Renormalized Volume of Hyperbolic 3-Manifolds

Kirill Krasnov University of Nottingham

Joint work with J. M. Schlenker (Toulouse) Review available as arXiv: 0907.2590

Fefferman-Graham expansion

Let ${\mathcal G}$ be a complete, conformally compact Einstein metric on ${\mathcal M}^{n+1}$

i.e.
$$\exists \rho : \rho^2 g$$
 extends to ∂M
 $\left. \rho \right|_{\partial M} = 0, \quad d\rho \Big|_{\partial M} \neq 0$

Then:

M asymptotically hyperbolic i.e. $|R_g + 1| = O(\rho^2)$ can define boundary metric $\gamma := \rho^2 g \Big|_{\partial M}$ with conformal class $[\gamma]$ canonically defined Foliate M (near ∂M) by $\rho = const$ surfaces

$$ds^{2} = \frac{d\rho^{2}}{\rho^{2}} + \frac{1}{\rho^{2}} \Big(\gamma + \rho^{2} g_{(2)} + \rho^{4} g_{(4)} + \dots + \begin{cases} n_{odd} & \rho^{n-1} g_{(n-1)} + \rho^{n} g_{(n)} + \rho^{n+1} g_{(n+1)} + \dots \\ n_{even} & \rho^{n} g_{(n)} + \rho^{n} \log \rho h_{(n)} + \dots \end{pmatrix}$$

 $\begin{array}{ll} n_{odd} & g_{(2k)} & k \leq (n-1)/2 \quad \text{computable in terms of} \quad \gamma \\ g_{(n)} & \text{free apart from} \quad \nabla^{\gamma} g_{(n)} = 0, \quad \text{Tr}_{\gamma} g_{(n)} = 0 \end{array}$

 $\begin{array}{l} n_{even} & g_{(2k)} & k \leq (n-2)/2 \\ & h_{(n)} \text{ traceless, transverse} \end{array} \right\} \text{ computable in terms of } \gamma \\ & g_{(n)} \text{ free apart from } \nabla^{\gamma} g_{(n)} = \tau, \quad \text{Tr}_{\gamma} g_{(n)} = \delta \end{array}$

 $\forall n \quad \{\gamma, g_{(n)}\} \quad \text{free data} \\ \text{can integrate Einstein eqs in a finite neighborhood of } \partial M \\ \text{However, if } \partial \boldsymbol{M} \quad \text{connected and } \pi_1(M, \partial M) = 0 \\ \text{Then } \gamma \text{ can be freely varied, while } g_{(n)} \text{ is determined by } \gamma \\ \text{Hard to characterize explicitely}$

Interesting to compare with bounded metrics

$$ds^2 = d\rho^2 + \gamma + \rho B + \dots$$

no linear term - no second fundamental form in AH case!

Volume

$$\begin{split} V(\epsilon) &= \int_{\epsilon} \frac{d\rho}{\rho^{n+1}} \sqrt{\det(\gamma + \rho^2 g_{(2)} + \ldots)} = \\ \begin{cases} \epsilon^{-n} v_{(0)} + \epsilon^{-n+2} v_{(2)} + \ldots + \epsilon^{-1} v_{(n-1)} + V + O(\epsilon) \\ \epsilon^{-n} v_{(0)} + \epsilon^{-n+2} v_{(2)} + \ldots + \epsilon^{-2} v_{(n-2)} + \log(\epsilon) L + V + O(\epsilon) \end{cases} \\ \begin{cases} n_{odd} & V \\ n_{even} & L \end{cases} \end{cases} \text{ canonical invariants of } M \end{split}$$

Define Renormalized volume RVol(M) := V

depends on the foliation for n_{even}

Example: n = 3 Anderson'01

$$\int_{M^4} |W|^2 = 8\pi^2 \chi(M) - RVol(M)$$

renormalized volume controls the L^2 norm of the Weyl curvature Very special case: n = 2

Weyl curvature vanishes identically, AH=hyperbolic

FG expansion stops Skenderis, Solodukhin hep-th/9910023

$$ds^{2} = \frac{d\rho^{2}}{\rho^{2}} + \frac{1}{\rho^{2}} \left(1 + \frac{\rho^{2}}{2}g_{(2)}\gamma^{-1}\right)\gamma\left(1 + \frac{\rho^{2}}{2}\gamma^{-1}g_{(2)}\right)$$

 $g_{(2)}$ free apart from $\nabla^{\gamma}g_{(2)} = 0$, $\operatorname{Tr}_{\gamma}g_{(2)} = R_{\gamma}$

There is no \log term!

Compare with the known fact that in 3D given the first and second fundamental forms can write down the equidistant foliation metric explicitly "Geometrization"

M is completely determined by $[\gamma]$ (plus possibly topological information)

 $g_{(2)}$ is determined by $[\gamma]$ of all boundary components

Tracefree part of $g_{(2)}$ - holomorphic quadratic differential - projective structure

 $RVol(M, \rho)$ depends on foliation (ρ -coordinate)

Lemma: Given γ on all components of $\partial M \exists !$ foliation of M by equidistant surfaces S_{ρ} such that

$$\frac{1}{2} \left(\gamma_{\rho} + B_{\rho} + \gamma_{\rho}^{-1} B_{\rho} \gamma_{\rho}^{-1} \right) = \frac{1}{\rho^2} \gamma$$

here
$$\gamma_
ho, B_
ho$$
 are fundamental forms of $S_
ho$

Can be described explicitly - Epstein surfaces in the covering space. Breaks down inside (typically)

$$RVol(M, \rho) = RVol(\gamma)$$

Can be computed explicitly, but even without an explicit result variational formulas can be obtained

de Haro, Skenderis, Solodukhin hep-th/0002230

$$\delta RVol(\gamma) = -\frac{1}{4} \int da_{\gamma} \langle \tilde{g}_{(2)} - Ric_{\gamma}, \delta \gamma \rangle$$

where

$$\tilde{g}_{(2)} = g_{(2)} - \frac{1}{2}R_{\gamma}\gamma$$
 tracefree

subcase of a general n result, computation involving a regularization before the variation is taken

Important formula!

Consider variations not changing the conformal structure: $\delta\gamma=2u\gamma$ (with fixed total area)

$$\mathcal{F} = RVol(\gamma) + \frac{\lambda}{2} \int da_{\gamma}$$

variation

$$\delta \mathcal{F} = \frac{1}{4} \int da_{\gamma} \langle Ric_{\gamma} + \lambda \gamma, \delta \gamma \rangle$$

$$Ric_{\gamma} = -\lambda\gamma$$

critical points (local maxima) - constant curvature metrics

Define:

 $RVol(M) = RVol(\gamma)$

computed on
$$\gamma: R_{\gamma} = -1$$

renormalized volume maximized among all volumes for the same conformal structure and area of the boundary

canonically defined for M (with the normalization chosen) otherwise up to a constant

Consider variations of the conformal class

$$\delta RVol(M) = -\frac{1}{4} \int da_{\gamma} \langle \tilde{g}_{(2)}, \delta \gamma \rangle$$

 \mathbf{D}

Well-known that $\nabla^{\gamma} \tilde{g}_{(2)} = 0$, $\operatorname{Tr}_{\gamma} \tilde{g}_{(2)} = 0$

$$\implies \qquad g_{(2)} = \operatorname{Re}(Q)$$

where Q holomorphic quadratic differential on ∂M (with respect to complex structure of γ)

Can characterize Q explicitly -

encodes the projective structure of M $\exists \phi_i : \partial_i M \to H_2$ holomorphic w.r.t. $[\gamma_i]$

 ϕ_i - uniformization map for the $\partial_i M$ component

 $Q_i = S(\phi_i)$ Schwarzian derivative

difference of two projective structures on $\partial_i M$

 $Q_i\;$ - holomorphic cotangent vector on \mathcal{T}_g

$$\implies Q_i = -4 \,\partial_i \, RVol(M)$$

Can now be shown that

Schottky - Takhtajan-Zograf' 88

 $\bar{\partial}_i Q_i = \omega_{WP}$

 \implies Weil-Petersson symplectic form

Schottky - KK' 00

Renormalized Volume is a Kaehler potential for WP form on the appropriate moduli space - Schottky, Teichmueller

for Teichmueller uses quasi-Fuchsian manifolds; the quantity $\bar{\partial}_1 Q_1$ does not depend on the complex McMullen' 00 structure of the other component - use Fuchsian

can be established by complex-analytic methods in both cases needs a technical result on reciprocity in quasi-Fuchsian case Remark:

The variational formula is reminiscent of that of Schlaefli If V is a volume of a hyperbolic polyhedron

$$dV = \frac{1}{2} \sum_{e} L_e d\theta_e$$

and so if defines dual volume

$$V^* = V - \frac{1}{2} \sum_e L_e \theta_e$$

then

$$dV^* = -\frac{1}{2}\sum_e \theta_e dL_e$$

more than an analogy - can be derived from a version of the Schlaefli formula

KK & J. M. Schlenker math/0607081 Historical remarks:

The Renormalized Volume can be computed "explicitly"

Schottky manifolds KK hep-th/0005106

Quasi-Fuchsian, Kleinian manifolds Takhtajan-Teo math/0204318

 $RVol(\gamma) = S_{Liouv}(\gamma)$

Liouville action as defined by Takhtajan and Zograf' 88 (Takhtajan and Teo '02)

The Kaehler potential property follows from this relation to Liouville and results of TZ-TT

Kaehler potential on T_g is an essentially 3D quantity!

Application I: McMullen's QF reciprocity

A stronger statement can be formulated as:

Consider $\phi_1: \mathcal{T}_g \times \mathcal{T}_g \to T^*\mathcal{T}_g \times T^*\mathcal{T}_g$

Simultaneous uniformization, corresponding projective structure

Theorem: $\phi_1(\mathcal{T}_g \times \mathcal{T}_g)$ - Lagrangian submanifold in $T^*\mathcal{T}_g \times T^*\mathcal{T}_g$

A version of $\mathcal{L}: p^i(x) = \frac{\partial V}{\partial x_i}$

$$\sum_{i} dp^{i} \wedge dx_{i} \Big|_{\mathcal{L}} = \sum_{i} \frac{\partial^{2} V}{\partial x_{i} \partial x_{j}} dx_{j} \wedge dx_{i} = 0$$

Application 2: Schottky manifolds

Consider $\phi_2: \mathcal{S}_g \to T^* \mathcal{S}_g$

Schottky space, corresponding projective structure

Theorem: $\phi_2(\mathcal{S}_g)$ Lagrangian submanifold in $T^*\mathcal{S}_g$

Application 3: Grafting map is symplectic

Consider
$$\phi_3: \mathcal{T}_g \times \mathcal{M}L \to T^*\mathcal{T}_g = \mathcal{C}P$$

projective structure obtained by grafting a conformal metric as specified by a measured geodesic lamination

Consider the corresponding hyperbolic end; the inner boundary is a surface pleated along $\mathcal{M}L$; a version of renormalized volume proves

Theorem: ϕ_3 is symplectic; alternatively, the image in

 $\mathcal{T}_g \times \mathcal{M}L \times \mathcal{C}P$

corresponding to hyperbolic ends is a Lagrangian submanifold

Why is this interesting to a physicist?

Geometric quantization in real polarization:

Foliation of \mathcal{P} by Lagrangian submanifolds; states as integral leaves

Integral leaves

 $H = E_n \sim n + 1/2$

This program is realized in the context of flat (or hyperbolic) polyhedra!

$$S_{\text{Regge}} = \sum_{e} \theta_{e}(L)L_{e}$$
$$\delta S_{\text{Regge}} = \sum_{e} \theta_{e}(L)\delta L_{e}$$

Phase space $\mathcal{P}_{tet} = \{L_e, \theta_e\}$

Flat tetrahedron gives a Lagrangian submanifold $\theta_e = \theta_e(L)$

$$\exists \Psi(L_e) \sim e^{(i/\hbar) \sum_e \theta_e(L) L_e}$$

 ${\rm SU}(2)$ irreps (6j)-symbol of Wigner

Ponzano-Regge

Can also be done for hyperbolic tets - (6j)-symbol of the quantum group $SL_q(2, \mathbb{C})$ Freidel, Roche

Back to hyperbolic manifolds:

 $\Lambda < 0~$ 3D gravity can be formulated as a Hamiltonian system

phase space - space of complex projective structures

$$\mathcal{P} = \{\gamma, \tilde{g}_{(2)}\} = T^* \mathcal{T}_g = \mathcal{CP}$$

Quantization of $\mathcal{P} \Rightarrow \mathcal{H} = L^2(\mathcal{T}_g)$

According to axioms of TQFT, 2-surfaces - Hilbert spaces, 3-manifolds - states E.g. Schottky

Can show that the

structure coincides

with that in $T^*\mathcal{T}_q$

gravitational

symplectic

What is the corresponding state?

Same question can be asked in the context of Chern-Simons theory on a handlebody, compare Weitsman '91

Do we have a Lagrangian foliation of $T^*\mathcal{T}_g$?

Can one use level surfaces of traces of the 3g-3 holonomies of the flat $PSL(2, \mathbb{C})$ connection?

reminiscent to the Lagrangian foliation in Hitchin '88 The self-duality equations on a Riemann surface

Possible to construct "Schottky states" in $L^2(T_g)$? \Rightarrow Interesting functions on T_g if expanded in powers of \hbar Semi-classically $\Psi \sim e^{i RVol(c)/\hbar}$

"Quantization of hyperbolic 3-manifolds"

- 3D Renormalized Volume as a Kaehler potential for the 2D Teichmueller space
- (Hyperbolic) 3-Manifolds correspond to Lagrangian submanifolds in the boundary phase space - natural setup for quantization