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Fefferman-Graham expansion

Let 9 be a complete, conformally compact
Einstein metric on A/" 1

i.e. Jp: p°g extends to OM
=0, d 0
p , dp|F

OM
Then:
M asymptotically hyperbolic i.e. |R, + 1| = O(p?)

can define boundary metric 7 = P’y Ss

with conformal class [y canonically defined




Foliate M (near OM) by p = const surfaces

dp? 1
‘= e | = (7+,029(2) +p4g(4) + ...

Nodd P Gtn—1) + P"9m) + P Gnt1)

ds

_|_ n n
Neven P Gy +p logphe) + .. )

Nodd g(2k) k<(n-—1)/2 computable in terms of 7
d(n) free apartfrom V'gmn) =0, Trygu) =0

Neven g(gk) k < (TL — 2)/2

h(n) traceless, transverse

} computable in terms of 7

d(n) free apartfrom V'gm) =7, Trygm) =29




vn 1 9n) ) free data

can integrate Einstein egs in a finite neighborhood of OM
However, if OM connected and 7 (M,0M) =0
Then 7 can be freely varied, while 9(n)is determined by 7

Hard to characterize explicitely




Interesting to compare with bounded metrics

ds* =dp* +~+ pB+ ...

no linear term - no second fundamental form in AH case!




Volume

/p +1\/det (v +p%902) +--.) =

_”v(o) -+ E—n—l—ZU(Q) + ...+ 6_1U(n_1) +V 4+ O(E)
E_n”U(O) -+ €_n+22)(2) + ...+ €_2U(n_2) -+ 1og(e) L+V + O(G)

Nodd V

} canonical invariants of M

neven

Define Renormalized volume RVol(M) :=V

depends on the foliation for "even




Example: n = 3

/M4 W |? = 8m*x (M) — RVol(M)

renormalized volume controls the J,?
norm of the Weyl curvature




Very special case: n = 2

Weyl curvature vanishes identically, AH=hyperbolic

FG expansion stops

dp2 1 ,02 } pz B
ds® = = | = (1 | 5 927 1>”Y<1 | 5 19(2)

92) free apartfrom V'gp) =0, Tryge) =R,

There is no log term!

Compare with the known fact that in 3D given the first and

second fundamental forms can write down the equidistant
foliation metric explicitly




“Geometrization”

M is completely determined by |7]

(plus possibly topological information)

E.g. Schottky E.g. quasi-Fuchsian

w V1]

contractible

é& Ay -

(=) Il

9(2) is determined by |7 of all boundary components

Tracefree part of 9(2) - holomorphic quadratic
differential - projective structure




RVol(M,p) depends on foliation (? -coordinate)

Lemma: Given 7 on all components of 9/ 3! foliation
of M by equidistant surfaces S, such that

_ _ 1
(vp + By + Vo 1Bp”7p 1) — ?7

1
2

here 7,, B, are fundamental forms of S,

Can be described explicitly - Epstein surfaces in the
covering space. Breaks down inside (typically)

RVol(M, p) = RVol(v)




Can be computed explicitly, but even without an explicit
result variational formulas can be obtained

ge2) = 9(2) — §Rw tracefree

subcase of a general n result, computation involving a
regularization before the variation is taken

Important formula!




Consider variations not changing the
conformal structure: 0y = 2u7y (with fixed total area)

A
F = RVol(v) + 5 /dav

variation

1

0F = 1 /daw(Ricfy + Ay, 07)

Ricy = — Ay

critical points (local maxima) - constant curvature metrics




Define:

RVol(M) = RVol(v)

computedon 7 : R, = -1

renormalized volume maximized among all volumes for the
same conformal structure and area of the boundary

canonically defined for M (with the normalization chosen)
otherwise up to a constant




Consider variations of the conformal class

Well-known that V'g@) =0, Tr,g@e) =0

— g2) — Re(Q)

where () holomorphic quadratic differential on OM

(with respect to complex structure of 7 )




Can characterize () explicitly -

encodes the projective structure of )M

J¢; : ;M — Hs holomorphic w.r.t. [7Vi)

¢; - uniformization map for the 0; M component

Q: = S(¢;) Schwarzian derivative

difference of two projective structures on 0; M

(; - holomorphic cotangent vector on 7




Can now be shown that Schottky -

6@'@@' — WWP

—>  Weil-Petersson symplectic form
Schottky -

Renormalized Volume is a Kaehler potential for WP form
on the appropriate moduli space - Schottky, Teichmueller

for Teichmueller uses quasi-Fuchsian manifolds; the
quantity 0; (1 does not depend on the complex
structure of the other component - use Fuchsian

can be established by complex-analytic methods in both cases
needs a technical result on reciprocity in quasi-Fuchsian case




Remark:
The variational formula is reminiscent of that of Schlaefli

If V' is a volume of a hyperbolic polyhedron
1
av = 3 Z L.df.

and so if defines dual volume

V*:V—%Z;Leee

dV* = —% Z;eedLe

more than an analogy - can be derived
from a version of the Schlaefli formula




Historical remarks:
The Renormalized Volume can be computed “explicitly”
Schottky manifolds

Quasi-Fuchsian, Kleinian manifolds

RVol(v) = Stiouv(7)

Liouville action as defined by Takhtajan and Zograf’ 88
(Takhtajan and Teo ’02)

The Kaehler potential property follows from
this relation to Liouville and results of TZ-TT

Kaehler potential on 7, is an essentially 3D quantity!




Application |:  McMullen’s QF reciprocity

A stronger statement can be formulated as:

Consider ¢1 7. g X T — T*T X T*T M

Simultaneous uniformization, -

corresponding projective structure N

Theorem: ¢1(7; x 1) - Lagrangian submanifold in 777, x 171,

oV

A version of L :p'(x) = T

—

dei/\da:@ Z&E oy dr; Ndz; =0
p j




Application 2:  Schottky manifolds
Consider ¢2:S8;, = T7S, 9&

Schottky space, corresponding projective structure

Theorem: ®2(Sy) Lagrangian submanifold in 1S,




Application 3: Grafting map is symplectic

Consider ¢3:7; x ML —T"1, =CP

projective structure obtained by grafting a conformal metric as
specified by a measured geodesic lamination

Consider the corresponding hyperbolic end; the inner boundary is a
surface pleated along M [ ;a version of renormalized volume proves

Theorem: @3 is symplectic; alternatively, the image in

Ty X ML XCP

corresponding to hyperbolic ends is a Lagrangian submanifold




Why is this interesting to a physicist?

Geometric quantization in real polarization:

Foliation of P by Lagrangian
submanifolds; states as integral leaves

E.e. Harmonic Oscillator R

H:p2_|_q2

Integral leaves

H=FE,~n-+1/2




This program is realized in the context of flat
(or hyperbolic) polyhedra!

Phase space  Piet = {Le,0c}

Flat tetrahedron gives a Lagrangian submanifold 0. = 0.(L)

= \P(Le) ~ e(z/h) >..0e(L)Le

Can also be done for hyperbolic

SU(2) irreps (6j)-symbol of Wigner tets - (6))-symbol of the quantum
group SL,(2,C)




Back to hyperbolic manifolds:

A < 0 3D gravity can be formulated as a Hamiltonian system

i Can show that the
phase space - space ~ * gravitational
of complex projective P = {fya 9g(2) } =1 779 =CP symplectic
structures structure coincides
with that in 777,

Quantization of P = H = L*(7,)

>,
According to axioms of Eg SChOttk)’ 9&

TQFT, 2-surfaces - Hilbert
spaces, 3-manifolds - states

What is the corresponding state?

Same question can be asked in the context of Chern-
Simons theory on a handlebody, compare Weitsman ’91




Do we have a Lagrangian foliation of 177, ?

reminiscent to the Lagrangian
foliation in Hitchin '88 The self-duality
equations on a Riemann surface

Can one use level surfaces of traces of the 3g-3
holonomies of the flat PSL(2,C) connection?

Possible to construct “Schottky states” in L*(7,)?

—
Interesting functions on 7 if expanded in powers of &

Semi-classically [ ~ ¢t 2V ol(c)/R

“Quantization of hyperbolic 3-manifolds”




Conclusions:

® 3D Renormalized Volume as a Kaehler potential
for the 2D Teichmueller space

® (Hyperbolic) 3-Manifolds correspond to Lagrangian
submanifolds in the boundary phase space - natural
setup for quantization




