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Fefferman-Graham expansion From M.  Anderson hep-th/0403087

Let     be a complete, conformally compact 
Einstein metric on

     i.e.                extends to          

 

g

asymptotically hyperbolic i.e. 

Mn+1

∃ρ : ρ2g ∂M

ρ
∣∣∣
∂M

= 0, dρ
∣∣∣
∂M
!= 0

Then:

M |Rg + 1| = O(ρ2)

can define boundary metric γ := ρ2g
∣∣∣
∂M

[γ]with conformal class         canonically defined



Foliate      (near       ) by                surfacesM ∂M ρ = const

ds2 =
dρ2

ρ2
+

1
ρ2

(
γ + ρ2g(2) + ρ4g(4) + . . .

+

{
nodd ρn−1g(n−1) + ρng(n) + ρn+1g(n+1)

neven ρng(n) + ρn log ρ h(n) + . . .

+ . . .
)

)

nodd g(2k) k ≤ (n− 1)/2 computable in terms of γ

g(n) free apart from ∇γg(n) = 0, Trγg(n) = 0

neven g(2k) k ≤ (n− 2)/2
computable in terms of γ

h(n)

}
traceless, transverse

g(n) free apart from ∇γg(n) = τ, Trγg(n) = δ



∀n {γ, g(n)} free data

can integrate Einstein eqs in a finite neighborhood of  ∂M

∂MHowever, if connected and π1(M, ∂M) = 0

Then     can be freely varied, while        is determined by γ g(n) γ

Hard to characterize explicitely

M



Interesting to compare with bounded metrics

ds2 = dρ2 + γ + ρB + . . .

no linear term - no second fundamental form in AH case!



Volume

V (ε) =
∫

ε

dρ

ρn+1

√
det(γ + ρ2g(2) + . . .) =

{
ε−nv(0) + ε−n+2v(2) + . . . + ε−2v(n−2) + log(ε)L + V + O(ε)

ε−nv(0) + ε−n+2v(2) + . . . + ε−1v(n−1) + V + O(ε)

nodd V

neven L

}
canonical invariants of M

RV ol(M) := VDefine Renormalized volume

depends on the foliation for neven



Example:             Anderson’01

∫

M4
|W |2 = 8π2χ(M)−RV ol(M)

renormalized volume controls the     
norm of the Weyl curvature

L2

n = 3



n = 2Very special case: 

Weyl curvature vanishes identically, AH=hyperbolic

FG expansion stops  Skenderis, Solodukhin hep-th/9910023

ds2 =
dρ2

ρ2
+

1
ρ2

(
1 +

ρ2

2
g(2)γ

−1

)
γ

(
1 +

ρ2

2
γ−1g(2)

)

∇γg(2) = 0, Trγg(2) = Rγfree apart fromg(2)

There is no        term!log

Compare with the known fact that in 3D given the first and 
second fundamental forms can write down the equidistant 
foliation metric explicitly



“Geometrization”

is completely determined by

(plus possibly topological information)

M [γ]

E.g. Schottky E.g. quasi-Fuchsian

contractible

[γ]

[γ1]

[γ2]

is determined byg(2) [γ] of all boundary components

Tracefree part of       - holomorphic quadratic 
differential - projective structure 

g(2)



depends on foliation (   -coordinate)RV ol(M, ρ) ρ

Lemma: Given    on all components of            foliation 
of     by equidistant surfaces     such that 

γ ∂M ∃!
M Sρ

1
2

(
γρ + Bρ + γ−1

ρ Bργ
−1
ρ

)
=

1
ρ2

γ

here γρ, Bρ are fundamental forms of Sρ

Can be described explicitly - Epstein surfaces in the 
covering space. Breaks down inside (typically)

RV ol(M, ρ) = RV ol(γ)



Can be computed explicitly, but even without an explicit 
result variational formulas can be obtained

de Haro, Skenderis, Solodukhin hep-th/0002230

where

g̃(2) = g(2) −
1
2
Rγγ tracefree

subcase of a general     result, computation involving a 
regularization before the variation is taken

n

δRV ol(γ) = −1
4

∫
daγ〈g̃(2) − Ricγ , δγ〉

Important formula!



Consider variations not changing the 
conformal structure: (with fixed total area)δγ = 2uγ

δF =
1
4

∫
daγ〈Ricγ + λγ, δγ〉

F = RV ol(γ) +
λ

2

∫
daγ

variation

=⇒

Ricγ = −λγ

critical points (local maxima) - constant curvature metrics



Define:

RV ol(M) = RV ol(γ)

computed on γ : Rγ = −1

renormalized volume maximized among all volumes for the 
same conformal structure and area of the boundary

canonically defined for M (with the normalization chosen)
otherwise up to a constant



Consider variations of the conformal class

δRV ol(M) = −1
4

∫
daγ〈g̃(2), δγ〉

∇γ g̃(2) = 0, Trγ g̃(2) = 0Well-known that

=⇒ g(2) = Re(Q)

Qwhere     holomorphic quadratic differential on ∂M

(with respect to complex structure of     )γ



Can characterize     explicitly -Q

encodes the projective structure of M

holomorphic w.r.t. [γi]∃φi : ∂iM → H2

- uniformization map for the        componentφi ∂iM

Schwarzian derivative

difference of two projective structures on ∂iM

- holomorphic cotangent vector on Tg

=⇒ Qi = −4 ∂i RV ol(M)

Qi = S(φi)

Qi



Can now be shown that

∂̄iQi = ωWP

Weil-Petersson symplectic form=⇒

Renormalized Volume is a Kaehler potential for WP form 
on the appropriate moduli space - Schottky, Teichmueller

for Teichmueller uses quasi-Fuchsian manifolds; the 
quantity         does not depend on the complex 
structure of the other component - use Fuchsian

∂̄1Q1

Takhtajan-Zograf’ 88

can be established by complex-analytic methods in both cases

McMullen’ 00

needs a technical result on reciprocity in quasi-Fuchsian case

Schottky -

Schottky - KK’ 00



Remark:

The variational formula is reminiscent of that of Schlaefli

If     is a volume of a hyperbolic polyhedronV

dV =
1
2

∑

e

Ledθe

and so if defines dual volume

V ∗ = V − 1
2

∑

e

Leθe

dV ∗ = −1
2

∑

e

θedLe

then

more than an analogy - can be derived 
from a version of the Schlaefli formula

KK & J. M. Schlenker 
math/0607081



Historical remarks:

The Renormalized Volume can be computed “explicitly”

Schottky manifolds KK hep-th/0005106

Quasi-Fuchsian, Kleinian manifolds Takhtajan-Teo math/0204318

RV ol(γ) = SLiouv(γ)

Liouville action as defined by Takhtajan and Zograf’ 88 
(Takhtajan and Teo ’02)

The Kaehler potential property follows from 
this relation to Liouville and results of TZ-TT

Kaehler potential on      is an essentially 3D quantity!Tg



Application 1: McMullen’s QF reciprocity

A stronger statement can be formulated as:

φ1 : Tg × Tg → T ∗Tg × T ∗Tg

Simultaneous uniformization, 
corresponding projective structure

T ∗Tg × T ∗TgTheorem: φ1(Tg × Tg) - Lagrangian submanifold in 

L : pi(x) =
∂V

∂xi

∑

i

dpi ∧ dxi

∣∣∣
L

=
∑

i

∂2V

∂xi∂xj
dxj ∧ dxi = 0

A version of

=⇒

Consider



Application 2: Schottky manifolds

Consider φ2 : Sg → T ∗Sg

Schottky space, corresponding projective structure

Theorem: φ2(Sg) T ∗SgLagrangian submanifold in



Application 3: Grafting map is symplectic

Consider φ3 : Tg ×ML→ T ∗Tg = CP

projective structure obtained by grafting a conformal metric as 
specified by a measured geodesic lamination

Consider the corresponding hyperbolic end; the inner boundary is a 
surface pleated along        ; a version of renormalized volume provesML

Theorem: φ3 is symplectic; alternatively, the image in 

Tg ×ML× CP

corresponding to hyperbolic ends is a Lagrangian submanifold



Geometric quantization in real polarization:

Foliation of     by Lagrangian 
submanifolds; states as integral leaves

P

E.g. Harmonic Oscillator

q

p
H = E

H = p2 + q2

Integral leaves

H = En ∼ n + 1/2

Why is this interesting to a physicist?



This program is realized in the context of flat 
(or hyperbolic) polyhedra!

θ

L
δSRegge =

∑

e

θe(L)δLe

SRegge =
∑

e

θe(L)Le

Ptet = {Le, θe}

θe = θe(L)Flat tetrahedron gives a Lagrangian submanifold

Phase space

∃Ψ(Le) ∼ e(i/!)
P

e θe(L)Le Ponzano-Regge

Can also be done for hyperbolic 
tets - (6j)-symbol of the quantum 
group SLq(2, C) Freidel, Roche

irreps (6j)-symbol of WignerSU(2)



Λ < 0 3D gravity can be formulated as a Hamiltonian system
Can show that the 
gravitational 
symplectic 
structure coincides 
with that in T ∗Tg

Quantization of P ⇒ H = L2(Tg)

According to axioms of 
TQFT, 2-surfaces - Hilbert 
spaces, 3-manifolds - states

E.g. Schottky

What is the corresponding state?

Same question can be asked in the context of Chern-
Simons theory on a handlebody, compare Weitsman ’91

P = {γ, g̃(2)} = T ∗Tg = CP
phase space - space 

of complex projective 
structures 

Back to hyperbolic manifolds:



Do we have a Lagrangian foliation of           ?T ∗Tg

reminiscent to the Lagrangian 
foliation in Hitchin ’88 The self-duality 
equations on a Riemann surface

Possible to construct “Schottky states” in            ?L2(Tg)
⇒
Interesting functions on     if expanded in powers ofTg !

Semi-classically

“Quantization of hyperbolic 3-manifolds”

Ψ ∼ ei RV ol(c)/!

Can one use level surfaces of traces of the 3g-3 
holonomies of the flat                connection?PSL(2, C)



Conclusions:

• 3D Renormalized Volume as a Kaehler potential 
for the 2D Teichmueller space

• (Hyperbolic) 3-Manifolds correspond to Lagrangian 
submanifolds in the boundary phase space - natural 
setup for quantization


