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Abstract. Quantum chaotic states over a noncommutative monoid, a unital-
ization of a noncommutative Ito algebra parametrizing a quantum stochastic
Levy process, are described in terms of their in�nitely divisible generating
functionals over the simple monoid-valued �elds on an atomless �space-time�
set. A canonical decomposition of the logarithmic conditionally posive-de�nite
generating functional is constructed in a pseudo-Euclidean space, given by a
quadruple de�ning the monoid triangular operator representation and a cyclic
zero pseudo-norm state in this space.

It is shown that the exponential representation in the corresponding pseudo-
Fock space yields the in�nitely-divisible generating functional with respect to
the exponential state vector, and its compression to the Fock space de�nes
the cyclic in�nitly-divisible representation associated with the Fock vacuum
state. The structure of states on an arbitrary Itô algebra is studied with two
canonical examples of quantum Wiener and Poisson states.

A generalized quantum stochastic nonadapted multiple integral is explicitly
de�ned in Fock scale, its continuity and quantum stochastic di¤erentiability
is proved. A uni�ed non-adapted and functional quantum Itô formula is dis-
covered and established both in weak and strong sense, and the multiplication
formula on the exponential Itô algebra is found for the relatively bounded
kernel-operators in Fock scale. The unitarity and projectivity properties of
nonadapted quantum stochastic linear di¤erential equations are studied, and
their solution is constructed for the locally bounded nonadapted generators in
terms of the chronological products in the underlying kernel algebra canoni-
cally represented by triangular operators in the pseudo-Fock space.
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Introduction. Non-commutative Itô algebra

Non-commutative stochastic analysis and calculus appeared in the eighties as
a result of the mathematical justi�cation of the notions of quantum white noise
and the corresponding �Langevin equations�discussed by physicists from the sixties
onwards in connection with stochastic models of quantum optics and radio-physics
[22], [24], [34]. The �rst rigorous results in quantum stochastic calculus are due to
Hudson and Parthasarathy [34], who in 1983 described a quantum Itô formula for
operator-valued integrals with respect to non-commutative canonical martingales
of creation A+(t), annihilation A�(t), and gage (or vacuum quanta number) N(t).
Represented in the symmetric Fock space �(K) over K = L2(R+) by noncommuting
operators but commuting with their increments at each t, they determine three
linear-independent self-adjoint combinations

(0.1) M1 = A� +A
+; M2 = i

�
A� �A+

�
; M3 = N;

as the �classical�martingales with respect to the vacuum state. Each Mi (t) can be
represented as a real-valued independent-increment classical martingale mi (t; !i),
however due to mutual noncommutativity [Mi;Mk] 6= 0; i 6= k they cannot be jointly
represented as a vector-valued stochastic process m� (!; t) = (m1;m2;m3) (!; t) in
any Kolmogorovian probability space (
;F ;P). They are quantum martingales
with respect to the conditional expectations Et : A ! At on an operator algebra
A = A (�) of multiple quantum stochastic integrals X with At = A (�t) corre-
sponding to the natural �ltration f�t = �(Kt) : t 2 R+g of the Fock space de�ned
by the subspaces Kt � K of the functions with the support in [0; t] and the unit
state 1; 2 \t>0�t of the vacuum state E0[X] = h1; j X1;i. The triple (�; A; E) is
said to be a �quantum probability space�[2], and in general it consists of a Hilbert
space �, a unital algebra A of operators in � with involution, Hermitian conjugation
X 7�! X� 2 A, and the functional of mathematical expectation E : A ! C de�ned
by the scalar product h1 j xi of a unit vector 1 2 � and the vector x = X1. To any
�classical�probability space (
;F ; P ) there corresponds a canonical �quantum�one
consisting of the Hilbert space � = L2(
) with the scalar product

hf j hi =
Z
f (!)

�
h (!)P (d!) ;

the commutative algebra of bounded �diagonal� operators (Xf) (!) = x(!)f(!)
given by multiplications by complex essentially bounded F-measurable random
variables x : 
! C, and the functional

(0.2) E(X) =

Z
x(!)P (d!) = h1 j xi ;
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de�ned by the probability vector 1(!) = 1 for all ! 2 
, see for example [32]. The
converse is true only in the case of commutative C�-algebra A when all operators
have a joint spectrum 
 [20]. This proves considerably greater generality of the
non-commutative probability theory, also covering the purely quantum case which
corresponds to a simple, or irreducible algebra, the algebra A = L (�) of all linear
continuous operators in a Hilbert space �.
Using this analogy, Hudson and Parthasarathy introduced the notion of adapted

operator-valued process as a family fX (t) : t 2 R+g of operators in �(L2(R+)), each
a¢ liated to the subalgebraAt generated by the canonical operators fM�(s) : s � tg.
Due to the continual tensor-product structure �t+� = �t 
 �t� of �t with �t� =
� (Kt�) for the subspaces Kt� of square-integrable functions with the support in
[t; t+�t) the forward increments �Mi(t) =Mi(t+�t)�Mi(t) turn out to commute
with adapted Di (t), which allowed to introduce quantum stochastic integrals Xt =P

i

R t
0
Di (s) dMi(s) as the limits of integral Itô sums

P
t�� Di (t)�Mi(t), where

� = ft1 < � � � < tNg, �tn = tn+1 � tn ! 0 as N !1. Building on this approach,
a quantum evolution was constructed in [26] as a solution of the linear stochastic
di¤erential equation dUt = UtLjd�

j
t , U0 = I, with constant bounded operator-

valued coe¢ cients and non-commutative increments d�jt = dMj (t), j = 1; 2; 3,
and d�0t = dt (Here and it what follows we employ Einstein summation convention
Lj�

j =
P

j�0 Lj�
j).

The unitarity condition U�t = U�1t was studied using the quantum Itô formula

d(XtX
�
t ) = dXtX

�
t +XtdX

�
t + dXtdX

�
t ;

dXtdX
�
t = Dic

ik
0 D

�
kdt+

X
j�1

Dic
ik
j D

�
kdMj (t) = Dic

ik
j D

�
kd�

j
t ;(0.3)

where cikj 2 C are the structural coe¢ cients de�ning the product of quantum-

stochastic di¤erentials dXt = Djd�
j
t and dX

�
t = D�

jd�
j
t corresponding to the

Hudson-Parthasarathy (HP) multiplication table

dNdN = dN; dNdA+ = dA+; dA�dN = dA�; dA�dA
+ = dt

(other combinations are equal to zero). It follows from this table that ci0j = 0 =

c0kj for all i; j; k = 0; 1; 2; 3 corresponding to the completely degenerate adjoint

representation of d�0t , with c
�3
0 = 0 = c3�0 ,

�
cik0
�i;k=1;2

=

�
1 �i
+i 1

�
and three

Hermitian 3� 3-matrices c��j = [cikj ],

c��1 =
1

2

24 0 0 1
0 0 +i
1 �i 0

35 ; c��2 =
1

2

24 0 0 �i
0 0 1
+i 1 0

35 ; c��3 =

24 0 0 0
0 0 0
0 0 1

35 ;
indexed by i; k = 1; 2; 3, de�ne the adjoint representations cj�� ; c

�j
� of the martingale

di¤erential algebra d�j = dMj , j = 1; 2; 3.
It can be directly veri�ed that the three-dimensional subspace a� of complex four-

vectors a� = (0; ��), given by the rows �� = (�1; �2; �3) 2 C3, is an associative
�-algebra with respect to the complex conjugation �?� = (��1; ��2; ��3) as an involution
(not to be mixed up with Hermitian conjugation ��� =

�
��j
�
de�ning the adjoint
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column to ��) and the composition ���?� = ����� given by the Hermitian 3-vector-
form

�� � �� :=
�
�ic

ik
1 �

�
k; �ic

ik
2 �

�
k; �ic

ik
3 �

�
k

�
� �ic

ik
� �k:

Moreover, since four fundamental di¤erentials d�j form a linear basis of an asso-
ciative algebra, the degenerate semi-positive scalar product

(�� j ��) := (�1 + i�2) (�1 + i�2)� � �ic
ik
0 �

�
k

satis�es the right ?-representation property

(���� j ��) = (�� j ���?�)
for any �� 2 a�. Thanks to this property one can combine the composition and inner
product in a� into a four-dimensional composition in the ?-algebra a = C � a� �
a� + Cdt of the pairs a = (�0; ��) with involution a? = (��0; �

?
�), the Hermitian

sesquilinear composition

a ? a :=
�
�ic

ik
0 �

�
k; �ic

ik
� �

�
k

�
� a � a?

and self-adjoint nilpotent element dt = (1; 0�) = d?t representing the in�nitesimal dt.
Here a� = a�l (a) dt is given by the linear functional l (a) = �0 for a = (�0; ��) 2 a,
and

ha�; a?�i := (�� j ��) � h��; ��i
is bilinear form de�ning the associative multiplication

(0.4) a � a? := (h��; �?�i ; ���?�) � ha�; a?�i dt+a�a?�
and the left semiscalar product ha j ai = ha?�; a�i in a. We call this four-dimensional
?-algebra the Hudson-Parthasarathy quantum Itô algebra (HP-algebra) b (k) of the
"Hilbert" space k = C, or achieved vacuum Itô algebra, re�ecting the degeneracy
of the rank one form

ha j ai = (�1 � i�2)� (�1 � i�2) = l (a? � a) ;
corresponding to the purity of the "vacuum state" l on b (k). Note that the algebra
a = b (C) has no identity but "death" element dt killing any element a 2 a in
the sense a � dt = 0 = dt � a and normalizing the linear functional l as l (dt) = 1.
The functional l is positive with respect to the multiplication in the usual sense
l (a ? a) � 0;satisfying ?-property l (a?) = l (a)

�. One can easily see that Cdt is the
ideal of a since dt � a = 0 = a � dt such that a� = fa 2 a : l (a) = 0g is identical with
the factor-algebra a=Cdt. Moreover, the two-sided ideal

i = fb 2 a : l (b) = l (a � b) = l (b � c) = l (a � b � c) = 0; 8a; c 2 ag ;
which obviously does not contain dt, is trivial in the Itô algebra (a; l): i = f0g.
We take the above properties as the de�nition of an (abstract noncommutative)

quantum Itô algebra (a; l), and in this capacity we can consider any associative
involutory algebra a = a�+Cdt with l (a) = �0 and the trivial ideal i = f0g. As for
a� one can take any ?-algebra with semi-positive scalar product ha� j b�i = ha?�; b�i
given by a bilinear form with the properties

ha�b�; c�i = ha�; b�c�i ; hb?�; b�i � 0 8b� 2 a�
and factorize it with respect to the ideal

i = fb 2 a� : ha�; b�i = hb�; a�i = ha�; b�c�i = ha�b�; c�i = 0; 8a; c 2 a�g
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if i 6= f0g. In this general case one can also write ha�; b�i = (a � b)0 = ha; bi and
implement the ?-composition notation a ? a = a � a? which should be distinguished
from the associative �-composition

a � a := a ? a� l (a ? a) dt = (0; �� � ��) � aa?

with the values in a�, representing the composition in the factor-algebra a=Cdt.
Choosing a selfadjoint basis

�
ej = e?j : j = 0; 1; : : :

	
of (a; l) in such a way that

l (a) = �0 if a =
P
�jej , one can describe every �nite-dimensional Itô algebra as

above by the Hermitian structure coe¢ cients

(0.5) cikj =
�
ckij
��
; cnji c

km
j = cnkj cjmi ; c0kj = 0 = ci0j ;

de�ning a multiplication table d�itd�
k
t = cikj d�

j
t of basis quantum stochastic dif-

ferentials with d�0t = dt.
Note that for the Abelian Itô algebras all structure matrices c��j are real and

symmetric with strictly positive-de�nite c��0 , as it is always so in the case of one-
dimensional a� . For example, the standard Poisson calculus given by Itô multipli-
cation rule

dmtdmt = �dt+ dmt

for the compensated Poisson increments of the intensity � is associated with one-
dimensional algebra a� � C of

a� � �; a?� � ��; a� ? a� � j�j2 ; ha� j a�i = � j�j2

containing the unit 1 2 a� such that dmt = dm�
t can be identi�ed with the real

two-vector e = (0; 1) in a = a� + Cdt and (dmt)
2 with e ? e = e2 = (�; 1). The

standard Wiener calculus

dwtdwt = dt; dwtdt = dtdt = dtdwt = 0

is also associated with one-dimensional but nilpotent algebra a� � C, a� � a� � 0
without unit such that dwt = dw�t is identi�ed with the element e = (0; 1) = e?

of second order nilpotent algebra a = a� + Cdt with respect to the multiplication
e2 = (1; 0) � dt de�ned by the semi-scalar product ha j ai = j�j2 for a = (�0; �).
It is well known [31] that the Poisson calculus, as well as the Wiener one, can

be realized as a sub-calculus of the quantum stochastic calculus in the Fock space
with respect to the vacuum state 1; putting, for example,

wt = A_ (t) +A
+(t); mt =

p
�A� (t) +

p
�A+ (t) +N (t) :

A natural question arises as to whether we can realize in this way any (non-
commutative) calculus corresponding to an (abstract quantum) Itô algebra (a; l) as
de�ned above. To be more precise, the question concerns a non-commutative calcu-
lus of stochastic integrals with respect to operator representations of the processes
�t (a) = �j�

j
t with given expectations E [�t (a)] = �0t, with independent incre-

ments d�t (a) = �t+dt ( a) � �t (a) ; a 2 a, and realizing the multiplication table
d�itd�

k
t =

P
j�0 c

ik
j d�

j
t :

(0.6) d�t (a) d�t (a
?) = �ic

ik
j �

�
kd�

j
t = d�t ( a ? a) :

We shall give a positive answer to this question, reducing it to the construction of
a canonical dilation of in�nitely divisible generating functions

(0.7) �t (b) = E [�t (b)] = exp ftl (b)g ;
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de�ned by vacuum expectation of adapted quantum stochastic �exponential�oper-
ators �t (u+ a) =: exp [�t (a)] : which represent an Itô ?-monoid b in Fock space
as a unitalization b = u + a of Itô algebra a with l trivially extended on the unit
u = u? by l (u) = 0. These exponential representations, satisfying the operator
?-multiplicativity condition

�t (u+ a)�t (u+ a)
�
= �t (u+ aFa)

with respect to the new associative composition

aFa := a+ a? + a ? a � b ? b� u
in a, can be obtained as the solutions of the logarithmic quantum stochastic di¤er-
ential equations

(0.8) d�t (b) = �t (b) d�t (b� u) ; �0 (b) = I

with a = b � u 2 a. Note that one can always identify the Itô monoid b with the
algebra a by taking u = 0 and de�ning the ?-monoidal operation as b ? b = aFa
such that : exp [�t (aFa)] := �t (aFa).
In Chapter I we de�ne such functions as solutions �t (b) = exp ftl (b)g of the

equation
d�t (b) = �t (b) l (b) dt; �0 (b) = 1

obtained by the averaging E of (0.8), taking into account the independence of the
increments d� (t; a) and �t (b), and that l (b) = l (a).
Application of the Itô formula

d (�t (b)�t(b)
�) = d�t (b) d�t (b)

�
+ d�t (b)�t (b)

�
+ �t (b) d�t (b)

�

= �t (b)�t (b)
�
d�t( a

? + a � a? + a) = �t (b)�t (b)
�
d�t (aFa)

gives the multiplication rule �t (b)
�
�t (b) = �t (b

?b). Hence we have positive def-
initeness

P
a;c �a�t (aFc)�

�
c � 0 and normalization �t (0) = 1 of �t de�ned on

b = a as the monoid for each t with respect to this new ?-semigroup composition
F and unit u = 0. This results from positivity E [X�X] � 0 and normalization
E [I] = 1 of the vacuum (and any) expectation on the operator algebra generated
by linear combinations X =

P
�b�t (b). Any such function �t that is included into

a continuous one-parameter semigroup f�r : r 2 R+g,
�r (a)�s (a) = �r+s (a) ; �0 (a) = 1

of generating functionals on Itô ?-algebra a as the monoid b is called in�nitely
divisible law [16].
In Chapter 2 we ful�l the Itô programme for quantum stochastic calculus in

a dimension-free form, proving continuity of quantum stochastic integrals in Fock
scales and constructing a noncommutative theory of multiple adapted and non-
adapted quantum stochastic integrals which give solutions to linear quantum sto-
chastic di¤erential equations in the Wick form of time-ordered exponentials. We
shall use the approach based upon explicit de�nition of these integrals in Fock rep-
resentation, which allows to extend them to nonadapted operator-functions. We
will also obtain a functional quantum Itô formula for a quantum stochastic "curve"
X with adapted, or even nonadapted operator values Xt 2 A, having noncommut-
ing quantum stochastic increments D = (Dj) with values in the tensor product
A =A
 a of an operator algebra A with the Itô algebra a. For a �nice�function f
the adapted Itô formula with respect to a �ltration (At)t>0 generated by an initial
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algebra A0 and (��t )t>0 can be written for Dj 2 At in the Pseudo-Poisson form
[18] as

(0.9) df (Xt) = (f (Xt +Dt)� f (Xt))j d�
j
t :

Here X and D are canonical images X � O and O � D of Xt 2 At and D 2
At 
 a � At in the formal sums X +D := X �D as the elements of the algebra
Bt = At
 b = At�At equipped with the involution (X �D)y = X��D? and the
product

(0.10) (X+D) (X+D)
y
= XX� � (XD? +DX� +D �D?) ;

where XD? =
�
XD�

j

�
, DX� = (DjX

�) and D �D? =
�
Dic

ik
j D

�
k

�
. Since f (X) =

f (X) � O, the whole problem is reduced to computing the operator function
f (X+D) using the product in Bt. Thus, in the case f (X) = Xm, where

((X+D)
m �Xm)j = D

(m)
j

with D(0)
j = 0, and

D
(n+1)
j = XD

(n)
j +Dic

ik
j D

(n)
k :

Note that in the nonstochastic case this new formula also gives an interesting
di¤erence form of the non-commutative chain rule df (Xt) = Btdt for a smooth
curve Xt in an initial algebra A0 with non-commuting derivative Dt 2 A0. In this
case the algebra a� is zero-dimensional, a = Cdt, and A0 = A0 
 dt is nilpotent
algebra of �rst order, A �A� = 0, coinciding as the linear space with A0 such that

(X+D) (X+D)
?
= XX� � (XD� +DX�) :

In particular, for any polynomial, f (X) = Xm say, one immediately obtains

dXm
t = ((Xt +Dt)

m �Xm
t ) dt =

mX
n=1

Xm�n
t DtX

n�1
t dt

as a particular case of (0.9). Here X = (X; 0); D = (0; D) and we took into account
that

(X+D)
m
= Xm +

mX
n=1

Xm�nDXn�1 =

 
Xm;

mX
n=1

Xm�nDXn�1

!
;

since DXnD = 0 for d�0td�
0
t = 0 corresponding to d�

0 = dt.
In the nonadapted case the formula (0.9) also remains valid, with Xt = Xt �

rXt given by quantum stochastic derivatives rtXt = (5t;jXt) 2 A = A 
 a,
the noncommutative analog of Malliavin derivative with respect to the canonical

integrators�t =
�
�jt

�
. As to author�s knowledge, this general formula is not known

even in the classical (commutative) case.
The author expresses his gratitude to R.L. Hudson, Ya.G. Sinai, and A.S. Kholevo

for discussion on the article and helpful remarks.

Part 1. In�nitely divisible positive-de�nite functions and their
representations

1. Introduction

In this paper we study two types of representations associated with a positive
in�nitely divisible state on an arbitrary ?-semigroup b [6] with a unit u 2 b. The
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�rst, �di¤erential�type, is connected with an inde�nite metric space representation
of conditionally positive functions b! C in pseudo-Euclidean Minkowski space con-
structed in [14]. In the case when b is a group, this representation was obtained by
simple generalization [50] of the Gelfand-Naimark-Segal (GNS) construction from
positive de�nite to conditionally positive de�nite functions on b. However our main
interest will be the case when b is obtained by a unitalization of a noncommutative
Itô algebra a as a parametrizing algebra for the quantum stochastic di¤erentials of
a quantum Levy process as operator-valued processes with independent increments
in a quite general noncommutative sense.
In our construction the Hilbert space of the GNS representation is replaced by a

pseudo-Hilbert (Minkowski) space which can be decomposed into a direct integral
sum of a pre-Hilbert space and a one-dimensional complex space in accordance
with the fact that the conditional positiveness (2.5) has co-dimension one. In the
�rst section we show that this representation can be realized by block-triangular
matrices of the form

(1.1) B =

24 1 b� �
0 B b+
0 0 1

35 ; By =

24 1 b�+ ��

0 B� b��

0 0 1

35
with pseudo-Hermitian conjugation (kBy j k) = (k j kB) de�ned by the inde�nite
scalar product

(1.2) (k j k0) = k��k
0
+ + (k� j k0�) + k�+k0�;

on the rows k = (k�; k�; k+), where k+ 2 C 3 k� and k� is a vector-row from
a complex Euclidean space K. The algebra of the triangular matrices A = B� I
realizes the non-matrix multiplication table

(1.3)
�
�� a�+
a�� A�

�
�
�
� a�

a+ A

�
=

�
a�+a+ a�+A
A�a+ A�A

�
in terms of the 2� 2 block-matrices (which are not matrices but tables)

A =

�
� a�

a+ A

�
; A� =

�
�� a�+
a�� A�

�
;

de�ning the stochastic Itô di¤erentials in the Hudson and Parthasarathy [26], [29]
quantum calculus. Here a� = b�; a+ = b+; A = B � I; � = �, with involution
Ay = By � I de�ned in (1.1) by the usual Hermitian conjugation A� of the tables
A in terms of A� = B� � I in K, where I is the unit operator in K.
This observation, which lays the foundation of a new formulation [7], [9] of quan-

tum stochastic calculus, allows us to extend it to arbitrary algebras with in�nitely
divisible state �. We mention two particular algebras of classical stochastic di¤er-
entials in the case of one-dimensional K = C:

(1) the Wiener case: A = 0; a� = a�+; � 2 C,
(2) the Poisson case: A 6= 0; a� = a�+ = 0 = �.
If we consider A as the coe¢ cient A�� at the standard Poisson di¤erential dn =

d���; a
� = a�+ as the coe¢ cient A�� = A��+ at the Wiener standard di¤erential

dw = d��� + d�
+
� , and � as the coe¢ cient A

�
+ at dt = d�

+
�, then in both cases we

obtain the realization of the classical Itô formula for stochastic di¤erential dx =P
�;� A

�
�d�

�
� � hA;d�i in the form

d(x�x) = x�dx+ dx�x+ dx�dx =


x�A+Ayx+AyA;d�

�
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of di¤erence multiplication YyY � x�xI =x�A + Ayx + AyA of the triangular
matrices Y = xI +A, Yy = x�I +Ay, where I is the unit 3 � 3 matrix and AyA
is de�ned by the multiplication table (1.3).
In the second section we construct a second �integral�type of representation of

an in�nitely divisible chaotic state on b by means of exponential inde�nite metric
representation and we establish its relation with the calculus of Maassen-Meyer ker-
nels [35], [38], [40], which de�ne chaotic distribution of quantum random variables
and processes.
The algebra of these kernels turns out to be isomorphic to the group algebra of

the exponential representation of b in a pseudo-Fock space, and its Fock projection
de�nes an associated in�nitely divisible representation of b generating the corre-
sponding quantum stochastic calculus in an appropriate Hilbert scale [15]. We note
that this leads in a natural way to the Araki-Woods construction [4] associated
with an in�nitely divisible state in the case when b is a group.
Finally, in the third section, we study the structure and consider examples of

pseudo-Poisson chaotic states characterized by the linearity of conditionally positive
functions l (b) = ln f (b) on a ?-algebra b. To this type belong the quantum Wiener
states of Heisenberg commutation relations, as well as quantum Poisson states on
noncommutative C�-algebras b, studied in [10]. Unitary representations connected
with in�nite divisibility of states and their applications to the quantum probability
theory were studied in [23], [27], [28], [43], [49] on groups and in [46] on bi-algebras.

2. Representations of conditionally positive functionals on
?-semigroups

Let (X;F; �) be a measurable space X with a �-algebra F and a positive �-�nite
atomless measure � : F 3 � 7! ��; �dx � dx := d�(x) , and let b be a semigroup
with involution

b 7! b?; (b � c)? = c? � b?;
and with neutral element (unit) u = u?, u � b = b = b � u for any b 2 b. Typically b
will be the unitalization u+ a of a noncommutative Itô ?-algebra a, in which case

(u+ a) � (u+ c) = u+ a+ c+ a � c � u+ a � c
such that the momoidal product should be identi�ed with a � c = a+ c+ a � c if u
is identi�ed with zero, or simply write b � c = bc if a is realized as a ?-subalgebra
of a unital ?-algebra with u = 1. However in what follows one can take any group
with u = 1 and b? = b�1 as b, or any ?-submonoid of an operator algebra B, a unit
ball of a unital C*-algebra say, or even a submonoid of an idempotent algebra with
trivial involution b? = b, e.g. a �lter b of a Boolean algebra B.
Denote m the monoid of integrable step-maps g : X ! b, that is b-valued

functions x 7! g(x) having countable images g(X) = fg(x) : x 2 Xg � b, jg (X)j <
1 and integrable co-images �(b) = fx 2 X : g(x) = bg 2 F in the sense��(b) <1
for all b 2 b except b = u. We de�ne on m an inductive structure of a ?-monoid
with pointwise de�ned operations g?(x) = g(x)?, (g � h)(x) = g(x) � h(x) and unit
e(x) = u for all x 2 X, considering m as the union [m� of subsemigroups m� of
functions g : X ! b having integrable supports

� = suppg = fx 2 X : g(x) 6= ug
in a � 2 F with�� <1.
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It is convenient to describe the ?-monoid b by means of a single Hermitian
operation a ? c = a � c? satisfying the relations

b ? u = b; u ? (u ? b) = b 8b 2 b
de�ning u = u? as right unit for the composition ?, b? as u ? b, and

u ? ((a ? c) ? b) = b ? ((u ? c) ? a)

corresponding to (a � c?)? = (a?c)? = c?a = c�a? and associativity of the semigroup
operation a � b. This allows one to de�ne both the product and involution in a ?-
monoid m by a single Hermitian binary operation f ?h = g, g(x) = f(x)?h(x) with
left unit e 2 m which recovers the involution by g?(x) = e ? g and the associative
product by g � h = g ? (e ? h) for all g; h 2 m.
Following [6] we say that a generating state functional over the monoid m, or

brie�y a state over m, is a mapping � : m ! C satisfying the condition �(e) = 1
and positive de�niteness

(2.1)
X
f;h2m

�f�(f ? h)�
�
h � 0; 8�g 2 C : jsupp�j <1;

where j � j denotes the cardinality of the set supp� = fg 2 m : �g 6= 0g.
Wewe introduce on m a commutative and associative partial operation f t h :=

f � h for any functions f; h 2 m with disjoint supports supp f \ supph = ;. Thus
de�ned map m� � m�0 ! m� t m�0 for any measurable disjoint �;�0 2 F is
obviously lifted to the tensor product Cm� 
 Cm�0 of the enveloping semigroup
algebras of the ?-monoids m� and m�0 . The operation t is well de�ned even for an
in�nite countable family fgng 2 m with mutually disjoint supports�n = supp gn by
tgn(x) = gm(x) for all x 2 supp gm and any m, otherwise tgn(x) = u if x =2

P
�n.

Any function g 2 m can be written as tgn in terms of the bn-valued indicators gn of
its non-unit images bn 2 g (X) ; bn 6= u with respect to the partition supp g =

P
�n

into the co-images �n = �(bn).
We call a state � over m chaotic if

�

 1G
n=1

gn

!
=

1Y
n=1

�(gn);

where
Q1
n=1 �(gn) = limN!1

QN
n=1 �(gn) for any functions gn 2 m with pairwise

disjoint supports: supp gn \ supp gm = ; for all n 6= m. This condition is ful�lled
for � of the exponential form �(g) = e�(g) with

(2.2) � (g) =

Z
l(x; g)dx; l(x; g) = lx(g(x));

which corresponds to absolute continuity (for all � 2 F we have �� = 0) ��(b) =
1) of the �-additive measure ��(b) := � (b�) for each b 2 b, where b�(x) = b for all
x 2 � and b�(x) = u for x =2 � is the b-indicator of the subset � � X with b 6= u
as an elementary b-valued function b� 2 m.
The function �� : b! C given by

(2.3) ��(b) = exp

�Z
�

lx(b)dx

�
= �(b�);

de�nes an in�nitely divisible state over the monoid b in the sense of the equality
��(b) =

Q
��l

(b) in the limit of any integral sum sequence given by the decompo-
sition � = ��i, ��i

& 0, where ��i
(b)! 1 for any b 2 b. If the Radon-Nikodym



QUANTUM CHAOTIC STATES AND STOCHASTIC INTEGRATION 11

derivative lx (b) = d� (b) =dx of the absolutely continuous measure d� (b) = �dx (b)
does not dependent on x, functions ��(b) = el(b)�� � ��� (b) are forming a con-
tinuous Abelian semigroup

f�t : t 2 R+g; �0(b) = 1; [�r � �s] (b) = �r+s(b)

with respect to the pointwise multiplication of �t = etl(b). Necessary and su¢ cient
conditions for the function (2.2) corresponding to the in�nitely divisible state (2.3)
are given by the following theorem, where we assume that X admits a net of
decompositions of the Vitali system in which �� & 0; x 2 �, as �& fxg.

Theorem 1. In our notation the following conditions are equivalent:

(i) The function �� (b) de�ned for any set � 2 F of �nite measure �� < 1
as � (b�) by a functional � : m ! C on the b-indicator b� is a generating
function of an in�nitely divisible state over b such that for any b 2 b it is
absolutely continuos multiplicative measure in the sense �� = 0) ��(b) =
1 for all � 2 F; b 2 b with the limit

(2.4) lx(b) = lim
�&fxg

1

��
(��(b)� 1)

existing almost everywhere in the Lebesgue-Vitali sense [47].
(ii) �(g) = expf� (g)g, where � (g) = �� (b) for g = b� is an absolutely con-

tinuous complex measure of � 2 F, and for any integrable set � � X the
function b 7! ��(b) is conditionally positive de�nite

(2.5)
X
a;c2b

�a��(a ? c)�
�
c � 0; 8� : jsupp�j <1;

X
b2b

�b = 0;

where ��(u) = 0 and ��(b?) = ��(b)
� for any b 2 b.

(iii) There exists:
1) an integral ?-functional � (g) :=

R
l(x; g) dx with complex density l :

m ! L1(X) such that l(g)� = l(g?) and whose values l(x; g) = 0 for
all g(x) = u and l(x; b�) = lx(b) with x 2 � are independent of �;
2) a vector map k : g 7!

R �
k(x; g) dx to the subspace K �

R �
Kxdx of

square integrable functions k : x 7! k(x) 2 Kx, kkk2 =
R
kk(x)k2xdx < 1

with respect to scalar products hkx j k0xi � k�xk0x in the pre-Hilbert spaces Kx,
with values k(x; b�) = kx(b) 2 Kx independent of � 3 x and k(x; b�) = 0
if x =2 � such that k(x; g) = 0 if g(x) = u; the map k, together with the
adjoint functions k? (x; g) = k (x; g?)

� as the linear functionals k? (g) =R �
k?(x; g)dx 2 K�, satis�es the condition

(2.6) k?(g)k(h) = � (g � h)� � (g)� � (h) ; 8g; h 2 m;

3) a unital �-representation j : g 7!
R �

j(x; g)dx � G, j (g)� = j (g?)

j(x; g)j(x; h) = j(x; g � h); j(x; g) = Ix 8x : g(x) = u

of a ?-semiring m in the �-algebra of decomposable operators G : K 3
k 7!

R �
j(x; g)k(x)dx with j(x; b�) = jx(b) independent of � 3 x and

j(x; b�) = Ix if x =2 �, which satisfy the cocycle property

(2.7) j(g)k (h) = k (g � h)� k (g) ; k? (g) j(h) = k? (g � h)� k? (h) ; 8g; h 2 m
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and are continuous in K with respect to the poly-norm

(2.8) kkkf =
�Z

kj(x; f)k(x)k2xdx
�1=2

; f 2 m:

(iv) For almost all x 2 X there exists a pseudo-Hilbert space Kx, a unital y-
representation

jx(b � c) = jx(x; b)jx(x; c); jx(x; b?) = jx(x; b)y; jx(u) = Ix
of b in the algebra of linear operators L(Kx) = fL : Kx ! Kx : LyKx� Kxg,
where Ly is pseudo-Hermitian conjugation

�
k j Lyk

�
= (Lk j k), k 2 Kx,

and a vector ex 2 Kx of zero pseudo-norm (ex j ex) = 0 such that the
function

(2.9) lx(b) = (ex j jx(b?)ex) = (jx(b)ex j ex)
is integrable for each b 2 b on any � � X with �� <1 and

R
�
lx(b)dx =

ln��(b). Moreover, each Kx can be chosen in the complex Minkowski form
Kx = C � K�x � C � K�x with ex 2 Kx given as pseudo-adjoint ex =
eyx � e� to the row ex = (1; 0; 0) � e� of the dual space Kyx = K� of triples
k� = (k�; k�; k+) with the canonical pairing hk�; h�ix = k�h

� � k�h
� and an

antilinear embedding k 7! ky of k � k� 2 K�x into K� such that k� = k�� 2
C, k� = k�� 2 K�x, de�ning the Minkowski scalar product

(2.10) (k j k)x := k��k+ + hk j kix + k
�
+k� �



ky;k

�
x

on K�x in terms of the Euclidean scalar product k�k� = hk j kix for k� = k�
and k� = k 2 K�x. The representation jx is chosen then in the triangular
form

j��(x; b) =

241 j�� (x; b) j�+ (x; b)
0 j��(x; b) j�+(x; b)
0 0 1

35 ; j��(x; b
?) =

241 j�+(x; b)
� j�+ (x; b)

�

0 j��(x; b)
� j�� (x; b)

�

0 0 1

35 ;
de�ning its dual action jx (b?)

y on K� as right multiplication by this operator-
matrix j��(x; b):

j(b) : (k�; k�; k+) 7! (k�; k�j
�
� (b) + k�j

�
�(b); k�j

�
+ (b) + k�j

�
+(b) + k+) � k�j

�
�(b):

The Hermitian conjugation Ly = gL�g of the block-matrix operators L =
[L�� ] with respect to the inde�nite form (2.10) is given by the metric ten-
sor g =

�
����

�
corresponding to the inversion �(�; �;+) = (+; �;�) of the

ordered set f� < � < +g of the indices �; � = �; �;+.

Proof. We �rst establish the simple implications (iv)) (iii)) (ii)) (i), and then
we prove (i)) (iv) constructing, similarly to the Gelfand-Naimark-Segal construc-
tion, a concrete pseudo-Euclidean representation of the logarithmic derivative of
the generating functional �� of in�nitely divisible state over b with respect to ��.
(iv) ) (iii). If ex = (1; e; ")

y
x � e�x is a zero pseudo-norm vector-column with

the components e�x = "�x 2 C, e�x = e�x 2 K�x and e+x = 1 such that kexk
2
= 2Re "x,

de�ning (2.9) in the triangular matrix representation as lx(b) = ex� j
�
�(x; b)e

�
x, where

ex� = 1, ex� = ex; e
x
+ = "x, then we can take � (g) =

R
l (x; g) dx, where l (x; g) =

lx (g (x)) has obviously properties

l (x; g?) = ex� j
�
�(x; g)

ye�x = l (x; g)
�
;
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and l(x; b�) = ex� j
�
�(x; b)e

�
x does not depend on � if x 2 �, otherwise

l (x; b�) = ex� j
�
�(x; u)e

�
x = ex� e

�
x = kexk

2 � 2Re "x = 0:

We denote by Kx the completion of the pre-Hilbert space K�x by the Cauchy
�kets�k with respect to the poly-norm

kkk�x = fkkkax = kj��(x; a)kk; a 2 bg

as fundamental sequences fk�ng in K�x which do not have limits in K�x simultaneously
with respect to all seminorms kk�kax, a 2 b. For each g 2 m let k (g) denote the
vector function

k (x; g) = (j��(x; g)� 1)e�x + j�+(x; g) = j��(x; g)e
�
x � e�x

with values k(x; g) 2 Kx, with the adjoint �bras�k?(x; g) = ex�j
�
� (x; g

?) 2 K�x, where
ex��� = e�x and for short we use the notation j

�
� (x; g) = j�� (x; g (x)). This function

is square integrable since

k (g)
�
k (g) = � (g? � g)� � (g)� � (g?) = kk (g)k2 <1

due to the condition (2.6) which is veri�ed straightforward,

k? (g) k (h) =

Z
(ex�j

�
� (x; g)� ex�)(j��(x; h)e�x � e�x)dx

=

Z
fke�xk2x + ex�

�
j�� (g)j

�
� (h)� j

�
�(g)j

�
� (h)� j

�
+(g)j

+
� (h)

�
(x)e�x

� ex�
�
j�� (g)e

� � j��(g)e� � j
�
+(g)

�
(x)

�
�
e�j

�
� (h)� e�j�� (h)� e+j+� (h)

�
(x)e�x)gdx

=

Z
[ex�j

�
� (x; g � h)e�x � ex�j�� (x; h)e�x � ex�j�� (x; g)e�x]dx

= � (g � h)� � (g)� � (h)

for any g; h 2 m, where ex�j
�
� (x; g)e

�
x = l(x; g),

R
l(x; g)dx < 1, and we have

employed the condition ex�e
�
x = 0.

Let the subspace K �
Y
Kx be chosen as also the completion of the linear hull

of square-integrable functions fk (g) : g 2 mg with respect to all seminorms kkkh =
(
R
kj(x; h)k(x)k2xdx)1=2, h 2 m given by operator-functions j (x; h) = j��(x; h). For

any g 2 m we denote by G =
R �

j(x; g)dx a linear decomposable operator in
K =

R �
Kxdx with G� de�ned pointwise as

(G�k)(x) = j��(x; g(x)
?) k(x) = G(x)�k(x); k 2 K:

This de�nition is correct since for almost all x 2 X and all g; h 2 m we have
j(g � h) = j(g)j(h) pointwise, and any sequence of functions fkng; kn(x) 2 Kx,
fundamental with respect to all seminorms k�kf is mapped by the operator j(g) into
a sequence fkgng, kgn(x) = j(x; g)kn(x) 2 Kx with the same fundamental property:

kkgm � kgnkf = kj(f)j(g)(km � kn)k = kkm � knkf �g �! 0:

This yields a decomposable non-degenerate representation Gk =
R �

G(x)k(x)dx of
the ?-semiring m in the poly-Hilbert space K:

e 7! I = j(e); f ? h 7! FH�; F = j(f); H = j(h):
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This representation is closed in the sense of the completeness of K with respect to
simultaneous convergence in all seminorms kkkf = kFkk; f 2 m (which is equiva-
lent to the convergence in the Hilbert norm kkk only in the case when the operator
function G(x) = j(x; g) is essentially bounded for every g 2 m, in which case
K =

R �
Kxdx is called Hilbert integral). The map m 3 g 7! k (g) we have con-

structed, as well as k?, is an additive cocycle in the sense (2.7) since the derivation
property

k (g � h) = j��(g � h)e� � e� = j��(g)j
�
� (h)e

� � e�

= j��(g)j
�
�(h)e

� + j�+(g)� e� = j(g)k (h) + k (g)

with respect to the representation j(g)k (h) = j��(g)k (h) of the monoid in K and
the trivial representation 1(h) = 1 of m in C.
(iii) ) (ii). It is obvious that the absolutely continuous measure ��(b) =R

�
l(x; b)dx de�ned by the functional � (g) =

R
ex�j

�
� (x; g)e

x
�dx satis�es the con-

ditions ��(b?) = ��(b)
� and ��(u) = 0, since the functional l(x; b) satis�es these

conditions almost everywhere on X. The conditional positivity (2.5) follows from
the positive de�niteness [k (f)� k (h)] � 0 of the scalar product k�k0 = hk j k0i which
guarantees the conditional positivity of the form � (g):X
f;h2m

�f hf ? hi��h =
X
f;h2m

�f (� (f ? h) + � (f) + � (h))�
�
h

=
X
f;h2m

�f� (f ? h)�
�
h +

X
f2m

�f
X
h2m

� (h)
�
��h +

X
f2m

�f� (f)
X
h2m

��h

=
X
f;h2m

�f hk (f?) jk (h?)i�h � 0

for any function � = f�gg with �nite support and satisfying
P
�g = 0.

(ii) ) (i). If the function ��(b) is a (complex) absolutely continuous measure,
then ��(b) = expf��(b)g has the property �t�l

(b) =
Q
��l

(b) of in�nite divisi-
bility. Moreover the limit (2.4) exists, and by virtue of ��(b) ! 1 as � # fxg it
coincides with the Radon-Nikodým derivative lx(b) = d ln�(b)=dx as the limit of
the quotient ��(b)=�� over a net of subsets � 3 x of the system of Vitali decom-
positions of the measurable space X. For any integrable � the function b 7! ��(b)
is positive in the sense of (2.1). Indeed, for any complex function b 7! �b with �nite
support we have due to (2.5)X

a;c2b
�a(��(a ? c)� ��(a)� ��(c?))��c =

X
�ahk? (a�) k (c?�)i��c � 0

since hk? (a�) k (c?�)i =
P

a;c2b �
�
a��(a ? c)�

��
c with ��b = �b; b 6= u, and ��� =

�� �
P

b2b �b is a positive-de�nite kernel in a and c as
P

b2b �
�
b = 0, and we have

taken into account the fact that ��(u) = 0. Since the exponent of any positive-
de�nite kernel is a positive de�nite kernel, we have for any �X

a;c2b
��a expf��(a ? c)g�c =

X
a;c2b

�a�� expfhk? (a�) k (c?�)ig�c� � 0;

where �b� = �b expf��(b)g and we have taken into account (2.6) and ��(b?) =
��(b)

�.
(i) ) (iv). Since �� is an in�nitely divisible state on b and ��(b) ! 1 for all

b as �� ! 0, the limit lx(b) is de�ned as the logarithmic derivative �
�1
dx ln�dx(b)
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of the measure ��(b) = ln��(b) in the Radon-Nikodym sense. Consequently, the
function x 7! lx(b) is integrable and almost everywhere satis�es the conditions
lx(a ? c)

� = lx(c ? a), lx(u) = 0 andX
b2b

�b = 0 ) (�0 j �)x :=
X
a;c2b

�alx(a ? c)�
�
c � 0

for all � such that jsupp�j < 1, which can easily be veri�ed directly for the
di¤erence derivative l�(b) = (��(b) � 1)=�� and next we can pass to the limit
� # fxg. In addition

R
�
lx(b)dx = ln��(b) by absolute continuity.

We consider the space B of complex functions � = (�b)b2b on b with �nite
supports fb 2 b : �b 6= 0g as a unital ?-algebra with respect to the product �0 � �
de�ned as �0 ? �? by the Hermitian convolution

(�0 ? �)b =
X
a?c=b

�0a�
�
c ; �u ? � = �? ; � ? �u = � :

with right identity �u. Here �a = (�a;b)b2b is the Kronecker delta and it de�nes a
?-representation
a 7! �a of the monoid b in B,

�a ? �c = �a?c; �u ? �b = �b; �b ? �u = �b? ;

with respect to the involution �? = (��b?)b2b. The linear subspace A � B of
distributions � such that the sum �� :=

P
b2b �bequals zero, is a ?-ideal sinceX

b2b
(�0 ? �)b =

X
b2b

X
a?c=b

�0a�
�
c =

X
a2b

�0a
X
c2b

��c = 0;

Let us equip B for every x 2 X with the Hermitian form (�0 j �)x of the
kernel lx (a ? c) which is positive on A and can be written in terms of the kernel
h�a; �?ci

�
x = lx(a ? c)� lx(a)� lx(c?) as

(�0 j �)x = �0��
�
+ + h�0; �?i

�
x + �

0
+�

�
�;

where �+ :=
P

b �blx (b). We notice that the Hermitian form

h�0? j �?i�x :=
X
a:c2b

�0a h�a; �ci
�
x �

?
c � h�0; �?i

�
x

is non-negative if �� = 0 or �0� = 0 as h�; �?i
�
x =

P
�a h�a; �?ci

�
x �

�
c � 0, coinciding

with (�0 j �)x. Since (�0 j �)x =
P

b (�
0 ? �)b lx (b), the form (�0 j �)x has right

associativity property

(�0 � � j �)x = (�0 j � ? �)x = (�0 j � � �?)x;

for all �; �0 2 B, and therefore its kernel Rx = f� : (�0 j �)x = 0 8�0g is the right
ideal

Rx = f�0 2 B : (�0 � � j �)x = 0; 8� 2 Bg
belonging to A. We factorize B by this right putting � � 0 if � 2 R?x :=
f�? : � 2 Rxg and denoting the equivalence classes of the left factor-space K�x =
B=R?x as the ket-vectors j�) = f�0 : �0 � �? 2 R?xg. The condition � 2 Rx means
in particular that ��x := (�u j �)x = 0, and therefore

(� j �)x =
X
a;c2b

�ah�a; �?cix��c = h�� j ��ix = 0;
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where �� = (��b)b2b denotes an element of A obtained as �
�
b = �?b for all b 6= u and

��u = �?u �
P

b2b �
?
b such that h�� j ��ix = h�; �?i

�
x. Therefore it follows also that

�+ :=
P
�?b is also zero for any � 2 Rx since

0 = (�0 j �)x = �0��
�
+ + h�0; �?i

�
x + �

0
+�

�
� = ��� = �+

for any �0 2 B with �0+ = 1 by virtue of �
�
+ = �� = 0 and also due to the Schwartz

inequality (�0 j �) = h�0; �?i� = 0. This allows us to represent the left equivalence
classes j�)x by the columns k� = [k�] with k� = �� and k� = j��i in the Euclidean
component K�x � K�x as the subspace of the left equivalence classes j��i = j��)
of the elements �� = (�b � �u;b��)b2b 2 A such that �?� = ��. These columns
are pseudo-adjoint to the rows k� = (k�; k�; k+) as the right equivalence classes
(� := j�)y 2 B=Rx with k� = �� and k� = (�� de�ning the inde�nite product
(2.10) in terms of the canonical pairing

k�k
� = k�k

� + hk�; k�i+ k+k+ =
�
k� j ky�

�
;

where k� = k�� 2 K�x, k� = k�� 2 C with respect to the Euclidean scalar product
hk�; k�i = hk�� j k�i of the Euclidean space K�x = fk� = j��i : �� 2 Ag, and

��+ =
X
b2b

lx(b
?)�b = ��x ; ��� =

X
b2b

��b = �+:

We notice that the representation �� : b 3 b 7! �b is Hermitian:

(� � �b j �) =
X
b2b

l(b)(� � �b ? �)b = (� j � � �b?);

and that it is well de�ned as right representation on B=Rx (or left representation
on B=R?x) since � � �b 2 R if � 2 Rx:

(� j �) = 0; 8� 2 B) (� � �b j �) = (� j � ? �b) = 0; 8� 2 B:

This allows us to de�ne for each b 2 b an operator (� j(b) = (� � �b such that
j(b?) = j(b)y with the componentwise action

(� � �b)� = ��; (� � �b)� = ��(�b � �u) + �� � �b;
(� � �b)+ = ��l(b) + (�� j �b? � �u) + �+;

given as the right multiplications k 7! kB, k 7! kBy of the triangular matrices

B =

241 j�� (b) j�+ (b)
0 j��(b) j�+(b)
0 0 1

35 � j�� (b) ; j
�
� (b

?) =

24 1 j�+(b)
� j�+ (b)

�

0 j��(b)
� j�� (b)

�

0 0 1

35 � By
by the rows k = (k�; k�; k+) 2 K� (or as the left multiplications Bk, Byk by
columns k 2 K�x). Here

j�+ (x; b) = lx(b); (��j
�
�(x; b) = (�� � �b = (��jx (b) ;

j�+(x; b
?) = �?bix = kx (b?) = k?x (b)

�
= h�?b j� = j�� (x; b)

�;

where �?bix = j�b � �u) and By��� = B���� is pseudo-Euclidean conjugation of the
triangular matrix B = [B�� ] corresponding to the map k 7! ky into the adjoint
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columns k = [k�] with the components k� = k��� given by the pseudo-metric
tensor g�� = ���� = g�� :24b�� b�� b�+

0 b�� b�+
0 0 b++

35y =
240 0 1
0 I 0
1 0 0

3524b�� b�� b�+
0 b�� b�+
0 0 b++

35� 240 0 1
0 I 0
1 0 0

35 =
24b+�+ b��+ b��+
0 b��� b���
0 0 b���

35
Thus we can write the constructed canonical y-representation j(b) = [j�� (b)] of the
monoid b in the pseudo-Euclidean space Kx = K�x of columns k = [k�] in terms of
the usual matrix multiplication241 k?(b) l(b)

0 j(b) k(b)
0 0 1

35241 k?(c) l(c)
0 j(c) k(c)
0 0 1

35
=

241 k?(c) + k?(b)j(c); l(c) + k?(b)k(c) + l(b)
0 j(b)j(c); j(b)k(c) + k(b)
0 0 1

35
This realizes a conditionally positive function l(b) as the value of the vector form
(2.9) on the column e =

�
��+
�
= ey as adjoint to row e = (1; 0; 0) of zero pseudonorm

eye = e�e
� = 0 for each x as

eyj(b)e = e�j
�
� (b)e

� = j�+ (b) = l(b):

The proof is complete. �

Remark 1. Any inde�nite-metric representation (E �; j�� ; c�) of a conditionally pos-
itive function l, written in the form l(b) = e�j

�
� (b)e

� with respect to a triangular
?-representation j�� = [j

�
� ] of b in a pseudo-Hilbert space E � = C�E��C with (2.10)

and a zero-vector e� = (e�; e�; e+)y normalized as e� = 1, ke�k2 = �2Re e+ can be
reduced to the canonical form (K; j; e) corresponding to

j�+ = l; j�+ = k; j�� = k?; j�� = j

with respect to the vector e = (1; 0; 0)y by a triangular pseudo-isometry S : K! E �.
In particular, if (E �; j�� ; e�) is a minimal closed representation in the sense that the
vector e� is cyclic such that E� is minimal poly-Hilbert space generated by the action
on e� of the linear hull of operators j�� (b), then it is equivalent to the closed canonical
representation on K = C�K� C with the constructed minimal K� = K.

Indeed, taking an arbitrary isometry U : K� ! E� of a minimal space K� we can
de�ne the pseudo-isometry S in the form

(2.11) S =

241; e�U; e�+
0; �U; e��
0; 0; 1

35 ; SyS = I; Sy =

241; e�; e+
0; �U�; U�e��
0; 0; 1

35 ;
converting the matrix j��(b) and the column e

� 2 E � into the canonical form

j(b) =

241 k?(b) l(b)
0 j(b) k(b)
0 0 1

35 = Syj��(b)S; e =

2400
1

35 = Sye�;
since e�S�� = S�� + e�S

�
� + e+S

+
� = (1; 0; 0) if S�� = (1; e�U; e+), S�� = (0;�U; e��),

S+� = (0; 0; 1) for e� = (1; e�; e+) with e�e
�
� � he� j e�i = e+ + e�+ corresponding to

l(u) = (e� j e�) = 0. If the Euclidean space E� is minimal containing fj�� (b)e� : b 2 bg
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(or minimal closed with respect to the seminorms kk�kc = kk�j��(c)k; c 2 b) then,
de�ning the operator U by the isometricity condition

e�j
�
�(b)S

�
� = (e� � e�j��(b))U = k(b)�;

(e� � e�j��(a) j e� � e�j��(c)) = k(a)�k(c);

we obtain a pseudo-unitary equivalence of the (closed) representation (E �; j�� ; e�)
and the (closed) canonical representation (K; j; e) constructed in the proof of the
implication (i) ) (iv) of Theorem 1.

3. The Fock and pseudo-Fock representation of infinitely divisible
states

We shall now describe an exponential inde�nite-metric representation of the
?-monoid m associated with the conditionally positive-de�nite functional � (g) =R
lx(g(x))dx and its connection with the generalized Araki-Woods construction [4]

corresponding to the chaotic in�nitely divisible state �(g) = e�(g). Unlike the Fock
representation of the Araki-Woods construction, the exponential representation,
which we will construct in a pseudo-Fock space, has the property of decomposability
in �nite tensor representations, which can be used [15] to construct explicit solutions
of quantum stochastic equations even in the case of non-adapted locally integrable
generators.
We call pre-Fock space F� over a pre-Hilbert space K� the linear hull ff =

��i exp fkig : �i 2 C; ki 2 K�g of exponential vectors exp fkg := �1n=0 1n!k

n as

direct weighted sums of �nite tensor powers of vectors k 2 K�, with k
0 = 1 and
k
1 � k such that

hexp fkg j exp fkgi =
1X
n=0

1

n!
hk j k0in = ehkjk

0i:

This positive-de�nite exponential kernel describes the scalar product

hf j f 0i = �ij��i hexp fkg j exp fk0gi�j
in F�, and the usual Fock space is de�ned as a completion of F� with respect
to the norm kfk = hf j fi1=2. Below as such K� we will take the poly-Hilbert
space K =

R �
Kxdx associated with the constructed canonical representation of a

conditionally positive functional � on the ?-monoid m of simple functions g : X ! b,
denoting by K� � K� the dual subspace of those functionals k� 2 K� which are
represented as k�k = hk j ki � k�k on k 2 K (such k� = k� are continuous with
respect to all seminorms of K).
Thanks to the fact that the measure dx is atomless, the space �1n=0 1n!K

(n),
with K(n) � K
n consisting of only symmetric tensor-functions f(n) : Xn ! K
n,
can be identi�ed with the space �(K) = �1n=0�n(K) of square-integrable functions
f (!) with arbitrary tensor values f(!) 2 K
 (!) in full tensor products K
 (!) =

x2!Kx of the component spaces Kx, with the indexing sets ! : j!j = n <1 taken
as any �nite subsets ! � X, j!j = n <1. The integrability of such tensor-valued
functions f(!), de�ned on the space 
 =

P1
n=0 
n of all �nite subsets ! � X

including empty subset ! = ; with K
 (;) = C is understood with respect to the
Lebesgue measure d! =

Q
x2! dx with d; = 1, and the isometry of the components

1
n!K

(n) and
R �

n
K
 (!) d! is given by the symmetric extension f (n) (x1; : : : ; xn) =
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f (fx1; : : : ; xng) de�ning f (n) almost everywhere on Xn with respect to dx1 � � �dxn
such that Z

X

� � �
Z
X

kf(n)(x1; : : : ; xn)k2dx1 � � �dxn = n!

Z

n

kf(!n)k2d!n.

Denoting the series
P1

n=0

R

n
�d!n of integrals over the n-point subsets !n =

fx1; : : : ; xng � X as the single integral on 
 with respect to the measure d! =
P

d!n, the scalar product in �(K) =
R �


K
 (!) d! can be written as the single

Lebesgue integral on 
;

hf j fi :=
1X
n=0

Z

n

hf(!n) j f(!n)id!n �
Z



hf(!) j f(!)id!

called the multiple Lebesgue integral on X. Obviously the symmetric extension
from 
 onto

P1
n=0

1
n!X

n of the tensor-product functions f(!) = 
x2!k (x) �
k
 (!) de�nes almost everywhere the generating exponential functions exp fkg, and


k
 j k0

�
= ehkjk

0i; hk j k0i =
Z
hk(x)jk0(x)ix dx

since
R

n
kk
(!)k2d!n = 1

n!

�R
X
kk (x)k2 dx

�n
due to kk
(!)k2 =

Q
x2! kk(x)k2x.

In future we will refer to the Hilbert integral
R


K
 (!) d! as to the Fock space,

denoting the exponential domain in it by � (K) 3 k
.
We de�ne decomposable operators j(g)
 = �1n=0j(g)
n on �(K) by a unital

�-representation j : m ! L(K) on K associated with the conditionally positive
function � (g) by means of the linear continuation j(g)
f = ��ij(g)


k
i of the
tensor-product operators j(g)
k
 = (j(g)k)
. Obviously the correspondence g 7!
j (g)


 is, like j itself, a unital �-representation
j
(g?) = j
(g)�; j
(f � h) = j
(f)j
(h); j
(e) = I
 8f; g; h 2 m

on the pre-Hilbert space � (K). In general the operators j(g)
 are unbounded and
cannot be extended onto the complete Fock space over K (if only ?-monoid is not
a group with g? = g�1), however we can extend them to a closed �-representation
j
 (g) = j(g)
 on the completion F of the pre-Hilbert space �(K) by fundamental
sequences fn 2 � (K) converging in F with respect to all seminorms

kfkh =
�Z

kj
(!; h)f(!)k2d!
�1=2

; h 2 m:

Note that the operators j
 (g) belong to the operator algebra L (F) of all linear
continuous, together with their adjoints, operators F ! F due to kj
 (g) fkh =
kfkg�h, and in the case if they all are bounded, F is usual Fock space and L (F) =
B (F). All linear functionals f� 2 F� of the form f� =f

� 2 F� are also continuous
on F since f�f = hf j fi converges for any sequence converging in all seminorms kfkh,
h 2 m.
Unfortunately, the representation j
 describes a dilation of an in�nitely divisible

state � as a vector representation on F in the sense of the existence of an f 2 F
such that �(g) = hf j j
(g)fi for all g 2 m only under special �vector�choice � (g) =
hk j (j(g)� I)ki of the logarithmic function � (g) = ln�(g). If such a vector k 2 K
exists, then one can obviously take f = expf� hk j kigk
:


f j j
(g)f
�
= expf� hk j kig



k
 j j
(g)k


�
= expfhk j (j(g)� I)kig:
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Exploiting a similar exponential construction not for the pre-Hilbert K but for
a pseudo-Hilbert extension K of the complex Euclidean space K, we can obtain
a pseudo-Fock vector representation also for a general conditionally positive form
� (g).
For we consider a vector-function space K = L1(X)�K� L1(X) of the triples

k = k�� k�� k+, where k� 2 K are square integrable vector-functions k�(x) 2 Kx
from the poly-Hilbert space K = fkk�kh < 1 : h 2 mg, with k� 2 L1(X) and
k+ 2 L1(X) taken as respectively absolutely integrable and essentially bounded
complex functions:

kk�k1 =
Z
jk�(x)jdx <1; kk+k1 = ess sup jk+(x)j <1:

We equip this complex poly-Banach space with a pseudo-Hilbert scalar product

(3.1) (k j k) =


k� j k+

�
+ hk� j k�i+



k+ j k�

�
� hk�; k�i ;

where k���(x) = k�(x) such that h k�; k�i =
R
k�(x)k

�(x)dx is the integral product
corresponding to (2.10) for the column-function k = ky� � k� adjoint to k� (x) =
(k�; k�; k+) (x) with the column k(x) = [k� (x)] such that k�� = k+, k�� = k�; k�+ =
k�(x). Note that the products of the components k� and k� with the same � =
�; �;+ are absolutely integrable for each �, and thus all three integrals in 3.1
converge making K a generalized Krein space.
We de�ne in K a closed decomposable ?-representation (j(g)k)(x) = j(x; g)k(x)

of b-valued functions g(x) by triangular-operator functions j(x; g) = [j�� (x; g(x))] of
the canonical form such that

(3.2) j(x; g?) =

241; k(x; g)�; l(x; g?)
0; j(x; g)�; k(x; g?)
0; 0; 1

35 = j(x; g)y;
where the functions l(g) 2 L1(X), k(g) 2 K, j(g) : K ! K have been described in
Theorem 1.
The operators j(g) are continuous on the whole of K, together with the adjoint

operators j(g)y, with respect to the Hermitian form (3.1) by virtue of the inequalities

k(j(g)f)�k1 � kf�k1 + kk(g)k � kf�k+ kl(g)k1kf+k1 <1;
k(j(g)k)�kh � kf�kg�h + kk(g)kh � ke+k1; k(j(g)k)+k1 = kf+k1

for any f 2 K, and satisfy conditions (2.6), (2.7) in the form

j(g?) = j(g)y; j(f � h) = j(f)j(h); j(e) = I; 8f; g; h 2 m;

where I = [��� ] is the unit operator in K.
We consider the space �(K) generated by �exponential�vectors k
 = �1n=1k
n

with a non-degenerate pseudo-Hilbert scalar product that extends to �(K) the
Hermitian form

(3.3) (k
 j k
) = exp
�Z

k�(x)k
�(x)dx

�
= e(kje)

Owing to the de�ning algebraic property

�(L1(X)�K� L1(X)) = �(L1(X))
 �(K)
 �(L1(X))
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of the exponential functor �, we shall write this scalar product as the triple integral
over 
,

(h j h) =
ZZZ

h(!�; !�; !+)h(!�; !�; !+)d!�d!�d!+ � hh;hi ;

representing h 2 � (K) by the ket-function h = [h(!�; !�; !+)], !� 2 
, and h =hy
by the pseudo-adjoint bra-function h(!�; !�; !+) =h(!+; !�; !�)

� with values in
K
� (!�) such that h

y (!�; !�; !+) =h(!+; !�; !�) 2 K
 (!�). The exponential
correspondence k
� 7! h (!�) for each k� = (k�; k�; k+) with k� 2 K� is given by

k
� (!�; !�; !+) = k
�(!�)k


� (!�)k



+(!+); k
� (!) = 
x2!k�(x);

with k
�(!) simply described as product functions
Q
x2! k�(x) such that indeed


k
� ; k
y

�
�
= exp

�

k�; k

��+ hk�; k�i+ 
k+; k+�	 = e(kjk):

The Banach space F� of such tensor-functions h (!�; !�; !+) with respect to the
norm

khk =
Z
d!�

�Z
d!�ess sup

!+
kh(!�; !�; !+)k2

�1=2
<1;

equipped with the inde�nite scalar product (3.3), will be called a pseudo-Fock
space. It can be easily veri�ed that F� contains the exponential vector h = k
�
if and only if kk�k1 � 1, in which case kk
� k = exp fkk+k1 + kk�k2g. The set
K1� = fk� 2 K� : kk�k1 � 1g, where Ky� = K, contains the canonical vector e
�
given by the constant vector-function e�(x) = (1; 0; 0), and it is invariant under
the action k� 7! k�j (g) of m since (k�j (g))� = k� for any g 2 m. Therefore
the completion of the linear space �

�
K1�
�
with respect to the Banach poly-norm

khkf = fkhj
 (f) k : f 2 mg is a dense subspace of F � which will be denoted by
F?, with F for Fy? =

n
hy : h 2 F?

o
. (F? coincides with F� if all j (g) are bounded).

The canonical exponential vector is obviously state vector for the in�nitely di-
visible state �(g) which is represented as

�(g) = (e
j
(g) j e
) = expf(ej(g) j e)g = e�(g):
What is more, as the next theorem shows, the representation j
, compressed to the
Fock subspace F � F by means of a pseudo-conditional expectation

�[j
(g)] := Jyj
(g)J � �(g);

remains multiplicative, with Jye
 = 1; de�ned as the vacuum state the unital �-
representation � associated with �(g) = exp� (g). Here �!; = 1 for ! = ;, �!; = 0
for ! 6= ;, and
(3.4) (Jh)(!�; !�; !+) = 1;(!

�)h(!�); h 2 F;
is a pseudo-isometry F! F, (Jh j Jh) = hh j hi for all h 2 F.
To obtain this result we note that any decomposable operatorK = 1�G�G
2�

: : : in �(K), obtained by exponentiation G
 of the triangular operator G = j(g),
can be written in the form

(3.5) [Kh](!�; !�; !+) =

�=�;�;+X
F
���

!��=!�

K(!)h(!��; !
�
� t !��; !�+ t !�+ t !++);
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where ! = t!� denotes direct sum of pairwise disjoint !� de�ning a decomposition
!� = (!�) of !. Here K(!) is a function of the table ! = (!�� )

�=�;�
�=�;+ of four subsets

!�� 2 
 with values in linear continuous operators

K

�
!�+ !��
!�+ !��

�
: K
(!�� )
K
(!��)! K
(!��)
K
(!�+);

K(!) = l
(!�+; g)k

(!�+; g)j


(!��; g)k
?
(!�� ; g); k?(g) = k(g?)�;(3.6)

where K
(!) =
N

x2! Kx;

l
(!) =
Y
x2!

l(x); k
(!) =
O
x2!

k(x); k?
(!) =
O
x2!

k?(x); j
(!) =
O
x2!

j(x):

Theorem 2. Let K =
L1

n=0K
(n) be a decomposable operator in the pseudo-Fock

space F de�ned in (3.5) by a linear combination of the kernels of the form (3.6).
Then the operators �(K) = JyKJ , de�ned by pseudo-projection Jy : F! F,

(3.7) (Jyh)(!) =

Z
h(!�; !; ;)d!�; h 2 F;

as the adjoint to (3.4), can be extended to a continuous operator

(3.8) [�(K)h](!) =
X
��!

Z
K(! n �; �; #�)h(� t #�)d#�;

where K(#�; �; #�) =
R
K

�
# #�
#� �

�
d# de�ned on the completion F of the pre-

Hilbert space �(K) with respect to the family of the seminorms khkf = k�(f)hk,
f 2 m. The map � : K 7! �(K) de�nes a Fock �-representation �(�Ky + ��K) =
��(K)� + ���(K),

�(KKy) = �(K)�(K)�; �(I
) = I


of a decomposable y-algebra of operators K with respect to the involution K?(!) =
K(!0)�, where (!�� )

0 = (!����), and the associative product [K �M ](!) =

(3.9) =

�<�X
����!��

�[�=!�+X
�\�=��+

K

�
!�+ n � ; ��� t ��+
!�+ n ��+; !�� t ��+

�
M

�
!�+ n �; !�� n ���
��+ t ��+; !�� t ���

�
:

It induces the involution K�(#�; �; #�) = K(#�; �; #
�)� and [K �M ](#�; �; #�) =

=
X
���#�

X
���#�

Z
K(#� n ��; � t ��; �� t #)M(# t ��; � t ��; #� n ��)d#

for the kernels K(#�; �; #�) and M (#�; �; #�), and de�nes a factor algebra of the
y-algebra of operators K with respect to the zero y-ideal fK : �(KKy) = 0g. The
compression � = � � j
 of the �-representation � to the operators K of the form
(3.6) de�ned by the action (3.8):

(3.10) [�(g)k
](!) = exp

�Z
(l(x; g) + k?(x; g)k(x; g))dx

�
(k(g) + j(g)k)
(!);

of the kernels K(!�; �; !�) = expf� (g)gk
(!�; g)j
(!; g)k?
(!�; g) on k
(!) =

x2!k(x) yields the unital �-representation � : m! L(K),

�(e) = I
; �(g?) = �(g)�; �(f � h) = �(f)�(h)
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for all f; g; h 2 m, and is associated with the in�nitely divisible state � : m! C in
the sense that �(g) = (1; j �(g)1;), where 1; = k
 for k = 0.

Proof. The operator (3.4) is a pseudo-isometry:

(Jh j Jh) =
Z
(Jh)(!�; !�; !+)(Jh)�(!+; !�; !�)d!�d!�d!+

=

Z
1;(!

�)h(!�)1;(!
+)h�(!�)d!�d!�d!+ =

Z
h�(!�)h(!�)d!� = hh j hi ;

and consequently, the Hermitian adjoint operator (3.7) de�ned by the condition

h j Jyh

�
= (h j Jh) for all h 2 F;h 2 F,



h j Jyh

�
=

Z
h�(!)(Jyh)(!)d! =

ZZZ
h(!�; !�; !+)h�(!�)1;(!

+)d!�d!�d!+;

is a pseudo-projection: JyJh = h for all h 2 F, where

(Jh)(!�; !�; !+) = 1;(!�)h(!�)1;(!+)

is the canonical embedding F � F. We now show that the action in F of the linear
combinations of the operators G
 with triangular G = [G�� ]

�=�;�;+
�=�;�;+ , G

�
� = 0 for all

� < � with unit matrix entries G�� = 1 = G++, can be written in the form (3.5).
For we have

(G
k
)(!�) = (Gk)


(!�) =

Y
�

 X
�

G��k
�

!

(!�)

=
Y
�

X
F
�
!��=!�

Y
�

(G�� )

(!�� )

Y
�

(k�)
(!�� );

where the sums over the decompositions !� = !�� t !
�
� t !�+ in fact should be

taken only over !� =
F
��� !

�
� since G

�
� = 0 for � < �. If ! = (!�; !�; !+) do not

intersect, then the same is true for !�� = (!
�
�; !

�
�; !

�
+) since !

�
� � !�. Consequently,Q

� h(!
�
� ) = k

�F
� !

�
�

�
for h(!�) =

Q
�(k

�)
(!�), which yields

(G
k
(!�) =
X

F
!:�=!

:

Y
�;�

(G�� )

(!�� )(

Y
�

k�)
(
G
�

!�� );

where
F
� !

�
� =

F
��� !

�
� , since (G

�
� )

(!) =

N
x2! G

�
� (x) is equal to zero if ! =

!�� 6= ; for � > �. Thus we obtain (3.5) for exponential vectors b = k
 with the
kernel K(!) =

Q
���(G

�
� )

(!�� ) of the form (3.6). Since this formula is linear with

respect to the kernel K, it is also valid for linear combinations K = ��iG


i at least

on �(K). We now de�ne the operator JyKJ in F, employing the formulaZ X
F
!�=!

f(!�; !�; !+)d! =

ZZZ
f(!�; !�; !+)d!�d!�d!+:
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Taking into account the forms (3.4), (3.7) of the operators J , Jy we obtain for
h 2 �(K) the formula

[JyKJh](!) =

Z
(KJh)(!�; !; ;)d!�

=

ZZZ X
!��t!�+=!

K(!)1;(!
�
�)h(!

�
� t !��)d!��d!�� d!�+

=
X

!��t!�+=!

Z
K(!�+; !

�
�; !

�
� )h(!

�
� t !��)d!�� ;

which can be written in the form (3.8) in the notation � = !�� and !
�
+ = !n� = !\�.

We shall now prove that the pseudo-conditional expectation K ! JyKJ is a
�-representation on �(K). To this end it is su¢ cient to show that this map is a
homomorphism with respect to the binary operation (3.9), involution K 7! Ky,
and the unit K = I
 on the generating elements G
 for which (3.8) yields (3.10)
for h = k
: [JyG
Jk
](!) =

=
X

!��t!�+=!

ZZ Y
�<�

(G�� )

(!�� )k


(!�� t !��)d!�� d!�+

=
X

!��t!�+=!
(G��k)


(!��)(G
�
+)


(!�+)

Z
(G�� k)


(!�� )d!
�
�

Z
(G�+)


(!�+)d!
�
+

= (G��k +G
�
+)


(!) expf
Z
(G�� k +G

�
+)(x)dxg:

Using this formula we �nd that [JyI
Jk
](!) = k
(!), that is, JyI
J = I
, and

[JyGy
Jk
](!) = (G��k +G
��
� )
(!) exp

�Z
(G��+ k +G

��
+ )(x)dx

�
;

that is, JyKyJ = (JyKJ) for K = ��iG


i , K

y = ��iG
y

i , and

[Jy(FG)
Jk
](!) = (F ��G
�
�k + F

�
�G

�
+)


(!) exp

�Z
(F�� G

�
�k + F

�
� G

�
+)(x)dx

�
= (F ��G

�
�k + F

�
�G

�
+ + F

�
+)


(!) exp

�Z
(G�� k + F

�
� G

�
�k +G

�
+ + F

�
� G

�
+ + F

�
+ )(x)dx

�
= (F �� k + F

�
+)


(!)e
R
(F�

� k+F
�
+ )(x)dx(G��k +G

�
+)


(!)e
R
(G�

� k+G
�
+)(x)dx;

where we have used the rule of multiplication

(FG)�� =
X
�

F�� G
�
� � F�� G

�
�

of the triangular matrices F = [F�� ], G = [G�� ], �; � 2 f�; �;+g; F�� = 0 = G�� for
� > �, with the entries F�� = 1 = F++ , G

�
� = 1 = G++. Thus we have proved that

�(F
G
) = �(F
)�(G
), where �(G
)h = JyG
Jh for any h = ��ik


i 2 �(K).

We complete �(K) by sequences hn 2 �(K) that are fundamental with respect to
each of the seminorms khkf = k� [j
(f)] hk, f 2 m (among others, also with respect
to khke = khk). Since �(g) = �[j
(g)] is a �-representation of m on �(K):

�(g ? f) = �
h
(j(g)j(f?))



i
= �[j
(g)]�[j
(f)y] = �(g)�(f)�;
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any fundamental sequence remains fundamental after multiplying it by �(g) :
k�(g)hkf = khkg�f . This allows us to extend the operators �[j
(g)] = Jyj
(g)J
to continuous operators �(g) on the completion F of � (K) with respect to the
convergence described above. The continuity implies that the algebraic relations
in the decomposable y-algebra B = CM
, where M =

R �
X
Mxdx = j (m), become

represented in the operator algebra L (F) of continuous operators L;L� : F! F on
the poly-Fock space F. Obviously, the linear hull ��i�(gi) de�nes a �-subalgebra
B of operators �(K) 2 L(K) which is a homomorphic image of the y-algebra
B genrated by linear combinations K = ��ij


(gi) of decomposable operators
G

i = 1�Gi�G
2

i � : : :, where Gi = j(gi). We recall that the elements of B as de-
composable operators in the pseudo-Fock space F are represented by triangular ker-
nels K 2 L (F) with Ky 2 L (F) described in (3.5) by the kernels K?(!) = K(!0)

�,
where the table !0 of four subsets di¤ers from ! = (!�� ) 2 
 only by the inter-
change of !�� and !

�
+, and the multiplication K

yK is de�ned, as in any semigroup
algebra, by the operation KKy = ��i0�

�
i j

(gi0 ? gi) in M. Here KKy is de�ned

by the kernel (3.9) which can be veri�ed straightforward for the generating kernels
(3.6) by virtue of j
(f � g) = j
(f)j
(g). Indeed,

l
(!�+; f � g)k

�
!�+; f � g)j
(!��; f � g

�
k?
(!�� ; f � g)

= [j(f)j(g)]
!�� [j(f)k(g) + k (f)]


!�+
[l(f) + k?(f)k(g) + l(g)]


!�+
[k�(g) + k?(f)j(g)]


!��

=
X

��+t�
�
+t�

�
+=!

�
+

l(f)

��+
l(g)


��+
[k?(f)k(g)]


��+
j(f)
!��j(g)



!��



X

��+t��+=!�+

[j(f)k(g)]
��+

 k
��+(f)

X
��� t��� =!��

k?(g)

���

 [k?(f)j(g)]


���

=

�<�X
����!��

X
��+t�

�
+=!

�
+n�

�
+

l
(��+; f)k

(!�+ n ��+; f)j
(!�� t ��+; f)k?
(��� t ��+; f)

�l
(��+; g)k
(��+ t ��+; g)j
(!�� t ��� ; g)k?
(!�� n ��� ; g);

which can be written as (3.9) in terms of � = ��+ t ��+ and � = ��+ t ��+. Inte-
grating (3.9) over !�+ 2 
 we obtain the formula of multiplication of the kernels
K(!��; !

�
�; !

+
� ) =

R
K(!)d!�+:

R
[K �K?](!)d!�+ =

=

ZZZ
d�d�d��+

�<�X
����!

�
�

K
�
�; ��� t ��+� t ��+

�
K?
�
� ; !�� n ��� � t ���

�
=

X
��� �!��

X
��+�!�+

Z
K(!�+ n ��+; !�� t ��n; ��� t ��+)K�(��+ t ��+; !�� t ��� ; !�� n ��� )d��+;

where K�(!��; !
�
�; !

+
� ) =

R
K?(!)d!�+ = K(!+� ; !

�
�; !

�
�)

�. Thus we obtained a �-
algebraic structure for three-argument kernels connected with the Maassen-Meyer
kernels M(#�; #; #�) [38], [40] by a one-to-one Möbius transformation

K(#�; !; #�) =
X
#�!

M(#�; #; #�)
 I
(! n #):
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We �nally consider a ?-invariant subspace of the ?-algebra of kernels K0(!) de-
�ned by the condition

R
K0(!)d!

�
+ = 0. This is a zero ideal of the homomorphism

fK(!)g 7! fK(!�+; !��; !�� )g for which we take a convention that it transforms the
star conjugation ? into �. Consequently, it is a two-sided ideal ( y-ideal in terms of
K, or ?-ideal in terms of the kernels K):Z

(KK0)(!) d!
�
+ = 0 =

Z
(K0K)(!) d!

�
+; 8K;

which is contained in the zero ideal of the representation � : �(K0) = 0 ifK0(!
�
+; !

�
�; !

�
� ) =

0. One can show that, owing to the fact that the measure dx on X is atomless, the
zero ideal of the representation � is exhausted in this way. This follows from the
uniqueness of the stochastic representation (3.8), proved in terms of the Maassen-
Meyer kernels in [38], [40]. Consequently, the integralK(!�+; !

�
�; !

�
� ) =

R
K(!)d!�+

is a homomorphism of the factorization of the ?-algebra of kernels K(!) also by
the zero ideal of the representation �. The proof is complete. �

Remark 2. We introduce four types G��; � 6= �; � 6= +, of elementary triangular
decomposable operators in K described by matrices of the form

G+
� (x) =

24 1 0 0
0 I(x) g�+(x)
0 0 1

35 ; G�
�(x) =

24 1 g�� (x) 0
0 I(x) 0
0 0 1

35 ;
G+
�(x) =

24 1 0 g�+(x)
0 I(x) 0
0 0 1

35 ; G�
�(x) =

24 1 0 0
0 G(x) 0
0 0 1

35 ;
and we write

GN = �[(G�
�)

] � G
; e�(g) = �[(G�

+)

]; ek

?(g)A�
� = �[(G�

�)

]; eA

+
� k(g) = �[(G+

� )

];

where � is the map (3.8) for K(!) = 
x2!G�
�(x).

Then the representation m 3 g 7! �(g), associated with the in�nitely divisible
state �(g) = e�(g) with respect to the vacuum vector 1; 2 K, can be written as a
�normally-ordered�product

�(g) = e�(g)eA
+
� k(g)GNek(g)A

�
�

for all G 2 m, de�ned by the functions G(x) = j(x; g), g�+(x) = l(x; g), g�� (x) =
k?(x; g), g�+(x) = k(x; g).

In fact, an arbitrary triangular operator G in K with the entries G�� = 1 = G++
can be decomposed into a �normally-ordered�product of elementary matrices:24 1 g�� g�+

0 G g�+
0 0 1

35 =
24 1 0 g�+
0 I 0
0 0 1

3524 1 0 0
0 I g�+
0 0 1

3524 1 0 0
0 G 0
0 0 1

3524 1 g�� 0
0 I 0
0 0 1

35 :
Since the maps G 7! G
 and K 7! �(K) are multiplicative, we hence obtain for
K = G
 the equality

�[G
] = �[(G+
�)


]�[(G+
�)


]�[(G�
�)

]�[(G�

�)

];

which gives for G = j(g) the corresponding representation for �(g) = �[j
(g)].
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4. The pseudo-Poisson structure of chaotic sates on quantum Itô
algebras

In this section we assume that the ?-semigroup b is also an additive group with
the same neutral element 0 � u, such that ?-monoid m with respect to the mul-
tiplication, denoted now by bold dot, f � h, has also the structure of an additive
group with respect to the pointwise operations

(�g)(x) = �g(x); (f + h)(x) = f(x) + h(x); e(x) = 0:

In this terms f t h, whenever it is de�ned, can be written as f + h. We shall also
assume that (f + h)? = f?+h? and that the conditionally positive form (2.2) is an
additive homomorphism m 7! C which will be denoted as � (g) = hgi:

h�gi = �hgi ; hf + hi = hfi+ hhi ; h0i = 0:
Condition (2.5) of in�nite divisibility of the state ��(b) = e��(b) for any integrable
� � X can now be written in the form of positive de�niteness

(4.1)
X
a;c2b

�a h(a � c)�i�
?
c � 0; 8�b 2 C : jsupp�j <1

of the function ��(b) = hb�i, where �? = ��g? and b� is elementary function
b�(x) = b for x 2 � and b�(x) = 0 otherwise, with respect to the new product
a � c = a � c � a � c. This positive de�niteness follows from the additivity of the
form hgi, which yieldsX

f;h2m
�f hf � hi�?h =

X
f;h2m

�f (hf � hi+ hfi+ hhi)�?h =
X
f;h2m

�f hf � hi�?h

for any function g 7! �g 2 C with jsupp�j < 1 and such that ��g = 0, where on
the right-hand side we can arbitrarily change the value of �e since

0 � b = 0 � a� 0� a = �0 = b � 0
and therefore h0 � gi = 0 = hg � 0i.
We shall now assume that the additive ?-group b has a ring structure with respect

to the new product:

a � (b+ c) = a � b+ a � c; a � (b � c) = (a � b) � c:
Note that the associativity of this product simply follows from its distributivity
which is equivalent to the relation

a � b+ c � b = b+ (a+ c) � b:
This is particularly easy to see if the ring b has identity 1 such that 1b = b = b1,
i.e.

1 � b� b = 1 + b = b � 1� b;
by virtue of the relation

1 + a � c = (1 + a) � (1 + c); 8a; c 2 b:
The function �(g) = ehgi corresponding to the additive and positive in the above

sense form hgi is chaotic:
�(f t h) = ehf+hi = �(f)�(h); 8f; h 2 m : fh = 0;

and will be called the pseudo-Poisson state over the ?-ring (or ?-algebra) m with
respect to the operations +; �. In other words, a pseudo-Poisson state is described
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by an exponential generating functional �(f + h) = �(f)�(h) on m 3 f; h which is
positive de�nite in the sense of (2.1) with respect to the operation fFh = f +h?+
f ? h and e = 0, de�ned pointwisely by means of the ring m.
By this distributivity, the canonical maps

k : m 3 g 7! k (g) � gi and k? : m 3 g 7! k? (g) � hg

de�ning the minimal decomposition (2.6) of the additive (linear) positive form hgi
are additive (linear), and the ?-map i : m 3 g 7! j(g) � I satisfying in accordance
with (2.7) the conditions

i(g)hi = g � hi � gi � hi = g � hi; 8g; h 2 m;
hfi(g) = hf � g � hg � hf = hf � g; 8g; f 2 m;

is also additive (linear):

i(f + h) = i(f) + i(h); i(0) = 0; i(�g) = �i(g):

Moreover, the maps ix(b) = jx(b)� Ix are ?-representations of the ring (algebra) b
in the operator ?-algebras L(Kx) = fL : Kx ! Kx; L

�Kx � Kxg of the poly-Hilbert
spaces Kx = fk : kjx(a)kk <1;8a 2 bg:

ix(a � c) = ix(a � c)� ix(a)� ix(c) = jx(a � c)� 1� ix(a)� ix(c)
= (ix(a) + 1)(ix(c) + 1)� 1� ix(a)� ix(c) = ix(a)ix(c):

Combining these relations and taking into account the fact that by additivity (lin-
earity) of lx(b) in the integral (2.2) we have

lx(a � c) = lx(a � c)� lx(a)� lx(c) = k?x(a)kx(c)

almost everywhere onX, we obtain decomposable ?-representation i(x; b) = ix(g(x))
with four-component

(4.2) ix(b) =

�
lx(b) k?x(b)
kx(b) ix(b)

�
; ix(b

?) =

�
lx(b) k?x(b)
kx(b) ix(b)

�?
of the ?-ring b with the usual matrix Hermitian conjugation ix(b?) = ix(b)

? and
non-usual multiplication given by the Hudson-Parthasarathy table [26]

(4.3) ix(a � c) =
�
k?x(a)kx(c); k?x(a)ix(c)
ix(a)kx(c); ix(a)ix(c)

�
; 8a; c 2 b:

It has a natural realization i(x; g) = j(x; g)�Ix given in the pseudo-Euclidean poly-
Banach space K = L1(X)�K�L1(X) by the canonical triangular representation
j(x; g) = jx(g(x)) of the ?-monoid m with the usual matrix multiplication and
non-usual pseudo-Hermitian conjugation (3.2):

(4.4) i(x; g?) =

24 0 k(x; g)� l(x; g)�

0 i(x; g?) k(x; g?)
0 0 0

35 = i(x; g)y:
All that has been said means that the factor in m=i, with zero ?-ideal i = fg 2
m : i(g) = 0g � i�1x (0), of step functions with values g(x) 2 ix, where i�1x (0) =
fb 2 b : ix(b) = 0g, can be described like i(m) by four-component functions g =
(g�� )

�=�;�
�=�;+ , for example of the form g(x) = ix(g(x)) with g

�
� = i(g), g�+ = k(g), g

�
� =

k?(g), g�+ = l(g). These form a ?-ring with respect to the Hermitian conjugation
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(g?(x))
�
� = g����(x)

� and the table of componentwise multiplication (4.3). This
allows us to represent additive integral Hermitian forms

(4.5) �(g) =

Z
m(x; g)dx; m(x; g) = mx(g(x))

on the ?-ring m by four-component functions

m(x) =

�
� m+

�
m�
� m�

�

�
(x);

�(x; g) = �(x)g�+(x); m
+
� (x; g) = m+

� (x)g
�
+(x);

m�
�(x; g) = g�� (x)m

�
�(x); m

�
�(x; g) = hm�

�(x); g
�
�(x)i ;

in the form

(4.6) m(x; g) = hm�
�(x); i(x; g)i+m�(x)k(x; g) + k?(x; g)m(x) + �(x)l(x; g):

Here �(x) 2 R (for almost all x), m�
�(x) : Kx ! C is a vector linear form m�

� = m
on the pre-Hilbert space Kx = fk?x(b) : b 2 bg = K�x, adjoint to the form m+

� (x) :
Kx 3 k 7! m�(x)k 2 C, and m�

�(x) : Bx 3 B 7! hm�
�(x); Bi 2 C is an operator linear

form on the �-subalgebra Bx = fix(b) : b 2 bg of operators B;B� : Kx ! Kx. As the
next theorem shows, we thus essentially exhaust all linear positive logarithmic forms
� : m ! C of in�nitely divisible states  (g) = e�(g) on ?-algebras m, absolutely
continuous with respect to the Poisson state �(g) = ehgi in the sense that i � i�.
Here i� is the ?-ideal of step functions g : X 3 x 7! g(x) 2 i�x with values in
two-sided ideals

(4.7) i�x = fb 2 b : mx(b) = 0;mx(ab) = 0; mx(bc) = 0; mx(abc) = 0; 8a; c 2 bg:

Theorem 3. Suppose that b is a ?-algebra over C and suppose that the linear
positive form (2.2) on the ?-algebra m satis�es the condition

8g 2 m 9c <1 : hh � (g ? g) � h?i � c hh ? hi ; 8h 2 m,

of boundedness ki(g)k � c of the associated operator representation i(g) = j(g)� I.
We equip m with the inductive convergence gn ! 0 if kgnk�p ! 0 for all p = 1; 2;1
and for some integrable � 2 F, where gn 2 m� for all n; kgk�1 = ki(g)k for
fx 2 X : g(x) 6= 0g � �, and

kgk�2 =
�Z

�

kk(x; g)k2 dx
�1=2

; kgk�1 =
Z
�

jl(x; g)j dx

Then the following conditions are equivalent:

(i) The functional  (g) = e�(g), continuous with respect to the inductive con-
vergence on m, is a pseudo-Poisson state described by an absolutely contin-
uous function �� (b) = �(b�) in the sense that ��(b) = 0 for all b 2 b if
� 2 F and �� =

R
�
dx = 0.

(ii) The functional � : m ! C has the integral form (4.5), where mx : b ! C
is the linear function (4.6) de�ned almost everywhere on X by a positive
numerical function �(x) � 0; ess supx2� �(x) < 1 for all � 2 F with
�� =

R
�
dx <1, a vector-function m on X with values m(x) 2 Kx de�ned

by the values

m�(x) 2 K�x;
Z
�

km(x)k2x dx <1; 8� 2 F : �� =
Z
�

dx <1;
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of continuous (for almost all x 2 X) forms m�(x)k = hm(x) j ki on the
Hilbert spaces Kx = K�x, and the function m�

� on X with values

m�
�(x) 2 B�x;

Z
�

sup
0�B�1x

hm�
�(x); Bidx <1; 8� 2 F : �� =

Z
�

dx <1;

in positive forms on C�-algebras Bx satisfying almost everywhere the in-
equality

(4.8) �(x) hm�
�(x); B

�Bi � kBm(x)k2 ; 8B 2 Bx:

(iii) There is a triangular representation

g 2 m 7! g(x) = fg�� (x)g; g�� = 0 = g+� ; 8�; � 2 f�; �;+g;

of the ?-algebra m in the Banach space K = L1(X)�K � L1(X) with in-
de�nite metric (3.1) de�ned by the scalar product hk� j k�i =

R
kk�(x)k2x dx

of the Hilbert space K =
R �Kx dx. This representation is locally pseudo-

unitarily equivalent to the canonical representation (4.4) in the sense that
g(x) = Sy(x)i(x; g)S(x) for decomposable operators S(x) in C�Kx �C of
the form (2.11), and is such that

(4.9) �(g) =

Z
(�(x)g�+(x) + hM(x); g��(x)i) dx; 8g 2 m,

where � � 0 is a locally bounded measurable function and M � 0 is a locally
integrable function with positive values M(x) 2 B�x.

Proof. First of all we notice that if the decomposable operator-functions ix(b) are
locally bounded, then the space K of the canonical representation j(g) = I + i(g)
of the ?-monoid m of step functions g : X ! b, complete with respect to the family
of seminorms (2.8), is a Hilbert space. This follows from the inequality

kkkh = kj(h)kk < kkk+ ki(h)kk � (1 + khk) kkk ;

where kfk = maxi kbik�(i) <1 according to (4.6) for any step integrable function
f(x) = bi; x 2 �(i), given by a �nite partition � = ��(i) of its support � = fx 2
X : f(x) 6= 0g.
We shall �rst prove the simple implications (iii) ) (ii) ) (i), and next we shall

construct the representation (4.8) of (iii) drawing on the conditions formulated in
(i).
(iii)) (ii). Suppose that S(x) is the triangular transformation of the form (2.11)

given by an essentially measurable function U(x) 2 L(Kx) with unitary values, a
function e� : X 3 x 7! e�(x) 2 K�x given by the values e��(x) 2 Kx of a vector-
function e�� with

R
�
ke��(x)k

2
x dx < 1 for all � such that �� =

R
�
dx < 1, and a

scalar locally integrable function e+ such that e+(x) + e�+(x) = �ke��(x)k
2
x. Then

g��(x) = U�(x)i(x; g)U(x),

g�+(x) = e�(x)U(x)k(x; g) +e�(x)U(x)i(x; g)U
�(x)e��(x)

+k?(x; g)U�(x)e��(x);

and (4.9) takes the form (4.5) (4.6), where m�(x) = e�(x)U(x);m(x) = U�(x)e��(x)

is a locally square integrable function:
R
�
km(x)k2x dx <1, and

hm�
�(x); Bi = hM(x); U�(x)BU(x) i+ �(x)m�(x)Bm(x)
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is a positive locally integrable function:
R
�
hm�

�(x); Bxidx <1, satisfying (4.8) by
virtue of the positivity hM(x); B�Bi � 0; �(x) � 0 for all x 2 X.
(ii) ) (i). If � is the integral (4.5) of the linear form (4.6) and (4.8) is ful�lled,

then �(g?g) � 0 for all g 2 m, since
0 � m(g?g) = hm�

�; i(g
?g)i+ 2Rem�k(g?g) + �l(g?g)

= hm�
�; i(g)

�i(g)i+ 2Rem�i(g)�k(g) + �(x)k(g)�k(g)
= hm�

�; i(g)
�i(g)i � 1

� ki(g)mk
2
+ �jjk(g) + i(g)m=�jj2:

By linearity of � this is equivalent to positive de�nitenessX
a;c

��a��(a
?c)�c = ��(

X
a;c

��aa
?c�c) = ��(b

?b) � 0

of the form ��(b) = �(b�). Hence it follows that ��(g) = e�(g) is a pseudo-Poisson
state given by an absolutely continuous complex measure �� (b) =

R
�
mx(b)dx

with density mx(b) = m(x; b�). It is continuous with respect to the inductive
convergence with respect to the seminorms kgk�p ; p = 1; 2;1, because � is locally
bounded, m is locally L2-integrable, and m�

� is locally L
1-integrable.

(i) ) (iii). If the function ��(b) = ln (b) for a pseudo-Poisson state  �(b) =
 (b�) on b is absolutely continuous with respect to � 2 F for every b 2 b, then
it has the form (4.5), where the density mx : b ! C is almost everywhere a linear
positive functional. Since the kernel fg 2 m : kgkp = 0; p = 1; 2;1g of the inductive
convergence in m = [m� coincides with the kernel i of the canonical representation
i(g) = j(g) = I in K, which is equal, according to its construction, to step functions
g : x 7! g(x) 2 ix, where

ix = fb 2 b : lx (b) = 0; lx(ab) = 0; lx(bc) = 0; lx(abc) = 0; 8a; b; c 2 bg;
the ?-ideal i� of functions g 2 m with values g(x) in (4.7), corresponding to the
form (4.5) continuous in the sense that gn ! 0 ) �(gn) ! 0, necessarily contains
i. This means that a linear functional mx(b) that vanishes on ix for almost all x
can be written, by this continuity, in the form (4.6) of a linear Hermitian functional
mx(b) = m(x; b�); x 2 �, on the factor algebra b=i�1x (0) isomorphic to the ?-
subalgebra ix(b) of quadruples (4.2) with the multiplication table (4.3). In addition,
by the Hahn-Banach theorem and the duality between Lp(�) and Lq(�) for 1=p+
1=q = 1 we can assume that � is locally bounded, m is locally L2-integrable, and
m�
� is locally L

1-integrable on X.
For every x 2 X we de�ne a triangular pseudo-unitary transform of S(x) into

Kx = C � Kx � C of the form (2.11), where U = �Ix; e��(x) = m(x), and e�+(x) =
�km(x)k2x =2. Denoting g�� (x) = (Syi(x; g)S(x))�� , where i(x) is the triangular
matrix representation (4.4) of the quadruple (4.2) for b = g(x), we obtain

m(g) = hg�� ;m�
�i �m�g��m=�+ �g�+ ;

where we have taken into account the fact that g��(x) = ix(g(x)) and

�g�+ = �l(g) + k?(g)m +m�k(g) + m�i(g)m=�:

In this representation the positivity condition m(x; g?g) � 0 takes the form
hg��� g�� ;Mi+ �g��+ g�+ � 0; 8g 2 m;

where hB;Mi = hB;m�
�i � m�Bm=�, B 2 Bx, and g�+ = kx(g) + ix(g)m. The

resulting inequality proves that M(x) is positive for g�+(x) = 0 and �(x) � 0 if



32 V P BELAVKIN

g��(x) = 0. This proves the existence of locally bounded measurable functions
� � 0 and positive locally integrable functions M with values M(x) 2 B�x de�ning
the function �(g) in the form (4.9). The proof is complete. �

Remark 3. We consider an additive subgroup b � C�H�L(K) of the triples b =
(�; �;B) with the involution b? = (��; �#; B�), where � 7! �� 2 C is the complex
conjugation, � 7! �# 2 H is the involution �## = � in a C-linear subspace H � K
equipped with the Hermitian form h� j �i = �# � � = h� j �i� of a pseudo-Euclidean
space K, and B 7! B� 2 L(K) is the Hermitian conjugation hB�� j �i = h� j B�i
for all �; � 2 K in the �-subalgebra L � L(K) of operators B : � 7! B� 2 K leaving
H invariant: BH � H for all B 2 L.
We de�ne in b the structure of a ?-algebra by putting

�b = (��; ��; �B); a?c = (�# � �; �#C +A��; A�C)

for any � 2 C; b 2 b; a = (�; �; A); c = (
; �; C), where we use the notation �#C =
(C��)#. It is easy to prove that this distributive algebra is associative, (ab)c = a(bc),
only in the case

(A�) � � = � � (�C); (A�)C = A(�C); 8A; C 2 L; �; �; � 2 H;
which is possible only under the condition (A�) � � = 0 = � � (�C). This condition
leads to (A�)C = A(�C) if � � � = (�# j �) is a bilinear form on H non-degenerate
in the sense that f� � � = 0 = � � � : 8�; � 2 Hg ) � = 0. A simple analysis of the
positivity

l(b?b) = � h� j �i+ hB# j �i+ h� j B#i+ h�; B�Bi � 0
of the linear ?-form l(b) = �� + #� � � + � � #+ + h�; Bi, where � = ��, #+ = # =

##� , � = �
�, leads to the conditions h�; B�Bi � 0 for all B 2 L if � = 0 and

� h� j �i � 0; h�; B�Bi � 1
� hB# j B#i ; 8� 2 H;B 2 L

if � 6= 0. The latter is possible only if the form h� j �i = �# � � is de�nite, that is,
� > 0 if h� j �i � 0 for all � 2 H and � < 0 if h� j �i � 0 for all � 2 H, which is a
necessary condition for the existence of a pseudo-Poisson state on b = C�H �L.
Assuming without loss of generality that �#� � 0 for all � (otherwise we have to

change the notation b 7! (��; �;B) and �#� 7! ��#�) we consider the following
two cases, in which H is a Hilbert space with respect to the norm k�k =

�
�#; �

�1=2
,

where (�; �) = 1
2 (� � � + � � �).

Example 1 (Gaussian state). Let L = f0g and � = 1, that is, b = (�; �), and let
l(b) = h�; �i+ �, where h�; �i = 2Re(� j �) for all � = �#. The algebra b = C�H
is now nilpotent: ac = (�; �; 0); abc = (0; 0) for all a; b; c 2 b, and commutative,
[a; c] = ac� ca = 0, if the involution # is isometric on H in K � H:D

�# j �
E
=
D
�# j �

E
; 8�; � 2 H:

The in�nitely divisible functional ��(b) = expf[� + (�; �)]��g corresponding to the
conditionally positive ?-form ��(b) = [� + (�; �)]�� with respect to the Hermitian
operation

(�; �) ? (
; �) = (�� + h� j �i+ 
; �# + �); u = (0; 0);

de�nes a generating functional ��(0; �) = 1 of the factorial moments of a Gaussian
chaotic state over H with mathematical expectation hb�i = (�; �)�� for b = (0; �)
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and �nite covariance hb?�b�i = h� j �i�� 2 R+ for every � 2 F such that �� =R
�
dx <1. This covariance is symmetric only in the commutative (classical) case,

and in the converse (quantum) case it satis�es the uncertainty relation

a2�
� 

c2�
�
� s(�; �)2�2�; 8a = (�; �); c = (
; �); �; � 2 ReH

for the commutative Heisenberg relation [a�; c�] = (is(�; �)��0) corresponding to
the symplectic form s(�; �) = 2 Im(� j �) on ReH = f� 2 H : �# = �g. The
canonical representation (4.4), de�ning a ?-representation j(g) = I+ i(g) of the
?-monoid m of step functions g : X ! C�H, and the corresponding representation
�(g) = �[j
(g)] in the Fock space K, is described by the functions ix(b) = 0, kx(b?) =
�#, kx(b)� = ��, lx(b) = � + (�; �).

Example 2 (Poisson state). Let H = f0g and let b = L be the �-algebra of
operators in K bounded by the identity I 2 b in the sense that

8C = B�B 9c 2 R+ : h�; A�CAi � c h�; A�Ai ; 8A 2 b;

where � is a linear positive form de�ning l(b) = h�; Bi. Bearing in mind the
Gelfand-Naimark-Segal construction, we may assume without loss of generality that
this form is a vector one, h�; Bi = heBei, represented in the Hilbert space K by an
element e 2 K; kek2 = h�; Ii. In the commutative case b can be identi�ed with a
subalgebra of essentially bounded functions b : ! 7! b(!) 2 C on a measurable space

 with �nite positive measure d� of the mass � = h�; Ii by putting (Bk)(!) =
b(!)k(!) on K = L2�(
), and e(!) = 1 for all ! 2 
, so that l(b) =

R
b(!)d�. The

in�nitely divisible functional ��(b) = eh�;Bi�� , corresponding to the conditionally
positive ?-form ��(b) = h�; Bi�� with respect to the Hermitian operation A �C =
A�+A�C +C with the neutral element U = 0, de�nes the generating functional of
factorial moments of a Poisson chaotic state over L with mathematical expectation
hb�i = h�; Bi�� and �nite covariance hb?�b�i = h�; B�Bi�� 2 R+ for each
� 2 F such that �� =

R
�
dx < 1. This covariance is symmetric not only in the

commutative (classical) case [A;C] = AC � CA = 0, but also in the case when
� 2 L� is central. The central form h�; Bi, described by the condition h�; [A;C]i =
0 for all A;C 2 L, de�nes a �-�nite trace on the �-algebra m of step functions
G : X 3 x 7! G(x) 2 L with the integral form hgi =

R
h�; G(x)idx or hgi =RR

g(x; !)dxd� in the case of b � L1
 (
). Otherwise, the form h�; Bi can also lead
to the uncertainty relation



a2�
� 

c2�
�
�
�
�;
1

i
[A;C]

�2
�2�; 8A = A�; C = C�:

The canonical representation (4.3), de�ning the inde�nite representation j(g) =
I+ i(g) of the ?-monoid m and the corresponding representation �(g) = �[j
(g)] in
the Fock space K, is described by the functions

ix(b) = B; kx(b
?) = B�e; k?x(b) = e�B; lx(b) = e�Be;

where e�Be = heBei = h�; Bi.
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Part 2. Non-commutative stochastic analysis and quantum evolution in
scales

5. Introduction

Non-commutative generalization of the Itô stochastic calculus, developed in [1],
[3], [21], [36], [41] and [44] gave an adequate mathematical tool for studying the
behavior of open quantum dynamical systems singularly interacting with a boson
quantum-stochastic �eld. Quantum stochastic calculus also made it possible to
solve an old problem of describing such systems with continuous observation and
constructing a quantum �ltration theory which would explain a continuous spon-
taneous collapse under the action of such observation [8], [11] and [12]. This gave
examples of stochastic non-unitary, non-stationary, and even non-adapted evolution
equations in a Hilbert space whose solution requires a proper de�nition of chrono-
logically ordered quantum stochastic semigroups and exponents of operators by
extending the notion of the multiple stochastic integral to non-commuting objects.
Here we outline the solution to this important problem by developing a new

quantum stochastic calculus in a natural scale of Fock spaces based on an explicit
de�nition, introduced by us in [13], of the non-adapted quantum stochastic integral
as a non-commutative generalization of the Skorokhod integral [48] represented in
the Fock space. Using the inde�nite ?-algebraic structure of the kernel calculus,
which was obtained in the �rst chapter as a general property of a natural pseudo-
Euclidean representation associated with in�nitely divisible states, we establish the
fundamental formula for the stochastic di¤erential of a function of a certain num-
ber of non-commuting quantum processes, providing a non-commutative and non-
adapted generalization of the Itô formula as the principal formula of the classical
stochastic calculus. In the adapted case this formula coincides with the well-known
Hudson-Parthasarathy formula [26] for the product of a pair of non-commuting
quantum processes. In the commutative case it gives a non-adapted generalization
of the Itô formula for classical stochastic processes which was recently obtained in
a weak form by classical stochastic methods by Nualart [42] in the case of Wiener
integrals. We also note that the classical stochastic calculus and the calculus of
operators in the Fock scales was worked out by the group Hida, Kuo, Streit and
Pottho¤, see [25] and [45], and also by Berezanskii and Kondrat�ev [19].
Using the notion of a normal multiple quantum stochastic integral, which is

formulated below, we construct explicit solutions of quantum stochastic evolution
equations in the adapted as well as in the non-adapted case of operator-valued coe¢ -
cients and we give a simple algebraic proof of the fact that this evolution is unitary if
the generators of these equations are pseudounitary. In the adapted stationary case
the quantum stochastic evolution was constructed by Hudson and Parthasarathy
by means of the approximation by the Itô sums of quantum-stochastic generators.
However, proving unitarity by this method turned out to be a di¢ cult problem
even in a simple case.
Within the framework of this approach Kholevo [30] constructed a solution of an

adapted quantum-stochastic di¤erential equation also for non-stationary generators
by de�ning the chronological exponential as a quantum-stochastic multiplicative
integral.
We note that our approach is close in spirit to the kernel calculus of Maassen-

Lindsay-Meyer [36], [41], however the di¤erence is that all the main objects are
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constructed not in terms of kernels but in terms of operators represented in the
Fock space. In addition we employ a much more general notion of multiple sto-
chastic integral, non-adapted in general, which reduces to the notion of the kernel
representation of an operator only in the case of a scalar (non-random) operator
function under the integral. The possibility of de�ning a non-adapted single inte-
gral in terms of the kernel calculus was shown by Lindsay [37], but the notion of
the multiple quantum-stochastic integral has not been discussed in the literature
even in the adapted case.

6. Non-adapted stochastic integrals and differentials in Fock scale

Let (X;F; �) be an essentially ordered space, that is, a measurable space X with
a �-�nite measure � : F 3 � 7! �� � 0 and an ordering relation x � x0 with the
property that any n-tuple x 2 Xn is up to a permutation a chain { = fx1 < � � � <
xng modulo the product

Qn
i=1 dxi of the measures dx := �dx. In other words, we

assume that the measurable ordering is almost total, or linear, that is, for any n
the product measure of n-tuples x 2 Xn with components (x1; : : : ; xn) that are
not comparable is zero. Hence, in particular, it follows that the measure � on X is
atomless. We may assume that this essentially total ordering on X is induced by
a measurable map t : X ! R+ with respect to which � is absolutely continuous in
the sense of admitting the decompositionZ

�

f(t(x))dx =

Z 1

0

f(t)��(t)dt;

for any integrable set � � X and any essentially bounded function f : R+ ! C,
where � 7! ��(t) is a positive measure on X for each t 2 R+ and x1 < � � � < xn
means that t(x1) < � � � < t(xn). In any case we shall assume that we are given a
map t such that the above condition holds and t(x) � t(x0) if x � x0, interpreting
t(x) as the time at the point x 2 X. For example, t(x) = t for x = (x; t) if
X = Rd�R+ is the (d+1)-dimensional space-time with the casual ordering [5] and
dx = dxdt, where dx is the standard volume on d-dimensional space Rd 3 x.
We shall identify the �nite chains { with increasingly indexed n-tuples x =

(x1; : : : ; xn) of xi 2 X, x1 < � � � < xn, denoting by X =
P1

n=0 �n the set of
all �nite chains as the union of the sets �n = fx 2 Xn : x1 < � � � < xng with
one-element �0 = f;g containing the empty chain as a subset of X: ; = X0. We
introduce a measure �element� d{ =

Q
x2{ dx on X induced by the direct sumP1

n=0 �
n
�n
;�n 2 F
n of product measures dx =

Qn
i=1 dxi on X

n with the unit
mass d{ = 1 at the only atomic point { = ;.
Let fKx : x 2 Xg be a family of Hilbert spaces Kx, let P0 be an additive

semigroup of positive essentially measurable locally bounded functions p : X ! R+
with zero 0 2 P0, and let P1 = f1 + p0 : p0 2 P0g. For example, in the case
X = Rd � R+ by P1 we mean the set of polynomials p(x) = 1 +

Pm
k=0 ckjxjk with

respect to the modulus jxj = (�x2i )1=2 of a vector x 2 Rd with positive coe¢ cients
ck � 0. We denote by K(p) the Hilbert space of essentially measurable vector-
functions k : x 7! k(x) 2 Kx which are square integrable with the weight p 2 P1:

kkk (p) =
�Z

kk(x)k2x p(x)dx
�1=2

<1:

Since p � 1, any space K(p) can be embedded into the Hilbert space K = K(1), and
the intersection \p2P1K(p) � K can be identi�ed with the projective limit K+ =
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limp!1K(p). This follows from the facts that the function kkk (p) is increasing:
p � q ) kkk (p) � kkk (q), and so K(q) � K(p), and the set P1 is directed in the
sense that for any p = 1 + r and q = 1 + s, r; s 2 P0, there is a function in P1
majorizing p and q (we can take for example p+q�1 = 1+r+s 2 P1). In the case of
polynomials p 2 P1 on X = Rd�R+ the decreasing family fK(p)g, where Kx = C,
is identical with the integer Sobolev scale of vector �elds k : Rd ! L2(R+) with
values k(x)(t) = k(x; t) in the Hilbert space L2(R+) of square integrable functions
on R+. If we replace Rd by Zd and if we restrict ourselves to the positive part of the
integer lattice Zd, then we obtain the Schwartz space in the form of vector �elds
k 2 K+.
The space K�, dual to K+, of continuous functionals

hf j ki =
Z
hf(x) j k(x)i dx; k 2 K+;

is de�ned as the inductive limit K� = limp!0K(p) in the scale fK(p) : p 2 P�g,
where P� is the set of functions p : X ! (0; 1] such that 1=p 2 P1. The space K� of
such generalized vector-functions k : X 3 x 7! k(x) 2 Kx can be considered as the
union [p2P�K(p) of the inductive family of Hilbert spaces K(p); p 2 P�, with the
norms kkk (p), containing as the minimal the space K = K(1). In the extended scale
fK(p) : p 2 Pg, where P = P� [ P1, we obtain the Gel�fand chain K+ � K(p+) �
K � K(p�) � K�, where p+ 2 P1; p� 2 P�, and K+ = K�� coincides with the
space of functionals on K� continuous with respect to the inductive convergence.
We can similarly de�ne a Gel�fand triple (F+;F;F�) for the Hilbert scale fF(p) :

p 2 Pg of Fock spaces F(p) over K(p) with F+ = \p2P1F(p), F = F(1), F� =
[p2P�F(p). We shall consider the Guichardet [23] representation of the symmetric
Fock spaces F(p), regarding their elements f 2 F(p) as the functions f : { 7! f({) 2
K
({) with sections in the Hilbert products K
({) =

N
x2{ Kx, square integrable

with the product weight p({) =
Q
x2{ p(x):

kfk(p) =
�Z

kf({)k2p({) d{
�1=2

<1:

The integral here is over all chains { 2 X that de�ne the pairing on F� by

hf j hi =
Z
hf({) j h({)i d{; h 2 F+;

and in more detail we can write this in the formZ
kf({)k2p({)d{ =

1X
n=0

Z
0�t1<

� � �
Z

<tn<1

kf(x1; : : : ; xn)k2
nY
i=1

p(xi)dxi;

where the n-fold integrals are taken over simplex domains �n = fx 2 Xn : t(x1) <
� � � < t(xn)g. In a similar way as is done in the case X = R+; t(x) = x, one
can easily establish an isomorphism between the space F(p) and the symmetric (or
antisymmetric) Fock space over K(p), the isomorphism de�ned by the isometry

kfk(p) =
 1X
n=0

1

n!

Z
� � �
Z
kf(x1; : : : ; xn)k2

nY
i=1

p(xi)dxi

!1=2
;

where the functions f(x1; : : : xn) are extended to the whole of Xn in a symmetric
(or antisymmetric) way.
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Let D = (D�
� )
�=�;�
�=�;+ be a quadruple of functions D

�
� on X with kernel values as

continuous operators

D�
+(x) : F+ ! F�; D�

�(x) : F+ 
Kx ! F� 
Kx;
D�
+(x) : F+ ! F� 
Kx; D�

� (x) : F+ 
Kx ! F�;(6.1)

so that there is a p 2 P1 that these operators are bounded from F(p) � F+ to
F(p)� � F�, where F(p)� = F(p�1). We assume that D�

+(x) is locally integrable in
the sense that

9 p 2 P1 : kD�
+k

(1)
p;t =

Z
Xt

kD�
+(x)kpdx <1; 8t <1;

where Xt = fx 2 X : t(x) < tg, and kDkp = supfkDhk(p�1)=khk(p)g is the norm
of the continuous operator D : F(p) ! F(p)� which de�nes a bounded Hermitian
form hf j Dhi on F(p). We also assume that D�

�(x) is locally bounded with respect
to a strictly positive function s such that 1=s 2 P0 in the sense that

9 p 2 P1 : kD�
�k
(1)
p;t (s) = ess sup

x2Xt

fs(x)kD�
�(x)kpg <1; 8t <1;

where kDkp is the norm of the operator F(p) 
 Kx ! F(p)� 
 Kx. Finally, we
assume that D�

+(x) and D
�
� (x) are locally square integrable with strictly positive

weight r(x) such that 1=r 2 P0, in the sense that

9 p 2 P1 : kD�
+k

(2)
p;t (r) <1; kD�

� k
(2)
p;t (r) <1; 8t <1;

where kDk(2)p;t (r) = (
R
Xt kD(x)k2pr(x)dx)1=2 and kDkp are the norms, respectively,

of the operators

D�
+(x) : F(p)! F(p)� 
Kx; D�

� (x) : F(p)
Kx ! F(p)�:

Then for any t 2 R+ we can de�ne a generalized quantum stochastic (QS) integral

(6.2) it0(D) =

Z
Xt

�(D;dx); �(D;�) =
X
�;�

��� (D
�
� ;�)

introduced in [15] as the sum of four continuous operators ���(D
�
� ) : F+ ! F�

described as operator measures on F 3 � for � = Xt with values

[�+�(D
�
+ ;�)h]({) =

Z
�

[D�
+(x)h]({)dx (preservation);

[�+� (D
�
+;�)h]({) =

X
x2�\{

[D�
+(x)h]({ n x) (creation);

[���(D
�
� ;�)h]({) =

Z
�

[D�
� (x)

_h(x)]({)dx (annihilation);

[���(D
�
�;�)h]){) =

X
x2�\{

[D�
�(x)

_h(x)]({ n x) (exchange):(6.3)

Here h 2 F+;{ n x = fx0 2 { : x0 6= xg denotes the chain { 2 X from which
the point x 2 { has been eliminated, and _h(x) 2 Kx 
 F+ is the point derivative
_h(x) = rxh de�ned for each h 2 F+ almost everywhere (namely, for { 2 X :
x =2 {) as the function [rxh]({) = h({ t x) � _h(x;{), where the operation { t x
denotes the disjoint union ! = { [ x, { \ x = ; of chains { 2 X and x 2 Xn{
with pairwise comparable elements. Note that the point derivative rx is nothing
but Malliavin derivative [39] densely de�ned in Fock-Guishardet representation as
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annihilation operator F+ ! Kx 
 F+ by a(x)h(!) = _h(x; ! n x), a (x) h(!) = 0
if x =2 !, and its right inverse operator [r�xf] (!) = f (x; !nx) with [r�xf] (!) = 0
if x =2 ! de�nes in this representation the Skorochod nonadapted integral as the
creation point integral

P
x2{ f(x; ! n x) for any f 2 K� 
 F�. The continuity of

this derivative as the projective limit map F+ ! K+ 
 F+ and the point integral
as the adjoint map K� 
 F� ! F� will simply follow from the isometricity of the
multiple point derivative and coisometricity of the adjoint multiple point integral
introduced below as in [17].
We can consider the multipple annihilation operators a(#) : h(!) 7! _h(#; ! n #)

eliminating several points # � ! in a chain ! 2 X with a(#)h(!) = 0 if # * !.
They are described for each # = fx1; : : : xng in terms of the n-point derivatives

(6.4) [rn#h] ({) := h({ t #) � _h(#;{); # 2 �n
de�ned almost everywhere ({ \ # = ;) on { 2 X as the n-th order point (or
Malliavin) derivatives [39]. These annihilations as densely de�ned operators from
F+ into K
 (#)
F+ are not continuous for each # 2 �n (except # = ; corresponding
to n = 0 for which a (;) = I), but they de�ne projective-continuous linear maps
into the functions # 7! _h (#) on �n � X for each n 2 N which are square-integrable
with any p0 2 P0 as partial isometric components of the multiple point derivative
r�h =

R 

X
_h (#) p0 (#) d# described as isometric map F (p0 + p1) ! F (p0) 
 F(p1)

in the following lemma.

Lemma 1. The linear map r� : h 7! [r�h] de�ned as r�h = �1n=0rnh in
(6.4) for all # 2 X is an isometry of Fock scale fF(p) : p 2 Pg into the scale
fF (p0)
 F(p1) : p0 2 P0; p1 2 P1g such that kr�hk (p0; p1) = khk (p0 + p1). The
adjoint coisometric operator hr�� fjhi = hfjr�hi is de�ned as the multiple point in-
tegral r�� =

P1
n=0r

�
n, where

(6.5) [r�nf](!) =
X

�n3#�!
f(#; ! n #); ! 2 X

is n-th order point (or Skorochod) integral as a contraction from F(p�10 )
 F
�
p�11
�

into any F
�
p�1
�
with p � p0 + p1.

Proof. We �rst of all establish the principal formula of the multiple integration

(6.6)
Z X

#�!
f(#; ! n #)d! =

ZZ
f(#; �)d#d�; 8f 2 L1(X � X );

which will allow us to de�ne the adjoint operator r�� . Let f(#; �) = g(#)h(�) be
the product of integrable complex functions on X of the form g(#) =

Q
x2# g(x),

h(�) =
Q
x2� h(x) for any #, � 2 X . Employing the binomial formulaX
#�!

g(#)h(! n #) =
X

#t�=!

Y
x2#

g(x)
Y
x2�

h(x) =
Y
x2!

(g(x) + h(x));

and also the equality
R
f(#)d# = expf

R
f(x)dxg for f(#) =

Q
x2# f(x), we obtain

the formulaZ X
#�!

g(#)h(! n #)d! = exp
�Z

(g(x) + h(x))dx

�
=

ZZ
g(#)h(�)d#d�;

which proves (6.6) on a set of product-functions f dense in L1(X � X ).
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Applying this formula to the scalar product hf(#; �)jh(#; �)i 2 L1(X � X ), we
obtain Z X

#�!
hf(#; ! n #) j h(!)id! =

ZZ
hf(#; �) j h(# t �)id#d�;

that is, hr�� f j hi = hf j r�hi, where [r�h](#; �) = h(� t #) � _h(#; �). Choosing
arbitrary f 2 F(p�10 ) 
 F

�
p�11
�
, we �nd that the annihilation operators a(#)h =

[r#h] de�ne the isometry r� : F (p0 + p1) ! F (p0) 
 F(p1) with the operator r��
de�ned as coisometry F(p�10 ) 
 F

�
p�11
�
! F

�
p�1
�
for p = p0 + p1 with respect to

the standard pairing of conjugate spaces F(p) and F
�
p�1
�
:ZZ

k _h(#; �k2p0(#)p1(�)d#d�

=

Z X
#�!

kh(!)k2p0(#)p1(! n #)d! =
Z
kh(!)k2

X
#t�=!

p0(#)p1(�)d!

=

Z
kh(!)k2(p0 + p1)(!)d!:

Hence it follows that r� is projective continuous from F+ to F0 
 F+, where F0 =T
p2P0 F(p), and, in particular, so is the one-point derivative

_f(x; �) = f(x t �)
from F+ to K+ 
 F+ as a contracting map F (p0 + p1) ! F (p0) 
 F(p1) for all
p0 2 P0; p1 2 P. The lemma is proved. �

We are now ready to prove the inductive continuity of the integral (6.2) with
respect to D = [D�

� ] by showing the inequality

k(it0(D)h)k
�
q�1
�
� kDksp;t(r)khk(q); 8q � r�1 + p+ s�1;

where kDksp;t(r) = kD�
+k

(1)
p;t + kD�

+k
(2)
p;t (r) + kD�

� k
(2)
p;t (r) + kD�

�k
(1)
p;t (s). We will

establish this inequality as the single-integral case of the corresponding inequality
for the generalized multiple QS integral [17]

(6.7) [�t0(B)h]({)k =
X

{��t{�+�{t

Z
X t

Z
X t

[B(#) _h(#�� t #��)]({��)d#�+d#��

where {t = { \Xt;X t = f{ 2 X : { � Xtg and the sum is taken over all decom-
positions { = {�� t #�� t #�+ such that #�� 2 X t and #�+ 2 X t. The multi-integrant
B (#) is in general a kernel-valued function of the quadruple # = (#�� )

�=�;�
�=�;+ of

chains #�� 2 X , de�ned almost everywhere by its values in the operators

B

�
#�+; #

�
�

#�+; #
�
�

�
: F+ 
K
(#�� )
K
(#��)! F� 
K
(#��)
K
(#�+):

We will assume that these operators are bounded from F(p) to F
�
p�1
�
for some

p 2 P1 and that there exist strictly positive functions r > 0, r�1 2 P0, and s > 0,
s�1 2 P0 such that

(6.8) kBksp;t(r) =
Z
X t

kB�+(#)ksp;td# <1; 8t <1;

where

kB�+(#�+)ksp;t(r) =
 Z

X t

Z
X t

ess sup
#��2X t

(s(#��)kB(#)kp)2r(#�+ t #�� )d#�+d#�� )1=2
!
;
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and s(#) =
Q
x2# s(x), r(#) =

Q
x2# r(x). We mention that the single integral (6.2)

corresponds to the case

B(x�� ) = D�
� (x); B(#) = 0; 8# :

X
�;�

j#�� j 6= 1;

where x�� denotes one of the atomic tables

(6.9) x�+ =

�
x; ;
; ;

�
;x�+ =

�
;; ;
x ;

�
;x�� =

�
;; x
; ;

�
;x�� =

�
;; ;
; x

�
;

determined by x 2 X. It follows from the next theorem that the function B(#)
in (6.7) can be de�ned up to equivalence, whose kernel is B � 0, kBksp;t(r) = 0 for
all t 2 R+ and for some p; r; s. In particular, B can be de�ned almost everywhere
only for the tables #= (#�� ) that give disjoint decompositions { = [�;�#�� of the
chains { 2 X , that is, are representable in the form # =

F
x2{ x, where x is one of

the atomic tables (6.9) with indices �; � for x 2 #�� .

Theorem 4. Suppose that B(#) is a function locally integrable in the sense of (6.8)
for some p; r; s > 0. Then its integral (6.7) is a continuous operator Tt = �t0(B)
from F+ to F� satisfying the estimate

(6.10) kTtkq = sup
h2F(q)

�
kTthk

�
q�1
�
=khk(q)

	
� kBksp;t(r)

for any q � r�1 + p + s�1. The operator T �t , formally adjoint to Tt in F, is the
integral

(6.11) �t0(B)
� = �t0(B

?); B?
�
#�+; #��
#�+; #��

�
= B

�
#�+; #�+
#�� ; #��

��
;

which is continuous from F+ to F� with kB?ks;tp (r) = kBks;tp (r). Moreover, the
operator-valued function t 7! Tt has the quantum-stochastic di¤erential dTt =
d�t0(D) in the sense that

(6.12) it0(B) = B(;) + it0(D); D�
� (x) = i

t(x)
0 ( _B(x�� ));

de�ned by the quantum-stochastic derivatives D = (D�
� ) with values (6.1) acting

from F(q) to F
�
q�1
�
and bounded almost everywhere:

kD�
+k

(1)
q;t � kBksp;t(r); kDk(2)p;t (r) � kBksp;t(r); kD�

�k
(1)
q;t (s) � kBksp;t(r)

for D = D�
� and D = D�

+, q � r�1 + p + s�1. This di¤erential is de�ned in
the form of the multiple integrals (6.7) with respect to # of pointwise derivatives
_B(x;#) = B(# t x), where x is one of four atomic tables (6.9) at a �xed point
x 2 X.

Proof. Using property (6.6) in the formZ X
t#��=#

f(#��; #
�
�; #

�
+)d# =

ZZZ
f(#��; #

�
�; #

�
+)
Y
�

d#�� ;
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it is easy to �nd that from the de�nition (6.7) for f;h 2 F+ we have
R
hf({) j [Tth]({)id{ =

=

Z
X t

d#�+

Z
X t

d#�+

Z
X t

d#��

Z
X t

d#��

D
_f(#�� t #�+) j B(#) _h(#�� t #��)

E
=

Z
X t

d#�+

Z
X t

d#�+

Z
X t

d#��

Z
X t

d#��

D
B(#)� _f(#�� t #�+) j _h(#�� t #��)

E
=

Z
h[T �t f]({) j h({)id{;

that is, T �t acts as �
t
0(B

?) in (6.7) with B?(#) = B(#0)�, where (#�� )
0 = (#����)

with respect to the inverstion � : (�; �;+) 7! (+; �;�). More precisely, this yields
k�t0(B)kq = k�t0(B?)kq, since kTkq = kT �kq by the de�nition (6.10) of q-norm and
by

sup fj hf j Thi j=kfk(q)khk(q)g = supfj hT �f j hi j=kfk(q)khk(q)g:

We estimate the integral hf j Tthi using the Schwartz inequality

Z
k_f(#)k(p)k _h(#)k(p)s�1(#)d# � k_fk(s�1; p)k _hk(s�1; p)

and the property (6.6) of the multiple integral according to which k_fk(s�1; p) =
kfk(p+ s�1), k _hk(s�1; p) = khk(s�1 + p), j(f j Tth)j �

�
Z
X t

d#��

Z
X t

Z
X t

k_f(#�� t #�+)k(p)
�Z

X t

kB(#)kpd#�+
�
k _h(#�� t #��)k(p)d#�� d#�+

�
Z
X t

d#

�Z
X t

k_f(# t #�+)k2(p)
d#�+
r(#�+)

Z
X t

k _h(# t #�� )k2(p)
d#��
r(#�� )

� 1
2

kB��(#)kp;t(r)

�
Z
X t

d#k_f(#)k(r�1 + p)kB��(#)kp;t(r)k _h(#)k(r�1 + p)

� ess sup
#2X t

fs(#)kB��(#)kp;t(r)gkfk(r�1 + p+ s�1)khk(r�1 + p+ s�1);

where kB��(#��)kp;t(r) = (
R
X t

R
X t(
R
X t kB(#)kpd#�+)2r(#�� t #�+)d#�� d#�+)1=2. Thus

kTtkq � kBkp;t(r; s), where q � r�1 + p+ s�1 and

kBkp;t(r; s) := ess sup
#2X t

fs(#)kB��(#)kp;t(r)g � kBksp;t(r):

Using the de�nition (6.7) and the property

Z
X t

f({)d{ = f(;) +
Z
Xt

dx

Z
X t(x)

_f(x;{)d{;
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where _f(x;{) = f({ t x), it is easy to see that [(Tt � T0)h]({) = [(�t0(B) �
B(;))h]({) =

=

Z
Xt

dx

t(#��)<t(x)X
#��t#�+�{

f
Z
X t(x)

d#�+[

Z
X t(s)

d#�� ( _B(x
�
+;#)

_h(#�� t #��)

+ _B(x�� ;#)
_h(x t #�� t #��))]g({n#��n#�+)

+
X
x2X t

Z t(#��)<t(x)

#��t#�+�{
f
Z
X t(x)

d#�+[

Z
X t(x)

d#�� ( _B(x
�
+;#)

_h(#�� t #��)

+ _B(x��;#)
_h(x t #�� t #��))]g(({n#��n#�+)

=

Z
Xt

dx[D�
+(x)h +D

�
� (x)

_h(x)]({) +
X
x2X t

[D�
+(x)h +D

�
�(x)

_h(x)]({ n x):

Consequently, Tt � T0 =
P
���(D

�
� ; X

t), where ��� (D;�) are de�ned in (6.3) as
operator-valued measures on X of operator-functions

[D�
+(x)h]({) =

t(#��)<t(x)X
#��t#�+�{

Z
X t(x)

d#�+

Z
X t(x)

d#�� [ _B(x
�
+;#)h(#

�
� t #��)]({��);

[D�
� (x)

_h]({) =
t(#��)<t(x)X
#��t#�+�{

Z
X t(x)

d#�+

Z
X t(x)

d#�� [
_B(x�� ;#)

_h(#�� t #��)]({��);

acting on h 2 F+ and _h 2 Kx 
 F+, where {�� = { \
�
#�� t #�+

�
= {n#��n#�+. This

can be written in terms of (6.7) as D�
� (x) = �t0(

_B(x�� )). Because of the inequality
kTtkq � kBksp;t(r) for all q � r�1 + p + s�1 we obtain kD�

+k
(1)
q;t � kBksp;t(r), since

kD�
+(x)kq � k _B(x�+)ksp;t(x)(r): Z

Xt

kD�
+(x)kqdx �

Z
Xt

k _B(x�+)ksp;t(x)(r)dx

=

Z
Xt

dx

Z
X t(x)

kB�+(x t #)ksp;t(x)(r)d# =

Z
X t

kB�+(#)ksp;t(r)d#� kB�+(;)ksp;t(r)

= kBksp;t(r)� kB�+(;)ksp;t(r);

where B�+(#;#) = B(# t #�+)�;(#�+) for #�+ =
�
#; ;
;; ;

�
; # =

�
#�+ #��
#�+ #��

�
.

In a similar way one can obtain

kD�
+k

(2)
q;t (r) �

�Z
Xt

(k _B(x�+)ksp;t(x)(r))2r(x)dx
�1=2

�
Z
X t

d#�
�Z

X t

(kB+(#�; #�)ksp;t(r))2r(#�)d#�
�1=2

� kBksp;t(r);
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where B+
�
#�; #�;#

�
= B(# t #+)�;(#�+ t #�+) for #+ =

�
#� ;
#� ;

�
,

kD�
� k

(2)
q;t (r) �

�Z
Xt

(k _B(x�� )ksp;t(x)(r))2r(x)dx
�1=2

�
Z
X t

d#+

�Z
X t

(kB�(#+; #�)ksp;t(r))2r(#�)d#�
�1=2

� kBksp;t(r);

where B�(#+; #�;#) = B(# t #�)�;(#�+ t #�� ), #� =
�
#+ #�
; ;

�
.

Finally, from kD�
�(x)kq � k _B(x��ksp;t(x)(r) we similarly obtain

kD�
�k
(1)
q;t (s) � ess sup

x2Xt

fs(x)k _B(x��)ksp;t(x)(r)g � kBksp;t(r)

if q � r�1 + p+ s�s, which concludes the proof. �

Remark 4. The quantum-stochastic integral (6.7) constructed in [17], as well as
its single variations (6.2) introduced in [13], are de�ned explicitly and do not require
that the functions B andD under the integral be adapted. By virtue of the continuity
we have proved above, they can be approximated in the inductive convergence by the
sequence of integral sums �t0(Bn), i

t
0(Dn) corresponding to step measurable operator

functions Bn and Dn if the latter converge inductively to B and D in the poly-norm
(6.8).

In fact, if there exist functions r, s with r�1, s�1 2 P0 and p 2 P1 such that
kBn � Bksp;t(r) ! 0, then there also exists a function q 2 P1 such that k�t0(Bn �
B)kq ! 0, and we have q � r�1 + p + s�1 by the inequality (6.10), which implies
the inductive convergence �t0(Bn)! �t0(B) as a result of the linearity of �

t
0. Suppose

that D(x) is adapted in the sense that D�
� (x)(h

t(x) 
 h[t(x)) = ft(x) 
 h[t(x) or

[D�
� (x)h]({) = [D�

� (x)
_h({[t(x))]({t(x)); 8x 2 X;

where _h({[t;{t) = h({tt{[t) and {tt{[t is the decomposition of the chain { 2 X
into {t = fx 2 { : t(x) < tg and {[t = fx 2 { : t(x) � tg. In this case the
above approximation in the class of adapted step functions leads to the de�nition
of the quantum-stochastic integral it0(D) in the Itô sense given by Hudson and
Parthasarathy for the case X = R+; t(x) = x as the weak limit of integrals sums

it0(Dn) =

Z t

0

�(Dn;dx) =
nX
i=1

D�
� (xi)�

�
�(�i):

Here Dn(x) = D(xj) for x 2 [xj ; xj+1) is an adapted approximation corresponding
to the decomposition R+ =

Pn
j=1�i into the intervals �j = [xj ; xj+1) given by

the chain x0 = 0 < x1 < � � � < xn�1 < xn = 1, and D�
� (x)�

�
�(�) is the sum

of the operators (4.3) with functions D�
� (x) constant on � which can therefore

be pulled out in front of the integrals ���. In particular, for D
�
+ = 0 = D�

� and
D�
� = b1 
 g = D�

+, where b1 is the unit operator in F and g(x) is a scalar locally
square integrable function corresponding to the case Kx = C, we obtain the Itô
de�nition of the Wiener integral

it0(g) =

Z t

0

g(x)w(dx);

Z t

0

g(x) bw(dx) = it0(D)
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with respect to the stochastic measure w(�), � 2 F on R+, represented in F by the
operators bw(�) = �+� (�)+���(�). We also note that the multiple integral (6.7) in
the scalar case B(#) = b1
 b(#) de�nes the Fock representation of the generalized
Maassen-Meyer kernels [21], [41] and in the case

b(#) = f(#�� t #�+)�;(#�+)�;(#��); �;(#) =

(
1; # = ;;
0; # 6= ;

it leads to the multiple stochastic integrals �t0(B) = bIt0(f),
It0(f) =

1X
n=0

Z
� � �
Z

0�t1<���<tn<t

f(x1; : : : ; xn)w(dx1) : : : w(dxn)

of the generalized functions f 2
S
r�12P0 F(r), that is, to the Hida distributions [23],

[45] of the Wiener measure w(�) represented as bw(�). Thus we have constructed
a general non-commutative analogue of Hida distributions whose properties are
described in the following corollary.

Corollary 1. Suppose that the operator-function B(#) = b1 
M(#) is de�ned by
the kernel M such that kMkst (r) <1,

M

�
#�+; #��
#�+; #��

�
: K
(#�� t #��)! K
(#�� t #�+);

where

kMkst (r) =
Z
X t

d#�+

�Z
X t

d#�+

Z
X t

d#�� ess sup
#��2X t

fs(#��)kM(#)kg2r(#�+ t #�� )
�1=2

for all t 2 R+ and for some r(#) =
Q
x2# r(x), s(#) =

Q
x2# s(x); r

�1; s�1 2 P0.
Then the integral (6.7) de�nes an adapted family Tt, t 2 R+, of q-bounded operators
Tt = �t0(b1 
M), kTtkq � kMkst (r) for q � r�1 + 1 + s�1, with adapted p-bounded
quantum-stochastic derivatives D�

� (x) = �
t(x)
0 (b1
 _M(x�� )).

7. Generalized Itô formula of unified quantum stochastic calculus

Let H be a Hilbert space. We consider a Hilbert scale G(p) = H
 F(p), p 2 P,
of complete tensor products of H and the Fock spaces over K(p), and we put G+ =
\G(p);G = G(1), and G� = [G(p) which constitute the corresponding Gel�fand
triple G+ � G � G�. We consider operators T = �(K), not necessarily bounded,
in the Hilbert space G = H
F as the �-representation � of operator-valued kernels

(7.1) K

�
!�+ !��
!�+ !��

�
: H
K
(!�� t !��)! H
K
(!�� t !�+);

satisfying the integrability condition kKkp(r) <1 for some r�1 2 P0 and p 2 P1,
where

kKkp(r) =
Z
d!�+

 ZZ
ess sup

!��

fkK(!)k
p(!��)

g2r(!�+ t !�� )d!�+d!��

!1=2
:

This representation � is de�ned for h 2 H
 F by

(7.2) [�(K)h]({) =
X

!��t!�+={

ZZ
K

�
!�+; !��
!�+; !��

�
h(!�� t !�� )d!�� d!�+
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as the vacuum-adapted operator-valued multiple integral (6.7) with t = 1 of the
function B(#) = b�; 
K(#), where

[b�;f]({) = f(;)�;({); �; ({) = f
1 { = ;
0 { 6= ;

is the vacuum projection on F such that [B(#) _h(#�� t #�� )]({��) = 0 if {�� =
{n#��n#�+ 6= ;. The operator �(K) can be represented equivalently as the adapted
(i.e. identity-adapted) integral (6.7) with t =1 of a scalar-valued integrant as the
function B(#) = b1 
M(#), where b1 is the unit operator on F and M(#) is the
generalized Maassen-Meyer kernel-integrant. This follows from

[B(#) _h(#�� t #��)]({��) =M(#)h(#�� t #�� t {��)

such that
h
�10 (b1
M)hi ({) = [�(K)h]({) for the kernel

K

�
!�+; !��
!�+; !��

�
=
X
#�!��

M

�
!�+; !��
!�+; #

�

 I
(!�� n #);

which is connected with M by a one-to-one relation

M

�
#�+; #��
#�+; #��

�
=
X
!�#��

K

�
#�+; #��
#�+; !

�

 (�I)
(#�� n !);

where I
(�) =
N

x2� Ix is the unit operator in K

(�).

According to Corollary 1, kTkq � kMks1(r) for q � r�1+1+s�1. However, using
the equivalent representation (7.2) in the form of the non-adapted integral (6.7) of
B(#) = b�; 
K(#) and taking into account the fact that kb�;kp = 1 for su¢ ciently
small p > 0, we obtain as p ! 0 a more precise estimate kTkq � kKks�1(r) for
q � r�1 + s�1 = limp0&0(r

�1 + p0 + s�1). From this estimate the previous one
follows, since

k
X
#�!��

M(#)
 I
(!�� n #)k �
X
#�!��

kM(#)k � (1 + s�1)(!��)kMks1;

where kMks1 = ess sup#2X fs(#)kM(#)kg,

s(#) =
Y
x2#

s(x); (1 + s�1)(!��) =
X
#�!��

s�1(#) =
Y
x2!��

(1 + s�1(x))

and consequently kKkp(r) � kMks1(r) for p � 1+1=s. Hence in particular there fol-
lows the existence of the adjoint operator T � bounded in norm kT �kq � kK?kp(r) =
kKkp(r) as the representation

(7.3) �(K)� = �(K?); K?

�
!�+; !��
!�+; !��

�
= K

�
!�+; !�+
!�� ; !��

��
of the ?-adjoint kernel K?(!) = K(!0)�.
In the next theorem we prove that the ?-map � : K 7! �(K) is an operator

representation of the ?-algebra of kernelsK(!) satisfying the boundedness condition

(7.4) kKk� = ess sup
!=(!�� )

fkK(!)k=
Y
���

��� (!
�
� )g <1

relative to the product of the quadruple � = (��� )
�=�;�
�=�;+ of positive essentially

measurable product functions ��� (!) =
Q
x2! �

�
� (x), ! 2 X . These are de�ned
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by an integrable function ��+ : X ! R+, by functions ��+; ��� : X ! R+, square
integrable with a certain weight r > 0, r�1 2 P0, and by a function ��� : X ! R+,
essentially bounded by unity relative to some p 2 P:

k��+k(1) <1; k��+k(2)(r) <1; k��� k(2)(r) <1; k���k(1)
p � 1;

k�k(1) =
Z
j�(x)jdx; k�k(2)(r) =

�Z
�(x)2r(x)dx

�1=2
;

k�k(1)
p = ess sup

x

j�(x)j
p(x)

:(7.5)

The conditional boundedness (7.4) ensures the projective boundedness of K by the
inequality kKkp(r) �

�
Z
d!�+d(

ZZ
dsup
!��

fkKk�
Y

��� (!
�
� )=p(!

�
�)g2r(!�+ t !�� )d!�+d!�� d)1=2;(7.6) Z

��+(!)d!
�Z

��+(!)
2r(!)d!

Z
��� (!)

2r(!)d!
�1=2

ess sup
���(!)

p(!)
kKk�(7.7)

� kKk� exp
�Z

(��+(x) + r(x)(�
�
+(x)

2 + ��� (x)
2)=2)dx

�
;

where we have taken account of the fact that
R
�(!)d! = exp

R
�(x)dx for �(!) =Q

x2! �(x) and

ess sup
!
f���(!)=p(!)g = sup

n
ess sup

x2Xn

nY
i=1

f���(xi)=p(xi)g = 1 if ��� � p:

Before we formulate the theorem we establish the following lemma.

Lemma 2. Suppose that the multiple quantum-stochastic integral Tt = �t0(B) is
de�ned in (6.7) by a kernel operator-function B(#) = �(M(#)) with values in the
operators of the form (7.2), where

K

�
��+; ���
��+; ���

�
=M

�
#�+; #�� ; ��+; ���
#�+; #��; ��+; ���

�
; #�� 2 X ;

and M(#) : � 7!M (#;�) is a kernel-valued integrant

M(#;�) : H
K
(��� t #�� )
K
(��� t #��)! H
K
(��� t #��)
K
(��+ t #�+):

Then Tt = �(Kt) for the kernel Kt(!) = �t0(!;M) given by the multiple counting
integral on the kernel-integrants M , that is, �t0 � � = � � �t0, where

(7.8) �t0(!;M) =
X
#�!t

M(#;! n #); !t = (Xt \ !�� )
�=�;�
�=�;+

(the sum is taken over all possible #�� � Xt \ !�� , � = �; �; � = �;+ ). If M(#) is
relatively bounded in ��� 2 X for each # = (#�� ) such that

kM(#)k
 � c
Y
�;�

��� (#
�
� ); ��� (#) =

Y
x2#

��� (x)

for a pair of quadruples � = (��� ) , �
�
� � 0 and 
 = (
�n), 
�� � 0 satisfying (7.5),

then the kernel K is relatively bounded: k�t0(M)k� � c if ��� (x) � ��� (x)+

�
� (x) for

t(x) < t and ��� (x) � 
�� (x) for all �, � when t(x) � t. In particular, the generalized
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single integral it0(D) of the triangular operator-integrantD (x) =
�
��+�

�
� D

�
� (x)

�
with

D�
� (x) = �(C�� (x)) is a representation i

t
0 � � = � � nt0 of the single counting integral

nt0(!;C) =
X
x2!t

C(x;! n x); C(x�� ;�) = C�� (x;�);

of the triangular kernel-integrant C (x;�) =
�
��+�

�
� C

�
� (x;�)

�
, where the sum is

taken over all possible x 2 !�� \ Xt for � = �; �; � = �;+, and x = x
�(x)
�(x) is

one of the atomic matrices (6.9) with indices �(x) = �, �(x) = �, de�ned almost
everywhere by the condition x 2 !�� . Moreover, we have the estimate

knt0(C)kp(r) � c exp

�Z
Xt

(
�+(x) +
1
2 (


�
+(x)

2 + 
�� (x)
2)r(x))dx

�
:

given the kernel-valued quadruple-integrant C�� (x;
) is relatively bounded for each
x 2 X in � = (��� ) in the sense that there exist such 
 = (


�
� ) that

c = kC�+k
(1)

;t + kC�+k

(2)

;t(r) + kC�� k

(2)

;t(r) + kC��k

(1)

;t (1=p) <1;

kC�+k
(1)

;t =

Z
Xt

kC�+ (x)k
dx; kCk
(2)

;t =

�Z
Xt

kC(x)k2
r(x)dx
�1=2

;

kC��k
(1)

;t

�
1

r

�
= sup

x2Xt

�
kC�� (x)k

p(x)

�
;

Proof. IfM(#;�) is an operator-valued integrant-kernel that is bounded, kMk�;
 �
c, relative to the pair (�;
), then the relatively bounded operator Tt = �(Kt) is
well-de�ned for Kt = �t0(M), since

kKt(!)k � c

t(#�+)<tX
#�+�!

�
+

t(#�+)<tX
#�+�!�+

t(#�� )<tX
#�� �!��

t(#��)<tX
#���!��

kM(#;! n #k

� c

�=�;�Y
�=�;+

t(#�� )<tX
#���!��

��� (#
�
� )


�
� (!

�
� n #�� ) = c

�=�;�Y
�=�;+

��� (!
�
� );

where ��� (!) =
Qt(x)<t
x2! [��� (x) + 
�� (x)] �

Qt(x)�t
x2! 
�� (x) for �

�
� (#) =

Q
x2# �

�
� (x)

and 
�� (�) =
Q
x2� 


�
� (x). Applying the representation (7.2) to Kt(!) = �t0(!;M)

it is easy to obtain the representation of the operator �(Kt) in the form of the
generalized multiple integral (6.7) of B(#) = �(M(#)). Indeed, [Tth]({) =

=
X

!��t!�+={

ZZ X
#�!t

M(#;! n #)h(!�� t !�� )d!�� d!�+

=
X

#��t#�+�{t

Z
X t

d#��

Z
X t

d#�+
X

���t��+={��

ZZ
M(#;�) _h(#�� t #�� ; ��� t ��� )d��� d��+;

where {�� = { n (#�� t #�+); _h(#; �) = h(� t #). Consequently, Tt = �t0(B), where

[B(#) _h(#�� t #�� )]({) =
X

���t��+={

ZZ
M(#;�) _h(#�� t #�� ; ��� t ��� )d��� d��+;
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that is, we have proved that � � �t0 = �t0 � �. In particular, if M(#;�) = 0 forP
j#�� j 6= 1, then, obviously

�t0(!;M) = nt0(!;C); �t0(B) = it0(D);

where C�� (x;�) = M(x�� ;�) � C (x�� ;�) and B(#) = 0 for
P
j#�� j 6= 1, D�

� (x) =
B(x�� ). This yields the representation � � nt0 = it0 � � for the single generalized
non-adapted integral (6.2) for � = Xt in the form of the sumX

�;�

��� (�(C
�
� );�) = �

�X
�;�

(N�
� (C

�
� ;�)

�
; N�

� (!; C;�) =
X

x2!��\�

C(x;! n x�� )

of representations of four kernel measures N�
� (!; C

�
� ;�) for that de�ne kernel rep-

resentations � � N(�) = �(�) � � of the canonical measures (4.3) with D�
� (x) =

�(C�� (x)). �

In the following theorem, which generalizes Itô formula to noncommutative and
nonadapted quantum stochastic processes Tt = � (Kt) given by an operator-valued
kernel Kt (!), we use the following triangular-matrix notation

T (x) = [T (x�� )] ; T (x) = rxTtjt=t(x)

for the quantum stochastic germs rxT = �
�
_K (x)

�
given by the point derivatives

of the kernel _K (x;�) = K (� t x), with T�� (x) = T (x�� ) equal zero for � = +
or � = � and T�� (x) = Tt(x) = T++ (x). We notice that if Kt (!) = K0 (!) +
nt0 (C (!)), corresponding to the single-integral representation Tt � T0 = it0 (D)

with D (x) = � (C (x)), then _Kt(x;�) = Kt(� t x) is given by

_Kt(x;�) = _Kt^t(x) (x;�) +

t(x)�t(z)<tX
z2�

C (z;�nz t x) :

This proves that _Kt(x;�) does not depend on t 2 (t (x) ; t+(x)], where t+ (x) =
min ft (x0) > t (x) : x0 2 t���g, and therefore the right limit

_Kt(x)](x;�) := lim
t&t(x)

_Kt(x;�) = _Kt(x) (x;�) + C (x;�)

trivially exists for each x 2 fx��g and � with _Kt(x)](x
�
�;�) = Kt(x)(�) = _Kt(x)](x

�
�;�)

for _Kt(x
�
�;�) = Kt(�) = _Kt(x

+
+;�) due to the independency of K (!) on !

�
� and

!++. We may assume that the germs rxTt = �
�
_Kt (x)

�
also converge from the right

to G (x) = T (x) +D (x) with D (x) = � (C (x)) at t& t (x) for x 2 X correspond-

ing to each atomic table x in (6.9) as they have limits �
�
_Kt(x)

�
x��
��
= Tt(x) =

�
�
_Kt(x)

�
x++
��
for x 2

�
x��;x

+
+

	
. As it is proved in the following theorem, these

germ-limits G (x) are given by the matrix elements D (x�� ) of the QS-derivatives
D = [D�

� (x)] at least in the case Kt = �t0(M) (7.8) corresponding to the multiple
integral representation Tt = �t0(B) (see (6.7)) with B(#) = �(M(#)).

Theorem 5. If kernel K(!) is relatively bounded, then the same is true for the

kernel K?(!) : kK?k
 = kKk
0 , where
�

�+ 
��

�+ 
��

�0
=

�

�+ 
�+

�� 
��

�
, and the oper-

ator T � = �(K?), as well as the operator T = �(K), is q-bounded by the estimate
(7.6) for q � p + 1=r. For any such kernels K(#) and K?(#), bounded relative to
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the quadruples � = (��� ) and 
 = (

�
� ) of functions �

�
� (x); 


�
� (x) satisfying (7.5),

the operator

�(K)�(K)� = �(K �K?); �(I
) = I

is well-de�ned as a �-representation of kernel product (2.9) of Chapter I with
the estimate kK � K?k� � kKk�kK?k
 if ��� � (� � 
)�� , where (� � 
)�� (x) =P
���(x)


�
� (x) is de�ned by the product of triangular matrices24 1 ��� ��+

0 ��� ��+
0 0 1

3524 1 
�� 
�+
0 
�� 
�+
0 0 1

35 =
24 1 ��� 


�
� + 


�
� ; 
�+ + �

�
� 


�
+ + �

�
+

0; ���

�
�; ���


�
+ + 


�
+

0; 0; 1

35 :
Let Tt = �(Kt) with _Kt (x;�) de�ning the right limit rxTtjt=t(x)] = �( _Kt(x)](x)) of
rxTt at t & t (x). Let T(x) = [T�� (x)] and G(x) = [G

�
� (x)] denote the triangular

matrices of germs T (x) = rxTtjt=t(x) and G(x) = rxTtjt=t(x)] as operator-valued
matrix elements

(7.9) T�� (x) = �( _Kt(x)(x
�
� )); G�� (x) = �( _Kt(x)](x

�
� ))

corresponding to point-derivatives _Kt (x
�
� ) at t = t (x) and their right limits at

t = t (x)] respectively. Then the operator-functions D�
� (x) = G�� (x) � T�� (x) are

quantum-stochastic derivatives of the function t 7! Tt which de�ne the QS di¤er-
ential dTt = dit0(D) in the di¤erence form so that Tt � T0 = it0(G�T). Moreover,
T �t � T �0 = it0(G

y �Ty), and we have the generalized non-adapted Itô formula

(7.10) TtT
�
t � T0T �0 = it0(TD

y +DTy +DDy) = it0(GG
y �TTy);

where D 7! Dy is the pseudo-Euclidean conjugation [D�
� (x)]

y = [D��
��(x)]

� of the
triangular operators

T =

24 T T�� T�+
0 T �� T �+
0 0 T

35 ; D =

24 0 D�
� D�

+

0 D�
� D�

+

0 0 0

35 ; G =

24 T G�� G�+
0 G�� G�+
0 0 T

35
with the standard block-matrix multiplication (TG)�� = �T

�
�G

�
� .

Proof. The adjoint operators �(K) and �(K?), which de�ne the �-representation
(7.2) with respect to the kernels K bounded in the sense of (7.4) and (7.5), are
q-bounded for q � p+1=r by the estimate k�(K)kq � kKkp(r) and inequality (7.6),
which leads to the exponential estimate

k�(K)kq � kKk� expfk��+k(1) + 1
2 (k�

�
+k(2)(r)2 + k��� k(2)(r)2)g:

The formula for the kernel multiplication K? �K, which corresponds to the operator
product �(K?)�(K), has already been found for scalar H = C in the case of linear
combinations of exponential kernels

f
(#) = f�+ (#
�
+)f

�
+(#

�
+)
 f�� (#��)
 f�� (#�� );
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where f�� (#) =
N

x2# f(x)(f
�
+ (#) =

Q
x2# f

�
+ (x)). We shall now verify this formula

for operator-valued kernels K(!) and K?(!), noticing that their product is �-
bounded for � = � � 
, since kK? �Kk (!) �

�
X



K � !�+ n ��+; ��� t ��+

!�+ n ��+; !�� t ��+

�



 � 



K?

�
!�+ n ��+; !�� n ���
��+ t ��+; !�� t ���

�




� kKk� kK

?k

X

�

�
!�+ n ��+; ��� t ��+
!�+ n ��+; !�� t ��+

�



�
!�+ n ��+; !�� n ���
��+ t ��+; !�� t ���

�
= kK?k
 kKk� (� � 
)


(!); (� � 
)�� =
X

�����
���


�
� ;

where we have employed the multiplication formula �
 � 

 = (� � 
)
 for scalar
exponential kernels

�
(!) =
Y

��� (!
�
� ); �

�
� (!) =

Y
x2!

��� (x) : (� � 
)�� (x) =
X


��(x)�
�
� (x):

Using the main formula (6.6) of the scalar integration we write the scalar square of
the action (7.2) in the form k�(K)hk2 =

=

Z 






X

!��t!�+={

ZZ
K?(!)h(!�� t !��)d!�+d!��








2

d{

=

ZZ ZZ Z X
���t��+={

X
���t��+={

hK?(�)h(��� t ���) j

K?(� )h(��� t ���)id{d��+d��� d��+d���

=

ZZ ZZ ZZZ
hK?

�
��+; ���

��� t ��+; ��� t ��+

�
h(��� t ��� t ��+) j

K?

�
��+; ���

��+ t ��+; ��� t ���

�
h(��� t ��� t ��� )id�d��+d��� d��+d���

=

ZZ ZZ ZZZ
hh(��� t ��� t ��+) j K

�
��+; ��� t ��+
��� ; ��� t ��+

�
�

K?

�
��+; ���

��+ t ��+; ��� t ���

�
h(��� t ��� t ��� )id�d��+d��� d��+d���

=

Z
(h({) j

X
!��t!�+={

ZZ
(K �K?)(!)h(!�� t !��)d!�+d!�� )d{;

where ��� = ��� \ ���, ��+ = ��� \ ��+, ��� = ��� \ ��+, ��+ = ��+ \ ��+, and the
integral over d{ of the double sum

P
���t��+={

P
���t��+={

=
P

���t��+t�
�
� t��+={

is

replaced by the quadruple integral over d� = d���d�
�
+d�

�
� d�

�
+. Since h 2 H
 F(q)

is arbitrary, this proves the kernel multiplication formula (2.9) of Chapter I for K
and K?, which extends to any relatively bounded kernels K and M because of the
polarization formula for the Hermitian function K �K?.
We shall now consider the stochastic di¤erential dTt of the multiple integral

Tt = �t0(B) of the operator function B(#) = �(M(#)) de�ned by the quantum-
stochastic derivatives

D�
� (x) = �

t(x)
0 ( _B(x�� )) = �(C�� (x));
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representing the di¤erences of the kernels

C�� (x;�) = �
t(x)
0 (�; _M(x�� )) = _Kt(x)](x

�
� ;�)� _Kt(x)(x

�
� ;�):

Here �t0(�; _M(x)) =
P

#��t M(#t x;� n#), x is one of the atomic matrices (6.9),
and

_Kt(x)(x;�) =
X

#��t(x)
M(#; (� t x) n #) = Kt(x)(� t x);

_Kt(x)](x;�) =
X

#��t(x)tx

M(#; (� t x) n #)

= Kt(x)(� t x) +
X

#��t(x)
M(# t x;� n #)

= _Kt(x)(x;�) + �
t(x)
0 (�; _M(x)):

We note that Kt](!) =
P

#�!t] M(#;! n #) = Kt+(!), where t+ = minft(x) >
t : x 2 !g, !t] = fx 2 ! : t(x) � tg, so that _Kt(x)](x;�) = _Kt(x;�) for any
t 2 (t(x); t+(x)]. Thus the derivatives D�

� (x); x 2 Xt, de�ning the increment
Tt � T0 = it0(D), can be written in the form of the di¤erences

D�
� (x) = �[ _Kt(x)](x

�
� )]� �[ _Kt(x)(x

�
� )]

of the operators (7.9). If we consider _Kt(x) as one of the four entries _Kt(x
�
� ) =

Kt(x)
�
� in the triangular operator kernel Kt(x) with Kt(x)

�
� = Kt(x) = Kt(x)

+
+, we

de�ne the triangular functions

T(x) = �(Kt(x)(x)); G(x) = �(Kt(x)](x)):

This allows us to obtain the quantum non-adapted Itô formula in the form

TtT
�
t � T0T �0 = it0(TD

y +DTy +DDy);

where D(x) = G(x)�T(x). This is a consequence of the fact that the map (7.2) is
a ?-homomorphism, TtT �t = �(K �K?), and the formula (3.9) of Chapter I for the
product of the operator kernels Kt and K?

t , which can be written in the form

(Kt �K?
t )(! t x�� ) =

�X
�=�

[Kt(x)
�
� �K

?
t (x)

�
� ](!) = [Kt(x)K

y
t(x)]

�
� (!);

where the right-hand side is computed as an entry in the product of triangular
matricesK(x) = [K�

� (x)] which de�nes the multiplication of the entries as operator-
valued kernels Kt(x;!)

�
� = Kt(!) = Kt(x;!)

+
+, _K(x;!) = K(! t x). For from

(3.9) of Chapter I we obtain

[K �K?](! t x��) = [ _K(x��) � _K?(x��)](!);

[K �K?](! t x�+) = [K � _K?(x�� ) + _K(x�� ) _K
?(x��)](!);

[K �K?](! t x�� ) = [ _K(x��) _K
?(x�+) + _K(x�+) �K?](!);

[K �K?](! t x�+) = [K � _K?(x�+) +
_K(x�� ) � _K?(x�+) + _K(x�+) �K?](!);

which are the matrix elements of

[K �K?](! t x) =
h
_K(x)�� � _K

?
t (x)

�
�

i
(!) =

�
K �Ky� (x;!) :
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This allows us to write �[( _Kt � _K?
t )(x

�
� )] =

P�
�=� �(

_Kt(x)
�
�
_K?
t (x)

�
� ) in the form of

the triangular operator

�(Kt(x)K
y
t(x)) = �(Kt(x))�(Kt(x))

�

which is the product of the triangular matrices Tt(x) and T
y
t(x) with operator

product of the entries. We put t = t(x) and t = t+(x) in the formula, and we
obtain

�[(Kt(x)] �Ky
t(x)])(x)� (Kt(x) �Ky

t(x))(x)] = G(x)G
y(x)�T(x)Ty(x);

which allows us to write the stochastic derivative of the quantum non-adapted
process TtT �t in the form

d(TtT
�
t ) = di

t
0(GG

y �TTy);

corresponding to (7.10). The theorem has been proved. �

Remark 5. Using the non-adapted table of stochastic multiplication

GyG�TyT = DyT+TyD+DyD

=

24 0; T �D�
� ; T �D�

+ +D
��
+ T

0; 0; D��
� T

0; 0; 0

35+
24 0; D��

+ D
�
�; D��

+ D
�
+

0; D��
� D

�
�; D��

� D
�
+

0; 0; 0

35
+

24 0; D��
+ T

�
� + T

��
+ D�

�; D��
+ T

�
+ + T

��
+ D�

+

0; D��
� T

�
� + T

��
� D�

�; D��
� T

�
+ + T

��
� D�

+

0; 0; 0

35
we can write (7.10) in a weak form

kTthk2 � kT0hk2 =
Z
Xt

2Re
D
Tt(x)h j D�

+(x)h +D
�
� (x)

_h(x)
E
dx(7.11)

+

Z
Xt

�


D�
+(x)

_h +D�
�(x)

_h(x)



2 + 2ReDrxTt(x)h j D�

+(x)
_h +D�

�(x)
_h(x)

E�
dx;

where rxTt(x)h = T �+(x)h + T �� (x)
_h(x). This formula is valid for any non-adapted

single integral Tt = T0 + it0(D) with square integrable values Tth for all h 2 G+
if we understand by rx the Fock space representation of the Malliavin derivative
[rxTt(x)h]({) = [Tt(x)h]({ t x) at the point x 2 X.

Indeed, taking into account that

f j it0(D)h

�
=

Z
Xt

[
D
f j D�

+(x)h +D
�
�
_h(x)

E
+
D
_f(x) j D�

+(x)h +D
�
�(x)

_h(x)
E
]dx;

we readily obtain the weak form of the non-adapted Itô formula if we substitute
DyT +DyD +TyD in place of D. This formula can also be obtained by a direct
computation 

it0(D)h

2 + 2Re 
it0(D)h j T0h� = kTthk2 � kT0hk2
without assuming that the family Tt is de�ned by the kernels (7.8) which represent
it in the form of the multiple stochastic integral (6.7) of B = �(M). For we compute
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the square of the norm of the full single integral

[it0(D)h]({) =

Z
Xt

[D�
+(x)h +D

�
� (x)

_h(x)]({)dx

+
X
x2{t

[D�
+(x)h +D

�
�(x)

_h(x)]({ n x);

and we obtain kit0(Dhk2 = k
R
k2 + 2Re


P
j
R �
+ k

P
k2, where



Z 



2 =

Z
Xt

Z
Xt

D
D�
+(z)h +D

�
+(z)

_h(z) j D�
+(x)h +D

�
� (x)

_h(x)
E
dxdz

=

Z
Xt

2Re

�Z
Xt(x)

h
D�
+(z)h +D

�
� (z)

_h(z)dz
i
j D�

+(x)h +D
�
� (x)

_h(x)

�
dx;

the cross-term can be written as 2Re

P

j
R �
=

2Re

Z *X
z2{t

[D�
+(z)h +D

�
�(z)

_h(z)]({ n z) j
Z
Xt

[D�
+(x)h +D

�
� (x)

_h(x)]({)dx

+
d{

=

Z
Xt

2Re

Z * X
z2{t(x)

[D�
+(z)h +D

�
�(z)

_h(z)]({) j D�
+(x)h +D

�
� (x)

_h(x)

+
d{ dx

+

Z
Xt

2Re

�
rx
Z
Xt(x)

[D�
+(z)h +D

�
� (z)

_h(z)]ds j D�
+(x)h +D

�
�(x)

_h(x)

�
dx

and k
P
k2 �

R P
x2{t




[D�
+(x)h +D

�
�(x)

_h(x)]({ n x)



2 d{ =

=



X


2 � Z X

x2{t




[D�
+(x)h +D

�
�(x)

_h(x)]({ n x)



2 d{

=

Z x6=zX
x;z2{t

D
[D�

+(z)h +D
�
�(z)

_h(z)]({ n z) j [D�
+(x)h +D

�
�(x)

_h(x)]({ n x)
E
d{

=

Z
Xt

2Re

Z *
rx

X
z2{t(x)

f (z;{nz) j f (x;{)
+
d{ dx;

where f (x;{) = [D�
+(x)h +D

�
�(x)

_h(x)] ({). Here we have used (6.6) in the formZ X
x2{t

hf(x;{) j h(x;{ n x)id{ =
Z
Xt

Z
hf(x;{ t x) j h(x;{)id{ dx;

which gives the Itô term of the Hudson-Parthasarathy formula for the adapted
integrals of the formZ X

x2{t




[D�
+(x)h +D

�
�(x)

_h(x)]({ n x)



2 d{ = Z

Xt




D�
+(x)h +D

�
�(x)

_h(x)



2 dx;
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and [rxf(z)]({) = f(z;{ t x) is the annihilation operator at x 2 X. Adding up all
three integrals, we obtain

it0(D)h

2 = Z

Xt

2Re
D
(i
t(x)
0 (D)h j D�

+(x)h +D
�
� (x)

_h(x)
E
dx

+

Z
Xt




D�
+(x)h(x) +D

�
�(x)

_h(x)



2 dx

+

Z
Xt

2 Re
D
rxit(x)0 (D)h j D�

+(x)h(x) +D
�
�(x)

_h(x)
E2
dx;

which leads to the weak form (7.11) of the non-adapted generalization of the quan-
tum Itô formula for Tt = T0 + i

t
0(D).

If Tt = �(Kt) is the representation (7.2) of the kernel (7.6), then obviously

[�(Kt)h]({ t x) = [�( _Kt(x
�
+))h + �( _K(x

�
�))
_h(x)]({);

and therefore rxTt(x)h = T �+(x)h + T
�
�
_h(x).

In particular, in the scalar case Kx = C for D�
+ = 0 = D�

�, D
�
� (x) = D(x) =

D�
+(x) and T

�
� (x) = Tt(x), T�� (x) = T �+(x) � @ (x)T we obtain

kTthk2 � kT0hk2 =
Z
Xt

2Re


Tt(x)h j dTt(x)h

�
+

Z
Xt

[kD(x)hk2 + 2 Re h@xTh j D(x)hi]dx;

where @xTh = rxTt(x)h � Tt(x) _h(x) � [rx; Tt(x)]h. This gives the Itô formula for
the normally-ordered non-adapted integral

Tt � T0 =
Z
Xt

(�+� (dx)D(x) +D(x)�
�
�(dx)) =

Z
Xt

dTt(x)

with respect to the Wiener stochastic measure w(�), � 2 F, which is represented
in F by commuting operators bw(�) = �+� (�) + �

�
�(�). Consider a particular

case when the operators T0; D(x), and consequently Tt are anticipating functions
T0(w); D(x;w), and Tt(w) of w, that is, T0 = T0( bw); D(x) = D(x; bw), and Tt =
Tt( bw). Then the operators T (x) = [rx; Tt(x)] = �( _Kt(x)(x)) are de�ned by the
Malliavin derivative @xTt(w)jt=t(x) as the Wiener representation of the pointwise
derivative _Kt(x)(x;{) = Kt(x)(x [ {) of operator-valued kernels in the multiple
stochastic integral Tt(w) =

R
Kt({)w(d{) = I(Kt). In this particular case (7.11)

was recently obtained by Nualart in [42].
We note that in the adapted case we always have T �� (x) = Tt(x) 
 I(x) and

T�� (x) = 0 for � 6= � except, possibly, T�+ (x) = �(K�
+ (x)). Hence we readily obtain

the following result.

Corollary 2. The quantum stochastic process Tt = �(Kt) is adapted if and only if
the kernel process Kt is adapted in the sense that

Kt(�; �; �) =

Z
Kt

�
!; �
�; �

�
d! = �;(�[t)I


(�[t)�;(� [t)
Kt(�
t; �� ; � t);

where �;({) = 1 if { = ;, �;({) = 0 if { 6= ;, I
({) =
N

x2{ I(x), {t = { \Xt,
{[t = fx 2 { : t(x) � tg. The quantum-stochastic Itô formula (7.10) for such
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processes can be written in the strong form

T �t Tt � T �0 T0 =

Z
Xt

(T �t(x)dT (x) + dT
�(x)Tt(x) + dT

�(x)dT (x))

= it0(G
yG� T �T 
 1);

where

dT (x) = �(D;dx); dT �(x) = �(Dy;dx);

dT �(x)dT (x) = �(DyD;dx); 1(x) =

24 1 0 0
0 I(x) 0
0 0 1

35 ;
and in the weak form as (7.11), where rxTt(x)h = [Tt(x) 
 I(x)] _h(x),

8. Non-stationary quantum evolutions and chronological products

We have proved the continuity of the �-representation � of an inductive ?-algebra
B of relatively bounded operator-valued kernels K(!) in the operator �-algebra
B(G+) of the inductive limit G+ = \p2P1G(p), and this property allows us to con-
struct the quantum-stochastic functional calculus. Namely, if K = f(Q1; : : : ; Qm)
is an analytic function of the kernels Qi 2 B as the limit of polynomials Kn

with �xed ordering of non-commuting Q1 : : : ; Qn, the limit taken in the sense of
kKn � Kk� ! 0 for (p; q)-admissible quadruple � = (��� ) of positive functions
��� (x) > 0, then T = �(K) is an ordered function f(Z1; : : : ; Zm) of operators
Zi = �(Qi) as the limit kTn � Tkq ! 0 for q � p + 1=r of the corresponding
polynomials Tn = �(Kn). The function T � = f?(Z�1 ; : : : ; Z

�
m) with transposed or-

der of action of the operators Z�i = �(Q?i ) is also de�ned as a q-bounded operator
T � = �(K?) in the scale fG(p)g for K? = f?(Q?1; : : : ; Q

?
m).

The di¤erential form of this uni�ed QS calculus is given by the non-commutative
and non-adapted generalization of the function Itô formula

(8.1) dZt = di
t
0(A) ) df(Zt) = di

t
0(f(Z+A)� f(Z));

de�ned for any analytic function Tt = f(Zt) of an operator-valued quantum sto-
chastic curve Zt = �(Qt) as the generalized QS-di¤erential of �(Kt) for Kt = f(Qt)
as soon as this function is well-de�ned also on the germs Y (x) =Z(x) + A (x),
Z(x) = [Z (x�� )] of Zt as the triangular matrix-functions with the elements Y (x) =
rxZt(x)], Z (x) = rxZt(x) for x 2 fx��g. Here

T�� (x) = f(Z)�� (x); G�� (x) = f(Z+A)�� (x);

where f(Z)(x) = f(Z(x)) is a triangular matrix which as an analytic function of
the triangular matrix

Z(x) =
h
�
�
_K (x�� )

�i
= � (K (x)) ; _K (x�� ;�) = K (� t x�� )

with the elements representing _Qt(x)(x) and _Qt(x)](x), respectively, as

Z(x) =
h
�( _Qt(x)(x

�
� ))
i
; Y (x) = [Z�� (x) +A

�
� (x)] ;

A�� (x) = �
h
_Qt(x)](x

�
� )� _Qt(x)(x

�
� )
i
:
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For an ordered function Tt = f(Z1t; : : : ; Zmt) this can be written in terms of Zit,
with the di¤erential dZit = dit0(Ai), and Yi = Zi +Ai as

dTt = di
t
0(f(Y1; : : : ;Ym)� f(Z1; : : : ;Zm)):

In particular, if all triangular operator-matrices fYi;Zig commute, then we can
obtain the exponential function Tt = expfZtg for Zt =

Pm
i=1 Zit as a solution of

the following quantum-stochastic non-adapted di¤erential equation:

(8.2) dTt = di
t
0[T(S� b1)]; T0 = I;

where S = exp
�Pm

i=1Ai

	
, T = exp

�Pm
i=1 Zi

	
corresponding to

TS = exp
� mX
i=1

Yi

	
:

We shall now deal with the problem of solving a general quantum-stochastic
equation

(8.3) Tt = T t0 + i
t
0(TA

t)

of type (8.2) corresponding to the integral equation Tt = I + it0(TA) with T
t
0 = I

and At(x) = S(x)� 1̂(x) independent of t. In general T t0 is given as a nonadapted
function of t 2 R+ with values in continuous operators G+ ! G�, and At(x) =
[At(x)�� ] is a triangular matrix-function of x 2 X, where At(x)�� = 0 for � = + or
� = � and the non-zero values are continuous operators

A�+(x) : G+ ! G�; A��(x) : G+ 
Kx ! G� 
Kx;
A�+(x) : G+ ! G� 
Kx; A�� (x) : G+ 
Kx ! G�;

for example T t0 = T0U
t
0, A

t(x) = A(x)(U tt(x) 
 I(x)), where fU ts : t > s 2 R+g is a
given two-parameter family of evolution operators on G+. First of all we prove the
following lemma.

Lemma 3. Suppose that the operator-functions

T t0 = �(Kt
0); At(x)�� = �(Lt(x�� ))

�=�;�
�=�;+

are the representations (7.2) of the kernel functions Kt
0(!), L

t(x�� ;�), where ! =
(!�� ); !

�
� 2 X ;� = (��� ); �

�
� 2 X , and x�� are the atomic tables (6.9). Then the

integral equation (8.3) is the operator representation Tt = �(Kt) of a triangular
system of recurrence equations

(8.4) Kt(!) = Kt
0(!) +

X
x2!t

[Kt(x) � Ltx](!);

where the kernel-operators Ltx(!) are de�ned almost everywhere (for pairwise dis-
joint (!�� )

�=�;�
�=+;�) as

Ltx(� t x�� ) := Lt (x�� ;�) � Lt (x;�)
�
�

by the matrix elements of Lt(x;�), with Ltx(!) = 0 if x =2 t!�� , and Kt(x) � Ltx is
the kernel product. The solution of (8.4) is uniquely de�ned almost everywhere (if
t(x) 6= t(x0) for all x 6= x0 2 t!�� ) as the sum

Kt(!) =
X
#�!t

Mt(#;! n #) = �t0(!;Mt)
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of chronological kernel products

(8.5) Mt(#;�) = [K
t(x1)
0 � Lt(x2)x1 � : : : � Lt(xm)xm�1 � L

t
xm ](# t �)

over all decompositions #= x1 t : : : t xm of the tables #= (#�� ) into atomic tables
xi, each of the form (6.9), with the correspondence xi 2 #�� , xi = x�i� . It gives
the unique solution (8.3) in the form of the generalized multiple integral

Tt = �t0(Bt); Bt(#) = �(Mt(#));

if Fock representation Bt(#) of the products (8.5) satis�es the condition kBtksp(r) <
1 for some admissible p 2 P1 and r�1, s�1 2 P0.

Proof. We substitute T t0 = �(Kt
0), A

t(x) = �(Lt(x)), and Tt = �(Kt) in (8.3) and
we take into account the fact that

T(x)At(x) = �(Kt(x)(x) � Lt(x));
where Kt(x) = [Kt(x)

�
� ] is a triangular matrix, Kt(x)

�
� = 0 if � > �, with the

non-zero kernel entries

Kt(x;�)
�
� = Kt(�) = K(x;�)++; Kt(x;�)

�
� = Kt(� t x�� );

and Lt(x) = [Lt(x)�� ], where L
t(x)�� = 0 if � > � and the entries

Lt(x;�)�� = 0 = Lt(x;�)++; x =2 t��� ; Lt(x)�� = _Ltx(x
�
� )

are de�ned by the kernels Ltx(!) = Lt(x;! n x), with Ltx(!) = 0 if x =2 !�� for all
� 6= +; � 6= �, in the same way as the entries Kt(x;�)

�
� are de�ned by the kernels

Kt(!). As a result we found that (8.3) is satis�ed if

Kt(!) = Kt
0(!) +

X
x2!t

[Kt(x)(x)L
t(x)]

�(x)
�(x)(! n x)

= Kt
0(!) +

�>�X
�<+

t(x)<tX
x2!��

[Kt(x) � Ltx](x�� t ! n x�� );

which corresponds to (8.4). The solution of this equation for any table ! =

(!�� )
�=�;�
�=�;+ with chronologically ordered entries is represented as the sum (7.6) of

the chronological products (8.5) of the operator-valued kernels Mt(;;!) = Kt
0(!)

and Ltx(!), since

Kt(!) =
X
#�!t

Mt(#;! n #) =Mt(;;!) +
#�!tX
j#j�1

Mt(#;! n #)

=Mt(;;!) +
X
x2!t

X
#2!t(x)

Mt(# t x;! n (# t x))

= Kt
0(!) +

X
x2!t

X
#�!t(x)

[Mt(x) � Ltx](!) = Kt
0(!) +

X
x2!t

[Kt(x) � Ltx](!);

where we have used the representation (8.5) in the recurrent form

Mt(# t x;�) = [Mt(x)(x) � Lt(x)]�(x)�(x)(# t �) = [Mt(x) � Ltx](x t # t �):

This de�nes the representation of the solution Tt = �(Kt) in the form of the non-
adapted quantum-stochastic integral (6.7) of Bt = �(Mt), since by Lemma 2, ���t0 =
�t0 � � if the integrability condition (6.8) is ful�lled. �
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Theorem 6. Suppose that U ts = �(V ts ) is the representation on G of the evolution
family fV ts : t � s 2 R+g of relatively bounded operator-valued kernels

V ts

�
!�+; !��
!�+; !��

�
: H
K
(!�� )
K
(!��)! H
K
(!��)
K
(!�+);

satisfying the condition V sr � V ts = V tr for all r < s < t, where the representation
is considered with respect to the kernel product (7.10) of Chapter I with the unit
V tt (!) = I 
 I
(!). Suppose that

Kt
0(!) = [K

s
0 � V ts ](!); Ltx(!) = [L

s
x � V ts ](!); 8t > s

are the kernel products de�ning the representation (8.4) of equation (8.3). Then
the kernels chronological product

(8.6) Kt(!) = [K
t(x1)
0 � F t(x2)x1 � : : : � F t(xn)xn�1 � F

t
t(xn)

](!)

for F tx(!) = Ltx(!) + V tt(x)(!), !
t = x1 t : : : t xn, is a unique solution of the

system (8.4) for almost all ! = (!�� ) (if t(x) 6= t(x0) for all x 6= x0 2 t!�� ). This
yields the representation of the solution of (8.3) in the form Tt = �(Kt) de�ned
on G for each t as a relatively bounded operator if the product (8.6) satis�es the
condition kKtk� < 1 with respect to the norm (7.4) for the quadruple � = (��� )
of functions admissible in the sense of (7.5) and equal to zero for t(x) > t. The
operators Tt are isometric, that is, T �t Tt = Î (unitary: T �t = T�1t ) if and only if the
operators T0 and U ts ; t � s � 0, are isometric (unitary). Consequently, for all t we
have T t0 = T0U

t
0 and the triangular operator-matrices S(x) = [S

�
� (x)] that de�ne the

generators of the equation (8.3) in the form At(x) = (S(x) � 1̂)(U tt(x) 
 1(x)) are
pseudo-isometric, that is, Sy(x)S(x) = Î 
1(x) (pseudo-unitary: Sy(x) = S(x)�1),
and such that

S��(x)
�S��(x) = Î 
 I(x); S�+ (x)� + S�+(x)�S�+(x) + S�+ (x) = 0;

S�� (x)
� + S��(x)

�S�+(x) = 0; S�+(x)
�S��(x) + S

�
� (x) = 0(8.7)

(and S��(x) are unitary, that is, S
�
�(x)

� = S��(x)
�1) for almost all x 2 Xt.

Proof. Suppose that � = �0 t �1 t : : : t �m is a decomposition of the table � =
(��� ) = !n# into the subtables �i = x1i t : : :txnii determined by the points xi 2 Xt

of the atomic tables xi in the chronological decomposition #= x1t : : :txm, so that
t(xi) < t(x1i ) < � � � < t(xnii ) < t(xi+1); t(x0) = 0. Then

K
t(x1)
0 = K

t(x10)
0 � V t(x

2
0)

t(x10)
: : : V

t(x1)

t(x
ni
0 )
; Lt(xi+1)xi = L

t(x1i )
xi � V t(x

2
i )

t(x1i )
: : : V

t(xi+1)
t(xni i)

;

Kt(!) =
X
#�!t

[K
t(x1)
0 � Lt(x2)x1 : : : L

t(xm)
m�1 � Ltxm ](# t �)

= [K
t(z1)
0 � (V t(z1)t(z1)

+ Lt(z2)z1 ) : : : (V tt(zn) + L
t
zn)](!);

where the points z1; : : : ; zn 2 Xt, t(z1) < : : : < t(zn) de�ne the decomposition
! = tzi into atomic tables (6.9). Thus the chronological products (8.6) of the
kernels F tz = Ltz + V tt(z) de�nes a unique solution of the system (8.4), which is a
pseudo-isometric (pseudo-unitary) kernel if and only if the same is true for each
factor Kt(z1)

0 ; F
t(z2)
z1 ; : : : ; F tzn . If, in addition, the kernel Kt(!) is locally bounded
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for each t relative to the quadruple � = (��� ) of positive functions �
�
� (x) locally

integrable in the senseZ
Xt

��+(x)dx <1;
Z
Xt

(��+(x)
2 + ��� (x)

2)r(x)dx <1; ess sup
x2Xt

���(x)

p(x)
<1;

then, in accordance with Theorem 5, the representation (7.2) de�nes the map � :
Kt ! Tt as ?-homomorphism in the �-algebra of q-bounded, q � p+1=r, operators
on G+ satisfying the exponential estimate (7.6). Moreover, Tt is an isometry (a
unitary operator) if the kernel Kt is pseudo-symmetric, that is, K?

t �Kt = I 
 1

(pseudo-unitary, that is, K?

t = K�1
t ), with respect to the kernel product (7.10) of

Chapter I and the pseudo-involution Kt 7! K?
t . For any chronologically ordered

collection ! = (!�� ) this is guaranteed by the corresponding properties of the kernels
K0; V

t
s ; s � t and Fz (for almost all z 2 Xt) by virtue of the representation of

(8.6) in the form of a �nite product of the kernels K0 = K0
0 ; V

t(x1)
0 , and Fz =

F
t(z)
z ; V tt(z); z 2 !; t > t(z). Hence the kernel-matrices F(x) = [F�� (x)], with the
entries

F�� (x) = 0; � > �; F�� (x) = I = F++ (x); F�� (x) = _Fx(x
�
� );

are pseudo-isometric (pseudo-unitary). This implies that the operators T0 = �(K0)
and U ts = �(V ts ) are isometric (unitary) and the triangular matrix S(x) = [�(F

�
� (x))]

(where S�� (x) = 0 if � > � S��(x) = I = S++(x) and S
�
� (x) = �( _F (x�� )) if � 6= +; � 6=

�), de�ning the generator A(x) � At(x)(x) as S(x)� I 
 1(x), is pseudo-isometric
(pseudo-unitary).
By virtue of the uniqueness of the representation T0 = �(K0); U

t
s = �(V ts ), and

S(x) = �(F(x)) up to the ?-ideal described in Section 2 of Chapter I, the resulting
conditions are necessary and su¢ cient for the solution Tt = �(Kt) of the non-
adapted quantum-stochastic equation (8.3), uniquely (up to the ideal mentioned
above) determined by the pseudo-isometric (pseudo-unitary) kernels (8.6), to be
isometric (unitary). Writing the condition SyS = Î 
 1 in terms of the matrix
entries S�� (x); S

y�
�� = S����, we obtain the system (8.7):

[SyS](x) =

241; S�+(x)
�; S�+ (x)

�

0; S��(x)
�; S�� (x)

�

0; 0; 1

35241; S�� (x); S�+ (x)
0; S��(x); S�+(x)
0; 0; 1

35 = I 


241; 0; 0
0; I(x); 0
0; 0; 1

35 :
Thus Theorem 6 is proved. �

Remark 6. Suppose that the evolution family fU tsg is a solution of the non-
stochastic non-adapted equation

(8.8) U ts = Î +

Z
s�t(x)<t

U t(x)s S�+ (x)dx; S < t;

and in the dissipative case S�+ (x) + S�+ (x)
� < 0 this solution is de�ned as an

adapted family of contractions U ts : G ! G; kU tsk � 1. Then the solution of the
di¤erential equation (8.2) can be written in the form of a purely stochastic quantum
multiple integral Tt = �t0(B

t) satisfying (8.3) with T t0 = U t0 and the generators
At(x) = A(x)(U tt(x) 
 1(x)), where

A�+(x) = 0; A
�
+(x) = S�+(x); A

�
� (x) = S�� (x); A

�
�(x) = S��(x)� Î 
 I(x):
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In the case when the operator function S�+ (x) is locally absolutely integrable in the
sense that

R
Xt kS�+ (x)kdx <1 for all t, and if we have

U ts =
1X
n=0

Z
� � �
Z

s<t(x1)<���<t(xn)<t

S�+ (x1) : : : S
�
+ (xn)

nY
i=1

dxi =

Z
X t
s

S�+ (#)d#;

where X t
s = f# 2 X : # � [s; t)g; S�+ (x1; : : : ; xn) = S�+ (x1) : : : S

�
+ (xn), then this

representation can be directly obtained by the integration with respect to !�+ 2 X of
the kernel Kt(!) = [Fz1 : : : Fzn ](!), de�ned for !

t = z1t: : :tzn as the chronological
product of the kernels Fx(!) = F�� (x;!nx�� ) for all ! = (!�� ) if x 2 !�� and Fx(!) =
I 
 1
(!) if x =2 t!�� , which correspond to the representation S�� (x) = �(F�� (x)).

For we write the solution of the equation Tt = Î + it0(T(S� Î)) in the form Tt =
�(Kt), whereKt is the kernel (8.6) withKt

0 = I
 and F tx = Fx independent of t. We
denote by fz1; : : : ; zng the subchain of the chain fx1; : : : xmg of the decomposition
!t = x1 t : : : t xm that corresponds to the elements zi =2 !�+, and we write the
integral of Kt(!) with respect to !

�
+ 2 X in the form of a multiple integral in

#i 2 X t(zi+1)
t(zi)

; i = 0; 1; : : : ; n, where t(z0) = 0; t(zn+1) = t, and zi 2 X ; i = 1; : : : ; n.
Then, in accordance with (7.10) of Chapter I we obtain the kernel chronological
product

Kt(!
�; �; !�) = [V

t(z1)
0 � Fz1 � V

t(z2)
t(z1)

� � �Fzn � V tt(zn)](!
�; �; !�):

Here in the square brackets we have the product of integral kernels Fx(!�; �; !�) =R
Fx

�
! !�
!� �

�
d! and

V ts (!
�; �; !�) =

1X
n=0

Z
� � �
Z

s�t(x1)<���<t(xn)<t

[F�+ (x1) : : : F
�
+ (xn)](!

�; �; !�)
nY
i=1

dxi;

where [F�+ (x)](!
�; �; !�) = F�+

�
x; !�
!�; �

�
; x 2 X. On the other hand, we can

obtain the same result if we integrate the kernel product

Kt(!) = [V
t(z1)
0 � Fz1 � V

t(z2)
t(z1)

� � �FznV tt(zn)](!)

with respect to !�+ 2 X , where the kernels V ts (!) = [Fx1 : : : Fxn ](!) (for Xt
s\!�+ =

x1 t : : : t xn) de�ne the representation U ts = �(V ts ) of the solution of (8.8) for
S�+ (x) = �(F�+ (x)). Putting Fx(!) = I 
 1
(!) for x 2 !�+ \Xt and taking into
account the consistency condition V sr �V ts = V tr , we �nd the solution of (8.2) as the
solution of (8.3) with the generators At(x)�� = �(Lt(x�� )), where

Lt(x�� ;�) = [(Fx � I
) � V tt(x)](� t x�� ) = 0 for (�; �) = (�;+):
This solution can be written in the form of the quantum-stochastic multiple non-
adapted integral (6.7) of Bt(#) = �(Mt(#)), where Mt(#;�) is de�ned in (8.5) by
the kernels Kt

0 = V t0 and L
t
x = (Fx � I
) � V tt(x). The operator-function Bt(#) is

equal to zero if #�+ 6= ;, since the product (8.5) is zero for xi 2 #�+. From this we
can readily obtain the following corollary.

Corollary 3. Suppose that S�� (x) = F�� (x) 
 1̂, where F�+ (x) are closed dissipa-
tive operators such that there exists a consistent family fV ts g of contractions in H
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which allows us to write the solution of (8.8) in the form U ts = V ts 
 1̂. (It is
su¢ cient, for example, to require that F�+ (x) be locally absolutely integrable, that
is,
R
Xt
kF�+ (x)kdx <1 for all t.)

Suppose that the operator-functions

F �+(x) : H! H
Kx; F�� (x) : H
Kx ! H

are locally square integrable in the sense that

kFk(2)t (r) =
�Z

Xt

kF (x)k2r(x)dx
�1=2

<1

and kF �� k
(1)
t;p = ess supx2XtfkF �� (x)k=p(x)g � 1 for some r�1 2 P0 and p 2 P1.

Then the solution Tt = �t0(B), B(#) =M(#)
1̂ of the quantum-stochastic equation
(8.2) is uniquely determined for each t � 0 as a relatively bounded operator Tt =
�(Kt) representing by means of (7.9) the adapted chronological products

(8.9) Kt(!
�; �; !�) = V

t(x1)
0 � F (x1)� V t(x2)t(x1)

� : : :� F (xn)� V tt(xn):

Here fx1; : : : ; xng = (!� t � t !�) \ Xt is the chronologically ordered chain 0 �
t(x1) < � � � < t(xn) < t, x = x�+ if x 2 !�, x = x�� if x 2 �, x = x�� if x 2 !� are
atomic tables (6.9), F (x�� ) = F�� (x) is one of the three functions F

�
+; F

�
� ; F

�
� , and

� denotes the semi-tensor product de�ned recurrently by

K(�)� F (#) = (K(�)
 I
(#�� t #�+))(F (#)
 I
(��� t ���)
where ��� = !�, ��� = �, ��+ = !�,# = x�� ;x

�
�;x

�
+, and F (x

�
+) = V tt(x).

Moreover, the family Tt is adapted, it can be written as the purely quantum-
stochastic integral (6.7) of the Maassen-Meyer kernels

Mt(!
�; �; !�) = V

t(x1)
� � L(x1)� V t(x2)t(x1)

� � � � � L(xn)� V tt(xn);

where !� t � t !� = fx1; : : : ; xng, L(x�� ) = F (x�� ) � I 
 ��� � L�� (x), and the
following estimate holds:

(8.10) kTtkp(r) � exp
�
1
2

Z
Xt

(kL�� (x)k2 + kL�+(x)k2)r(x)dx
	
:

In fact since kV ts k � 1, the kernels (8.9) are bounded:
kKt(!

�; �; !�) � kF �+(!�)ktkF �� (�)k kF�� (!�)kt;
relative to kF (!)kt =

Q
x2!t kF (x)k. To obtain (8.10) we use (7.6), where we put

��+(x) = kL�+(x)k and ��� (x) = kL�� (x)k for x 2 Xt, ���(x) = 0 = ��� (x) for
x 2 Xt, ��+(x) = 0 = ��� (x) for t(x) � t, ���(x) = kF �� (x)k for x 2 Xt, ���(x) = 1
for t(x) � t, and ��+(x) = 0 for all x 2 X, and now the estimate (8.10) corresponds
to kTtk� = 1.

Example 3. We construct the solution of (8.2) corresponding to the pseudo-
unitary operators S(x) = F(x) 
 1̂ with the triangular operators F(x) = eiH(x),
where Hy(x) = H(x) are pseudo-selfadjoint operators with the entries H�

� = 0 for
� = + or � = �, H�

� (x)
� = H�

+(x), and H
�
� (x)

� = H�
� (x). We assume that the

local absolute integrability condition kF�+ k
(1)
t =

R
Xt kF�+ (x)kdx < 1 is satis�ed,

which leads, since F is pseudo-unitary, to

kF �+k
(2)
t =

�Z
Xt

kF �+(x)k2dx
�1=2

<1; kF�� k
(2)
t =

�Z
Xt

kF�� (x)k2dx
�1=2

<1
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and kF �� k
(1)
t = ess supx2Xt kF �� (x)k = 1. We can now de�ne the operators Tt =

�(Kt) as the representations of the chronologically ordered products Kt(!) = F (x1)�
� � � � F (xn) for tni=1xi = !t, where F (x�� ) = F�� (x) are entries in the exponen-
tial matrix expfiH(x)g. We compute these entries by induction �nding the powers
H0 = I; H1 = H,

H2 =

240; H�
� H

�
� ; H�

� H
�
+

0; H�
�H

�
� ; H�

�H
�
+

0; 0; 0

35 ; Hn+2 =

240; H�
� H

�n�1
� ; H�

� H
�n
� H�

+

0; H
�n+2
� ; H

�n�1
� H�

+

0; 0; 0

35 :
As a result we obtain F =

P1
n=0(iH

n=n! as the triangular matrix with

F�� = 0; � > �; F�� = I = F++ ;

F �� = eiH
�
� ; F�+ = H�

� [(e
iH�

� � I�� � iH�
� )=H

�
�H

�
� ]H

�
+ + iH

�
+ ;

F �+ = [(e
iH�

� � I�� )=H�
� ]H

�
+; F�� = H�

� [(e
iH�

� � I�� )=H�
� ]:

Substituting the adjoint operators H�
� ;H

�
+ in the form

H�
� = F �H�

� � iE�; H�
+ = H�

�F + iE;

where the operators E(x) are uniquely determined by the conditions H�
� (x)E(x) = 0,

we can obtain the following canonical decomposition for the operators

L�� (x) = F�� (x)� I 
 ��� I(x)
of the unitary quantum-stochastic evolution Tt:�

L�+ L��
L�+ L��

�
=

�
F �L��F; F �L��
L��F; L��

�
+

�
1
2E

�E; E�

�E; 0

�
+

�
iH; 0
0; 0

�
;

where H = H�
+ � F �H�

�F , L
�
� = expfiH�

�g � I�� . Each of these three tables Li; i =
1; 2; 3, corresponds to a pseudo-unitary matrix Fi = I+Li, these matrices commute,
and we have

Q3
i=1Fi = I+

P3
i=1 Li = F by the orthogonality of Li. The �rst matrix

can be diagonalized by means of the pseudo-unitary transform Fy0F1F0 so that

F0 =

241; F �; �K
0; I; �F
0; 0; 1

35 ; Fy0L1F0 =

240; 0; 0
0; L��; 0
0; 0; 0

35 ;
where K = F �F=2. This de�nes the decomposition of the quantum stochastic evo-
lution into three types:

(1) Poissonian quantum unitary evolution, which is given by the diagonal ma-
trix F corresponding to H�

� = 0 except �; � = 0:

Tt = �(Kt) = FB[0;t); FB[0;t) =: expfi
Z
Xt

H�
� (x)�

�
�(dx)g :

where [FB[0;t)h]({) = F �� (x1)�� � ��F �� (xn)h({) for the chain {t = fx1; : : : ; xng,
t(x1) < � � � < t(xn);

(2) Brownian quantum unitary evolution corresponding to H�
� = 0 = H�

+ and
iH��

+ = E = iH�
� ;

(3) Lebesgue quantum unitary evolution corresponding to H�
� = 0 for all (�; �) 6=

(�;+):

Tt = �(Kt) =

Z
X t

ij{j

 !Y
x2{

H�
+ (x)

!
d{ = �!exp

n
i

Z
Xt

H�
+ (x)dx

o

 1̂;
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where
!Q
x2{

H�
+ (x) = H�

+ (x1) : : :H
�
+ (xn) for { = fx1 < � � � < xng.
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