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m Quantum estimation

m The quantum Fisher information of input-output systems
m Estimation with ‘simple’ measurements

m Quantum post-processing with coherent absorbers

m Dynamical phase transitions and Heisenberg scaling



Quantum parameter estimation

o =>@ X Py

m Estimation problem: estimate 0 by performing a measurement M on system in state pg

m What is quantum about this ?
> fixed measurement: "classical stats" problem with special probabilistic structure
> '"optimal" measurement: need to understand structure of quantum statistical model

» quantum enhance precision when 6 is encoded with "sensitive states"

m Classical and quantum Cramér-Rao bounds!: if 6 is unbiased

E [(9 0T (6 9)} > [M(g)~1 > F(g)~!

Classical Quantum
Fisher info Fisher info

LA, Holevo. Probabilistic and Statistical Aspects of Quantum Theory (1982); S. L. Braunstein, C. M. Caves, P.R.L. (1994)
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> ‘\ /F/2 9> coherent state with mean (\ /F/2 9,0)

» quantum Fisher information = 4Var ( F/QP) =F

F/26

» Cramér-Rao bound achieved by measuring Q

m Tutorial: Convergence of IID ensemble converges to Gaussian shift model
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Markovian quantum open systems in continuous time
Environment . /\-f‘

m Dissipative evolution of open system

£ o(t) = Lo(t) = ~ilH, p(0) + DL - S o), L L)

m Ergodicity: system converges to stationary state pss (Lpss = 0)

P(t) = etﬂpin — Pss

m Estimating unknown “dynamical parameters” 6 — Dy = (Hg,LZ)) by direct probing

> system may not be accessible (e.g. in quantum control applications)
> system would need to be initialised repeatedly

» Information about dynamical parameters “leaks" continuously into the environment



System identification and estimation with input-output open systems

Input et Output
ystem Q(t)
ﬁ(> (H.1) — \,\/N(t)

m Unitary dynamics: singular coupling with incoming input fields (Q Stoch Diff Eq2)

AU (t)

1
(—z’Hdt 4 LdA* (1) — L*dA(t) — §L*Ldt) U

m System identification: if § — (Hg, Lg), estimate 6 by measuring the output3

which parameters can be identified ?
how does the output QFI scale with time ¢ ?
how does this relate to dynamical properties, e.g. ergodicity, spectral gap...?

which measurements are informative ?

vVvyyvyVvyy

how to achieve high estimation accuracy ?

?K. R. Parthasarathy, An introduction to quantum stochastic calculus, Springer Birkhauser (1992)

3H. Mabuchi Quant. Semiclass. Optics (1996); J. Gambetta and H. M. Wiseman Phys. Rev. A (2001);
S. Gammelmark and K. Molmer Phys. Rev. A (2013), S.Bonnabel, M.Mirrahimi, P.Rouchon, Automatica (2009)...
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Quantum input-output systems

m Input-output formalism describes controlled open system dynamics
m Quantum filtering, feedback control, quantum networks

m Control and system identification: two sides of the coin
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Advanced LIGO
B. P. Abbott et al. Phys. Rev. Lett. (2016)

Feedback control of cavity state in the atom maser
C. Sayrin et al, Nature (2011)

4C. W. Gardiner and P. Zoller, Quantum Noise (2004)
H. M. Wiseman and G. J. Milburn, Quantum measurements and control (2010)
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Output state as superposition of quantum trajectories

quantum jump trajectory xS |, 12
Q,
O 00D POV O ©
time
Mot 45t 3ot 26t ot

0 400 800 1200 Kt

m Monitoring the environment produces jump trajectories with infinitesimal Kraus operators

> "no emission": Kg = e i0tHe /1 Gt Zj Lg*Lg

> "emission" in channel j: Kg = ¢~ i0tHe \/5tLg

m System-output state: coherent superposition of quantum trajectories, (continuous) MPS®

5T O) = Vel = Y K KP ) @l 1), n=t/8

J1y--dn

Sm. Fannes, B. Nachtergale and R. Werner, Commun. Math. Phys.(1992);
D. Perez-Garcia, F. Verstraete, M. Wolf and |. Cirac, Quantum Inf. Comput. (2007)



Generator of parameter change in system-+output state

m Model dynamics with unknown parameter 6 € R™

Dy = (Hg, L) — |T5°@)) = Us(t)lp ® Q)

m Tangent vector at Dy corresponding to changes in component 6,

D(ib

Deg Dy

. . . OH OL
Dy.o = (Ho,a, Lo,a) = ( )

80, 80,

m Generator of parameter change for component 6,

0
004

|w5H2()) = U a(t)lp ® Q) = Ug()Go.a (D)0 ® Q)

m Generator is a quantum stochastic integral (fluctuation operator)

G(g#a(t) = \/Z]Ft(Dgya) = / Lgya(s)dA*(S) — igD(Dgya)(S)dS
0

Ep(D)

H +Im(L*L) = Tr [pD (H + Im(L*L))] 1



Quantum information geometry of stationary output state

nonid
75

Theorem (QFI as Riemanian metric)

The quantum Fisher information matrix F, 3(t) = 4Re <G§ ) Gg}b(t)> grows linearly in t
with rate F, ;, given by the asymptotic Markov covariance of fluctuators

Fa,b 4Re (DQ,avbe,b)D
= 4ReTr [pes (Lo,a — ilLo, £ 0 Ep(Do,a)]) " - (Lo, — ilLo, £ 0 Ep(Da,p)])] -

The tangent space decomposes into identifiable and unidentifiable subspaces Tp = ng ® Tgonid

m 7pomd = {D:D=4[K,D]+¢(1,00} — (D,D)p=0
n T ={D:Ep(D)=0} — (D,D')p="Tr(pRL*L")

m F,} defines a Riemannian metric on P = D/G

Tutorial: Convergence to Gaussian model on CCR algebra
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Counting measurement and total counts statistic®

m Let A("“t)(t) be the counting process with stationary emission rate

A (out)
tim 270

t—00 t

me = T?"(pgSLZLg)

m Let 6 =60y + u/\/i in terms of local parameter u.

Theorem (asymptotic normality and classical Fisher information for counting)

If dynamics is ergodic, then A("“t)(t) satisfies local asymptotic normality, i.e. the following
convergence in distribution holds as t — oo,

AU () —tmy D
SR HE R
dmg

where jic 1= =% q and V.. have explicit expressions in terms of D = (H, L) and L.
0
The asymptotic (rescaled) classical Fisher information is given by the SNR

2
=t <F

c
AU (1) —tmg
the

lim tE [(6; — 0)] = 1.
t—o0

The estimator 0; := 6y + is asymptotically normal and satisfies

6C. Catana, L. Bouten, M.G, J. Phys. A (2015)



Homodyne measurement and integrated current statistic’

B Let X (t)(t) = AU (t) + AlCut)*(¢) be the homodyne process with stationary mean

X®

mg = Tr(pf, (Lo + L})) = lim
t—oo L

m Let 6§ =60y + u/ﬁ in terms of local parameter u.

Theorem (asymptotic normality and classical Fisher information for homodyne)

If dynamics is ergodic, then X (t) satisfies local asymptotic normality, i.e. the following
convergence in distribution holds as t — oo,

X(t) —tmg, D
——— — N(ppu, V;
e (pnu, Vi)

where pp, := ddﬂe‘f’- |90 and Vj, have explicit expressions in terms of D = (H, L) and L.

The asymptotic (rescaled) classical Fisher information is given by the SNR

2
=t <p
Vi
A X (t)—t .
The estimator 0; := 0y + %l is asymptotically normal and satisfies

lim ¢E [(8; — 0)] = I, .

t— o0

7C. Catana, L. Bouten, M.G, J. Phys. A (2015)



Example: atom maser

Cavity
Input excited vy

atoms ITI Output atoms
© O | ® | @ <
L ,

3 (x,'.n (h’, 2)

Thermal bath detection trajectory

B Atom maser with Jaynes-Cummings interaction

U:|l)® |k) — cos ((ﬁ\/k—i—l) |1) ® |k) + sin ((b\/k-i-l) [0) ® |k +1)

m Coarse grained cavity dynamics for Poisson distributed input atoms with rate Ne;

4
dp _ L(p) = Z (LipLz‘ - %{LZ‘LwP})

dt
i=1
> L :|k) = /Negsin(¢pvk + 1) |k 4 1) (excitation absorbed from atom)
» Ly :|k) — v/Neg cos(pvk + 1) |k) (atom remains in excited state)

> L3 :|k)— /k(v+1)|k—1) (photon emitted in the bath)

» Ly:|k)— y/(k+1)v|k+ 1) (photon absorbed from the bath)



Stationary state and phase transitions

0.4 0.6 0.8 1 12

o
Mean photon number and photon distribution in the stationary state as function of &« = \/Neg ¢

® unique stationary state

- Neo sin®(sVE
pSS(n):pSS(O)H(ViI‘FU_H%)
k=1

m jumps in mean photon number around o = 1, 27,47
m bistable stationary distribution around o = 27,47

m can be undestood via large deviations for the counting process!

1J. P. Garrahan and I. Lesanovsky, Phys. Rev. Lett. 2010



The many Fisher informations of the atom maser?, °

m Quantum Fisher information F' = 4N, Tr(pssN)

m Total counts exhibits zero Fisher information at maximum of QFI
m ML based on full counting trajectory has Fisher close(r) to QFI
m ABC with ‘composite statistics’ comes close to ML

40000

300

30000

Maximum Likelihood
Cour

stat

20000

Fisher.Info

10000+

red: quantum Fisher info
black: observe cavity 4+ bath red: Fisher info total counts
blue: observe cavity blue: Fisher info counting process

8C. Catana, M van Horssen, M.G., Phil. Trans. Royal Soc. A (2012)
9C.Catana, T. Kypraios and M.G. J. Phys. A: Math. Theor. (2014)
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How to design ‘better’ measurements?

m Using full information in measurement trajectory (eg via ML) may be expensive

m Alternative: extend class of ‘simple measurements’ by ‘quantum post-processing’

H L

Input Svet Output Pt
ystem ost-proc B(t)
> H L > 7 > D/\/N@)

m Dynamical parameters of cascaded system (L, H) > (L, H)

H.=H+H—i(LL* — L*L) Le=L+1L

m QFI of joint system does not change but allows for more general measurements

m How to design good quantum post-processors, or more general feedback networks ?



Coherent absorbers!?

System Absorber

Input Be 2 Output

== i Wi

vacuum vacuum
H L H L

m Absorber: stationary state of joint system is pure with Schmidt form

[Yss) =Y VPaln) @), pss =) paln)(n|

n

m As consequence, joint output is vacuum

m Absorber’s dynamical parameters

=3 A/ Etmizn) In) (m]
Pm

n,m

,EE ( Prog(ers) PﬂHgffwf>*> ) (m|
2 Pm 7 Pn o

0k, Stannigel, P. Rabl, and P. Zoller, New Journal of Physics (2012)

L

H




Null measurement with compensating absorber

Input Output

System Absorber B(t)
== Hoty | " > == bN(t)

ggu Zzgo

m Let 6 = 6y + 00 with 6y a known ‘preliminary estimator’
m Use absorber system (E[@O,ixgo) as compensator for unknown system (Hp, Lg)

m Is this useful ?

> null measurement is conceptually simple
> procedure can be implemented adaptively

2
( dmg | )
a0
0 . . .
»> SNR has the form —v 9/ Variance Vo, is easier to compute wrt vacuum
o



Homodyne measurement

Input Output
System Absorber B(t)
: HyLg : Hy, Lo, N(t)

m Homodyne: stochastic process {X(s) = %(A("“t)(s) + Alut)*(5)) : 5 € [0,1]}

> First moment: integrated homodyne current X (t) has Fisher info rate

Koo _ o _ dTr(p* (L + Lo))
11:7211907 “GO—T

0o
» Second moment: quadratic functional Y (¢) = fot fot k(s,r)dXsdX,

I(k, ¢oo) |

SNR =
(R k)

» Maximum Fisher info rate achieved for k(s,r) = ég, (r — s)

2 o0
b=WMﬂH=/I%ﬁWW
0



Simple example

m ‘Reference’ model [3)
Lo = €(|0){1] + [1)(2[ + [2)(3]), Ho =0 lLO
pg* = |0)(0] 12)
Ly H~ L
m Perturbed model: . 1) Vit
L=1Lo, H=2( (2o +u¥ ol _
pgs = prn Lo
=000 + 5™ + .. 0) l

1) Parameters for 0'( ) and ol(,ij) with 4,5 > 1 have zero QFI
2) Perturbations uf,u} have F' = =3 and is achieved by first moment homodyne of P(t), Q(t)
3) Perturbations ug,ug have F' = i—g and is achieved by second moment homodyne functionals

4) Perturbations ug,ug have F' = % and is achieved by third moment homodyne functionals

5) Wanted: general theory with Hp|0) = 0 and Lo|0) = 0.
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Thermodynamics of quantum trajectories 1! : the atom maser

Input excited

atoms ,Tl Output atoms
© o | ® @ S

. ‘
3 (1) (t,2)
Thermal bath detection trajectory

active

Cavity state (filter) away from DPT

Cavity state (filter) at DPT

PN

Wi ) X! St
§i%
$ %
& %,
“ " ) mt ot

Counting distribution away from DPT Counting distribution at DPT

Hy Garrahan, |. Lesanovsky, Phys. Rev. Lett. (2010)



Counting statistics and dynamical phase transitions'?
1) ™ I I
DB Ot O
0, 3 Ny 1L

[0) L
Q/K
10, ]
1
0 400 800 1200 kt 0 200 400 600 800 1000 Kt

m If £ is ergodic (spectral gap A\ := —Re)2 > 0) then

t—o0
> system converges to stationary state p(t) = et (pin) ——— pss

> Counting operator N(t) has normal fluctuations (AN (t) o v/t) around mean tu

m If £ is near phase transition (AX & 0) then
> metastability: slow convergence to stationarity, long correlation time 7 = 1/A\

> intermittent trajectories, counting operator N (t) has bimodal distribution up to times 7

m If £ has degenerate stationary states then
> infinite correlation times

> counting operator N(t) remains bimodal all times and variance increases as 2

2, Garrahan, |. Lesanovsky, Phys. Rev. Lett. (2010); |. Lesanovsky, M. van Horssen, M. G., J. Garrahan, P. R. L. (2013)



Phase estimation: Heisenberg limit at the DPT'3

Input Output ﬁ
idpat i
[ System e'?tel|passive) +

H L

ePret|active)

m First order phase transition: system with two "stationary phases" (H = H; ® Ha) with
different emission rates p; # pq

m Initial state: superposition \/pi|xi) + /PalXa) With |Xa,i) € Hi,a

m GHZ-type system-output state with generator N (t)
[ (8)) = e PN M (1)) & /Bie Pt [ (£)) + \/Pae'®Hat [1ha (t))

m Heisenberg limit wrt time:

F(t) = 4Var(N (1)) &~ 2pipa(pia — 1:)?

ot

m must measure sys+out to achieve QFI

it Hal
By Macieszczak, M.G. |. Lesanovsky, J. P. Garrahan Phys. Rev. A (2016)




Phase estimation: QFI time behaviour near phase transition

Input Output ﬁ
System
- \4

0 400 800 1200 kt

m System near first order DPT: metastability = counting trajectories exhibit intermittency
m Short time (¢ < 7) distribution of generator N(t) is bimodal = quadratic growth of QFI

m Long time (¢ > 7) ergodicity and normal fluctuations win = linear growth of QFI

;tT/

‘A2N (t)

ox 12

~+V

T=AN1



m Estimation and identification of input-output systems

>

vyVvyVvyVvyYyvyy

Identifiable parameters manifold P = D/G

Information Geometry: QFI is real part of covariance of Markov generators
Local Asymptotic Normality: CCR Gaussian shift limit model (tutorial)
Fisher information depends on measurement AND statistic of trajectory
Quantum post-processing with coherent absorber

Dynamical phase transitions allow for quadratic scaling of QFI

Linear I-O systems: time dependent and stationary theory (tutorial)

m Ongoing / future work

vyvyYyvyy

General quantum Markov CLT

use of coherent feedback in system identification
more realistic models with inaccessible channels
design of better input states

time-dependent paramters



Convergence to Gaussian model for i.i.d. ensembles

v % [—

/,®n
|U00+u/ﬁ>

m Quantum data: ensemble of n identically prepared systems

o)™ = (C1)) ", (wIGlY) =0

m Local asymptotic normality (Gaussian approximation):

In an “uncertainty neighbourhood" of size n=1/2

approximately equal to those of a Gaussian model with QFI = F

’¢1>n o =T <\/F7/2u

(1—(wI1G2|p)/2n+... )™

(O | Voo = (Bl

around 6o, the overlaps of joint states are

)




Gaussian approximation (LAN) for (system +) output state®

s+o0
\pﬂo+u/ﬁ(t)>

s+o
\p90+l'/\[t(t)>

m Parameter uncertainty = =125 interesting statistical features are local: 0 = 6 + u/\/ff
1. _ 1 . B
Dagu/vi = Doy + 2 Du+ Ot 1) = Dy, + 7 > Doy, +O(Y)
a

Theorem (Local asymptotic normality)

Let Wp be the CCR algebra over TA? (continuous variable system) with Wey! unitaries W (u)
and “vacuum” state |0) satisfying

W(uw)W(v) = e~im(Du,Du)p W (u+v), (0|W (w)|0) := e~ 31Pulp

s+o

90+u/\/{(t)> converges locally to coherent states (Gaussian)

System+-output quantum model | ¥
model |u) := W (u)|0).

g s+o s+o — —l”Du—Dv”2 =
tgn;o <\1190+u/\/5(t) ‘ ‘1190+v/\/f(t)> =e 2 p= <u|v>

6M.G., J. Kiukas, J. Math. Phys. (2017), Similar result for the reduced output state



