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Abstract. A stationary theory of quantum stochastic processes of second or-
der is outlined. It includes KMS processes in wide sense like the equilibrium
�nite temperature quantum noise given by the Planck�s spectral formula. It
is shown that for each stationary noise there exists a natural output process
which is identical to the noise in the in�nite temperature limit, and �ipping
with the noise if the time is reversed at �nite temperature. A canonical Hilbert
space representation of the quantum noise and the fundamental output process
is established and a decomposition of their spectra is found. A brief expla-
nation of quantum stochastic integration with respect to the input-output
processes is given using only correlation functions. This provides a mathe-
matical foundation for linear stationary �ltering transformations of quantum
stochastic processes. It is proved that the colored quantum stationary noise
and its time-reversed version can be obtained in the second order theory by
a linear nonadapted �ltering of the standard vacuum noise uniquely de�ned
by the canonical creation and annihilation operators on the spectrum of the
input-output pair.

1. Introduction

In this paper we develop a correlation theory of stationary quantum noise, give
its spectral analysis and classi�cation and extend the theory of quantum stochastic
integration [1] to colored quantum noise [2]. The typical example of such noise
is given by the Planck spectral formula. It shows that �nite temperature equilib-
rium quantum noise is not white in contrast to classical equilibrium noise given by
the Nyquist spectral formula. The weak coupling limit and rotating wave approx-
imation [2, 3] make it possible to approximate the equilibrium quantum noise by
canonical pairs of noncommutative white noises in a narrow spectral band near a
resonant frequency.
Although such an approximation is su¢ cient in quantum optics and in many

other practical cases, it is not satisfactory from a purely theoretical point of view
because it does not correctly predict the simplest quantum stochastic motion of a
free Brownian particle in an equilibrium environment, when the resonant frequency
is zero.
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In order to describe the output stochastic processes of quantum �lters and other
devices of quantum measurement and communications as functional transforma-
tions of the equilibrium noise, we also need a generalization of the notion of quan-
tum output �elds [4, 5, 6] in the framework of stochastic integration with respect
to the colored quantum noise
The well developed quantum stochastic calculus and noncommutative extension

of Itô integration to vacuum noise with canonical commutation relations in the time
domain [6, 7] is not directly applicable to such cases, neither is the calculus and
integration with respect to stochastic models of temperature quantum noise with
�at spectrum [5, 8].
But we can use the methods of quantum stochastic integration in the spectral

domain, in which the stationary quantum noise is �-correlated with a certain mod-
i�cation. The latter is required because the colored quantum processes are not
frequency-stationary and need not be adapted in the spectral representation. Al-
though non-stationary and non-adapted theories of quantum stochastic calculus
and integration have been already established [9, 10, 11], here we will use the much
more simple approach of mean square integration which is su¢ cient for the non-
adapted linear transformations. The corresponding classical theory of stochastic
integration was developed by Wiener before the Itô integration theory and is based
on the possibility of representing any (colored) process stationary in the wide sense
as a linear �ltering integration of the standard white noise.
Here we shall prove that any quantum process stationary in the wide sense can

be also obtained from a standard one also by �ltering. In fact, we will show that
it can be obtained by mean square integration with respect to a canonical pair of
orthogonal quantum integrators describing the standard zero temperature (vacuum)
noise in the second order. Although such a possibility is known for the Gaussian
case as a Bogolubov transformation which doubles degrees of freedom of the noise
in such representation, it has not been realized in the theory of quantum noise and
integration.
We will remove this unpleasant feature by deriving the fundamental output

process for a given quantum noise as the canonically time-reversed noise, which
commutes with the input noise and has maximal possible correlations with it. In
the classical (or in�nite temperature) case, the fundamental output process coin-
cides with the noise. In the quantum case it gives the best possible nondemolition
�ltering and time continuous indirect observation of the noise.
The fundamental output process for a given Gaussian quantum noise in the

framework of quantum stochastic calculus was introduced in [12] and the possi-
bility of its nondemolition observation was demonstrated for Markovian models of
interaction with a quantum open system in the quantum theory of �ltering (see the
recent survey [13] and papers cited therein).
To explain the idea of the fundamental output process, let us represent a canon-

ical Bose-noise annihilation and creation pair b, by with non-zero temperature cor-
relations

hbybi = n; hbbyi = n+ 1

by the linear combination b =
p
n+ 1a +

p
nc of the zero temperature pairs a, ay

and c, cy with
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[a; ay] = 1; [cy; c] = 1; [ay; c] = [a; c] = 0:

Then the combination ~b =
p
na +

p
n+ 1c de�nes a canonical pair ~b, ~by of output

creation and annihilation operators with correlations

h~by~bi = n+ 1; h~b~byi = n

which commutes with the noise, [~b;b] = [~b;by] = 0, and provides the maximal

mutual correlations h~bbyi =
p
n(n+ 1), corresponding to correlation coe¢ cient

r = 1.
In the classical case, the latter would mean that ~b = b, but this is not the case:

~b commutes with by but b does not. Nevertheless ~b is uniquely de�ned for the
noise b by the described properties as the time-reversed noise, which in the real
arrow of time plays the role of the fundamental output process. Moreover, the zero
temperature pair a, c is uniquely determined by the pair (b; ~b), being given by

a =
p
n+ 1b�

p
n~b; c =

p
n+ 1~b�

p
nb:

2. Quantum Correlations and Reversed Processes

Here we sketch of a second order theory of quantum noise and linear �ltering
of stationary signals, initiated more than 20 years ago in the pioneer paper [14].
A real scalar quantum stochastic noise as a process x� = (xj) in second order is
completely determined by the zero mean values hxji = 0 and �nite variances alone
hx2j i < 1 of the Hermitian variables xj = xyj and also by their not necessarily
symmetric covariances, or correlations hxixji 6= hxjxii. The products xixj in h�i
form a Hermitian-positive kernels hxijxji which de�ne the scalar products in a
complex Euclidean space. By writing an invertible correlation kernel hxixji �
hxijxji as a bra-ket inner product hxij � jxji, we can describe the quantum noise in
second order by real vectors jxji = jxji] equipped with the involution jzi 7! jzi] =
jzyi. The latter, de�ned by

j
X

�jxji] =
X

��j jxji 8�j 2 C

such that jzi]] = jzi, gives vector representation of the Hermitian conjugation
z 7! zy =

P
��jxj with �

�
j = �j for the complex combinations z =

P
�jxj � � � x of

the Hermitian variables xj given by raws � � = (�i).
Let us interpret the index j as �discrete time�, e.g. j 2 Z when x� = (xj)j2Z

is two sided in�nite sequence (� � � ; x�1; x0; x1; � � � ) of Hermitian variables with the
time ordered correlations

Kij = hxi xji � hxijxji ; i > j 2 Z

and the reverse ordered Kji = hxj jxii which we need to de�ne the scalar product of
the corresponding vectors jxji. In contrary to the classical theory, these correlations
need not be real valued even for Hermitian xj , so that time reversal corresponds to
their complex conjugation:

Kji = hxj xii = h xi xji = Kij :
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Although the reversed correlations may be considered as not �observable� in the
real arrow of time, they are de�ned by complex conjugation in such a way that the
Hermitian matrix K = [Kij ] is positive de�nite:

��K � � :=
X

��i hxi xji �j =


zy z

�
� 0;

as is the complex conjugate = transpose K = [Kij ] = [Kji] = eK :

�� eK � � :=
X

�j hxj xii ��i =


z zy

�
� 0:

We claim that K can be treated as the correlation matrixeKij = hexi exji � hexijexji; 8i � j 2 Z
of another sequence exi = (� � � ;ex�1;ex0;ex1; � � � ) of Hermitian exi commuting with xj
for all j 2 Z which is maximally correlated to x� = (xj)j2Z in the sense that the real
covariance matrix G = [hexi xji] ispositive and symmetric as the geometric mean
G =

�
K � eK�1=2 of K and eK = K. The sequence ex describes the fundamental

output process as reversed noise by the quantum Hermitian variables exj = exyj
which will also be represented by real vectors jexji = jexji[ with respect to another
involution jezi 7! jezi[ uniquely de�ned on the complex combination ez =� � ex by
complex conjugation of the coe¢ cients �j 2 C. This suggests a natural norm

k� �k
2
=


zy z

�
+


z zy

�
= ��

�
K + eK� � �

in the space E of test sequences � � = (�i) for the simultaneous treatment of linear
combinations jzi =

P
�j jxji of the ] - real vectors jxji = jxji

], and the combinations

jezi =P �j jexji of [ - real vectors jexji = jexji[, representing exj = exyj .
From now on for the sake of simplicity we shall restrict ourselves to the case

when the matrices K and eK commute as it is in the stationary case

Kij = ki�j ; k�j = kj ; 8j 2 Z
(see also [12] for a more general, noncommutative case.) In this case that covariances
of xi and exj are described by the real symmetric matrix

G =
�
K K

�1=2
=
�
K K

�1=2
= G

as geometric mean of the commuting K and K, corresponding to maximal correla-
tions with zero commutators between x and ex:

Gij = hxi exji = hexjxii = Gji; 8i > j 2 Z
If K is invertible, this output process is identically correlated with the noise, corre-
sponding to the correlation coe¢ cient r = 1, and in the classical case eK = K such
the sequence (exj) is always identi�ed with (xj). The invertible case corresponds to
the thermal noise which we call standard if Gij = �ij , that is if the inverse noise
(exj) is �-correlated with (xj) such that eK = K�1. The opposite situation eKK = 0
when (exj) is uncorrelated with (xj) such that r = 0 is possible only in the quantum
case. It corresponds to the vacuum noise which we call also standard if K+ eK = I.
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Let us prove the existence of the time-reversed sequence ex 6= x in the second
order quantum theory corresponding to the case eK 6= K, and �nd the adjoint
involution j~zi 7! j~zi[ = j~zyi,

j
X

�jexji =X ��j jexji 8�j 2 C

such that j~zi[[ = j~zi, giving the reversed vector representation of the Hermitian
conjugation ~z 7!~zy =

P
��jexj for the complex combinations ~z =P �jexj in the case

of invertible K.
The commuting matrices K and eK have common eigen vectors u� (generalized

row-vectors), given as complex eigen-sequences u� = (uj)j2Z such thatX
i2Z

uiKij = �uj ;
X
i2 Z

ui eKij = e�uj ; j 2 Z

with eigenvalues � and e� � 0, corresponding to the complex conjugate eigen se-
quences u� = (uj)j2Z :X

i2Z
uiKij = e�uj ; X

i2Z
ui eKij = �uj ; j 2 Z

Indeed, let K and eK have a common eigen-row-vector u� with eigenvalues � � 0
and e� � 0 respectively. Because eK is the complex conjugate matrix of K, u� is
also a common eigenvector, but with the real eigenvalue e� for K and � for eK. Two
cases arise

� = ��: In this case we may assume without loss of generality that uj =
uj ; 8j 2 Z

� 6= ~�: In this case the eigenvectors u�, u� are orthogonal and so we haveP
u2j = 0.

This means that the index set 
 of the eigen sequences h�j := (uj(�))j2Z is
equipped with a natural �ip

� 7! ��; �(��) = �; e�(�) = �(��)

such that u�(�) = u�(��) and the (generalized) Plansherel measure d� on 
 is invari-
ant under this �ip. The complete (with respect to d�) orthogonal set fu�(�)j� 2 
g
can be chosen in such a way that uj(�) = uj(��) i¤�(�) = �(��) and

P
j2Z

u2j (�) = 0

i¤�(�) 6= �(��). This �ip de�ned an isometric involution '? (�) := ' (��) � e'� (�)
in the Hilbert space L2 (
) as antilinear map ' 7! '?; '?? = ' satisfying

h'?j i =
Z
' (��) (�) d� =

Z
' (�) (��) d� = h ?j'i 8'; 2 L2 (
) .

We shall assume without loss of generality that the Plansherel measure d� on
the null subset N0 = f� : �(�) = 0 = e�(�)g is zero, taking N0 = ; such that its
support 
 is identi�ed with the union N?+ [N?�, where

N?+ = f� : �(�) > 0g ;N?� = f� : e�(�) > 0g :
are the complementary subsets of the null sets N+ and N� for � 2 L1

�
N?+
�

and e� 2 L1
�
N?�
�
. Let us prove that the pairs f
 3 � 7! �xj(�)g 2 L2

�
N?+
�
,
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f
 3 � 7! x̂j(�)g 2 L2
�
N?�
�
of complex amplitudes

�xj(�) = �(�)
1=2
uj(�) � h�jxji; x̂j(�) = e�(�)1=2uj(�) � h�jexji

which are related by the isometric involution ? as

x̂j = �(��)1=2uj(�) = �(��)1=2u�j (��) = �x?j
where u� = u, give the spectral representation of the quantum noise vectors jxji
and jexji.
Indeed, by virtue of the completeness of fu�(�) j � 2 
g it follows that

�xyi �xj :=

Z
�xi(�)

��xj(�)d� =

Z
�(�)ui(�)uj(�)d� = Kij

x̂yi x̂j :=

Z
x̂i(�)

�x̂j(�)d� =

Z e�(�)ui(�)uj(�)d� = eKij

�xyi x̂j :=

Z
�xi(�)

�x̂j(�)d� =

Z

(�)ui(�)uj(�)d� = Gij

where we used the invariance of the measure on 
 with respect to the �ip � 7! ��.
Let us de�ne the antilinear maps jzi 7! jzi], j~zi 7! j~zi[ of vector conjugation

�z] = ��1=2�z?; ẑ[ = �1=2ẑ?;

respectively on the dense domains D] � L2(N?+) and D[ � L2
�
N?�
�
as the subspaces

D] =
n
�z: �1=2�z 2 L2(
)

o
;D[ =

n
ẑ : ��1=2ẑ 2 L2(
)

o
of square integrable complex amplitudes �z 2 L2(
) with the support in N?+ and
ẑ 2 L2 (
) with the support in N?� where �1=2 =

pe�=� and ��1=2 = p
�=e� are

well de�ned as positive operators of multiplications respectively by [e�(�)=�(�)]1=2
and [�(�)=e�(�)]1=2 into the subspace L2 (�) the common support

� = f� : � (�) 6= 0 6= e�(�)g = N?+ \N?�:
Note that D] � L2(
) is generated by the complex amplitudes �z =

P
�j �xj with

�z? 2 D[ and the adjoint conjugation on the subspace D[ � L2(
) is generated by
ẑ =

P
�j x̂j with ẑ

? 2 D] such that D] = D?[ . Moreover, �z]? = �z?[, ẑ[? = ẑ?] and
ẑ[ = ��z], �z] = ��1�z[ are densely de�ned involutions in the subspace L2 (�) and
�? = ��1 on �.
In the case of nonzero temperature, when � = 
 and D], D[ are dense in L2 (
),

the spectral representations of quantum noise and the output process are connected
by the spectral linear �lters

x̂(�) = �(�)
1=2
�x(�); �x(�) = �(�)

�1=2
x̂(�);

and �x]j = �xj , x̂
[
j = x̂j for the generating spectral sequences (�xj) and (x̂j):

�x]j(�) = �(�)
�1=2

x̂j(�) = �xj(�); � 2 N?�;

x̂[j(�) = �(�)
1=2
�xj(�) = x̂j(�); � 2 N?+:
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The latter implies jzyi = jzi]; j~zyi = j~zi[ for the complex-linear combinations z =P
�ixi, ez =P �iexi sinceD

xyi jx
y
j

E
= hxijxji = hexj jexii = x̂yj x̂i = �x

y
i �xj = �x

]y
i �x

]
j ;Dexyi jexyjE = hexijexji = hxj jxii = �xyj �xi = x̂yi �xj = x̂[yi x̂
[
j ;Dexyi jxyjE = hexijxji = hxj jexii = �xyj x̂i = x̂yi �xj = x̂[yi �x
]
j :

The spectral amplitudes �xj , x̂j in the time representation

xj
i =

Z
ui(�)�xj(�)d� ; exj i = Z ui(�)x̂j(�)d�

describe the canonical vector realization xj ; exj of jxji; jexji. It is given by the matrix
elements of the square roots X = K1=2 and eX = eK1=2 as

xj
i = Xij ; ex i

j =
eXij ; i; j 2 Z

such that exij = xj
i as eX = X. They are thought as the `2(Z) columns

xj = (xj
i)
i2Z

; exj = (xji)i2Z
with the scalar products xyixj = hxijxji; exyi exj = hexijexji:

xi
yxj =

X
k2Z

XkiXkj = Kij =
X
k2Z

XkiXkj = exjyexi; xi
yexj = Gij :

Hence the inversion x 7! ex is represented by the usual complex conjugation ex =
x; xj = ( xj

i)
i2Z
, which coincides with transposition : xji = xi

j due to the self-

adjointness of the square roots of K = Ky and so K = K
y
. Although the vec-

tors xj ; exj seem to be complex if exj 6= xj due to x�j := xj = exj , they are self-
adjoint xj] = xj ; exj[ = exj in the case � = 
 with respect to the involution
z] = L�1=2z�; ez[ = L1=2ez�, where z� = z:

L1=2xj =
X

L1=2kxj
k = exj ; L�1=2exj =XL�1=2kxj

k = xj

are the linear input-output and reversed �lters in the time representation. The
operator L = KK�1 with the matrix elements

Lij =

Z
ui(�)�(�)uj(�)d�; �(�) = e�(�)=�(�)

is characterized by the properties L > 0; L = L�1 and is called the modular operator
in this invertible case. It can be described by the adjoint involutions as Ljzi = jzi][,
and its algebraic analogue is the main object of study in Tomita-Takesaki theory.
Note that if K is not invertible, the canonical realizations of x and ex are still
connected by complex conjugation as the isometric involution z 7!z�, although it
may not be described by the linear �ltering because the adjoint involutions ]; [
may not be represented in E . In contrast to the classical theory the constructed
canonical realization exj of the reversed quantum process does not coincide with xj
and is even orthogonal to the real quantum noise if N+ [N� = 
.
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In the case of a stationary time sequence xj =
p
"x(tj); tj = "j the spectrum 


is in the interval [�"�1=2; "�1=2] � R, the �ip � 7! �� is the usual re�ection, and

u�j(�) = "1=2 expf2�i�tjg = uj (�) :

The canonical vector realizations of the stationary sequences (xj) and ( exj) is given
in the time representation by the matrix elements xji = �j�i; ex i

j = e�j�i, where
the complex sequences

�j = "1=2
Z



�(�)
1=2
expf�2�i�tjgd� =

Z



xj (�) d�

e�j = "1=2
Z



e�(�)1=2 expf�2�i�tjgd� = Z



exj (�) d�
are connected by the usual time re�ection ex(tj) = x(�tj) with respect to t = 0:e�j = ��j . If K is invertible, this time re�ection is described by the stationary
input-output and reversed linear complex �lters

��i =
X
j2Z

l1=2i�j�j ; �i =
X
j2Z

l�1=2i�j��j ;

where l1=2i�j = L1=2ij ; l�1=2i�j = L�1=2ij are given by the integrals

l�
1=2

j := "

Z
�

�(�)
1=2
expf2�i�tjgd�; l�

�1=2
j := "

Z
�

�(�)
�1=2

expf2�i�tjgd�

over the support � � 
 of 
 = (�e�)1=2 in the general case.
3. Spectral Decomposition and Linear Filtering

Let us consider the stationary quantum noise x : t 7! x(t) with continuous time
t 2 R. It can be treated as the limit as " ! 0 of a stationary sequence "�1=2x"j
with correlations k"j = "k(t), given by a complex positive-de�nite function

k(t) =

Z 1

�1
exp f 2�i�tg�(�)d� = hx(t)jx(0)i :

This may exist only as a generalized function(distribution) if the support N?+ � R of
the spectral density � is unbounded. The reversed noise ex : t 7! ex(t), corresponding
to the spectral density e�(�) = �(��), is described up to second order by the
autocorrelation functionek(t) = Z 1

�1
exp f2�i�tg e�(�)d� = hex(t)jex(0)i

and by the symmetric cross-correlation function

r(t) =

Z 1

�1
exp f 2�i�tg 
(�)d� = hx(t)jex(0)i ;

where 
(�) = [e�(�)�(�)]1=2, so that r is the convolutional square root ofhek � ki (t) = Z 1

�1
k(s� t)k(s)ds:
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If ek � k = 0, i.e. if e�� = 0, and so N?+ \ N?� = ; we have stationary vacuum noise.
The stationary noise is called standard vacuum noise if k(t) + ek(t) is the Dirac
�-function, i.e. if e�+ � = 1.
Such a noise is purely nonclassical because the condition e�� = 0 for a symmetric

function e� = � is only possible in the trivial case N?+ = ; = N?� when x = 0 = ex.
In the general case the subset� = N?+\N?� of 
 is not empty, but the complement

�? = 
 n� can be decomposed into the disjoint union of
N� = f� 2 
je�(�) = 0g � N?+; N+ = f� 2 
j�(�) = 0g � N?�; N+ \N� = ;:

This means that the quantum noise and its time-reversed version can be uniquely
decomposed in the correlation theory into sums xo + x�;exo + ex� of uncorrelated
vacuum (xo;exo) and thermal (x�;ex�) components. In the spectral representation
they are given by

�xo(t) = P?� �x(t); x̂o(t) = P?+ x̂(t);

�x�(t) = P��x(t); x̂�(t) = P�x̂(t); 8t 2 R
where P?+ and P?� are the projectors on L2(N+) and L2(N�) and P� = P+P� is
the orthoprojector on the subspace L2(�). The orthoprojectors P+ = 1 � 1+ and
P� = 1� 1� de�ne the best input-output and output-input linear estimates

P+x̂(t) = 1�x̂(t) = ��
1=2�x(t) of x̂ (t) = ��

1=2�x(t) + x̂o (t) ;

P��x(t) = 1��x(t) = ��
�1=2x̂(t) of �x(t) = ��

�1=2x̂(t) + �xo (t)

where 1�, de�ned by 1�(�) = 1 if � 2 �, 1�(�) = 0 if � 62 �, is the characteristic
function of � = N?+ \ N?�, 1+ and 1� are the characteristic functions of N+ and
N� , and

��(�)
�1=2 = (�(�)=e�(�)) 1�(�)

��(�)
1=2 = (e�(�)=�(�)) 1�(�):

In the time representation

x(t) = f�(t� s)js 2 Rg ; ex(t) = fe�(t� s)js 2 Rg
�(t� s) =

Z



�(�)
1=2
exp f2�i�(s� t)gd� = e�(s� t)

x�(t) and ex�(t) are obtained by the replacing the interval 
 of integration in � = �

and e� = e�
 by �, with xo(t) given by �N� and exo(t) given by �N+ . The optimal
input-output and output-input �lters are given in the Fourier representation by the
complex stationary linear nonadapted integrals

[P+ex(t)] (s) =

Z 1

�1
l�
1=2(s� r)�(t� r)dr �

�
l
1=2
� � x

�
(s)

[P�x(t)] (s) =

Z 1

�1
l�
�1=2(s� r)e�(t� r)dr � �l�1=2� � ex� (s) :

Here l�
1=2(s � t) = L�

1=2(s; t); l�
�1=2(s � t) = L�

�1=2(s; t) are the complex
positive de�nite generalized functions

l�
1=2(t) =

Z
��(�)

1=2
exp f2�i�tgd�; l�

�1=2(t) =

Z
��(�)

�1=2
exp f2�i�tgd�

characterized by the modular property

l�
1=2(�t) = l�

1=2
(t) = l�

�1=2(t):
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The case N+ = ; = N� corresponds to the purely thermal noise which is called
standard thermal noise, if e�� = 1 in a given spectral region 
 � R. If 
 = R,
it can be written as

h ek � ki (t) = �(t) in terms of the Dirac correlation function

r(t) = �(t).
The thermal noise is called white if the spectrum � and thus also e� is �at:

�(�) = �2 = e�(�); 8� 2 
. White noise coincides with its time-reversed version
and is essentially classical (at least in second order). There exists just one such
standard noise x = w = ex described in the second order theory by the correlation
function k(t) = �(t) = k(t).
In the quantum case there are many standard thermal noises and �-correlated

with them reversed version e�(t) = �(�t). They are parametrized by a modular
spectral function

�(�) > 0; e�(�) = �(��) = �(�)�1; 8� 2 


giving the standard correlation functions k, k as the convolution square roots

k(t) = l�1=2(t); k(t) = l1=2(t); 8t 2 R
Any stationary quantum process y : t! y(t) and its reverse ey : t! ey(t) described
up to second order by the correlation function

hy(t)y(0)i =
Z
expf2�i�tg�(�)2d� = hey(0)ey(t)i

can be obtained by stationary �ltering of standard quantum noises x and ex, i.e.
such that their spectral densities

�(�) = 1�(�) + ��(�)
�1=2

; e�(�) = 1+(�) + ��(�)1=2
and 
(�) = 1�(�). In the spectral representation

�y(t) = f�y(t; �)j� 2 
g ; ŷ(t) = fŷ(t; �)j� 2 
g
the �ltering is given by

�y(t; �) = f(�)�x(t; �); ŷ(t; �) = f(�)x̂(t; �)

where f = f = ef is a real symmetric transmission function f : 
 ! R+ of the
standard complex amplitudes

�x(t; �) = expf2�i�tg�x(�); x̂(t; �) = expf2�i�tgx̂(�)

�x(�) = 1�(�) + ��(�)
�1=4

; x̂(�) = 1+(�) + ��(�)
1=4
:

The transmission function f is uniquely de�ned in the space L2(
) by

f(�) = [�(�)e�(�)]1=21�(�) + [�(�) _ e�(�)]1=21?�(�):
In the time representation y(t) = f (t�s)g; ey(t) = fe (t�s)g, given by the Fourier
integral

 (t) =

Z
ŷ(�) expf2�i�tgd�; e (t) = Z �y(�) expf2�i�tgd�;

the �lters are written as real nonadapted stationary transformations

 (t� s) =
Z 1

�1
�(s� r)�(t� r)dr = e (s� t)
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where

�(t) =

Z
f(�) expf2�i�tgd�:

An important example of the stationary quantum thermal noise is given by the
Planck�s spectral density

�(�) = h�(e�h� � 1)�1; e�(�) = h�(1� e��h�)�1:

In this case e�(�) � �(�) = h� > 0 if � > 0, i.e. �+ = R+, �(�) = expf�h�g 6=
0 8� 2 R; and �(�) 6= 1 for � 6= 0, and �(�) = 1 as for the classical white noise only
if � = 0. It describes stationary Bose noise in which the electromagnetic (optical)
�eld is in an equilibrium state of the temperature � = 1=�. The modular function
for such noise,

l(t) =

Z
expf2�i�tg expf�h�gd� = �

�
t+

~
i
�

�
= exp

�
~
i
�
d

dt

�
�(t);

is extremely singular, as is the correlation function

k(t) =
~
i

�
exp

�
~
i
�
d

dt

�
� 1
��1

d

dt
�(t)

(~ = h=2�) with complex conjugate

k(t) =
~
i

�
1� exp

�
�~
i
�
d

dt

���1
d

dt
�(t)

for the time-reversed Planck noise corresponding to the density e�.
Although the cross correlation function

r(t) =
~
2

�
sin

�
~
2
�
d

dt

���1
d

dt
�(t)

is less singular, due to the integrability of its spectral density


(�) = h�[expf�h�=2g � expf��h�=2g]�1;

quantum stochastic integrals corresponding to linear stationary �lters for such noise
are not de�ned in the usual sense. Indeed, the standard quantum pair (x;ex) corre-
sponding to the Planck density have the singular correlation functions

l�1=2(t) = �(t+ i~�=2); l1=2(t) = �(t� i~�=2)

and the cross-correlation function r(t) = �(t). To obtain the Planck noise y and its
time-reversed version ey one should integrate the standard quantum noise x and ex
with the non singular �ltering function

f(t) =

Z
[h�=2sh(�h�=2)]

1=2
expf2�i�tgd�

But the result of the integration remains singular, corresponding to the singularity
of k and k.
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4. Quantum Stochastic Integration

In quantum theory the noise x (t) is thought of as represented by Hermitian, or
even selfadjoint operators in a Hilbert space of state vectors (probability ampli-
tudes), with zero mean values � [x (t)] = h�jx(t)j�i = 0. Here j�i is a �xed unit
vector of the given state � which can be always be chosen as vector state represented
by the vacuum vector j �i = �; in a Fock space H = F . The quantum correlations
K(s; t) = k(s� t) are de�ned for a stationary state � by the scalar product in H,

k(t) = h� jx(t)x(0)j �i � � [x (t) x (0)] :

If k(t) is complex, the operator x (t) =x(t)y will not commute with x(0) =x(0)y. The
time-reversed correlations ek(t) = k(�t) are �observable� in the real arrow of time
only for the time-reversed noise ex which gives a natural representation in the same
Hilbert space H an output process ex : t 7! ex(t), for which ek(t) = h� jex(t)ex(0)j �i
with the same � 2 H.
The vector processes t 7! jx(t)i, t 7! jex(t)i are obtained from the operator

representations in H by the identi�cations

j x(t)i := x(t)j �i � x (t) ; jex (t)i := ex(t)j �i � ex (t)
in the minimal subspace generated by the set fx(t)j �i ;ex(t)j �ig � H. In a classical
theory this gives a one-to-one correspondence between vectors and operators of
multiplication in the total space H. This is not the case in quantum probability
theory as one can observe for vacuum correlations, for which it is possible that
jzi = zj�i = 0 for annihilation operators z 6= 0. This is why the vector integration
theory is not su¢ cient in the quantum case; we need an operator form of quantum
stochastic integration.
According to the nondemolition (causality) principle of quantum theory [12] the

input observables x(0) must commute with the fundamental output observablesex(t) for all t � 0 and they must commute also for t � 0 because the noise x can
be regarded as the output process for the time-reversed noise ex. At the correlation
level this is expressed in terms of the re�ection symmetry

h� jx(0)ex(t)j �i = r(t) = h� jex(t)x(0)j �i ; 8t 2 R

for the cross correlation function r(t) = (ek � k)1=2(t).
Now we are going to develop a second order theory of quantum stochastic in-

tegration with respect to any colored quantum noise and its fundamental output
process. The realization of such theory was given in [10] in terms of a representa-
tion of the canonical commutation relations in the symmetric Fock space H. This
provides a one-to-one correspondence between second order integration theory and
the Gaussian integration theory of quantum thermal noise with respect to the vac-
uum state �. Without loss of generality we may assume that the pare x (t) ;ex (t) is
standard, i.e. �e� = 1.
Let us denote by � the complex test functions t 7! �(t), for which the �integrals�

� � x =
Z 1

�1
�(t)x(t)dt; � � ex = Z 1

�1
�(t)ex(t)dt
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are expected to be well de�ned as selfadjoint operators in H if � = �. If � is given
as a Fourier integral

�c(t) :=

Z
c(�) exp f2�i�tgd� � ĉ(�t);

then the operator-valued functionals � 7! � �x, � 7! � �ex can be treated as quantum
stochastic integrals

�c � x =
Z
c(�)�X(d�);

Z
c(�)X̂(d�) = ĉ � x

for the Fourier transforms c = b� of � = �c and c = �� of � = ĉ.
The quantum stochastic integrators �X, X̂, de�ned in [14] as operator-valued

measures on the spectral intervals � � 
, in second order are described by spectral
vector-measures

j�X(�)i := �X(�)j�i � �X (�) ; jX̂(�)i := X̂(�)j�i �X̂ (�)

which are related by isometric involution ? = �� on the vector space as X̂? = �X,
i.e. X̂� (��) = �X (�).
They, together with �X (�)

y
= h�X(�)j, X̂ (�)y = hX̂ (�) j are assumed to satisfy

the following properties:
(i) orthogonal �-additivity for disjoint unions

P
�i = �

�X (�) = � �X (�i) ; X̂ (�) = �X̂ (�i) :

(ii) absolute continuity:

�X(�)
y �X(�

0
) =

Z
�\�0

�(�)d�

X̂(�)
y
X̂(�

0
) =

Z
�\�0

e�(�)d�
�X(�)

y
X̂(�

0
) =

Z
�\�0


(�)d�

(iii) selfadjointness on � = N?+ \N?�:

�X(�)
]
= ��1 � X̂(�) = �X(�); X̂(�)

[
= � � X̂(�) = X̂(�) � � �;

where 
 = (e��)1=2, � (�) = (~�=�)
1=2 and � � X̂ (�) =

R �
�
� (�) X̂ (d�). The �-

additivity makes it possible to de�ne this integral as integral as an orthogonal
vector measure �X absolutely continuous with X̂ on �. The condition (ii) can be
symbolically written in the form of a multiplication table

�X(d�)y �X(d�
0
) = ���0�(�)d�;

�X(d�)yX̂(d�
0
)
y
= ���0
(�)d�

X̂(d�)y �X(d�
0
) = ���0
(�)d�; X̂(d�)yX̂(d�

0
) = ���0e�(�)d�

where ���0 = 0 if � 6= �
0
; ���0 = 1 if � = �

0
, and X̂ (d�) = � (�) �X (d�). An

operator realization of this table can be given in the Fock space F with respect to
the vacuum state vector j �i = H [10].
Using this multiplication table we obtain the isometry property

h� jyyyj �i =
Z ���a(�)�(�)1=2 + c(�)e�(�)1=2���2d� = byb
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of the map y 7! b = a�1=2+ce�1=2 for the operators y = �a�x+�c�ex = ��x with � = �a+ĉ
on the state vector � into the spectral representation b(�) = h� j yi of j yi = j � � xi.
This extends the quantum stochastic integral � � x with byb =

R
jb (�)j2 d� < 1

from the functions � (t) with simple (a; c) to any functions � = �a+ ĉ for which the
complex amplitude b remains square integrable. To ensure also h� jyyyj �i < 1,
we must add the condition of square integrability b? 2 L2(
) for the amplitude
b? = a?�1=2 + c?e�1=2, that is, we de�ne the quantum stochastic integral y together
with yy only for the test functions �a; ĉ � E . In the classical case, e� = � when
b? = b�, the square integrability of b and b� are equivalent to that of a and c with
respect to the symmetric measure e� d� = � d�. In the purely quantum case of
vacuum noise it is not so, and the conditions b; b? 2 L2(
) are equivalent to the
square integrability of a and c with respect to � _ e� d�.
In spectral representation the standard vacuum noise x (t) together with the

reversed process ex (t) is described by the canonical operator-valued measures
A+ (�) =

�
X̂(�);� � N?+
�X(�);� � N?�

; A� (�) =

�
�X(�);� � N?+
X̂(�);� � N?�

of independent creation A+� = A
+ (�) and annihilation A�� = A� (�) such that

h� jA+� = 0; A
�
�j �i = 0:

It de�nes the standard operator vacuum measures X̂ and �X as

X̂(�) = A�
�
� \N?�

�
+A+

�
� \N?+

�
; �X(�) = A�

�
� \N?+

�
+A+

�
� \N?�

�
on the intervals � � 
 for the given state j �i 2 H. The canonical pair (A0�;A+0 ) of
the creation and annihilation measures is characterized by the following properties
of �ip-adjointness

A��
y = A+�� � A

�
+ ; A

+y
� = A��� � A��;

and orthogonality of all products apart of A�(�)A+(�0) for � \�
0 6= ;:

h� jA�(��)A+(�0)j �i = �(� \�
0
); h� jA+(��)A�(�0)j �i = 0;

h� jA+(��)A+(�0)j �i = 0; h� jA�(��)A�(�0)j �i = 0:
This table can be written also symbolically in the canonical form [6] as

A�(d�)A+(d�
0
) = ���0d�; A+(d�)A�(d�

0
) = 0;

A+(d�)A+(d�
0
) = 0; A�(d�)A

�(d�
0
) = 0;

for all �; �
0 2 
. This table includes also A�(d�)A+(d�0) = ���0d� and all other

products equal zero by the re�ection � 7! ��.
Let us prove that an arbitrary (not necessary vacuum) stationary (in the second

order sense) quantum process y (t) together with its time-reversed version ey (t) can
be obtained by quantum stochastic integration with respect to the �ip-selfadjoint
canonical pair (A+;A�) over 
 � R, or, equivalently, with respect to the self-adjoint
quadruple (A+;A�; A�;A+) on the positive part 
+ � R+ of 
.
Indeed, in general the pair

y(t) =

Z
exp f�2�i�tg �Y(d�); ey(t) = Z exp f�2�i�tg Ŷ(d�)
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of operator-valued distributions �c 7! �c � y; �c �ey is given by a pair ( �Y; Ŷ) of operator-
valued orthogonal �ip-selfadjoint measures Ŷ (d�)y = �Y (�d�) with multiplication
table

�Y(d�) �Y(d�)
y
= �(�)

2
d�; Ŷ(d�) �Y(d�)

y
= e�(�)�(�)d�;

�Y(d�)Ŷ(d�)
y
= �(�)e�(�)d�; Ŷ(d�)Ŷ(d�)

y
= e�(�)2d�:

Such measures can be obtained as quantum stochastic integrals

�Y(�) =

Z
�

�(�)A�(d�) + e�(�)A+(d�)
Ŷ(�) =

Z
�

e�(�)A�(d�) + �(�)A+(d�)
from the canonical pair (A+;A�) of �ip-adjoint annihilation and creation measures.
Moreover, in the nonclassical case �(�) 6= e�(�);8� 2 
, corresponding to quantum
noise of zero or �nite temperature, the canonical pair A = (A+;A�) is uniquely
de�ned over 
 by the pair ( �Y; Ŷ) from�e�(�)2 � �(�)2�A+(d�) = e�(�) �Y(d�)� �(�)Ŷ(d�);�e�(�)2 � �(�)2�A�(d�) = e�(�)Ŷ(d�)� �(�) �Y(d�):
This means that the direct and reversed quantum stochastic integrals � �y; � �ey can
be written for the Fourier integrals of � = �c as

� � y =
Z
g (�)A�(d�) + ~g (�)A

+(d�) = A(�c; e�c)
with g (�) = �(�)c(�) and

� � ey = Z ~g (�)A�(d�) + g (�)A
+(d�) = A( e�c; �c)

with ~g (�) = e�(�)c(�).
To obtain these integrals in the time representation as linear stationary �lters

of the adjoint pair â = (â+; â�) of the canonical annihilation â� (t) and creation
â+ (t) distributions

â� (t) =

Z
exp f�2�i�tgA�(d�) = â+ (t)y ;

â+ (t) =

Z
exp f�2�i�tgA+(d�) = â� (t)y ;

or their time reversals �a� (t) = â� (�t), �a+ (t) = â+ (�t) we can use the Fourier-
Parseval identity

A(b'�; b'+) = â('�; '+):
The latter is given by the standard creation and annihilation integrators

Â+(dt) = â+ (t) dt = Â�(dt)
y; Â�(dt) = â� (t) dt = Â

+ (dt)
y

in the time representation as the standard quantum stochastic integral

â('�; '+) =

Z 1

�1
'+ (t) Â

+(dt) + '� (t) Â�(dt)
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Applying this to the quantum stochastic integral in the spectral domain with the
general integrands

f� (�) = a(�)e�(�) + c(�)�(�) = b'� (�)
f+ (�) = a(�)�(�) + c(�)e�(�) = b'+ (�)

corresponding to �a �y+�c �ey = A(f�; f+), we obtain �a �y+�c �ey = â( '�; '+), where
the components

'� (t) = (�� � e�)(�t) + (�� � �)(t) = bf� (t)
'+ (t) = (�� � �)(t) + (�̂ � �)(�t) = bf+ (t)

are given by the convolutions

(�� � �) (t) =
1Z

�1

�� (t� r) � (r) dr

with transition function

��(t) =

Z
exp f2�i�tg�(�)d� = �̂ (�t)

Thus, the generalized processes y and ey are obtained by the stationary �lters
y(t) =

Z 1

�1
��(s� t)Â�(ds) +

Z 1

�1
�̂(s� t)Â+(ds)

ey(t) = Z 1

�1
�̂(s� t)Â�(ds) +

Z 1

�1
��(s� t)Â+(ds)

corresponding to the quantum stochastic integral representation

� � y =
Z 1

�1
(�� � �)(s)Â�(ds) +

Z 1

�1
(�̂ � e�)(s)Â+(ds);

� � ey = Z 1

�1
(�̂ � e�)(s)Â�(ds) + Z 1

�1
(�� � �)(s)Â+(ds)

for the test functions e�(t) = �(�t) with the square integrable b�� and b�e�.
Conclusion

Thus we proved that for each quantum stationary noise there exists a fundamen-
tal output process which replaces the noise if the time is reversed. The nondemo-
lition observation of the quantum noise via the measurement of the fundamental
output process provides the best mean square �ltering of the noise and in the clas-
sical limit completely eliminates this noise.
The input and output stationary processes can be decomposed in the second

order into an orthogonal pair, consisting of vacuum and thermal noises which are
orthogonal to the vacuum and connected by a reversible input-output (modular)
�lter. The time-continuous representation of the stationary linear �lters requires a
second order theory of quantum stochastic integration.
The direct application of standard quantum stochastic integration with respect

to the quantum white noise integrators is not possible for equilibrium (KMS) states
because of the non-Markovian character of the corresponding standard quantum
processes x and ex.
But it is possible to modify this approach for the spectral domain where the

stationary quantum processes are �-correlated. Using this approach in the second
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order, we proved that they can be canonically decomposed into the superpositions
of the vacuum pair of direct and reversed noises and can be obtained by a linear
�ltering from the standard vacuum noises x and ex.
In general the spectral quantum stochastic integrates need not to be adapted and

homogeneous with respect to the frequency shifts and the treatment of quantum
nonlinear �lters and other transformations of quantum equilibrium noise requires
non stationary and non adapted theory of quantum stochastic integration [10].
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