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This is a meeting about Planck scale

The problem of quantum gravity

Many models for physics at Planck scale

This talk: attempt at re-evaluation of the problem 
in light of developments of the last 10 years



There is a deep relationship between gravity 
and Yang-Mills theory, as has been emerging 

over the last 10 years

We have discarded as terribly complicated and not 
making sense a QFT that is related to and in many 

ways analogous to the best QFT we have - YM

Gravity is the most symmetric theory we have - diffeomorphisms. 
Should be the most beautiful QFT. 

Do we just use the wrong language?



Gravity vs. Yang-Mills:  The old story

Gravity = (YM)^2

Plan

Gravity as a diffeomorphism invariant 
gauge theory

The two loop divergence



S[g] =
1

16⇡G

Z
p
g (R� 2⇤)

L ⇠ ẍ

L ⇠ (ẋ)2

GR is the unique diffeomorphism invariant theory 
of the metric with second order field equations

Rather than non-linear in first as for all 
other theories

General Relativity

Unlike in YM, gravitational instanton 
condition is second-order in derivatives

W+
µ⌫⇢� = 0

self-dual part of Weyl 

GR Lagrangian is linear in second derivatives



is equivalent to the linearised field equation d∗dA = 0. A general solution of the linearised field
equations is then a linear combination of modes d+A = 0 called negative helicity and d−A = 0 called
positive helicity.

Gravity is as important and ubiquitous as electromagnetism. However, in the description proposed
by Einstein gravity is much more complicated than Maxwell’s theory. First of all, it is highly non-
linear. However, even a linearised description around some (e.g. flat) background is significantly more
involved than (2). In particular, there is no complex of differential operators involved. To be more
explicit, the linearisation of the Einstein-Hilbert Lagrangian (around the flat metric) reads

L
(2)
EH = −

1

2
(∂µhρσ)

2 +
1

2
(∂µh)

2 + (∂µhµν)
2 + h∂µ∂νhµν , (4)

where hµν is the metric perturbation, and h := hµµ. This Lagrangian is invariant under δξhµν = ∂(µξν).
But, unlike (2), it cannot be written as a square of a first order differential operator applied to hµν .
Indeed, it is clear that such a rewriting of (4) is impossible because the Lagrangian does not have a
definite sign, even for a Riemannian signature background metric.

One possible attitude to this complexity is to just admit that gravity is not simple. However, over
the last decade we have witnessed the appearance of some striking new results on graviton scattering
amplitudes. These turn out to be much simpler than could be expected to result from the Einstein-
Hilbert action with its notoriously complicated perturbative expansion, of which (4) is the simplest
order. Indeed, explicit formulas are now available for n-graviton scattering amplitudes in 4 dimensions
[1], as well as in arbitrary number of dimensions [2]. The very fact that such explicit formulas exist is
bewildering, given the complexity and number of Feynman diagrams that would need to be summed
to produce these amplitudes. Thus, the very existence of closed form answers for the perturbative
scattering amplitudes suggests that gravity is much simpler than its Einstein-Hilbert formulation
suggests.

The purpose of this exposition is to advertise the fact that gravity in four dimensions simplifies not
only on-shell, but, when reformulated appropriately, also off-shell. Thus, we will show that there exists
a Lagrangian description of gravitons that is much simpler than (4). The new description is based on
a certain complex of differential operators, and the linearised Lagrangian is the direct analog of (2).
This description has been worked out in a series of works [3]-[8] by this author and collaborators on the
so-called pure connection formulation of General Relativity. However, the fact that there is complex
of differential operators underlying this description is noted here for the first time. Our description is
self-contained; no familiarity with the previous literature is assumed.

2 Spinor bundles and related differential operators

We start by describing two (closely related) infinite diagrams of differential operators. These diagrams
house many complexes of differential operators, and the complex of interest for us for applications to
gravity will be one of them. However, it is worth to describe things in more generality, because some
aspects of the construction become clearer.

Let us consider a 4-dimensional Riemannian manifold M , and let ∇ be the operator of covariant
differentiation. Let us also assume that M is a spin manifold so that the two-dimensional spinor
bundles S± exist. Then, as is well-known, the tangent and cotangent bundles can be identified with
the bundle S+ ⊗ S−. A general irreducible spinor bundle is of the form Sk

+ ⊗ Sn
−, where the power

denotes the symmetrised tensor product. In particular, dim(Sk
±) = k + 1. Any tensor or spinor field

is then an object in a bundle of this type, or in a direct sum of such bundles. Let us introduce a
convenient notion of the spin of a spinor bundle:

J(Sk
+ ⊗ Sn

−) := (k + n)/2. (5)

2

Einstein-Hilbert action: Linearisation

gµ⌫ = ⌘µ⌫ + hµ⌫ 2 = 32⇡G

h := hµ
µ

Invariant under

hµ⌫ ! hµ⌫ + @(µ⇠⌫)
Unique linearised Lagrangian with this 

invariance (modulo surface term)

The linearised operator appearing in the EH case is 
not a square of any first order operator (unlike in YM)



Interactions

L(3) ⇠ 1

Mp
h(@h)2

Second derivative interactions

Schematically, the cubic vertex

Negative mass dimension coupling constant

Hence power-counting non-renormalisable

Because of so many derivatives in the vertex, 
2-to-2 graviton scattering amplitude M ⇠ E2

M2
p

E energy of the processM ⇠ 1 apparent breakdown of 
perturbative unitarity

Theory seems to break down at some energy scale:
Problem of quantum gravity

E ⇠ Mp



Expansion around an arbitrary background gµ⇥
quadratic order (together 
with the gauge-fixing term)

cubic order
from Goroff-Sagnotti 

“2-loop” paper

Perturbation theory is extremely complicated:



quartic order

Imagine having to do 
calculations with these 
interaction vertices!

very far from 
the simplicity of 

YM theory



Some surprise:

In spite of being very badly divergent already at 
one loop, the theory is actually one loop finite ‘t Hooft and Veltman

(“pure” GR, for zero cosmological constant, in 4 dimensions)

When ⇤ 6= 0 there is a divergence that can be absorbed 
into the tree-level action

Originally, raised hopes that may be miracles 
continue to higher loops as well

Explicit heroic two loop calculation by Goroff and 
Sagnotti, and then by van de Ven gave a non-zero result

Metric GR is perturbatively non-renormalizable 
starting at two loops - This is why we are here



Linearization of Yang-Mills

ar
X

iv
:1

40
6.

71
59

v1
  [

he
p-

th
]  

27
 Ju

n 
20

14

Gravitons and a complex of differential operators

Kirill Krasnov

School of Mathematical Sciences, University of Nottingham
University Park, Nottingham, NG7 2RD, UK

June 2014

Abstract

Gravity is now understood to become simple on-shell. We sketch how it becomes simple also off-
shell, when reformulated appropriately. Thus, we describe a simple Lagrangian for gravitons that
makes use of a certain complex of differential operators. The Lagrangian is constructed analogously
to that of Maxwell’s theory, just using a different complex. The complex, and therefore also our
description of gravitons, makes sense on any half-conformally flat four-dimensional manifold.

1 Introduction

Maxwell’s theory of electromagnetism is one of the simplest and most beautiful field theories. Math-
ematically, much of its beauty and simplicity rests on properties of de Rham complex of differential
operators. To state the variational principle that gives rise to field equations it is sufficient to consider
only the following part of this complex

Λ0 d
−→ Λ1 d

−→ Λ2. (1)

Here Λn are the spaces of n-forms on a manifold M , and d is the operator of exterior derivative. The
Lagrangian is then

L ∼ (dA)2, A ∈ Λ1, (2)

where, in view of (1) being a complex, dA ∈ Λ2 is gauge invariant, and the square is computed using
the inner product in Λ2 that is constructed using the metric on M .

A special situation occurs in 4 dimensions. Here the space of two-forms splits Λ2 = Λ+ ⊕ Λ−,
where Λ± are the spaces of self- and anti-self-dual 2-forms, and we get the following resolution of de
Rham complex

Λ0 Λ1

Λ+

Λ−

Λ3 Λ4
d

d+

d−

d∗+

d∗−
d

The compositions d∗+d+ and d∗−d− are now not equal to zero, but their sum is. We have abused
the notation somewhat in denoting the operators from Λ± to Λ3 by d∗±. They become the adjoint
of d± : Λ1 → Λ± only after Λ3 is identified with Λ1 using the metric. It is easy to check that the
condition

d∗+d+A = 0 or d∗−d−A = 0 (3)

1
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1

Maxwell: (part of) de Rham complex

Lagrangian
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1

In 4 spacetime dimensions

Maxwell equations (in vacuum)
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1
Negative helicity photons
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1

Yang-Mills is the same, just everything 
tensored with the Lie algebra

L =
1

4g2
(F a

µ⌫)
2

F a = dAa +
1

2
fabcAb ^Ac

field strength (two-form with 
values in the Lie algebra)



Yang-Mills interactions

L(3) ⇠ gAA(@A)

just one derivative in the vertex - much less divergent than GR

dimensionless coupling - may expect renormalisability

The theory diverges already at one loop, the divergence 
may  be shown to be related to the � -function

@

@ log(µ)

✓
1

4g2

◆
=

11C2

6(4⇡)2

the factor in front of the Lagrangian grows in the UV
(asymptotic freedom)

C2 - quadratic Casimir



Summary so far:

Yang-Mills is nice, a perfect theory

Gravity is a mess

But glimpses of GR being not just a random 
non-renormalizable  theory:

GR uniqueness
One loop finiteness in 4 spacetime dimensions

Seem very far 
from each other



The new story part I:    Gravity=(YM)^2

Over the last 20, and increasingly so 10 years it has been 
realised that a lot of progress can be achieved if one 

looks not at the Lagrangian and the resulting Feynman 
rules, but directly at the on-shell scattering amplitudes

Often these can be determined completely from 
surprisingly minimal input

New simple proofs of GR and YM uniqueness 

GR is the only parity invariant interacting theory of massless 
spin 2 particles with second order field equations 



Colour/Kinematis duality

Surprisingly, at the level of the on-shell scattering amplitudes 
(definitely not at the level of the Lagrangian), tree-level graviton 

amplitudes are appropriate squares of the YM ones

Bern, Carrasco, 
Johansson ’08

Many ways to state Gravity= (YM)^2. One of the 
conceptually simplest is the colour/kinematics duality

Aa1,...,an(1, . . . , n) =
X

3�valent trees

Y

v

fvnv

Y

e

1

se

n-gluon scattering amplitude
depending on gluon 

momenta and helicities

Lie algebra 
structure 
constants

kinematic 
“numerators”

propagators



Kinematic numerators satisfy the same Jacobi 
identities as the structure constants do

Tri-valent graphs only!

Such a prescription is proven to be correct (at tree level) 
for some choice of numerators, which are not unique

If a set of “numerators” is known, then the gravity amplitude is

M(1, . . . , n) =
X

3�valent trees

Y

v

nvnv

Y

e

1

se

strip off colour, replace with kinematics

Nobody knows why it works, but it works!

Open/closed string duality if embedded into string theory



Remarks:

The “worst” possible QFT (gravity) appears to be the 
square of the best possible QFT (YM)

If one uses the modern on-shell methods, gravity is not as 
bad as it seems from the expansion of EH Lagrangian

Gravity has a very powerful group of gauge 
symmetries - diffeomorphisms

Gravity is in a certain sense best behaved theory in the UV: 

1/z2 behaviour of tree level amplitudes under the BCFW shift
1/zas compared to in YM theory

Unexpected loop level cancellations (in SUGRA) as 
emphasized by Bern and collaborators



Gravity as a diffeomorphism invariant gauge theory
New developments. Part II:

Exotic reformulation of General Relativity (in 4 spacetime 
dimensions) as a theory of connections rather than metrics

Makes GR quite analogous to YM at off-shell level

Puts problems of GR as a QFT in a different perspective



The idea of construction

4D GR is the unique diffeomorphism invariant theory 
of metrics with second order field equations

Can write diffeomorphism invariant theories of connections 
with second order field equations (see below)

Any such theory will contain gravity - there are 
propagating massless spin 2 particles in the spectrum 

Particular diffeomorphism invariant gauge theory is GR



Diffeomorphism invariant gauge theories

Let f be a function on 

satisfying

f(�X) = �f(X) homogeneous degree 1

gauge-invariant

1)

2)

Then

Diffeomorphism 
invariant gauge 

theories

f(F � F ) is a well-defined 4-form (gauge-invariant)

Can define a gauge and 
diffeomorphism invariant action

g�S g
f : X � R(C)
g - Lie algebra of G

f(gXgT ) = f(X), ⇥g � G

X ⇥ g�S g

no dimensionful 
coupling constants!S[A] = i

�

M
f(F � F )

defining 
function

F = dA + (1/2)[A, A]

can show that linearisation around appropriate 
backgrounds always contains gravitons

Always non-renormalizable! 
(because non-polynomial)

second order feqs



Metric from connections

The metric owes its existence to 
the “twistor” isomorphism

SO(6,C) ⇠ SL(4,C)

The isomorphism implies

SL(4)/SO(4)

conformal 
metrics on M

SO(3, 3)/SO(3)� SO(3)

Grassmanian of 
3-planes in �2

�

Conformal metrics can be encoded into the 
knowledge of which 2-forms are self-dual 



Definition of the metric:

Let be an SU(2) connection
SL(2,C) connection for 
Lorentzian signature

⇣ ⌘

declare      to be self-dual 2-forms � conformal metric

To complete the definition of 
the metric need to specify 

the volume form

reality conditions

A

F ^ (F )⇤ = 0

F

S[A] = ⇤

2

Z

M
(vol)

⇤

2
(vol) = i f(F ^ F )

Any diffeomorphism invariant SU(2) gauge theory is a theory of interacting gravitons



GR as a diffeomorphism invariant gauge theory

� �= 0

(only) on-shell equivalent description:

connection satisfying 
the resulting Euler-
Lagrange equations

� Einstein metric (of non-
zero scalar curvature)

SGR[A] =
i

16�G�

⇤

M

�
Tr
⇥

F � F
⇥2

Lagrangian is a function of the first 
derivatives of the basic field



Final result: Gravity as theory of connections

Formalism that describes geometry using an SO(3) 
connection, not metric as the main variable

g = @A
F = @A

Both metric and the curvature are 
derivatives of the connection

Field equations @2A = A

second order PDE’s on the connection

On-shell

Ricci = @2g = @3A = @A = g

Weyl = @2g = @3A = @A = F

Requires non-zero 
cosmological constant



Gravitational instantons

These are particularly simple in the language of connections

F i ^ F j ⇠ �ij

Claim: for connections satisfying this first-order PDE, the 
metric obtained by declaring F’s self-dual is anti-self-dual 

Einstein with non-zero scalar curvature

first-order 
condition!



describes two spin 2 propagating DOF

New description of gravitons

L ⇠ (�a)2, a 2 S3
+ ⌦ S�

field equations

�⇤�a = 0

gravitons of negative helicity

�a = 0

non-negative Lagrangian

description of GR 
without the conformal 

mode problem

S2
+

d�! S3
+ ⌦ S�

��! S4
+

Works on any instanton space!

Linearization gives rise to the following complex



One loop behaviour

GR continues to be one loop renormalisable in the 
language of connections 

@

@ log(µ)

✓
1

16⇡G⇤

◆
=

121

5(4⇡)2

The coefficient in front of the action grows in the UV

Compare with the YM one loop result!



Summary

In the language of connections, GR becomes in 
many ways analogous to YM theory

Lagrangian function of first derivatives L ⇠ (ẋ)2

Linearised field equations operator is a square of appropriate 
first order one (and complex of operators arises)

L ⇠ (�a)2, a 2 S3
+ ⌦ S�

Instantons is a first order condition

One loop divergence makes the coefficient in front of the 
action flow logarithmically with energy, and increase in the UV

Principal difference: diffeomorphism invariance in gravity

Results in gravity interactions being controlled by a 
negative mass dimension coupling



Remarks:

One should not be scared of negative mass dimension couplings

They are good for field redefinitions!

� ! �+ (1/M)�2 + (1/M)@�+ . . .

Only divergences modulo field redefinitions matter



The two loop divergence in GR
Goroff, Sagnotti ’85

Van de Ven ’91Scary calculation, ever done just by 3 people
Algebraic manipulation (computers) is essential

The new calculation uses on-shell methods Bern et al ’15

�(2)
1 =

1

120(4⇡)4
209

24

1

✏

Z
(Riemann)3

209

24
� 15

2
n3

Possible to add non-propagating 3-form fields

209

24
! On-shell irrelevant modes 

change the UV divergence

Divergence is sensitive to the off-shell details of the theory
Renormalisation scale dependence is insensitive to this



Concluding remarks

Gravity is much closer to gauge theory than could have 
been anticipated. Either (YM)^2 on-shell, or particular 

diffeomorhism invariant gauge theory off-shell

Gravity also behaves like YM in many ways. The principal 
difference is the dimensionality of the coupling 

The two loop behaviour of gravity is poorly understood.
Can the divergence be an artefact of a particular off-shell version? 

Can it be an artefact of a particular regularization that is used?

The 2-loop integrand vanishes if 
evaluated in 4 dimensions!



Thank you!

Perturbative gravity used to be a mess. Everybody was 
happy that it diverges at 2 loops - don’t have to deal with it!

But may be it is time to change the frame of mind and accept 
that gravity is in some sense most symmetric and beautiful QFT 

there is - we just don’t understand it yet

Is there a diffeomorphism invariant 
QFT in 4D that makes sense?


