ⇤2 into a metric space

⇤2 3 U, V ! (U, V ) = U ^ V/d

4
x 2 R

metric of signature (3,3) if over R

acts on ⇤2SL(4,R)

GUµ⌫ = G↵
µG

�
⌫U↵�

G⌫
µ 2 SL(4,R)

the wedge product metric is preserved

SL(4,R) ⇠ SO(3, 3)�



The isomorphism implies

SL(4)/SO(4)

conformal 
metrics on M

SO(3, 3)/SO(3)� SO(3)

Grassmanian of 
3-planes in �2

�

Conformal metrics can be encoded into the 
knowledge of which 2-forms are self-dual 

Explicitly:

gµ⌃ � �̃�⇥⇤⌅�ijkBi
µ�Bj

⌃⇥Bk
⇤⌅

Bi
µ⇥a triple of linearly independent 2-forms

� Urbantke 
formula

2-forms           are self-dual with respect to this metricBi
µ⇥



Definition of the metric:

Let be an SU(2) connection SL(2,C) connection for 
Lorentzian signature

⇣ ⌘
Ai

F i = dAi + (1/2)[A,A]i

declare      to be self-dual 2-formsF i � conformal metric

To complete the definition of 
the metric need to specify 

the volume form

F i ^ (F j)⇤ = 0
reality conditions

(vol) :=

1

⇤

2
f(F ^ F )

dimensionful parameter

⇤ ⇠ 1/L2



Functions of the curvature

Let f be a function on 

satisfying

f(�X) = �f(X) homogeneous degree 1

gauge-invariant

1)

2)

Then f(F � F ) is a well-defined 4-form (gauge-invariant)

g�S g
f : X � R(C)
g - Lie algebra of G

X ⇥ g�S g

defining 
function

Choose a volume form and define

then

f(AdgX) = f(X), 8g 2 G

F i ^ F j
:= Xij

(vol)

Xij

f(F ^ F ) := (vol) f(X)

independent of choice of (vol)



the Levi-Civita       connection on

To motivate a choice of f(X) 

⇤+ ⇢ ⇤2

the space of self-dual 2-forms

F i =

✓
⇤

3
+W+

◆ij

⌃j

Ai
take an Einstein metric, consider

Then

Tr(W+) = 0

⇣
Tr

p
F ^ F

⌘2
= 2⇤

2
(vol)

This suggest that we take

(vol) :=

1

2⇤

2

⇣
Tr

p
F ^ F

⌘2

this completes the definition of the metric from Ai

⌃iwhere is a basis of self-dual 2-forms

⌃i ^ ⌃j ⇠ �ij



Variational principle

related ideas for zero scalar 
curvature in early 90’s

KK  PRL106:251103,2011

Capovilla, Dell, Jacobson

� �= 0

Consider a functional that is just a multiple of the volume

S[A] =

⇤

8⇡G

Z
(vol)

Critical points

second-order PDE’s for the connectionTheorem:

(*) dA
⇣
Tr

p
X(X�1/2)ijF j

⌘
= 0

For connections      satisfying (*)
the metric 

Ai

g(A) is Einstein with non-zero scalar curvature ⇤

In the opposite direction, the self-dual part of the Levi-
Civita connection for an Einstein metric satisfies (*)

Caveat:  only metrics with ⇤/3 +W+

invertible almost everywhere covered

examples not 
covered
S2 ⇥ S2

Kahler metrics



Gauge-theoretic perturbation theory
Need a non-zero connection to expand about
Homogeneous isotropic connection

such a connection is a solution

The corresponding metric is de Sitter of cosmological constant ⇤
(in flat slicing)

⌃iwhere is a basis of self-dual 2-forms
F i =

⇤

3
⌃i

F i ^ F j ⇠ �ij

L(2) ⇠ P (2)
ijkl(⌃

iµ⌫dµa
j
⌫)(⌃

k⇢�d⇢a
l
�)

P (2)
ijkl := �i(k�l)j �

1

3
�ij�kl

Easy to show that describes gravitons on de Sitter space

One gets the following linearised Lagrangian

where

aiµ connection perturbation

dµ de Sitter covariant derivative

A

i = i a(t)dxi

considerably simpler linearization than in the metric case

square of a certain Dirac operator



The new formulation is simpler than the metric-based GR

Concave action functional

space of metrics SU(2) connections/gauge

SEH[g] S[A]

“instantons”

2⌧(M) + 3�(M)

Interactions

L(3) =
↵

M2
Tr

�
(⌃da)3

�
+

�

M2
(⌃da)ij

✓
1

i
✏µ⌫⇢�dµa

i
⌫d⇢a

j
� +M2⌃iµ⌫✏jklajµa

k
⌫

◆

M2 := ⇤/3(⌃da)ij := P (2)
ijkl(⌃

kµ⌫dµa
l
⌫)with

compare with the mess in the metric formulation

↵,� - dimensionless parameters



Summary:

GR can be described as an SU(2) gauge theory of a novel type: 

Produces much simpler perturbative expansion than

bounded from above Euclidean action

After a long period of inactivity, perturbative quantum gravity is 
again at the cross-roads of many interesting developments

the usual description

Gravity has much better high-energy behaviour than was thought

Tree-level amplitudes can be solved for in closed form

Powerful recursion relations for the amplitudes

Further interesting developments are guaranteed

Thank you!



Quantum Theory Hopes

Remark: no dimensionful coupling constants 
in any of these gravitational theories (negative) dimension coupling 

constant comes when expanded 
around a background

Non-renormalizable in the usual sense

Hope:  the class of theories {all possible f()} is large enough 
to be closed under renormalization

⇤f(F � F )
⇤ log µ

= �f (F � F )

I.e. physics at higher energies continues to be 
described by theories from the same family = no new DOF appear 

at Planck scale, just the 
dynamics changes



The speculative RG flow:

ftop(F � F ) = Tr(F � F )

corresponds to a topological theory
(no propagating DOF)

necessarily a fixed point 
of the RG flow

ftop

fGR Planck scale

topological theory ?

flow from very steep 
in IR towards very 
flat in UV potential


