CHAOTIC STATES AND STOCHASTIC INTEGRATION IN
QUANTUM SYSTEMS

V P BELAVKIN

ABSTRACT. Quantum chaotic states over a noncommutative monoid, a unital-
ization of a noncommutative Ito algebra parametrizing a quantum stochastic
Levy process, are described in terms of their infinitely divisible generating
functionals over the simple monoid-valued fields on an atomless ‘space-time’
set. A canonical decomposition of the logarithmic conditionally posive-definite
generating functional is constructed in a pseudo-Euclidean space, given by a
quadruple defining the monoid triangular operator representation and a cyclic
zero pseudo-norm state in this space.

It is shown that the exponential representation in the corresponding pseudo-
Fock space yields the infinitely-divisible generating functional with respect to
the exponential state vector, and its compression to the Fock space defines
the cyclic infinitly-divisible representation associated with the Fock vacuum
state. The structure of states on an arbitrary Itd algebra is studied with two
canonical examples of quantum Wiener and Poisson states.

A generalized quantum stochastic nonadapted multiple integral is explicitly
defined in Fock scale, its continuity and quantum stochastic differentiability
is proved. A unified non-adapted and functional quantum It6 formula is dis-
covered and established both in weak and strong sense, and the multiplication
formula on the exponential It6 algebra is found for the relatively bounded
kernel-operators in Fock scale. The unitarity and projectivity properties of
nonadapted quantum stochastic linear differential equations are studied, and
their solution is constructed for the locally bounded nonadapted generators in
terms of the chronological products in the underlying kernel algebra canoni-
cally represented by triangular operators in the pseudo-Fock space.
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INTRODUCTION. NON-COMMUTATIVE ITO ALGEBRA

Non-commutative stochastic analysis and calculus appeared in the eighties as
a result of the mathematical justification of the notions of quantum white noise
and the corresponding ‘Langevin equations’ discussed by physicists from the sixties
onwards in connection with stochastic models of quantum optics and radio-physics
[22], [24], [34]. The first rigorous results in quantum stochastic calculus are due to
Hudson and Parthasarathy [34], who in 1983 described a quantum Ito formula for
operator-valued integrals with respect to non-commutative canonical martingales
of creation AT (t), annihilation A_(t), and gage (or vacuum quanta number) N (t).
Represented in the symmetric Fock space I'(K) over K = L?(R ) by noncommuting
operators but commuting with their increments at each ¢, they determine three
linear-independent self-adjoint combinations

(0.1) My=A_+ A", My=i(A_—-A"), Ms=N,

as the ‘classical’ martingales with respect to the vacuum state. Each M; (¢) can be
represented as a real-valued independent-increment classical martingale m; (¢, w;),
however due to mutual noncommutativity [M;, M| # 0,1 # k they cannot be jointly
represented as a vector-valued stochastic process me (w,t) = (m1,m2, m3) (w,t) in
any Kolmogorovian probability space (£, F,P). They are quantum martingales
with respect to the conditional expectations E; : A — A; on an operator algebra
A = A(T) of multiple quantum stochastic integrals X with A; = A(T:) corre-
sponding to the natural filtration {I'; = T'(K;) : t € R4} of the Fock space defined
by the subspaces K; C K of the functions with the support in [0,¢] and the unit
state 1p € NMysoI's of the vacuum state Eq[X]| = (1p | X1p). The triple (T, A, E) is
said to be a ‘quantum probability space’ [2], and in general it consists of a Hilbert
space I', a unital algebra A of operators in I' with involution, Hermitian conjugation
X — X* € A, and the functional of mathematical expectation E : A — C defined
by the scalar product (1 | ) of a unit vector 1 € I" and the vector z = X1. To any
‘classical’ probability space (€2, F, P) there corresponds a canonical ‘quantum’ one
consisting of the Hilbert space I' = L?(Q2) with the scalar product

<f|h>:/f<w>*h<w>P<dw>,

the commutative algebra of bounded ‘diagonal’ operators (X f) (w) = z(w)f(w)
given by multiplications by complex essentially bounded F-measurable random
variables x : 2 — C, and the functional

(0.2) B(X) = [ a()P(ds) = (1] 2).
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defined by the probability vector 1(w) =1 for all w € Q, see for example [32]. The
converse is true only in the case of commutative C*-algebra A when all operators
have a joint spectrum € [20]. This proves considerably greater generality of the
non-commutative probability theory, also covering the purely quantum case which
corresponds to a simple, or irreducible algebra, the algebra A = £ (T") of all linear
continuous operators in a Hilbert space T

Using this analogy, Hudson and Parthasarathy introduced the notion of adapted
operator-valued process as a family {X (¢) : t € R, } of operators in I'(L?(R..)), each
affiliated to the subalgebra A; generated by the canonical operators { M, (s) : s < t}.
Due to the continual tensor-product structure I'y;a = I't @ T% of I'y with Iy =
I'(KY) for the subspaces Ky of square-integrable functions with the support in
[t,t+At) the forward increments AM;(t) = M;(t+At)— M;(t) turn out to commute
with adapted D; (t), which allowed to introduce quantum stochastic integrals X; =
> f(f D; (s)dM;(s) as the limits of integral It6 sums ., D; (t) AM;(t), where
T={t;1 <--- <itn}, Aty =tpy1 — t, — 0 as N — co. Building on this approach,
a quantum evolution was constructed in [26] as a solution of the linear stochastic
differential equation dU; = UtLjdA{ , Up = I, with constant bounded operator-
valued coefficients and non-commutative increments dA{ = dM; (¢), j = 1,2,3,
and dA? = dt (Here and it what follows we employ Einstein summation convention
LiN =37 50 LiN).

The unitarity condition U} = U[1 was studied using the quantum It formula

d(X, X)) = dXX; + X, dX; + dX,dX;,
(03)  dXdX; = Dic’Djdt+ >  Dic¢FDidM; (t) = Diclf DydA],
Jj>1

where c§k € C are the structural coefficients defining the product of quantum-
stochastic differentials dX; = D;dA{ and dX; = D}dAj corresponding to the

Hudson-Parthasarathy (HP) multiplication table
dNdN =dN, dNdAt =dA", dA_dN =dA_, dA_dA* =dt

(other combinations are equal to zero). It follows from this table that c§-0 =0=

c?k for all 7,5,k = 0,1,2,3 corresponding to the completely degenerate adjoint
representation of dAY, with ¢§3 = 0 = ¢3°, (cf)’“)i’k:l’2 = ( —ii _11 > and three

Hermitian 3 x 3-matrices c3* = [ci¥],

1 0 O 1 1 0 0 —-i 0 0 O
= 3 0 0 +i|, &*= 3 0 0 1 |, c*=]100 0],
1 —i 0 +i 1 0 0 0 1

indexed by i, k = 1,2, 3, define the adjoint representations cZ', ced of the martingale
differential algebra dA7 = dM;, j =1,2,3.

It can be directly verified that the three-dimensional subspace a, of complex four-
vectors a, = (0, ), given by the rows ae = (a7, az,a3) € C3, is an associative
x-algebra with respect to the complex conjugation o = (aj, a3, o) as an involution
(not to be mixed up with Hermitian conjugation o = [a}f] defining the adjoint
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column to o) and the composition aef = (ve * e given by the Hermitian 3-vector-
form
Qe * (g 1= (aicﬁkaz, aicFar, aicéka,‘;) = a;c*ay.
Moreover, since four fundamental differentials dA7 form a linear basis of an asso-
ciative algebra, the degenerate semi-positive scalar product
. . *x ik
(e | te) := (1 + i) (1 +ic2)” = aef
satisfies the right x-representation property

(efBe | o) = (e | aef57)

for any 3, € a,. Thanks to this property one can combine the composition and inner
product in ae into a four-dimensional composition in the x-algebra a = C ® a, =
ae + Cd; of the pairs a = (ap, o) with involution a* = (af, @), the Hermitian
sesquilinear composition

ik ik %

axa:= (e oy, aic*ap) =a-a*

and self-adjoint nilpotent element d; = (1,0°) = d} representing the infinitesimal dt.
Here ay = a—1 (a) d; is given by the linear functional I (a) = «aq for a = (ap, ) € a,
and

(ae,a3) = (ae | as) = (ae, a)

is bilinear form defining the associative multiplication
(0.4) a-a” = ({(e, ), ety) = (G, ay) ditaeay

and the left semiscalar product (a | a) = (a}, ae) in a. We call this four-dimensional
*-algebra the Hudson-Parthasarathy quantum It6 algebra (HP-algebra) b (k) of the
"Hilbert" space k = C, or achieved vacuum Itd algebra, reflecting the degeneracy
of the rank one form

{a|a) = (a1 —iag)" (g —iag) =1(a*-a),

corresponding to the purity of the "vacuum state" [ on b (k). Note that the algebra
a = b(C) has no identity but "death" element d; killing any element a € a in
the sense a - d; = 0 = d; - a and normalizing the linear functional [ as [ (d;) = 1.
The functional [ is positive with respect to the multiplication in the usual sense
I (axa) > 0,satisfying x-property [ (a*) = [ (a)*. One can easily see that Cd; is the
ideal of a since d; -a =0 = a - d; such that a, = {a € a: 1 (a) = 0} is identical with
the factor-algebra a/Cd;. Moreover, the two-sided ideal

i={bca:l(b)=1l(a-b)=1(b-¢)=1l(a-b-¢)=0,Va, c€a},

which obviously does not contain d;, is trivial in the Ito algebra (a,l): i = {0}.

We take the above properties as the definition of an (abstract noncommutative)
quantum Ito algebra (a,l), and in this capacity we can consider any associative
involutory algebra a = aq + Cd; with I (a) = a and the trivial ideal i = {0}. As for
ae one can take any x-algebra with semi-positive scalar product (ae | be) = (a¥, be)
given by a bilinear form with the properties

(GebeyCo) = (e, beCe), (b, be) >0 Vb € a,
and factorize it with respect to the ideal

i={bE te:(Ge,be) = (ba,te) = (Ga,beaCe) = (Gaba,Ca) =0, Va, ¢ € as}
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if i # {0}. In this general case one can also write (ae,be) = (a-b), = (a,b) and
implement the x-composition notation a x a = a - a* which should be distinguished
from the associative *-composition

axa:=a*xa—1l(axa)d; = (0,q * ae) = aa*

with the values in a,, representing the composition in the factor-algebra a/Cd;.
Choosing a selfadjoint basis {ej =e;:j=0,1, } of (a,l) in such a way that
I(a) = ap if @ = )" aje;, one can describe every finite-dimensional It6 algebra as
above by the Hermitian structure coefficients

ik _ ( ki\* nj km __ nk_jm 0k _ n _ .10
(0.5) A= (), gldm =R, P =0=c,

defining a multiplication table dA{dA¥ = c;'-de'tj of basis quantum stochastic dif-
ferentials with dA? = dt.

Note that for the Abelian Ito algebras all structure matrices c3* are real and
symmetric with strictly positive-definite ¢3°®, as it is always so in the case of one-
dimensional a, . For example, the standard Poisson calculus given by 1t6 multipli-
cation rule

dmtdmt = \dt + dmt

for the compensated Poisson increments of the intensity A is associated with one-
dimensional algebra aq ~ C of

(e ~ O, Gy ~ A, (g * (g ~ \a|2, (ae | ae) = /\|oz\2

containing the unit 1 € a, such that dm; = dm} can be identified with the real
two-vector e = (0,1) in a = a, + Cdy and (dmy)* with e xe = e = (X, 1). The
standard Wiener calculus

dwtdwt = dt, dwtdt = dtdt = dtdwt =0

is also associated with one-dimensional but nilpotent algebra a, ~ C, aq * ae ~ 0
without unit such that dw; = dwy is identified with the element e = (0,1) = e*
of second order nilpotent algebra a = a, + Cd; with respect to the multiplication
¢ = (1,0) = d; defined by the semi-scalar product (a | a) = || for a = (ap, @).

It is well known [31] that the Poisson calculus, as well as the Wiener one, can
be realized as a sub-calculus of the quantum stochastic calculus in the Fock space
with respect to the vacuum state 1y putting, for example,

wy=A (t)+ AT (), my=VAA_(t) + VIAT (t) + N (1).

A natural question arises as to whether we can realize in this way any (non-
commutative) calculus corresponding to an (abstract quantum) It6 algebra (a,l) as
defined above. To be more precise, the question concerns a non-commutative calcu-
lus of stochastic integrals with respect to operator representations of the processes
Ay (a) = a;A] with given expectations E [A; (a)] = apt, with independent incre-
ments dA; (a) = Aiyae (@) — Ay (a),a € a, and realizing the multiplication table
dALdAF = 2oi>0 ciFdA]:

(0.6) dA; (a) dA (a*) = aictfajdA] = dA; (axa).

We shall give a positive answer to this question, reducing it to the construction of
a canonical dilation of infinitely divisible generating functions

(0.7) ¢y (b) = Efm (b)] = exp {tl (0)},
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defined by vacuum expectation of adapted quantum stochastic ‘exponential’ oper-
ators 7y (u+ a) =: exp [A; (a)] : which represent an Ito *-monoid b in Fock space
as a unitalization b = u 4 a of It6 algebra a with [ trivially extended on the unit
u = u* by [(u) = 0. These exponential representations, satisfying the operator
*-multiplicativity condition

7 (u+a)m (u+a)" = (u+ aka)
with respect to the new associative composition
aka:=a+a " +axa=bxb—u

in a, can be obtained as the solutions of the logarithmic quantum stochastic differ-
ential equations

(0.8) dre (0) = e (B)dAy (b—w),  mo(b) =1

with @ = b — u € a. Note that one can always identify the It6 monoid b with the
algebra a by taking w = 0 and defining the x-monoidal operation as bx b = a¥ka
such that : exp [A; (a¥ka)] := 7 (aka).

In Chapter I we define such functions as solutions ¢, (b) = exp {¢tl (b)} of the
equation

dgy (b) = ¢, (b) L (D) dt, g (b) =1

obtained by the averaging E of (0.8), taking into account the independence of the
increments dA (¢, a) and 7 (b), and that I (b) =1 (a).

Application of the Itd formula

d (7'(',5 (b) Wt(b)*) dﬂ't (b) dTl't (b)* + dﬂ't (b) T (b)* + (b) dﬂ't (b)*
7y () ¢ (b)" dA¢(a* + a-a* + a) = 7 (b) ¢ (b)" dA; (adka)

gives the multiplication rule 7 (b)" 7 (b) = 7 (b*b). Hence we have positive def-
initeness ), . Aa¢; (akc) A; > 0 and normalization ¢, (0) = 1 of ¢, defined on
b = a as the monoid for each ¢ with respect to this new *-semigroup composition
% and unit w = 0. This results from positivity E [X*X] > 0 and normalization
E[I] = 1 of the vacuum (and any) expectation on the operator algebra generated
by linear combinations X = > Ay (b). Any such function ¢, that is included into
a continuous one-parameter semigroup {¢, : r € Ry},

¢r (a) (bs (CL) = ¢r+s (a') ’ ¢0 (CI,) =1

of generating functionals on It6 x-algebra a as the monoid b is called infinitely
divisible law [16].

In Chapter 2 we fulfil the Itd6 programme for quantum stochastic calculus in
a dimension-free form, proving continuity of quantum stochastic integrals in Fock
scales and constructing a noncommutative theory of multiple adapted and non-
adapted quantum stochastic integrals which give solutions to linear quantum sto-
chastic differential equations in the Wick form of time-ordered exponentials. We
shall use the approach based upon explicit definition of these integrals in Fock rep-
resentation, which allows to extend them to nonadapted operator-functions. We
will also obtain a functional quantum It6 formula for a quantum stochastic "curve"
X with adapted, or even nonadapted operator values X; € A, having noncommut-
ing quantum stochastic increments D = (D;) with values in the tensor product
A =A® a of an operator algebra A with the It6 algebra a. For a ‘nice’ function f
the adapted Ito formula with respect to a filtration (A;),., generated by an initial
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algebra Ao and (A?),., can be written for D; € A; in the Pseudo-Poisson form
[18] as

(0.9) df (Xe) = (f(Xe+Dy) = f (Xt))j dA{'

Here X and D are canonical images X & O and O & D of X; € A; and D €
A ® a = A, in the formal sums X + D := X & D as the elements of the algebra

B, =A,®b=A4,®A,; equipped with the involution (X @ D)Jr = X*® D* and the
product

(0.10) (X+D)(X+D)' = XX* ¢ (XD*+DX*+D-D*),

where XD* = (XD;), DX* = (D;X*) and D - D* = (Dic;-kDZ). Since f (X) =
f(X) ® O, the whole problem is reduced to computing the operator function
f (X + D) using the product in B;. Thus, in the case f(X) = X™, where

m m _ (m)
(X+D)™ —X™), = Df

with DI” =0, and

Note that in the nonstochastic case this new formula also gives an interesting
difference form of the non-commutative chain rule df (X;) = B.d¢ for a smooth
curve X; in an initial algebra Ay with non-commuting derivative D; € Ag. In this
case the algebra a, is zero-dimensional, a = Cd;, and Ay = Ay ® d; is nilpotent

algebra of first order, A - A* = 0, coinciding as the linear space with .4y such that
(X+D)(X+D)" =XX*@ (XD*+DX*).

In particular, for any polynomial, f (X) = X™ say, one immediately obtains
AX]" = (X + D)™ =X dt = Y X" "D X[ Hdt
n=1
as a particular case of (0.9). Here X = (X,0), D = (0, D) and we took into account
that

m m

(X_ + D)Tn —xXm 4 Z an—annfl — (Xm, Z Xm_nDXn_1> ,
n=1 n=1

since DX"D = 0 for dAYdA? = 0 corresponding to dA® = dt.

In the nonadapted case the formula (0.9) also remains valid, with X; = X; &
VX, given by quantum stochastic derivatives VX, = (v;,;X:) € A = AR q,
the noncommutative analog of Malliavin derivative with respect to the canonical
integrators Ay = (A{ ) As to author’s knowledge, this general formula is not known
even in the classical (commutative) case.

The author expresses his gratitude to R.L. Hudson, Ya.G. Sinai, and A.S. Kholevo
for discussion on the article and helpful remarks.

Part 1. Infinitely divisible positive-definite functions and their
representations
1. INTRODUCTION

In this paper we study two types of representations associated with a positive
infinitely divisible state on an arbitrary x-semigroup b [6] with a unit v € b. The
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first, ‘differential’ type, is connected with an indefinite metric space representation
of conditionally positive functions b — C in pseudo-Euclidean Minkowski space con-
structed in [14]. In the case when b is a group, this representation was obtained by
simple generalization [50] of the Gelfand-Naimark-Segal (GNS) construction from
positive definite to conditionally positive definite functions on b. However our main
interest will be the case when b is obtained by a unitalization of a noncommutative
Ito6 algebra a as a parametrizing algebra for the quantum stochastic differentials of
a quantum Levy process as operator-valued processes with independent increments
in a quite general noncommutative sense.

In our construction the Hilbert space of the GNS representation is replaced by a
pseudo-Hilbert (Minkowski) space which can be decomposed into a direct integral
sum of a pre-Hilbert space and a one-dimensional complex space in accordance
with the fact that the conditional positiveness (2.5) has co-dimension one. In the
first section we show that this representation can be realized by block-triangular
matrices of the form

1 b 8 1 b B
(1.1) B=|0 B b |, B'=|0 B* bv*
00 1 00 1

with pseudo-Hermitian conjugation (kBT | k) = (k | kB) defined by the indefinite
scalar product

(1.2) (k| k) =kK, + (ko | k)) + Kk,

on the rows k = (k_,ko,k4), where ky € C 3 k_ and k, is a vector-row from

a complex Euclidean space K. The algebra of the triangular matrices A =B — 1
realizes the non-matrix multiplication table

(1.3) oci ai \ [« a” _ atay ajA
a”* A* ay A A*ay A*A

in terms of the 2 x 2 block-matrices (which are not matrices but tables)

[ a a” « [ o a}
(%) (5 %)

defining the stochastic Ito differentials in the Hudson and Parthasarathy [26], [29]
quantum calculus. Here a= = b7, ay = by, A = B — 1, a = [, with involution
A" = B' — I defined in (1.1) by the usual Hermitian conjugation A* of the tables
A in terms of A* = B* — I in K, where [ is the unit operator in /.

This observation, which lays the foundation of a new formulation [7], [9] of quan-
tum stochastic calculus, allows us to extend it to arbitrary algebras with infinitely
divisible state ¢. We mention two particular algebras of classical stochastic differ-
entials in the case of one-dimensional IC = C:

(1) the Wiener case: A =0,a” =a%, a €C,
(2) the Poisson case: A #0,a” =a} =0 = qa.

If we consider A as the coefficient A? at the standard Poisson differential dn =
dAZ, a= = a’ as the coefficient A7 = A" at the Wiener standard differential
dw = dA° +dA], and o as the coefficient A7 at dt = dAT, then in both cases we
obtain the realization of the classical It6 formula for stochastic differential da =
> ALdAL = (A, dA) in the form

d(z*z) = z"dz + da*z + do*de = (2*A + Afz + ATA, dA)
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of difference multiplication Y'Y — z*2I =2*A + Afx + ATA of the triangular
matrices Y = 2I + A, YT = 2*I + AT, where I is the unit 3 x 3 matrix and ATA
is defined by the multiplication table (1.3).

In the second section we construct a second ‘integral’ type of representation of
an infinitely divisible chaotic state on b by means of exponential indefinite metric
representation and we establish its relation with the calculus of Maassen-Meyer ker-
nels [35], [38], [40], which define chaotic distribution of quantum random variables
and processes.

The algebra of these kernels turns out to be isomorphic to the group algebra of
the exponential representation of b in a pseudo-Fock space, and its Fock projection
defines an associated infinitely divisible representation of b generating the corre-
sponding quantum stochastic calculus in an appropriate Hilbert scale [15]. We note
that this leads in a natural way to the Araki-Woods construction [4] associated
with an infinitely divisible state in the case when b is a group.

Finally, in the third section, we study the structure and consider examples of
pseudo-Poisson chaotic states characterized by the linearity of conditionally positive
functions [ (b) = In f (b) on a x-algebra b. To this type belong the quantum Wiener
states of Heisenberg commutation relations, as well as quantum Poisson states on
noncommutative C*-algebras b, studied in [10]. Unitary representations connected
with infinite divisibility of states and their applications to the quantum probability
theory were studied in [23], [27], [28], [43], [49] on groups and in [46] on bi-algebras.

2. REPRESENTATIONS OF CONDITIONALLY POSITIVE FUNCTIONALS ON
*-SEMIGROUPS

Let (X, 3, 1) be a measurable space X with a o-algebra § and a positive o-finite
atomless measure fi: § 3 A — pa, pg, = dz :=du(z) , and let b be a semigroup
with involution

b—b*, (b-c)*=c"-b",
and with neutral element (unit) u =u*, u-b=0b="0-u for any b € b. Typically b
will be the unitalization « 4 a of a noncommutative Itd x-algebra a, in which case

(u+a) - (u+c)=u+a+c+a-c=utaec

such that the momoidal product should be identified with aec=a+c+a-cif u
is identified with zero, or simply write b- ¢ = bc if a is realized as a x-subalgebra
of a unital x-algebra with u = 1. However in what follows one can take any group
with u = 1 and b* = b~! as b, or any *-submonoid of an operator algebra B, a unit
ball of a unital C*-algebra say, or even a submonoid of an idempotent algebra with
trivial involution b* = b, e.g. a filter b of a Boolean algebra B.

Denote m the monoid of integrable step-maps g : X — b, that is b-valued
functions x — g(z) having countable images g(X) = {g(z) : z € X} C b, [¢(X)| <
oo and integrable co-images A(b) = {z € X : g(x) = b} € § in the sense pp ;) < 00
for all b € b except b = u. We define on m an inductive structure of a *-monoid
with pointwise defined operations ¢g*(z) = g(z)*, (g - h)(z) = g(x) - h(z) and unit
e(z) = u for all x € X, considering m as the union Uma of subsemigroups ma of
functions g : X — b having integrable supports

A =suppg = {z € X : g(z) # u}
ina A € § withp, < oo.
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It is convenient to describe the %x-monoid b by means of a single Hermitian
operation a x ¢ = a - ¢* satisfying the relations

bxu=0b, u*x(uxb)=>b Vbeb
defining u = u* as right unit for the composition x, b* as u x b, and
ux((axc)xb) =bx((uxc)*a)

corresponding to (a - ¢*)* = (a%c)* = cxa = c-a* and associativity of the semigroup
operation a - b. This allows one to define both the product and involution in a *-
monoid m by a single Hermitian binary operation fxh = g, g(z) = f(x)*h(z) with
left unit e € m which recovers the involution by g*(z) = e x g and the associative
product by g-h = g« (ex h) for all g, h € m.

Following [6] we say that a generating state functional over the monoid m, or
briefly a state over m, is a mapping ¢ : m — C satisfying the condition ¢(e) = 1
and positive definiteness

(2.1) Z Kkfd(fxh)kj, >0, Vrg € C:|suppk| < oo,
fyheEm

where | - | denotes the cardinality of the set suppx = {g € m : k4 # 0}.

Wewe introduce on m a commutative and associative partial operation f U h :=
f + h for any functions f,h € m with disjoint supports supp f Nsupph = (). Thus
defined map ma X mar — ma LI mas for any measurable disjoint A, A’ € F is
obviously lifted to the tensor product Cma ® Cma, of the enveloping semigroup
algebras of the x-monoids ma and ma/. The operation U is well defined even for an
infinite countable family {g,,} € m with mutually disjoint supports A,, = supp g,, by
Ugn(x) = gm(z) for all x € supp g,, and any m, otherwise Ug,, (z) = uif z ¢ > A,,.
Any function g € m can be written as Ug,, in terms of the b,,-valued indicators g,, of
its non-unit images b,, € g (X), b, # u with respect to the partition suppg = > A,
into the co-images A,, = A (by,).

We call a state ¢ over m chaotic if

n=1 n=1
where 177, ¢(gn) = imy_.o0 HnN:1 ¢(gn) for any functions g, € m with pairwise
disjoint supports: supp g, N supp gm = @ for all n # m. This condition is fulfilled
for ¢ of the exponential form ¢(g) = e*9) with

(2.2) Ag) = / U@, g)de, Uz,g) = L(g(x)),

which corresponds to absolute continuity (for all A € § we have iy = 0= Aa(b) =
1) of the o-additive measure Aa(b) := A (ba) for each b € b, where ba(x) = b for all
x € A and ba(z) = u for z ¢ A is the b-indicator of the subset A C X with b # u
as an elementary b-valued function ba € m.

The function ¢, : b — C given by

(23 ba(b) = exp { / u(b)dx} — 5(ba),

defines an infinitely divisible state over the monoid b in the sense of the equality
A (D) =[] ¢a,(b) in the limit of any integral sum sequence given by the decompo-
sition A = XA, pa, \, 0, where ¢ (b) — 1 for any b € b. If the Radon-Nikodym
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derivative I, (b) = dA (b) /dz of the absolutely continuous measure dA (b) = Ay, (b)
does not dependent on z, functions ¢, (b) = e!®#a = ¢*a (b) are forming a con-
tinuous Abelian semigroup

{¢' :teRT}), °()=1, [¢7-9°](b) =¢"""(b)

with respect to the pointwise multiplication of ¢' = e**(®), Necessary and sufficient
conditions for the function (2.2) corresponding to the infinitely divisible state (2.3)
are given by the following theorem, where we assume that X admits a net of
decompositions of the Vitali system in which ux \, 0, z € A, as A\ {z}.

Theorem 1. In our notation the following conditions are equivalent:
(i) The function ¢ (b) defined for any set A € § of finite measure py < 00
as ¢ (ba) by a functional ¢ : m — C on the b-indicator ba is a generating
function of an infinitely divisible state over b such that for any b € b it is

absolutely continuos multiplicative measure in the sense pp =0 = ¢ (b) =
1 for all A € §, b € b with the limit

(2.4) Lo (b) = Alir?w} i (¢A( )—1)

existing almost everywhere in the Lebesgue-Vitali sense [47].

(ii) ¢(g) = exp{A(g)}, where A(g) = Aa (b) for g = ba is an absolutely con-
tinuous complex measure of A € §, and for any integrable set A C X the
function b — Aa (D) is conditionally positive definite

(2.5) Z KaAa(a*c)k: > 0, Vi @ [suppk| < oo, Z/{b =0,

a,ceb beb

where Aa(u) =0 and Aa(b*) = Aa(b)* for any b € b.
(iii) There exists:

1) an integral *-functional X (g) := [I(z,g)dx with complex density [ :
m — LY(X) such that l(g)* = (g ) and whose values l(x,g) = 0 for
all g(x) = uw and l(x,bp) = 1,(b) with x € A are independent of A;
2) a vector map k : g f k(z,g)dx to the subspace K C f@ K.dz of
square integrable functions k : x — k(z) € Ky, |k|* = [ k(z)]]2dz < oo
with respect to scalar products (k, | k.,) = kik! in the pre-Hilbert spaces K,
with values k(z,ba) = k(b)) € Ky independent of A 5 x and k(z,ba) =0
if © ¢ A such that k(z,g) = 0 if g(x) = u; the map k, together with the
adjoint functions k* (z,g) = k(x,g9*)" as the linear functionals k* (g) =
f® k*(z, g)dx € K*, satisfies the condition

(2.6) K*(g)k(h) = A(g-h) = A(g) = A(h), Vg,hem;
3) a unital x-representation j : g v fEBj(:c,g)dsc =G, j5(9)" =79
j(m,g)j(%h)zj(&g-h), j(l‘7g):IxV;Ij:g(£L'):U

of a x-semiring m in the x-algebra of decomposable operators G : K 3>
k — f$j(w,g)k($)dm with j(x,ba) = j.(b) independent of A > z and
Jjlx,ba) = I, if x ¢ A, which satisfy the cocycle property

(2.7) j(g9k(h) =k(g9-h)—k(g), kK (9)j(h)=k"(g-h)—-k"(h), Vg,hem
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and are continuous in K with respect to the poly-norm

(25) ) = ( [ it pr@? dx)w, fem

(iv) For almost all x € X there exists a pseudo-Hilbert space K., a unital {-
representation

Jx(b : C) = .]x(xa b)Jx($7 C)a Jac(xa b*) ij($, b)T’ Jx(u) =1
of b in the algebra of linear operators L(K,) = {L: K, — K, : LIK,C K.},
where LT is pseudo-Hermitian conjugation (k | L'k) = (Lk | k), k € K,,
and a vector e, € K, of zero pseudo-norm (e | e;) = 0 such that the
function

(2.9) lo(b) = (€2 | ja(b")ex) = (ju(bes | €2)

is integrable for each b € b on any A C X with pa < oo and [, ly(b)dz =
In g (b). Moreover, each K, can be chosen in the complex Minkowski form
K, =Co K, dC = K, with e, € K, given as pseudo-adjoint e, =
el = e to the row e, = (1,0,0) = e. of the dual space KI, = K. of triples
k. = (k_, ko, ky) with the canonical pairing (k.,h’), = k.h* = k.h' and an
antilinear embedding k — k' of k = k' € K, into K. such that k* = k% €
C, k° =k} € K2, defining the Minkowski scalar product

(2.10) (k| k), = k" ky + (k| k), + Kk = (kT k)

on IC;, in terms of the Euclidean scalar product kok° = (k | k), for ko = k*
and k° =k € K. The representation j, is chosen then in the triangular
form

1 jo (z,0) ji(x,b)
j:(l‘,b)z 0 (7b) Ji(xub) 7j:(x=b*):

35 (2, 0)" gy (w, b)”
x Js
0 0 1

(z,0)" jo (z,0)" |,
0 1

O O =

defining its dual action j, (b*)Jr on IC. as right multiplication by this operator-
matriz j.(x,b):

J(b) : (k’,,k’o,k+) = (k77 k*jo_(b) + kojg(b)a k—ﬂ@ + koji(b) + k+) = k](b)

The Hermitian conjugation LT = gL*g of the block-matriz operators L =
[LE] with respect to the indefinite form (2.10) is given by the metric ten-
sor g = [0" ] corresponding to the inversion —(—,0,+) = (4,0, —) of the
ordered set {— < o < +} of the indices p,v = —, 0, +.

Proof. We first establish the simple implications (iv) = (iii) = (ii) = (i), and then
we prove (1) = (iv) constructing, similarly to the Gelfand-Naimark-Segal construc-
tion, a concrete pseudo-Euclidean representation of the logarithmic derivative of
the generating functional ¢ of infinitely divisible state over b with respect to Aa.
(iv) = (iii). If e, = (1,e,5)1 = e, is a zero pseudo-norm vector-column with
the components e; = e¥ € C, €3 = e* € K and e = 1 such that |le,||* = 2Rez,,
defining (2 9) in the triangular matrix representation as I, (b) = e”j (x,b)e,,, where
e” =1, e = ey, €} = g,, then we can take A(g) = [ (x,g)dx, where l(m g) =
Il (g (2)) has obviously properties

L(x,g) = elji(z,9)Te, = L(x,9)",
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and I(x,ba) = €75 (x,b)e,, does not depend on A if z € A, otherwise
I(z,ba) = €75 (z,u)e, = e’e, = |lea||” — 2Ree, = 0.
We denote by K, the completion of the pre-Hilbert space K by the Cauchy
‘kets’ k with respect to the poly-norm
1Kl = {l[kll% = [l75(z, a)k]|, a € b}

as fundamental sequences {kg } in X2 which do not have limits in K9 simultaneously
with respect to all seminorms ||k°[|%, a € b. For each g € m let k (¢g) denote the
vector function

o

k(z,9) = (4o (2,9) — Deg + 55 (z,9) = Gz, g)ef — €3
with values k(z, g) € K., with the adjoint ‘bras’ k*(z, g) = e}.j¢'(z, g*) € K, where

e, = el and for short we use the notation j£ (z,g) = j/ (x,g (x)). This function

is square integrable since

k(9)"k(9) = A(g"-9) = Alg) = A(g") = [k (9)]* < o0
due to the condition (2.6) which is verified straightforward,

W@WW—/hm@w—M@@M%—QM
/N%W+eb§g Jmmxm—ﬂ@ﬁwﬂ@%

e [ (9)e” — 3" (g9)e™ — & g)]
- [euy( ) —e_j, (h) — e} (h)] (= ) ) dx

=/%ﬂ@y@%—%ﬂ@@%—%ﬂ@w%®
— Mg k)~ Ag) — A(h)

for any g,h € m, where e}jL(z,g)el l(z,9), [l(z,g)dz < oo, and we have
employed the condition ej el = 0.

Let the subspace K C H K. be chosen as also the completion of the linear hull
of square-integrable functions {k (g) : ¢ € m} with respect to all seminorms | k" =
([ 11§ (z, h)k(x)||2dz)'/2, h € m given by operator-functions j (z,h) = j¢(x, h). For
any g € m we denote by G = [ @ j(z,g)dz a linear decomposable operator in
K=/ @ K,dz with G* defined pointwise as

(G"K)(z) = jo (2, 9(2)") k(z) = G(z)"k(z), keK.

This definition is correct since for almost all x € X and all g,h € m we have
jlg - h) = j(g)j(h) pointwise, and any sequence of functions {k,}, k,(z) € K,
fundamental with respect to all seminorms ||-||/ is mapped by the operator j(g) into
a sequence {k9}, kd(z) = j(x, g)kn(x) € K, with the same fundamental property:

g, = k517 = 117()7(9) (k= k)| = [k = k|79 — 0.

This yields a decomposable non-degenerate representation Gk = | ® G(2)k(z)dz of
the x-semiring m in the poly-Hilbert space K:

e—1I=jle), frh—FH", F=j(f), H=jh)
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This representation is closed in the sense of the completeness of K with respect to
simultaneous convergence in all seminorms ||k||f = ||Fk||, f € m (which is equiva-
lent to the convergence in the Hilbert norm ||k|| only in the case when the operator
function G(xz) = j(z,g) is essentially bounded for every g € m, in which case
K = f@ K, dz is called Hilbert integral). The map m > g — k(g) we have con-
structed, as well as k*, is an additive cocycle in the sense (2.7) since the derivation
property

k(g-h)=julg-he" —e* = jui(g)iy(h)e” —e°

= Jo(9)iv(h)e” + 5 (g) — e = i(g)k (k) + k(9)
with respect to the representation j(g)k (k) = jS(g)k (h) of the monoid in K and
the trivial representation 1(h) =1 of m in C.

(iii) = (ii). It is obvious that the absolutely continuous measure Aa(b) =
Jal(z,b)dz defined by the functional A(g) = [efjl(x,g)eldx satisfies the con-
ditions )\A(b*) = Aa(b)* and Aa(u) = 0, since the functional I(x,b) satisfies these
conditions almost everywhere on X. The conditional positivity (2.5) follows from
the positive definiteness [k (f)* k (h)] > 0 of the scalar product k*k’ = (k | k) which
guarantees the conditional positivity of the form A (g):

S okp(frhirn = > kA (Fxh) +A(F) +A(h)k;

f,hem fh€Em
= > mAFR) ELE D Ep D MR R Y kA Y s
fh€Em fEmM hem fEmM hem
= Y wp(k () [k (h*))kn >0
fihem

for any function k = {k,} with finite support and satisfying >k, = 0.

(ii) = (i). If the function Aa(b) is a (complex) absolutely continuous measure,
then ¢ (b) = exp{Aa(b)} has the property ¢ x,(b) = [[@a,(b) of infinite divisi-
bility. Moreover the limit (2.4) exists, and by virtue of ¢ (b) — 1 as A | {z} it
coincides with the Radon-Nikodym derivative I,(b) = dIn¢(b)/dx as the limit of
the quotient Aa(b)/pa over a net of subsets A 5 x of the system of Vitali decom-
positions of the measurable space X. For any integrable A the function b +— ¢ (b)
is positive in the sense of (2.1). Indeed, for any complex function b — k; with finite
support we have due to (2.5)

D ka(Aalaxc) = Aala) = Aa(e))rs = ka(k* (an)k(ch))rs > 0

a,ceb
since (k* (aa)k(cA)) = D, cco Karala* k™ with k) = Ky, b # u, and &, =
Ku = D pep Kb 1S a positive—deﬁmte kernel in a and c as ), ky = 0, and we have

taken into account the fact that Aa(u) = 0. Since the exponent of any positive-
definite kernel is a positive definite kernel, we have for any A

S mrespalaxlre= 3 A% exp{{K* (aa)k(A) Ik > 0,

a,ceb a,ceb

where k% = kpexp{Aa(b)} and we have taken into account (2.6) and Aa(b*) =
Aa(b)*.

(i) = (iv). Since ¢, is an infinitely divisible state on b and ¢, (b) — 1 for all
b as iy — 0, the limit I, (b) is defined as the logarithmic derivative u7) In ¢q, (b)
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of the measure Aa(b) = In @A (b) in the Radon-Nikodym sense. Consequently, the
function = +— [,(b) is integrable and almost everywhere satisfies the conditions
lo(axc)* =lz(cxa), l,(u) =0 and

an =0 = (K | K)p = Z Kalz(a* )kl >0

beb a,ceb

for all k such that |suppk| < oo, which can easily be verified directly for the
difference derivative Ia(b) = (¢pa(b) — 1)/pa and next we can pass to the limit
A | {z}. In addition [, l;(b)dz =1n ¢ (b) by absolute continuity.

We consider the space B of complex functions & = (kp),c, on b with finite
supports {b € b : Kk, # 0} as a unital x-algebra with respect to the product &’ - k
defined as k' x k* by the Hermitian convolution

K %K)y = KlKS,  SuxK=K', K*x0,=K.
a’ “c
axc=b
with right identity J,. Here §, = (da)
*-representation

a +— d, of the monoid b in B,

6(1*50:6(1*67 6u*5b :5177 6b*6u :617*7

beb is the Kronecker delta and it defines a

with respect to the involution x* = (j.),c,. The linear subspace % C B of
distributions « such that the sum x_ := ), kpequals zero, is a x-ideal since
S =Y X e = Y, Yok =0
beb beb axc=b ach ceb

Let us equip B for every x € X with the Hermitian form (k' | k), of the
kernel [, (a+ ¢) which is positive on A and can be written in terms of the kernel
(60,000 = lp(axc) —ly(a) — l(c*) as

(K| K)o = KK + (K, 5*), + K KE,

where k4 1= >, kply (b). We notice that the Hermitian form

(K™ | k¥)s = Z Ky (8ay0c)o ks = (K, KY),
a.ceb
coinciding

is non-negative if k_ =0 or k. =0 as (k, K*). = > kg (64, 00)0 k5 >0,
| k), has right

with (k" | K)z. Since (' | K)z = Y, (K %K), l5 (b), the form (k" |
associativity property

(K k| K)e=(|k*K)s = (K| K K )z,
for all k,x’ € B, and therefore its kernel R, = {k: (k' | k), = 0 VK'} is the right
ideal

R, ={€B:(k K|K)=0,Vk € B}
belonging to 2. We factorize B by this right putting x ~ 0 if Kk € R} =
{k* : k € R, } and denoting the equivalence classes of the left factor-space K, =
B/R; as the ket-vectors |k) = {k' : & — k* € R:}. The condition k € R, means
in particular that £, := (. | k) = 0, and therefore

(k| 8)e =Y Kalla:63)ars = (K° | K°), =0,

a,ceb
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where k° = (k}),., denotes an element of 2 obtained as xj = rj for all b # u and
KO = Kl — Y pep fn such that (k° | k%), = (k,k*),. Therefore it follows also that

u
kT =" K} is also zero for any k € R, since

0= (k| K)y =K K + (K, k"), + K k" =" =rT

for any x’ € B with £/, = 1 by virtue of k% = k= = 0 and also due to the Schwartz
inequality (' | k) = (k/,k*)° = 0. This allows us to represent the left equivalence
classes |k), by the columns k= [k*] with kT = kT and k° = |x°) in the Euclidean
component K2 C K as the subspace of the left equivalence classes |k°) = |ko)
of the elements ko, = (K — 5u7b“*)beb € 2A such that k¥ = k°. These columns
are pseudo-adjoint to the rows k. = (k_, ko, k) as the right equivalence classes
(k :== |k)T € B/R, with ky = ky and k, = (ko defining the indefinite product
(2.10) in terms of the canonical pairing

kb =k k™ + (ko k°) + kykt = (k| KT),

where k° = kX € K2, kT = k% € C with respect to the Euclidean scalar product
(ko, k°) = (k% | k°) of the Euclidean space K2 = {k° = |k°) : ko € 2}, and

/<a+fZl VKb =K, *_:ZI{ZZI{JF.
beb beb
We notice that the representation d. : b 3 b +— §, is Hermitian:
(k-0p| K) = Zl (k- 0p*xK)p= (K| K- 0p),
beb

and that it is well defined as right representation on B /9R, (or left representation
on B/R}) since k- §p € R if k € Ry

(kk)=0,VheB = (k-0 | k)= (k]| Kr*dp) =0, Vk € B.

This allows us to define for each b € b an operator (xk j(b) = (k- dp such that
j(v*) = j(b)T with the componentwise action

(K+0p)- =kK_, (K-0p)o =K_(0p — 0y) + Ko - O,
(k- 00)4 = Kl(b) + (Ko | Opr — ) + Ry,

given as the right multiplications k +— kB, k — kBT of the triangular matrices

1 js(b) ji(b) L3 gy @)
B=|0 j3(b) j30)| =4(0), 5 @®)=]0 jb) job)* | =B
0 0 1 0 0 1

by the rows k = (k_,ko,k.) € K. (or as the left multiplications Bk, Bk by
columns k € K;). Here

Jy(@,0) = 1a(b), (Kojs(2,b) = (Ko 0y = (Koja (),
3L b)) = 05)e =ka (b) = k5 (b)" = (51" = jo (2,0)7,
where 67), = |0, — d,) and B* = B3, is pseudo-Euclidean conjugation of the

triangular matrix B = [B¥] corresponding to the map k — k' into the adjoint
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columns k = [k*] with the components k* = k¥ given by the pseudo-metric
tensor g"” = 6", = g,

b= by b1 Jo oo 1] ez b; by]" o o 1] [orr 6ot byt
0 b b =10 1 0|0 b B| |01 0l=|0 b b
0 0 bT 1 00/[0 0 b [t 00 0 0 br*

Thus we can write the constructed canonical f-representation j(b) = [j#(b)] of the
monoid b in the pseudo-Euclidean space K, = K, of columns k = [k*] in terms of
the usual matrix multiplication

[1 k(b)) 1®)] [1 k*(c) I(c)

0 (b)) k®)| |0 jlc) k()

o 0o 1]lo o 1

1 k*(c) +k*(0)j(c), I(c) +k*(b)k(c) +1(b)
= |0 3(b)j(c), 7(b)k(c) +k(b)

0 0 1

This realizes a conditionally positive function I(b) as the value of the vector form
(2.9) on the column e = [¢'}] = €' as adjoint to row e = (1,0, 0) of zero pseudonorm
efe = ¢, et =0 for each z as

efj(ble = e jl (b)e” = ji (b) = U(b).
The proof is complete. O

Remark 1. Any indefinite-metric representation (€', 7', ¢) of a conditionally pos-
itive function l, written in the form I(b) = e, jt(b)e” with respect to a triangular
*-representation j. = [j%] of b in a pseudo-Hilbert space & = CHE® DT with (2.10)
and a zero-vector e’ = (e_, o, e4)' normalized as e_ =1, ||es||> = —2Ree,. can be
reduced to the canonical form (K,j,e) corresponding to

Jy =1l jS =k jT =k jo=1
with respect to the vector e = (1,0,0)" by a triangular pseudo-isometry S : K — &.
In particular, if (€°,7.,€) is a minimal closed representation in the sense that the
vector e is cyclic such that £° is minimal poly-Hilbert space generated by the action

on e of the linear hull of operators j°(b), then it is equivalent to the closed canonical
representation on K = C & K @ C with the constructed minimal ' = K.

Indeed, taking an arbitrary isometry U : K° — £° of a minimal space K° we can
define the pseudo-isometry S in the form

1, eU, e} 1, eo, et
(2.11) S=1(0, -U, €|, S8fs=1 st=|0 -U* U*e|,
0, 0, 1 0, 0, 1
converting the matrix j/(b) and the column e € £ into the canonical form
1 k*(b) (b) 0
i®) =10 j®) k)| =SS, e= |0 =S¢,
0 0 1 1

since e.5. = ST + €,5° + e, ST = (1,0,0) if ST = (1,e.U, ey ), S° = (0,-U, k),
S+t =1(0,0,1) for e. = (1,eo,e4) with ecel = (o | €0) = €4 + €’ corresponding to
l(u) = (e. | e.) = 0. If the Euclidean space £° is minimal containing {j°(b)e’ : b € b}
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(or minimal closed with respect to the seminorms [|ko||¢ = [|kojS(c)||, ¢ € b) then,
defining the operator U by the isometricity condition

€.j (b)S; = (eo — €.j5 (0))U = k(b)",
(€0 —e.jo(a) | eo = e.jo(c)) = k(a)k(c),

we obtain a pseudo-unitary equivalence of the (closed) representation (£°,j:,¢)
and the (closed) canonical representation (K, j,e) constructed in the proof of the
implication (i) = (iv) of Theorem 1.

3. THE FOCK AND PSEUDO-FOCK REPRESENTATION OF INFINITELY DIVISIBLE
STATES

We shall now describe an exponential indefinite-metric representation of the
*-monoid m associated with the conditionally positive-definite functional A(g) =
[ 1:(g9(z))dz and its connection with the generalized Araki-Woods construction [4]
corresponding to the chaotic infinitely divisible state ¢(g) = e 9). Unlike the Fock
representation of the Araki-Woods construction, the exponential representation,
which we will construct in a pseudo-Fock space, has the property of decomposability
in finite tensor representations, which can be used [15] to construct explicit solutions
of quantum stochastic equations even in the case of non-adapted locally integrable
generators.

We call pre-Fock space F° over a pre-Hilbert space K° the linear hull {f =
Shiexp{k;} : A\; € C,k; € K°} of exponential vectors exp {k} 1= @52 ,-Lk®" as
direct weighted sums of finite tensor powers of vectors k € K°, with k® = 1 and

k®! =k such that
=1 ,
(exp {ic} | exp {k}) = 3 — {k | K)" = el
n=0

This positive-definite exponential kernel describes the scalar product
(£ 1) = Bi;A] (exp {k} | exp {k'}) \;

in F°, and the usual Fock space is defined as a completion of F° with respect
to the norm |f]| = (f|f)*/2.
space K = f K. dz associated with the constructed canonical representation of a
conditionally positive functional A on the x-monoid m of simple functions g : X — b,
denoting by K, C K, the dual subspace of those functionals k, € K, which are
represented as kok = (k | k) = k*k on k € K (such k, = k* are continuous with
respect to all seminorms of K).

Thanks to the fact that the measure dz is atomless, the space EB%O:O%K("),
with K" C K®" consisting of only symmetric tensor-functions f() : X" — K®n,
can be identified with the space I'(K) = @22 ,I',,(K) of square-integrable functions
f (w) with arbitrary tensor values f(w) € K® (w) in full tensor products K® (w) =
®zewKy of the component spaces K, with the indexing sets w : |w| = n < oo taken
as any finite subsets w C X, |w| = n < oo. The integrability of such tensor-valued
functions f(w), defined on the space @ = >°° 1 Q, of all finite subsets w C X
including empty subset w = () with K® () = C is understood with respect to the
Lebesgue measure dw = ], ., dz with df = 1, and the isometry of the components

Below as such K° we will take the poly-Hilbert

LK™ and féBn K® (w) dw is given by the symmetric extension £ (x1,...,2,) =
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f({z1,...,x,}) defining f() almost everywhere on X™ with respect to dzy - - - da,
such that

// ||f(")(501,...,1:n)||2dz1~~dxn:n!/ () |[2desn.
X X Q

Denoting the series Y o Jo, dwn of integrals over the n-point subsets w, =
{z1,...,2,} C X as the single integral on Q with respect to the measure dw = >
dw,,, the scalar product in I'(K) = féa K® (w)dw can be written as the single
Lebesgue integral on €2,

(f|f): Z/ f(wn) | f(wy)) dwy, _/ (f(w) | f(w)) dw
n=0
called the multiple Lebesgue integral on X. Obviously the symmetric extension
from Q onto Y .7, L X™ of the tensor-product functions f(w) = Qe k(z) =
k?® (w) defines almost everywhere the generating exponential functions exp {k}, and

(| W) = KK, <k\kwszw/kk<xNk%x>xcdx

since fo, K% (@)dwn = & (i Ik @)] dz) " due to [K®(@)||* = [Te, Ik()|2:
In future we will refer to the Hilbert integral fQ K® (w)dw as to the Fock space,
denoting the exponential domain in it by ' (K) 3 k®.

We define decomposable operators j(g)® = @52 ,7(9)®" on I'(K) by a unital
x-representation j : m — L(K) on K associated with the conditionally positive
function A (g) by means of the linear continuation j(g)®f = X\;5(g)®k¥ of the
tensor-product operators j(g)®k® = (j(g)k)®. Obviously the correspondence g ~—
j (g)® is, like j itself, a unital *-representation

i%(g") =3%(9)", J°(f-h) =32())i%(h), j%()=1% Vfghem
on the pre-Hilbert space T' (K). In general the operators j(g)® are unbounded and
cannot be extended onto the complete Fock space over K (if only x-monoid is not
a group with g* = g=1), however we can extend them to a closed *-representation
7% (g9) = 7(9)® on the completion F of the pre-Hilbert space I'(K) by fundamental
sequences f,, € I' (K) converging in F with respect to all seminorms
/2

I = (/m (o, )F 2&0 Chem

Note that the operators j® (g) belong to the operator algebra L (F) of all linear
continuous, together with their adjoints, operators F — F due to [|5© (¢) f||" =
|[£|9"", and in the case if they all are bounded, F is usual Fock space and L (F) =
B (F). All linear functionals f, € F, of the form f, =f* € F, are also continuous
on F since f.f = (f | f) converges for any sequence converging in all seminorms ||f||*,
hem.

Unfortunately, the representation j% describes a dilation of an infinitely divisible
state ¢ as a vector reprebentation on F in the sense of the existence of an f € F
such that ¢(g) = (f | 7¥(g)f) for all g € m only under special ‘vector’ choice A (g) =
(k| (4(g) — I)k) of the logarithmic function A (g) = In¢(g). If such a vector k € K
exists, then one can obviously take f = exp{— (k | k) }k®:

(£15%(9)f) = exp{— (k | k)} (k¥ | j®(9)k®) = exp{(k | ((9) — D)k)}.
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Exploiting a similar exponential construction not for the pre-Hilbert K but for
a pseudo-Hilbert extension K of the complex Euclidean space K, we can obtain
a pseudo-Fock vector representation also for a general conditionally positive form
A(g)-

For we consider a vector-function space K = L'(X) ® K @ L>°(X) of the triples
k =k~ ®k°® kT, where k° € K are square integrable vector-functions k°(z) € K,
from the poly-Hilbert space K = {||k°||" < oo : h € m}, with k= € L}(X) and
kT € L>®(X) taken as respectively absolutely integrable and essentially bounded
complex functions:

k™l = / |k~ (z)|dz < 00, ||kT||eo = esssup |kT (2)| < co.

We equip this complex poly-Banach space with a pseudo-Hilbert scalar product
(3.1) k| k)= <k‘ | k+> + (k° | k°) 4+ <k+ | k‘> = (k,, k"),

where k* () = k#(x) such that (k,, k") = [ k,( x)dz is the integral product
corresponding to (2.10) for the column- functlon k = kT = k" adjoint to k. (x) =
(k—, ko, k) (x) with the column k(z) = [k* (x)] such that k* =k*, k} = k°, k% =
k™ (z). Note that the products of the components k, and k* with the same p =

o,+ are absolutely integrable for each p, and thus all three integrals in 3.1
converge making K a generalized Krein space.

We define in K a closed decomposable x-representation (j(g)k)(z) = j(x, 9)k(z)
of b-valued functions g(z) by triangular-operator functions j(z, g) = [j%(z, g(z))] of
the canonical form such that

=
&
&
*
=
&
Q
%
S~—

1
(3.2) j(z,g") = |0, j(z,9)", k(z,9*)| =ij(z,9)T,
0, 0, 1

where the functions I(g) € L'(X), k(g) € K, 5(g) : K — K have been described in
Theorem 1.

The operators j(g) are continuous on the whole of K, together with the adjoint
operators j(g)T, with respect to the Hermitian form (3.1) by virtue of the inequalities

1G@E) "l < 1l + @)l - 121+ 11 oo < o0,
IG@R)°N™ < £ + k@™ - e lloe, 1G@)R) Flloo = I1F I
for any f € K, and satisfy conditions (2.6), (2.7) in the form
i) =)t 3(F-n) =i(Nih), jle) =1, Vf.g.hem,

where I = [6%] is the unit operator in K.

We consider the space I'(K) generated by ‘exponential’ vectors k¥ = @52 k®"
with a non-degenerate pseudo-Hilbert scalar product that extends to I'(K) the
Hermitian form

(3.3) (k® | k®) = exp {/ku(x)k:“(x)dx} — ¢(kle)

Owing to the defining algebraic property
INL'(X)eKe L™(X)) =DN(L" (X)) e I(K) @ T(L®(X))
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of the exponential functor I'; we shall write this scalar product as the triple integral
over (),

(h|h)= // h(w™,w® whh(w™,w’, wh)dw dw’dwt = (h, h),

representing h € I' (K) by the ket-function h = [h(w™, w®,w
by the pseudo-adjoint bra-function h(w_ wo7w+) = ( Wi, Wwo,w_ )" with values in
K® (w,) such that Al (w™,w° w™) —h(w+ w’,w”) € K® (w°). The exponential
correspondence k® — h (w.) for each k. = (k_, k:o, ki) with k. € K, is given by

k2 (wo wo,wy) = kZ(Wo)kS (Wo)kE (w4), kS (w) = Quewko(2),
k=(x) such that indeed

rzew VF

(k2 KT®Y = exp {(k_ k™) + (ko, k%) + (ky, k™) } = &1,

wh)], wt € Q, and h =ht

with k2 (w) simply described as product functions []

The Banach space F. of such tensor-functions h (w_, wo,w ) with respect to the

norm /
1/2
|h|| = /dw_ (/dwoesssup||h(w_,woyw+)||2> < 00,
wt

equipped with the indefinite scalar product (3.3), will be called a pseudo-Fock
space. It can be easily verified that F. contains the exponential vector h = k%
if and only if [[k_||,, < 1, in which case ||k®| = exp{||k+||; + |koll,}- The set
KL = {k. e K. :|k_|| <1}, where KI = K, contains the canonical vector e®
given by the constant vector-function e.(z) = (1,0,0), and it is invariant under
the action k. — k.j(g) of m since (k.j(g))_ = k_ for any ¢ € m. Therefore
the completion of the linear space I’ (ICl_) with respect to the Banach poly-norm
|R|lf = {|[Rj® (f) || : f € m} is a dense subspace of F which will be denoted by

F,, with F for Fl = {hT :he IF*}. (F, coincides with F. if all j (¢) are bounded).

The canonical exponential vector is obviously state vector for the infinitely di-
visible state ¢(g) which is represented as

#(g) = (e®j®(g) | €°) = exp{(ej(g) | €)} = .
What is more, as the next theorem shows, the representation j¥, compressed to the
Fock subspace F C F by means of a pseudo-conditional expectation

eli®(9)] := J'j®(9)J = 7(9),
remains multiplicative, with JTe® = 14 defined as the vacuum state the unital -
representation 7 associated with ¢(g) = exp A (g). Here 65 =1 for w =0, 65 =0
for w # 0, and
(3.4) (Jh)(w™,w®,w") = 1g(w )h(w®), heF,
is a pseudo-isometry F — F, (Jh | Jh) = (h|h) forallh € F.
To obtain this result we note that any decomposable operator K = 16 GG G®2 @
. in T'(K), obtained by exponentiation G® of the triangular operator G = j(g),
can be written in the form
p=— ot
(35)  [Khj(w ,w,wt) = Z K (w)h(wTwF Ued,w] Ue Uwl),
Ll whb=wh

v>p
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where w = Llw, denotes direct sum of pairwise disjoint w, defining a decomposition
w. = (wy,) of w. Here K (w) is a function of the table w = (w#)/=; "’ of four subsets
wh € Q with values in linear continuous operators

K (“’: wo )  K®(w7) © K2 (w?) — K®(w2) ® K2 (w?),
(36) K@) = B, kP 0% (W Ok (ws,9), K (g) = k(g")",
where K®(w) = R.cw

Pw) =[] i), ¥ =Q@kl), kW) =Qk (@), j®w) =il

rew rew TEW rew

Theorem 2. Let K = EBZOZO K™ be a decomposable operator in the pseudo-Fock
space F defined in (3.5) by a linear combination of the kernels of the form (3.6).
Then the operators e(K) = JIK.J, defined by pseudo-projection J' : F — F,

(3.7) (JTh)(w) = /h(w‘,wﬁ)dw‘, heF,
as the adjoint to (3.4), can be extended to a continuous operator

(3.9) (K)h)(w) = 3 / K (w\ v, 0, 9)h(v Ll 90)dd,

vCw

where K(9°,v,9, | K (1;%3 f}) d¥ defined on the completion F of the pre-

) =
Hilbert space T(K) with respect to the family of the seminorms ||h||f = ||=(f)h|],
fem. The map € : K — ¢(K) defines a Fock *-representation e ANK' + \'K) =
Ae(K)* + Me(K),
(KK = ¢(K)e(K)*, e(I®) = I®
of a decomposable t-algebra of operators K with respect to the involution K*(w) =
K(w')*, where (w})" = (w_},), and the associative product [K - M](w) =

u<y oUT= w

wi\7, vy Uvy wi\o, wg\vy
(3.9) Z Z <w3r\fuj’r7 wgl_lfuﬂr)M<v3_UU; wdlvy )

vh Cwl onr= ’U

It induces the involution K*(0°,v,9,) = K(J9o,v,9°)* and [K - M](9°,v,9,) =

Z Z /Kﬂo\v VUV, v, UM (I Uv°, v U e, Yo \ v6)dd

Vo C¥o v°CY°

for the kernels K(9°,v,9,) and M (9°,v,9,), and defines a factor algebra of the
t-algebra of operators K with respect to the zero t-ideal {K : e(KK') = 0}. The

compression m = €0 j® of the *-representation € to the operators K of the form
(3.6) defined by the action (3.8):

(3.10)  [m(9)k®](w) = exp {/(l(x,g) + k*(w,g)k(fﬂ,g))dx} (k(g) +(9)k)® (w),

of the kernels K(w°,v,w,) = exp{A(g9)}k®(w®,9)i®(w, 9)k*®(ws,g) on k®(w) =
Rzewk(z) yields the unital x-representation m: m — L(K)
h) =

m(e) =19, w(g*) =mn(9)*, =(f-

)

m(f)m(h)
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for all f,g,h € m, and is associated with the infinitely divisible state ¢ : m — C in
the sense that ¢(g) = (1g | 7(g9)1p), where 19 = k® fork = 0.

Proof. The operator (3.4) is a pseudo-isometry:

(Jh | Jh) = /(Jh)(w_7o.)°,o.;'*')(Jh)*(w"’,o.)",w_)dcu_dwodw+
_ / 1 (@ )h(@®) Ip(@H)h* (@) dw-de’det = [ b*(@*)h(w®)dw® = (h | h)

and consequently, the Hermitian adjoint operator (3.7) defined by the condition
(h|J'h) =(h|Jh)forallhe F,heF,

(h| J'h) = /h*(w)(ﬂh)(w)dw - /// h(w™, 0°, wHh* ()1 (@) dw—dw’dw
is a pseudo-projection: J'Jh =h for all h € F, where

(TB) (@, wo, ws) = Lo(wo)h(wo) Lg(ws)

is the canonical embedding F C F. We now show that the action in F of the linear

combinations of the operators G® with triangular G = [Gﬁ]ﬁi:gi G = 0 for all

o < v with unit matrix entries GZ = 1 = G7, can be written in the form (3.5).
For we have

®
(GZK®)(w) = (GK)® () =[] (z G’;k”) (")
=TI S TI@EH® @ T+ wh,

B wh=wHr Vv v
v

where the sums over the decompositions w” = w” Uwh U w! in fact should be
taken only over w* = [ |,  wl since G =0 for v < p. If w = (w™,w,wt) do not
intersect, then the same is true for w;, = (w_,w;,w’, ) since w# C w*. Consequently,

[T, h(w") =k (|_|H w.“)for h(w.) = [T, (k") (w,), which yields

(S SCIED DI | (CARCEAN | LM

w; =w" p,v

where | |, wi = |, wh, since (G£)?(w) = ®,c, Gl (z) is equal to zero if w =
wh # ) for p > v. Thus we obtain (3.5) for exponential vectors b = k® with the
kernel K(w) = [],<,(G%)®(w) of the form (3.6). Since this formula is linear with

respect to the kernel K, it is also valid for linear combinations K = E)\Z-G? at least
on I'(K). We now define the operator JTK.J in F, employing the formula

/ Z flw—,wo,wy)dw = ///f(w—7wo,w+)dw,dwodw+.

Hwy=w
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Taking into account the forms (3.4), (3.7) of the operators .J, J' we obtain for
h € T'(K) the formula

JTK.Jh)(w) = / (KJh) (™ w, 0)dew™

- / / / 3 K(w)lpwD)h(w; Uwd)dw-dwydwy

Ouw =w

wo )h(ws Uws)dws,

Il
M
\
=
E

f

which can be written in the form (3.8) in the notation v = wg and w3 = w\v = wWNo.

We shall now prove that the pseudo-conditional expectation K — JTKJ is a
s-representation on I'(K). To this end it is sufficient to show that this map is a
homomorphism with respect to the binary operation (3.9), involution K ~— KT,
and the unit K = I® on the generating elements G® for which (3.8) yields (3.10)
for h = k®: [JTG®Jk®)(w) =

= ¥ //HG“ (W")k® (wy Uw)dw; dwy

OUw =w n<v

S (6P (G)P (WS / (Go0)® (w3 )dws / (G7)® (wr)dwy

o o —
woqurfw

= (Gek + Gi)®(w) exp{/(G;k + G1)(x)dx}.

Using this formula we find that [JTI® Jk®](w) = k®(w), that is, JTI®J = I®, and

[JTGT®JK®)(w) = (G°k 4 G5 *)®(w) exp {/(Gi*k + Gﬁ)(:c)dx} ,
that is, JIK!J = (JTKJ) for K = $A,G®, Kf = ¥\,GI®, and

[J1(FG)® JK®(w) = (FSGYk + F2GY)® (w) exp { / (F; Gk + F Gﬂ’r)(x)dx}

= (FSGgk + FGS + F3)®(w) exp {/(Gok + FyGok+ G+ F, G+ F;)(z)dm}

_ (Fc(:k + Fi)@(w)ef(Fo’k-&-F;)(a:)dx(ng + Gi)@(w)ef(G;k+Gl)(x)dx’
where we have used the rule of multiplication

(FG): =Y FI'G, = F'G,,

of the triangular matrices F = [F¥], G = [GY], p,v € {—,0,+}, F} =0 = G" for
u > v, with the entries F~ =1 = Fj, G_=1= Gi. Thus we have proved that
((FG®) = ¢(F®)e(G?®), where ¢(G®)h = JIG®Jh for any h = 2\ k¥ € I'(K).
We complete I'(K) by sequences h,, € I'(K) that are fundamental with respect to
each of the seminorms ||h||/ = || [j¥(f)]h||, f € m (among others, also with respect
to ||hjle = ||h||). Since 7(g) = €[j®(g)] is a *-representation of m on I'(K):

w(g*f) =€ |G@i()7] = @I = mlo)n(f)",
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any fundamental sequence remains fundamental after multiplying it by = (g) :
|l m(g)h||f = ||h||9F. This allows us to extend the operators €[j®(g)] = JTj®(g)J
to continuous operators 7(g) on the completion F of I' (K) with respect to the
convergence described above. The continuity implies that the algebraic relations
in the decomposable f-algebra B = CM®, where M = fff M,dz = j(m), become
represented in the operator algebra £ (F) of continuous operators L, L* : F — F on
the poly-Fock space F. Obviously, the linear hull ¥\;7(g;) defines a *-subalgebra
B of operators ¢(K) € L£(K) which is a homomorphic image of the {-algebra
B genrated by linear combinations K = Y\;j®(g;) of decomposable operators
GP =10G; @G?z@. .., where G; = j(g;). We recall that the elements of B as de-
composable operators in the pseudo-Fock space F are represented by triangular ker-
nels K € £ (F) with Kt € £ (F) described in (3.5) by the kernels K*(w) = K (w')",
where the table w’ of four subsets differs from w = (w#) € € only by the inter-
change of w3 and w, and the multiplication K'K is defined, as in any semigroup
algebra, by the operation KK' = YA AT j®(gir * g;) in M. Here KK is defined
by the kernel (3.9) which can be verified straightforward for the generating kernels
(3.6) by virtue of j®(f - g) = j®(f)ij®(g). Indeed,

9w, f - gKE (W £ - 978w £ - 9) KO3 f - g)

= BNIIE k() + K ()% 1) + K (PK(9) + o). K (9) + K (1)io)|-
=Y UPSUL K (KNS5

vi
UJrl_l'rJruUJr:aJJr

® Y UK kL) Y K2 e k(i)

vilod =wg Vo UTg =wg ’ ’
p<v
> Yo Bon HRE (W \ 03, £i® (Wl Uvd, K (v Loy, f)

HC M — - = —
vy Swy o UT =w \v]

x1®(r7,9)k®(v] Uvy,9)i®ws Uvy, 9)k™* (wy \ vy, 9),

which can be written as (3.9) in terms of 7 = 7, Uwv} and 0 = o} Uv]. Inte-
grating (3.9) over w € €2 we obtain the formula of multiplication of the kernels
KW, wlw) = [K(w)dw: [[K- K*(w)dw] =

pu<v

:///dadev; Z K ( o,ogUvi°Uvy )K" ( 7wy \vs°Uug )

weo
v—Wr

= Z Z /K(wi\vj’r,wgl_mfl,vg Loy )K" (vy Uv,wg Uy ,w, \ vy )duy,

vy Cwg VIEWE

v

where K*(w?,w,wl) = [ K*(w)dw] = K(wl,w?,w?)*. Thus we obtained a -
algebraic structure for three-argument kernels connected with the Maassen-Meyer
kernels M (9°,9,9,) [38], [40] by a one-to-one Mobius transformation

K(¥°,w,90) = Y M(9°,9,9,) ® I®(w \ 9).
YCw
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We finally consider a *-invariant subspace of the x-algebra of kernels Ky(w) de-
fined by the condition [ Ko(w)dw = 0. This is a zero ideal of the homomorphism
{K(w)} — {K(w%,wg,w; )} for which we take a convention that it transforms the
star conjugation % into x. Consequently, it is a two-sided ideal ( f-ideal in terms of
K, or x-ideal in terms of the kernels K):

/ (KKo)(w) dwy = 0 = / (KoK)(w)dwy, VK,

which is contained in the zero ideal of the representation € : e(Ko) = 0if Ko(w3,wd,w; ) =
0. One can show that, owing to the fact that the measure dz on X is atomless, the
zero ideal of the representation e is exhausted in this way. This follows from the
uniqueness of the stochastic representation (3.8), proved in terms of the Maassen-
Meyer kernels in [38], [40]. Consequently, the integral K (w$,w?, w; ) = [ K(w)dw
is a homomorphism of the factorization of the x-algebra of kernels K(w) also by
the zero ideal of the representation €. The proof is complete. ([

Remark 2. We introduce four types G;,v # —, u # +, of elementary triangular
decomposable operators in K described by matrices of the form

1 0 0 1 g5(x) O
GJj(x) = |0 I(x) gi(x) |, GZ(z)=|0 I(z) O],
|0 0 1| 0o o0 1
(1 0 gi(z) ] 1 0 0
Gf(z) = [0 I(z) O , G(z)=|0 G(=z) 0 |,
|0 0 1 0 0 1

and we write
GY = €[(G2)®] = G2, M9 = ¢[(G7)®], ¥ 1T = ([(G)®], e KD = ¢[(GF)®),

where € is the map (3.8) for K(w) = ®,.,G} (7).

Then the representation m > g +— 7(g), associated with the infinitely divisible
state ¢(g) = e9) with respect to the vacuum vector 1y € K, can be written as a
‘normally-ordered’ product

7(g) = 9 eATK@) GN k(9)A°

for all G € m, defined by the functions G(x) = j(x,g), 97 (x) = l(z,9), g5 () =
k*(z,9), 9% (x) =k(z,9).

In fact, an arbitrary triangular operator G in K with the entries G_ =1 = Gi
can be decomposed into a ‘normally-ordered’ product of elementary matrices:
1 g5 95 1 0 gy 1 0 0 1 0 0 1 g5 O
0 G g9 |=|0T1 0 0 I g3 0 G 0 0 I 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

Since the maps G — G® and K — e(K) are multiplicative, we hence obtain for
K = G? the equality

e[G¥] = e[(GI)%]e[(GI)®]e[(G2)®]el(G2)®],
which gives for G = j(g) the corresponding representation for m(g) = €[j®(g)].
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4. THE PSEUDO-POISSON STRUCTURE OF CHAOTIC SATES ON QUANTUM ITO
ALGEBRAS

In this section we assume that the x-semigroup b is also an additive group with
the same neutral element 0 = u, such that x-monoid m with respect to the mul-
tiplication, denoted now by bold dot, f e h, has also the structure of an additive
group with respect to the pointwise operations

(=9)(z) = —g(z), (f + h)(z) = f(z) + h(z), e(x) = 0.
In this terms f LI h, whenever it is defined, can be written as f + h. We shall also
assume that (f +h)* = f* +h* and that the conditionally positive form (2.2) is an
additive homomorphism m — C which will be denoted as A (g) = (g):

(=9)=—{9), (F+h)=(f)+(h), (0)=0.

Condition (2.5) of infinite divisibility of the state ¢ (b) = e*2(®) for any integrable
A C X can now be written in the form of positive definiteness

(4.1) Z Ko {(a-c)p) ke >0, Vry € C:|suppk| < oo
a,ceb
of the function Aa(b) = (ba), where x* = kj. and ba is elementary function

ba(x) = b for v € A and ba(x) = 0 otherwise, with respect to the new product
a-c=aec—a—c This positive definiteness follows from the additivity of the
form (g), which yields

Yoowplfenyri =Y mp(f-m)+ )+ (ARG = D Ky (f-h)Kj,
f,h€m f,h€m fohem

for any function g — k4 € C with |supp x| < co and such that Yxg, = 0, where on
the right-hand side we can arbitrarily change the value of k. since

0-b=00a—-0—-—a=-0=0b-0
and therefore (0o g) =0 = (g e0).

We shall now assume that the additive x-group b has a ring structure with respect
to the new product:

a-(b+c)=a-b+a-c,a-(b-¢)=(a-b)-c.

Note that the associativity of this product simply follows from its distributivity
which is equivalent to the relation

a-b+c-b=b+(a+c) b
This is particularly easy to see if the ring b has identity 1 such that 16 = b = b1,
ie.

1-b-b=14+b=b-1-1,
by virtue of the relation

l+a-c=1+a) - (14+¢), Va,ceb.
The function ¢(g) = €9’ corresponding to the additive and positive in the above
sense form (g) is chaotic:
o(fLUh) = et = o()o(h), VS hem: fh=0,

and will be called the pseudo-Poisson state over the x-ring (or x-algebra) m with
respect to the operations +, .. In other words, a pseudo-Poisson state is described
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by an exponential generating functional ¢(f + h) = ¢(f)¢d(h) on m > f, h which is
positive definite in the sense of (2.1) with respect to the operation fyh = f+h*+
fxh and e = 0, defined pointwisely by means of the ring m.

By this distributivity, the canonical maps

k:mag—k(g)=g) and k*:m>3g—k*(g9) =g

defining the minimal decomposition (2.6) of the additive (linear) positive form (g)
are additive (linear), and the x-map ¢ : m 3 g — j(g) — I satisfying in accordance
with (2.7) the conditions

i(gh) = geh)—g)—h)=g-h), Vg,hem,

(filg) = (fog—(g—{f=(f-9, Vg [fem,

is also additive (linear):
i(f +h)=i(f)+i(h), i(0)=0, i(rg)=AXi(g).
Moreover, the maps i,(b) = j.(b) — I, are x-representations of the ring (algebra) b

in the operator *x-algebras £L(K,) = {L : K, — K,, L*K, C K, } of the poly-Hilbert
spaces K, = {k : ||jz(a)k| < o0,Va € b}:

iz(a-¢) = iz(aec)—iz(a) —iy(c)=jz(aec)—1—1iz(a)—iy(c)
= (ig(a) + D(iz(c) + 1) = 1 —iz(a) —iz(c) = iz(a)iz(c).

Combining these relations and taking into account the fact that by additivity (lin-
earity) of I(b) in the integral (2.2) we have

lo(a-c)=lz(aec)—1(a) —l,(c) =ki(a)k:(c)

almost everywhere on X, we obtain decomposable *-representation é(z, b) = i, (g(x))
with four-component

. LB KO ) g (LG KO
a2 0= (10 G ) =00 (00 56

of the *-ring b with the usual matrix Hermitian conjugation ,(b*) = ,(b)* and
non-usual multiplication given by the Hudson-Parthasarathy table [26]

i (a-c) = ki (a)ks(c), ki(a)iz(c)
(4.3) ta(a - c) <i1(a)k1(c), i (a)ia(c)

It has a natural realization i(x, g) = j(z, g) — I given in the pseudo-Euclidean poly-
Banach space K = L!(X) @ K@ L>°(X) by the canonical triangular representation
j(x,9) = ju(g(x)) of the x-monoid m with the usual matrix multiplication and
non-usual pseudo-Hermitian conjugation (3.2):

0 k(x,9)* (z,g)"
(4.4) i(z,g*) =] 0 i(z,9°) k(z,9%) | =i(z,9)"
0 0 0

>, Ya,c € b.

All that has been said means that the factor in m/i, with zero x-ideal i = {g €
m : i(g) = 0} = 4, (0), of step functions with values g(z) € i,, where 4,'(0) =
{b € b:i,(b) = 0}, can be described like ¢(m) by four-component functions g =
(95)525;, for example of the form g(x) = i, (g(x)) with g5 = i(g), 95 =k(9), 95 =
k*(9), g5 = l(g). These form a x-ring with respect to the Hermitian conjugation
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(g*(x)), = gZ;(x)* and the table of componentwise multiplication (4.3). This
allows us to represent additive integral Hermitian forms

(4.5) u(g) = / m(z,g)dz, m(z,g) = ma(g(z))

on the x-ring m by four-component functions

+
mO
mia) = (he

) (@), M@:9) = p(@)gy (@), md(z,9) = md ()95 (@),
L om2(2,9) = go (w)m2(x), m3(x, g) = (mg(z), g3 (=) ,

in the form
(4.6)  m(z,9) = (m3(z),i(z,g)) + m*(z)k(z, 9) + k*(z, g)m(z) + u(z)l(z, ).

Here p(z) € R (for almost all z), m® (z) : K, — C is a vector linear form m® = m
on the pre-Hilbert space K, = {k%(b) : b € b} = K%, adjoint to the form mJ (z) :
K, 3>k — m*(z)k € C, and m2(x) : B, > B +— (m2(x), B) € C is an operator linear
form on the x-subalgebra B, = {i,(b) : b € b} of operators B, B* : K, — K,. Asthe
next theorem shows, we thus essentially exhaust all linear positive logarithmic forms
p 2 m — C of infinitely divisible states 1)(g) = e*(9) on x-algebras m, absolutely
continuous with respect to the Poisson state ¢(g) = e!9) in the sense that i C i*.
Here i* is the x-ideal of step functions g : X > z — g(x) € i* with values in
two-sided ideals

(4.7) ¥ ={b € b:my(b) =0,my(ab) =0, my(bc) =0, my(abc) =0, Va,c € b}.

Theorem 3. Suppose that b is a *-algebra over C and suppose that the linear
positive form (2.2) on the x-algebra m satisfies the condition

VgemIe<oo:(h-(gxg)-h*) <c(hxh), Vhem,

of boundedness ||i(g)|| < ¢ of the associated operator representation i(g) = j(g) — I.
We equip m with the inductive convergence g, — 0 if ||gn||ﬁ — 0 forallp=1,2,00

and for some integrable A € §, where g, € ma for all n,HgHOAO = |li(g)|| for
{reX:g(x)#£0} CA, and

1/2
A A
gl =< IR dx) ol = [ )] as

Then the following conditions are equivalent:

(1) The functional ¥(g) = e*9), continuous with respect to the inductive con-
vergence on m, is a pseudo-Poisson state described by an absolutely contin-
uous function pa (b) = u(ba) in the sense that pa(b) = 0 for all b € b if
AeF and pp = [, dz=0.

(ii) The functional pp : m — C has the integral form (4.5), where m, : b — C
is the linear function (4.6) defined almost everywhere on X by a positive
numerical function p(z) > 0,esssupyea p(z) < oo for all A € § with
N fA dz < o0, a vector-function m on X with values m(x) € K, defined
by the values

m*(x)EK;,/ ||m(ac)||idac<oo, VAGS:MA:/dx<oo,
A A
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of continuous (for almost all x € X) forms m*(x)k = (m(x) | k) on the
Hilbert spaces K, = K, and the function mg on X with values

mg(w)EB;,/ sup (mg(x), B)dz < oo, VAES:;LA:/ dz < oo,
A 0<B<1 A

in positive forms on C*-algebras B, satisfying almost everywhere the in-
equality

(4.8) u(x) (m(2), B*B) = ||Bm(x)||*, VB € B,.
(iii) There is a triangular representation

gem—g(@)={g)()}, ¢"=0=g;, Yuve{-o+}
of the x-algebra m in the Banach space K = LY(X) & K & L>®(X) with in-
definite metric (3.1) deﬁned by the scalar product (k° | k°) = [ ||k°(x || dz

of the Hilbert space K = f K. dx. This representation is locally pseudo-
unitarily equivalent to the canonical representation (4.4) in the sense that
g(x) = St(2)i(x, g)S(x) for decomposable operators S(z) in C o K, ® C of
the form (2.11), and is such that

(4.9) p(g) = /(M(x)gl(x) + (M(z), g5 (x))) dz, Vg€ m,

where p > 0 is a locally bounded measurable function and M > 0 is a locally
integrable function with positive values M (x) € B.

Proof. First of all we notice that if the decomposable operator-functions i,(b) are
locally bounded, then the space K of the canonical representation j(g) = I 4 i(g)
of the x-monoid m of step functions g : X — b, complete with respect to the family
of seminorms (2.8), is a Hilbert space. This follows from the inequality

h , .
([l = 117 (P < (e[| + [l ()] < (L + [A]]) [1},
where || f|| = max; [|b;[| 5 ;) < 0o according to (4.6) for any step integrable function

f(x) = b,z € A(i), given by a finite partition A = 3A(7) of its support A = {z €
f(z) # 0}

We shall first prove the simple implications (iii) = (ii) = (i), and next we shall
construct the representation (4.8) of (iii) drawing on the conditions formulated in
i).
v (ili) = (ii). Suppose that S(z) is the triangular transformation of the form (2.11)
given by an essentially measurable function U(z) € L£(K,) with unitary values, a
function e, : X 3 x — eo(x) € K given by the values eX(z) € K, of a vector-
function e} with [, lex(2)||? dz < oo for all A such that p, = Jadz < o0, and a
scalar locally integrable function e, such that e (z) + e’ (z) = — e} (m)||32c Then
g2(2) = U* ()i, 9)U (x),

95 () = eo(@)U(x)k(x,9)  +eo(x)U(x)i(x, 9)U" (x)es(x)
+k (2, 9)U™ (2)es (@),
and (4.9) takes the form (4.5) (4.6), where m*(z) = e, (z)U(x), m(z) = U*(z)ek(x)
is a locally square integrable function: [, ||m(m)|| dz < oo, and
)+

(mg(x), B) = (M(2), U (2) BU(x) ) + p(z)m” (z) Bm(z)
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is a positive locally integrable function: [, (mg(z), B,) dz < oo, satisfying (4.8) by
virtue of the positivity (M (x), B*B) > 0, u(z) > 0 for all z € X.
(ii) = (i). If w is the integral (4.5) of the linear form (4.6) and (4.8) is fulfilled,
then pu(g*g) > 0 for all g € m, since
0 <m(g"g) = (ms,i(g"9)) + 2Rem”k(g"g) + pl(g"9g)
= (mg,i(g9)"i(g9)) +2Rem™i(g)"k(g) + p(z)k(g)"k(g)
(me,i(g9)*i(9)) — L [li(g)m|* + pl[k(g) + i(g)m/pl|*.

By linearity of p this is equivalent to positive definiteness

S kipalarere = ua(Y Kia*ene) = pa(b0) > 0

of the form ju5 (b) = pu(ba ). Hence it follows that ¢,(g) = e9) is a pseudo-Poisson
state given by an absolutely continuous complex measure i (b) = [, mq(b)dx
with density m,(b) = m(x,ba). It is continuous with respect to the inductive
convergence with respect to the seminorms HgHﬁ ,p= 1,2, 00, because p is locally
bounded, m is locally L2-integrable, and m¢ is locally L!-integrable.

(i) = (iii). If the function pa (b) = Ine(b) for a pseudo-Poisson state 1A (b) =
¥(ba) on b is absolutely continuous with respect to A € § for every b € b, then
it has the form (4.5), where the density m, : b — C is almost everywhere a linear
positive functional. Since the kernel {g € m: ||g||, = 0,p = 1,2, 00} of the inductive
convergence in m = Uma coincides with the kernel i of the canonical representation
i(9) = j(g) =1 in K, which is equal, according to its construction, to step functions
g:x— g(x) € i, where

i, ={b€b:l;(b) =0,l,(ab) =0, I,(bc) = 0,1, (abc) =0, Va,b,c€ b},

the x-ideal i* of functions g € m with values g(z) in (4.7), corresponding to the
form (4.5) continuous in the sense that g, — 0 = u(gn) — 0, necessarily contains
i. This means that a linear functional m,(b) that vanishes on i, for almost all x
can be written, by this continuity, in the form (4.6) of a linear Hermitian functional
my(b) = m(z,ba),r € A, on the factor algebra b/i; ! (0) isomorphic to the -
subalgebra i, (b) of quadruples (4.2) with the multiplication table (4.3). In addition,
by the Hahn-Banach theorem and the duality between LP(A) and L1(A) for 1/p+
1/q = 1 we can assume that yu is locally bounded, m is locally L?-integrable, and
m? is locally L!-integrable on X.

For every © € X we define a triangular pseudo-unitary transform of S(z) into
K; = C® K, ® C of the form (2.11), where U = —1,,e%(x) = m(z), and e’ (z) =
- ||m(:1c)||i/2 Denoting g*(z) = (Sti(x, g)S(x))”, where i(z) is the triangular

matrix representation (4.4) of the quadruple (4.2) for b = g(x), we obtain
m(g) = (g5, mg) —m*gom/p + pgi,
where we have taken into account the fact that g2(x) = i,(g(x)) and
gy = pl(g) + X" (g)m + mk(g) + m*i(g)m/p.
In this representation the positivity condition m(x, g*g) > 0 takes the form
(95795, M) + pg¥'gs 20, Vgem,

where (B, M) = (B,mg) — m*Bm/p, B € B,, and g = k,(g) + i,(g)m. The
resulting inequality proves that M (x) is positive for g¢ (z) = 0 and p(x) > 0 if
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gS(x) = 0. This proves the existence of locally bounded measurable functions
> 0 and positive locally integrable functions M with values M (x) € B defining
the function u(g) in the form (4.9). The proof is complete. O

Remark 3. We consider an additive subgroup b C Cx H x L(K) of the triples b =
(8,m, B) with the involution b* = (B*,n*, B*), where 3 + B* € C is the complex
conjugation, n — n* € H is the involution n*# = n in a C-linear subspace H C K
equipped with the Hermitian form (£ | () = &= (€1 ¢)" of a pseudo-Euclidean
space K, and B — B* € L(K) is the Hermitian conjugation (B*¢ | () = (£ | BC)
for all &, ¢ € K in the x-subalgebra L C L(K) of operators B : n+— Bn € K leaving
H invariant: BH C H for all B € L.
We define in b the structure of a x-algebra by putting

Ab = (AB, A, AB),a*c = (67 - (.67 C + A*(, A*C)

for any A € C,b € b,a = (a,&, A),c = (v,(,C), where we use the notation &0 =
(C*€)#. It is easy to prove that this distributive algebra is associative, (ab)c = a(bc),
only in the case

(An)-C=¢-(nC),(An)C = A(nC), VA,CeL,§n¢eH,

which is possible only under the condition (An) - ¢ =0 =& - (nC). This condition
leads to (An)C = A(nC) if € - ¢ = (€7 | ¢) is a bilinear form on H non-degenerate
in the sense that {£{ - n=0=n-(:V{,( € H} = n=0. A simple analysis of the
positivity

1*b) = A(n | m) +(BY [ n) + (n | BY) + (A, B"B) > 0
of the linear x-form I(b) = AB+Y9_ -n+n- 94 + (A, B), where A = X", 9, =09 =
9% | A = A*, leads to the conditions (A,B*B) >0 for all Be L if A\=0 and

Xn|n)=0,(A,B*B) > 5 (BY | BY), VneHBeL

if X\ # 0. The latter is possible only if the form (n | n) = n* - n is definite, that is,
A>04f(n|n) >0 forallne H and A< 0 if (n|n) <0 for alln € H, which is a
necessary condition for the existence of a pseudo-Poisson state on b =C x H X L.

Assuming without loss of generality that n*n > 0 for all n (otherwise we have to

change the notation b — (—f3,m, B) and nn +— —n*n) we consider the following
1/2

)

two cases, in which H is a Hilbert space with respect to the norm ||n|| = (n#,n)
where (€,¢) = 5 (§- ¢+ ¢+ €).

Example 1 (Gaussian state). Let £ = {0} and A\ = 1, that is, b = (8,n), and let
1(b) = (n,0) + B, where (n,0) =2Re(n | ) for alln = n*. The algebra b =C x H
is now nilpotent: ac = (&,(,0), abc = (0,0) for all a,b,c € b, and commutative,
[a,c] = ac — ca = 0, if the involution # is isometric on H in K 2O H:

(e*1¢)=(c*l¢), veceH.

The infinitely divisible functional ¢ 5(b) = exp{[B8 + (n,8)] pa} corresponding to the
conditionally positive *-form Aa(b) = [8+ (n,0)] pa with respect to the Hermitian
operation

(@ * (1. =@+ +7"+¢), u=(0,0),

defines a generating functional 5 (0,1) = 1 of the factorial moments of a Gaussian
chaotic state over H with mathematical expectation (ba) = (1,0) pa for b= (0,7)
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and finite covariance (baba) = (n|n) pa € Ry for every A € § such that pn =
f A dx < oo, This covariance is symmetric only in the commutative (classical) case,
and in the converse (quantum) case it satisfies the uncertainty relation

(aX) (cA) = s(&,0)%pA, Va=(a,8),c=(7,(),& ¢ € ReH

for the commutative Heisenberg relation [aa,cal = (is((,€)pa0) corresponding to
the symplectic form s(&,¢) = 2Im(¢ | ¢) on ReH = {n € H : n* = n}. The
canonical representation (4.4), defining a *-representation j(g) = I+i(g) of the
*-monoid m of step functions g : X — C x H, and the corresponding representation
7(g) = €[j®(g)] in the Fock space K, is described by the functions i, (b) = 0, k. (b*) =
77#, ky (D) =n", l(b) =B+ (n,0).

Example 2 (Poisson state). Let H = {0} and let b = L be the x-algebra of
operators in K bounded by the identity I € b in the sense that

VC =B*B JceR,: (A, A*CA) < c (A, A*A), VAecb,

where A is a linear positive form defining 1(b) = (A, B). Bearing in mind the
Gelfand-Naimark-Segal construction, we may assume without loss of generality that
this form is a vector one, (A, B) = (eBe), represented in the Hilbert space K by an
element e € K, ||e||> = (A,I). In the commutative case b can be identified with a
subalgebra of essentially bounded functions b : w — b(w) € C on a measurable space
Q with finite positive measure d\ of the mass X = (A, I) by putting (Bk)(w) =
b(w)k(w) on K = L3(Q), and e(w) =1 for allw € Q, so that I(b) = [ b(w)d\. The
infinitely divisible functional ¢ (b) = elMBlua - corresponding to the conditionally
positive x-form Aa(b) = (A, B) pa with respect to the Hermitian operation A -C =
A* 4+ A*C + C with the neutral element U = 0, defines the generating functional of
factorial moments of a Poisson chaotic state over L with mathematical expectation
(ba) = (A,B) ua and finite covariance (bba) = (A,B*B)ux € Ry for each
A € F such that pp = fA dz < oo. This covariance is symmetric not only in the
commutative (classical) case [A,C] = AC — CA = 0, but also in the case when
A € L* is central. The central form (A, B), described by the condition (A,[A,C]) =
0 for all A,C € L, defines a o-finite trace on the *-algebra m of step functions
G: X >z G(x) € L with the integral form (g) = [(A,G(z))dz or (g) =
[ g(z,w)dzdX in the case of b ~ L (Q). Otherwise, the form (A, B) can also lead
to the uncertainty relation

2
() (A) = (AA.C) s, va=aC=C"

The canonical representation (4.3), defining the indefinite representation j(g) =
I+i(g) of the x-monoid m and the corresponding representation w(g) = €[j®(g)] in
the Fock space K, is described by the functions

iz(b) = B, k. (b*) = Be, k3 (b) = "B, l(b) = €*Be,

where e*Be = (eBe) = (A, B).
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Part 2. Non-commutative stochastic analysis and quantum evolution in
scales

5. INTRODUCTION

Non-commutative generalization of the Itd stochastic calculus, developed in [1],
[3], [21], [36], [41] and [44] gave an adequate mathematical tool for studying the
behavior of open quantum dynamical systems singularly interacting with a boson
quantum-stochastic field. Quantum stochastic calculus also made it possible to
solve an old problem of describing such systems with continuous observation and
constructing a quantum filtration theory which would explain a continuous spon-
taneous collapse under the action of such observation [8], [11] and [12]. This gave
examples of stochastic non-unitary, non-stationary, and even non-adapted evolution
equations in a Hilbert space whose solution requires a proper definition of chrono-
logically ordered quantum stochastic semigroups and exponents of operators by
extending the notion of the multiple stochastic integral to non-commuting objects.

Here we outline the solution to this important problem by developing a new
quantum stochastic calculus in a natural scale of Fock spaces based on an explicit
definition, introduced by us in [13], of the non-adapted quantum stochastic integral
as a non-commutative generalization of the Skorokhod integral [48] represented in
the Fock space. Using the indefinite x-algebraic structure of the kernel calculus,
which was obtained in the first chapter as a general property of a natural pseudo-
Fuclidean representation associated with infinitely divisible states, we establish the
fundamental formula for the stochastic differential of a function of a certain num-
ber of non-commuting quantum processes, providing a non-commutative and non-
adapted generalization of the Itd formula as the principal formula of the classical
stochastic calculus. In the adapted case this formula coincides with the well-known
Hudson-Parthasarathy formula [26] for the product of a pair of non-commuting
quantum processes. In the commutative case it gives a non-adapted generalization
of the Ito6 formula for classical stochastic processes which was recently obtained in
a weak form by classical stochastic methods by Nualart [42] in the case of Wiener
integrals. We also note that the classical stochastic calculus and the calculus of
operators in the Fock scales was worked out by the group Hida, Kuo, Streit and
Potthoff, see [25] and [45], and also by Berezanskii and Kondrat’ev [19].

Using the notion of a normal multiple quantum stochastic integral, which is
formulated below, we construct explicit solutions of quantum stochastic evolution
equations in the adapted as well as in the non-adapted case of operator-valued coeffi-
cients and we give a simple algebraic proof of the fact that this evolution is unitary if
the generators of these equations are pseudounitary. In the adapted stationary case
the quantum stochastic evolution was constructed by Hudson and Parthasarathy
by means of the approximation by the Itd6 sums of quantum-stochastic generators.
However, proving unitarity by this method turned out to be a difficult problem
even in a simple case.

Within the framework of this approach Kholevo [30] constructed a solution of an
adapted quantum-stochastic differential equation also for non-stationary generators
by defining the chronological exponential as a quantum-stochastic multiplicative
integral.

We note that our approach is close in spirit to the kernel calculus of Maassen-
Lindsay-Meyer [36], [41], however the difference is that all the main objects are
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constructed not in terms of kernels but in terms of operators represented in the
Fock space. In addition we employ a much more general notion of multiple sto-
chastic integral, non-adapted in general, which reduces to the notion of the kernel
representation of an operator only in the case of a scalar (non-random) operator
function under the integral. The possibility of defining a non-adapted single inte-
gral in terms of the kernel calculus was shown by Lindsay [37], but the notion of
the multiple quantum-stochastic integral has not been discussed in the literature
even in the adapted case.

6. NON-ADAPTED STOCHASTIC INTEGRALS AND DIFFERENTIALS IN FOCK SCALE

Let (X, 3, 1) be an essentially ordered space, that is, a measurable space X with
a o-finite measure p : § 3 A — pa > 0 and an ordering relation x < z’ with the
property that any n-tuple & € X™ is up to a permutation a chain » = {z; <--- <
z,,} modulo the product []?_, dz; of the measures dz := p4,. In other words, we
assume that the measurable ordering is almost total, or linear, that is, for any n
the product measure of n-tuples £ € X" with components (z1,...,z,) that are
not comparable is zero. Hence, in particular, it follows that the measure p on X is
atomless. We may assume that this essentially total ordering on X is induced by
a measurable map ¢ : X — R, with respect to which p is absolutely continuous in
the sense of admitting the decomposition

/fW@Mw=/mﬂmm@Mu
A 0

for any integrable set A C X and any essentially bounded function f : Ry — C,
where A — A (t) is a positive measure on X for each ¢t € Ry and 1 < -+ < z,
means that ¢(z1) < --- < t(z,). In any case we shall assume that we are given a
map ¢ such that the above condition holds and ¢(z) < t(2') if z < &/, interpreting
t(z) as the time at the point © € X. For example, t(z) = ¢ for z = (x,t) if
X =R%x R, is the (d+ 1)-dimensional space-time with the casual ordering [5] and
dz = dxdt, where dx is the standard volume on d-dimensional space R? 5 x.

We shall identify the finite chains > with increasingly indexed n-tuples & =
(z1,...,@,) of z; € X, @y < --+ < x,, denoting by X = > >° T, the set of
all finite chains as the union of the sets I', = {& € X™ : 1 < -+ < x,} with
one-element I'y = {()} containing the empty chain as a subset of X: ) = X°. We
introduce a measure ‘element’ dx = [[ ., dz on X induced by the direct sum
Yoo MR, An € € of product measures do = []i_; dz; on X™ with the unit
mass dsc = 1 at the only atomic point 2 = ().

Let {K, : « € X} be a family of Hilbert spaces K., let Py be an additive
semigroup of positive essentially measurable locally bounded functions p : X — R
with zero 0 € Py, and let Py = {1+ po : po € Po}. For example, in the case
X =R? x Ry by P; we mean the set of polynomials p(z) = 1+ Y, cx|z|* with
respect to the modulus |x| = ($2?)/2 of a vector x € R? with positive coefficients
cr > 0. We denote by K(p) the Hilbert space of essentially measurable vector-
functions k : z — k(z) € K, which are square integrable with the weight p € P;:

|w@=(/wmﬁmwmym<w

Since p > 1, any space K(p) can be embedded into the Hilbert space K = K(1), and
the intersection Nyep, K(p) C K can be identified with the projective limit K} =
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lim,_, K(p). This follows from the facts that the function |k|| (p) is increasing:
p < q = |k|l (p) < k|l (g), and so K(gq) C K(p), and the set P; is directed in the
sense that for any p = 1+4+r and ¢ = 1+ s, 1,5 € Py, there is a function in P;
majorizing p and ¢ (we can take for example p+¢—1 = 14+r+s € P;). In the case of
polynomials p € P; on X = R% x R, the decreasing family {K(p)}, where K, = C,
is identical with the integer Sobolev scale of vector fields k : RY — L2(Ry) with
values k(z)(t) = k(z,t) in the Hilbert space L?(R, ) of square integrable functions
on R,. If we replace R? by Z? and if we restrict ourselves to the positive part of the
integer lattice Z?, then we obtain the Schwartz space in the form of vector fields
ke K.
The space K_, dual to K, of continuous functionals

(£ = / (f(z) | k() dz, k€K,

is defined as the inductive limit K_ = lim,_,q K(p) in the scale {K(p) : p € P_},
where P_ is the set of functions p : X — (0, 1] such that 1/p € P;. The space K_ of
such generalized vector-functions k : X > x +— k(x) € K, can be considered as the
union Upyep_ K(p) of the inductive family of Hilbert spaces K(p),p € P_, with the
norms ||k|| (p), containing as the minimal the space K = K(1). In the extended scale
{K(p) : p € P}, where P = P_ U Py, we obtain the Gel'fand chain K, C K(py) C
K C K(p~) € K_, where p; € P1, p— € P_, and K; = K* coincides with the
space of functionals on K_ continuous with respect to the inductive convergence.

We can similarly define a Gel’fand triple (F,,F,F_) for the Hilbert scale {F(p) :
p € P} of Fock spaces F(p) over K(p) with FL = Nyep, F(p), F = F(1), F_ =
Uper_F(p). We shall consider the Guichardet [23] representation of the symmetric
Fock spaces F(p), regarding their elements f € F(p) as the functions f: sc — f(5¢) €
K® () with sections in the Hilbert products K® () = @, ., K., square integrable
with the product weight p(») =[], ., p(z):

I£11(p) = ( L d%>1/2 .

The integral here is over all chains s € X that define the pairing on F_ by

(£ | by = / (f2) | h()) dse, b€ Fy,

and in more detail we can write this in the form

/ HG2p(oe = 3 [ f(xl,...,zn>||21:l[p<xi>dwi,

=0t < <tn<oo

where the n-fold integrals are taken over simplex domains I',, = {& € X" : t(x1) <
- < t(xy)}. In a similar way as is done in the case X = R, t(x) = x, one

can easily establish an isomorphism between the space F(p) and the symmetric (or

antisymmetric) Fock space over K(p), the isomorphism defined by the isometry

oo n 1/2
I6lp) = (Zg, [+ ||f(9€1,...,xn)||2HP(mi)dxi> ,

n=0

where the functions f(x1,...x,) are extended to the whole of X™ in a symmetric
(or antisymmetric) way.
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Let D = (D£),Z; ¢ be a quadruple of functions Df on X with kernel values as
continuous operators
Di(x):FL —=F_, Di(z):FL @K, - F_®K,,
(6.1) Di(z):Fy = F_®K,, D;(z):FLoK,—F_,
so that there is a p € P; that these operators are bounded from F(p) O F, to

F(p)* C F_, where F(p)* = F(p~'). We assume that D7 (z) is locally integrable in
the sense that

3peP D)) = / IDF@)lpde < oo, Vi < o0,
X

where X! = {z € X : t(z) < t}, and ||D||, = sup{||Dh[|(p~")/||h||(p)} is the norm
of the continuous operator D : F(p) — F(p)* which defines a bounded Hermitian
form (f | Dh) on F(p). We also assume that Dg(z) is locally bounded with respect
to a strictly positive function s such that 1/s € Py in the sense that

3p € Prs D3N (5) = ess sup {s(@) [ DE(@)llp} < o0, ¥t < o0,
reXy

where ||D||, is the norm of the operator F(p) ® K, — F(p)* ® K,. Finally, we
assume that DS (x) and D (x) are locally square integrable with strictly positive
weight r(x) such that 1/r € Py, in the sense that

Ip € P |IDS)(r) < oo, |[DF[[§(r) < 00, ¥t < o0,

where ||DH1(322 (r) = ([x ||D(x)|\f,r(x)dx)1/2 and ||D||, are the norms, respectively,
of the operators
Di(z): F(p) = F(p)" ®@Ka,  Dg(z): F(p) @Ko — F(p)™.
Then for any ¢t € Ry we can define a generalized quantum stochastic (QS) integral
(6:2) H(D) = [ AD.d), AD.A) = S ALDEA)
Xt
v

introduced in [15] as the sum of four continuous operators A (Df) : F — F_
described as operator measures on § 3 A for A = X with values

AT (D7, A)h]() = /A[D; (z)h](50)dz  (preservation),
AL (DS, A)h](>) = Z [D3 (x)h](>c\ z) (creation),
TEANX
[A°(D;,A)h](x) = /A[D; (2)h(z)](3¢)dz (annihilation),
(6.3) [A(DS, A)A))>) = Y [DS(x)h()](> \ z) (exchange).
TEANX

Here h € Fi,x\z = {a’ € 5 : 2’ # z} denotes the chain » € X from which
the point = € » has been eliminated, and h(z) € K, ® F is the point derivative
h(z) = V,h defined for each h € F, almost everywhere (namely, for » € X:
x ¢ x) as the function [V h|(>) = h(>¢ U z) = h(x, »), where the operation s L z
denotes the disjoint union w = s Uz, >Nz = () of chains » € X and z € X\
with pairwise comparable elements. Note that the point derivative V, is nothing
but Malliavin derivative [39] densely defined in Fock-Guishardet representation as
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annihilation operator F, — K, ® F; by a(z)h(w) = h(z,w \ z), a(z)h(w) = 0
if z ¢ w, and its right inverse operator [V f] (w) = f (z,w\z) with [V, {] (w) = 0
if x ¢ w defines in this representation the Skorochod nonadapted integral as the
creation point integral 7 _ f(z,w \ z) for any f € K_ ® F_. The continuity of
this derivative as the projective limit map F; — K, ® F; and the point integral
as the adjoint map K_ ® F_ — F_ will simply follow from the isometricity of the
multiple point derivative and coisometricity of the adjoint multiple point integral
introduced below as in [17].

We can consider the multipple annihilation operators a(?9) : h(w) — h(d,w \ 9)
eliminating several points ¥ C w in a chain w € X with a(9)h(w) = 0 if ¥ € w.
They are described for each ¥ = {z1,...2,} in terms of the n-point derivatives

(6.4) [V2h] (5¢) == h(scU ) = h(, %), 9 €T,

defined almost everywhere (> N ¥ = @) on » € X as the n-th order point (or
Malliavin) derivatives [39]. These annihilations as densely defined operators from
F, into K® (¥)®F are not continuous for each 9 € T, (except ¥ = @) corresponding
to n = 0 for which a () = I), but they define projective-continuous linear maps
into the functions ¥ — h () on T',, C X for each n € N which are square-integrable
with any py € Py as partial isometric components of the multiple point derivative
V'h = ff h (1) po (9) A0 described as isometric map F (po + p1) — F (po) ® F(p1)
in the following lemma.

Lemma 1. The linear map V' : h +— [V'h] defined as V'h = @22 V"h in
(6.4) for all ¥ € X is an isometry of Fock scale {F(p):p € P} into the scale
{F (po) @ F(p1) : po € Po,p1 € P1} such that ||V'h|| (po,p1) = ||bl| (po +p1). The
adjoint coisometric operator (V> flh) = (f|V'h) is defined as the multiple point in-
tegral VI =32 V., where

(6.5) Viflw) = > f@0,w\V), weX
T',29Cw
is n-th order point (or Skorochod) integral as a contraction from F(py') ® F (pl_l)
into any F (pfl) with p > pg + p1.
Proof. We first of all establish the principal formula of the multiple integration
(6.6) /Zfﬂw\ﬂdw—/ f(,v)dvdv, Vfe L' (X x X),
YCw

which will allow us to define the adjoint operator V. Let f(J,v) = g(9)h(v) be
the product of integrable complex functions on X’ of the form g() = [[,cy 9(2),
h(v) = [I,c, M(z) for any ¥, v € X. Employing the binomial formula

Y 9@hw\9) = Y 9@ []n@) =[] +h@),

ICw Ylv=w z€Y TEV TEW

and also the equality [ f(0)dd = exp{[ f(x)dz} for f(9) = [],cq f(x), we obtain

the formula
\ﬁdw—exp{/(()—&-h dx} // v)dddo,

/ 19Cw
which proves (6.6) on a set of product-functions f dense in L!(X x X).



QUANTUM CHAOTIC STATES AND STOCHASTIC INTEGRATION 39

Applying this formula to the scalar product (f(9,v)/h(d,v)) € LY(X x X), we

obtain
/Z (P, w\ ) | h(w dw—/ f(¢,v) | h(¥ U v)) dddw,
YCw

that is, (V*f |h) = (f | V'h), where [V'h](¥,v) = h(v U ) = h(d,v). Choosing
arbitrary f € F(py') ® F (p;'), we find that the annihilation operators a(¥)h =
[Voh] define the isometry V' : F (po + p1) — F (po) ® F(p1) with the operator V*
defined as coisometry F(pal) QF (pfl) —F (pil) forp = pg + p1 with respect to
the standard pairing of conjugate spaces F(p) and F (p_l):

J[ 100011 0100

/Znh )20 ()P ( \ﬂdwf/uh M2 S po@)pr(v)dw

YCw ﬁUU w
_ / Ih(@)[|2(po + p1) (w)dew

Hence it follows that V' is projective continuous from F to Fo ® F, where Fy =
(Mpep, F(p), and, in particular, so is the one-point derivative f(z,v) = f(z Uw)
from F; to K; ® Fy as a contracting map F (po +p1) — F (pg) @ F(p1) for all
po € Po,p1 € P. The lemma is proved. O

We are now ready to prove the inductive continuity of the integral (6.2) with
respect to D = [D¥] by showing the inequality

IioMD)L)]| (g _1) <Dl (m)hl(@), Ye<r™ +p+s7h

s 2 —(2 o (oo .
where [|D3,(r) = [DTIS) + DL (r) + IDF 152 (r) + DI (). We will
establish this inequality as the single- mtegral case of the corresponding inequality
for the generalized multiple QS integral [17]

o1 WEuEI= Y [ [ Bokes ue)e

23U Coct xeJat
where ! =N X', X' = {5 € X : 5 C X'} and the sum is taken over all decom-
positions » = »° L1497 LY such that J7 € X* and 93 € X*. The multi- integrant

B(¥) is in general a kernel-valued function of the quadruple ¥ = (94)520"7 of
chains ¥ € X, defined almost everywhere by its values in the operators

B (f;t’?;%) Fi® K®(’t9o_) ® K®(192) —F_® K®(19g) ® K®('L93_).
+7 %Yo

We will assume that these operators are bounded from F(p) to F (pfl) for some
p € P; and that there exist strictly positive functions r > 0, r~! € Py, and s > 0,
L ¢ Py such that

(6.5) I1B154() = [ IBZ@)15.000 <0, Ve <o,

where

ERURING (/X e s >||Bw>|p>2rwiwo)cwidﬁow?),

9geXt
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and s(V) =[], ¢y 5(x), 7(9) = [[,c9 (). We mention that the single integral (6.2)
corresponds to the case

B(x) = Dli(x), B(9)=0, v9:3 |04 #1,

v

where x# denotes one of the atomic tables

= Yot (3 (Y

determined by = € X. Tt follows from the next theorem that the function B(1)
in (6.7) can be defined up to equivalence, whose kernel is B =~ 0 < || B||5 ;(r) = 0 for
all t € Ry and for some p,r,s. In particular, B can be defined almost everywhere
only for the tables 9= (¥1) that give disjoint decompositions » = U, ,9% of the
chains » € X, that is, are representable in the form ¥ = | |

zcs X, Where x is one of
the atomic tables (6.9) with indices p, v for x € 9%.

Theorem 4. Suppose that B(9) is a function locally integrable in the sense of (6.8)
for some p,r,s > 0. Then its integral (6.7) is a continuous operator T, = 1}(B)
from ¥ to F_ satisfying the estimate

(6.10) ITelq = s {IITh] (¢71) /IIbll(g) } < IBI5..(r)

heF(q

for any ¢ > r=t + p+ s~L. The operator T}, formally adjoint to Ty in F, is the
integral

0, Oy 9, 05\
t * _ t * * + o _ + 4
o amr=am w (e ) =s (0 )
which is continuous from Fy to F_ with |[B*||5*(r) = ||B||5*(r). Moreover, the

operator-valued function t — Ty has the quantum-stochastic differential dT; =
dif (D) in the sense that

(6.12) i(B) = B(0) +i4(D), Dl(z) =iy (B(xt)),

defined by the quantum-stochastic derivatives D = (D¥) with values (6.1) acting
from F(q) to F (qil) and bounded almost everywhere:

— (1 2 ojloco
IDZ05) < IBIG(r). IDIGR ) < I1Bl5a(r). DS (5) < 1B54(r)
for D = D7 and D = DS, q > r~t 4+ p+ s~ This differential is defined in
the form of the multiple integrals (6.7) with respect to 9 of pointwise derivatives

B(x,9) = B(9 UX), where x is one of four atomic tables (6.9) at a fized point
zecX.

Proof. Using property (6.6) in the form

/ Zﬁf(ﬂo_,ﬂi,ﬁi)dﬁ_///f(ﬂ‘l,ﬁi,ﬁi)l:[dﬂf,,

Lo =
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it is easy to find that from the definition (6.7) for f,h € F we have [ (f(s) | [T;h](3¢)) ds =

:/Xt i /X s, /X avs /X do° <f(193m91) | B(9)h(7 uﬁ§)>
:/Xt 97 /X v’ /X o= /X a0 B)*E02 Ud%) [ (o7 Lo2))
= [zn0 ) s,

that is, T} acts as 1§(B*) in (6.7) with B*(9) = B(9')*, where (9,) = (97},)
with respect to the inverstion — : (—, 0,+) + (4,0, —). More precisely, this yields
5 (B)|lg = 1ltb(B*)|lq, since |T|lq = ||T*]|4 by the definition (6.10) of g-norm and

by
sup {[ (f [ Th) [/[[f[[(g)[Ih][(g)} = sup{| (T™f | b) [/[[f]|(g)]Ihl[()}

We estimate the integral (f | T3h) using the Schwartz inequality
/||f(19)H(p)l\fl(ﬁ)ll(P)S_l(ﬁ)dﬂ < (s p) IRl p)

and the property (6.6) of the multiple integral according to which [|f[(s~',p) =
[£[l(p + s74), [IblI(s™,p) = [IRll(s™H +p), [(f | Th)| <

< /X dog /X /X I1£(02 U9%)]I(p) (/X ||B(19)||pd19§r> B0 L02)|(p)dvs dv°.

r o 2 d'ﬂi i -\ 1|2 d,ﬂ; % o r
< [[Lao ([ ltouoPe) s [ 1o uan e ) 1B @) be)

< [ AlE@I + DIBE) )3+ p)
Xt

< ess quP{S(i?)IIBS(@)IIp,t(T)}IIfII(?“_1 +p+s )L™ +p+s7h,
= t

where [|B2(02)lpe(r) = (e e e IBOO) A0 3)2r(95 U 9% )d05 d9S)M2. Thus
IT:lly < |Bllpe(r,s), where ¢ > 7= +p+ s~ and

1Bllp.e(r, s) := esssup{s(9)[| B3 (9)llp,e(r)} < | Bl5,(r)-

Jex

Using the definition (6.7) and the property

f(50)dse = £(0) + /Xt dz /Xt(z) f(z, 5)do,

Xt
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where f(x,5) = f(>c U ), it is easy to see that [(T, — To)h](s) = [(¢4(B) —
B(0))h](>) =
t(92)<t(z L .
/X dr m; /X AL i (B he; u o)

+ B(x, ,9)h(z LIg UI2)]}H(oa\95\95)

t(99)<t(x) . .
v/ (faosl  aos (B o v
9 Xt(x) xt(z)

s J93L08 o

+ B(x3,9)h(z U5 UI0))H(\95\05)

= | dz[Dy(2)h+ Dy (2)h(2)](>) + Y [DS ()b + D(a)h(x)] (> \ z).

Xt zeX?t

Consequently, Ty — Ty = > Ay, (DL, X*), where A%(D,A) are defined in (6.3) as
operator-valued measures on X of operator-functions

t(97)<t(z

DG = Y /X IR NS L RN ()

99L9° Cx Xt
t(97)<t(z

DL = Y /X Ao [ o B )R U066 ),

9309 Coe xt)

acting on h € Fy and h € K, ® F, where »° = N (9 L9S) = 5\92\95. This
can be written in terms of (6.7) as D¥(z) = i5(B(x!)). Because of the inequality
1Tl < |\B||;’t(r) for all ¢ > r~! +p+ s~! we obtain | DL ((Ilt) < ||B\|;’t(r), since
105 @)llg < 1B o ()

J Dz @lde < [ IBEDI; 0 (r)da

= [aaf B U@ = [ IO - B0
IBl(r) ~ 1B 0)].4),

where B (9,9) = B(9 LU 97)8o(97) for 97 = <g g),ﬂ: <Z°+ fgg).
’ + o

In a similar way one can obtain

21220 < ([ (18610 r)

<[ ([ t<||B+<z9,ﬂ°>|;7t<r>>2rw°>dﬁ°)m <

Z,t (’I"),
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— 40 — g0 v 0
where By (¢7,9°,9) = B(9 U9;)6p(95 UIY) for 94 = (190 ®>,
1/2

ID150) < ([ 1B ) )i
< [ an( [ QB @0l 2rwa0,) " < 31,0,

where B~ (V4,79,,9) = B(IUI )op(I, U, ), 9 = (19(2)+ %0)

Finally, from || DS(z)|, < || B(x x0|[5 (2 (1) we similarly obtain

7 (s) < ess sup {s()[|BXS)[15 ) (1)} < Bl (r)
zeX?

105 llq

if ¢ > r~! +p+ s7%, which concludes the proof. O

Remark 4. The quantum-stochastic integral (6.7) constructed in [17], as well as
its single variations (6.2) introduced in [13], are defined explicitly and do not require
that the functions B and D under the integral be adapted. By virtue of the continuity
we have proved above, they can be approximated in the inductive convergence by the
sequence of integral sums uh(By,), i(Dy,) corresponding to step measurable operator
functions By, and Dy, if the latter converge inductively to B and D in the poly-norm
(6.8).

In fact, if there exist functions r, s with »—!, s7! € Py and p € P; such that
| B, — B3 :(r) — 0, then there also exists a function ¢ € Py such that ||u4(B.,
B)||; — 0, and we have ¢ > r~! + p+ s~! by the inequality (6.10), which implies
the inductive convergence i}y (B,,) — t§(B) as a result of the linearity of .. Suppose
that D(z) is adapted in the sense that D#(z)(h*® & hy(,)) = 1) @ hyyy or

[Dl(2)h](>¢) = [DY (2)h(ox(2) )] (D), Va € X,

v

where h(%[t, ') = h(s" Use) and »" U s is the decomposition of the chain s € X
into »* = {& € » : t(z) < t} and s, = {z € s : t(x) > t}. In this case the
above approximation in the class of adapted step functions leads to the definition
of the quantum-stochastic integral i{(D) in the It6 sense given by Hudson and
Parthasarathy for the case X = R, t(z) = = as the weak limit of integrals sums

t n
ig(Dn):/O (D, dz) =Y Db () A% (A).
1=1

Here D,,(z) = D(z;) for « € [x;,x;41) is an adapted approximation corresponding
to the decomposition Ry = 77| A; into the intervals A; = [2;,2;11) given by
the chain 7o = 0 < 21 < -+ < @p1 < 2, = 00, and Df(x)A}(A) is the sum
of the operators (4.3) with functions D¥(x) constant on A which can therefore
be pulled out in front of the integrals Aj. In particular, for Dy = 0 = Dg and
Dy =1wg= D5, where 1 is the unit operator in F and g(x) is a scalar locally
square integrable function corresponding to the case K, = C, we obtain the Itd
definition of the Wiener integral

i(9) = / g(@yw(dz), / 9(x)@(dz) = (D)
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with respect to the stochastic measure w(A), A € F on Ry, represented in F by the
operators W(A) = AT (A)+A° (A). We also note that the multiple integral (6.7) in

the scalar case B(9) = 1 ® b(¥9) defines the Fock representation of the generalized
Maassen-Meyer kernels [21], [41] and in the case
1, 9=0,

b(9) = £(d LIT)dp(97)dp(de),  dg(V) = {0 0 #0

it leads to the multiple stochastic integrals fy(B) = Ao(f),

IL(f) = Z // f(z1,...,zn)w(dxy) ... w(dz,)
=0 o<ii <<ty <t
of the generalized functions f € J,-1.p, F(7), that is, to the Hida distributions [23],
[45] of the Wiener measure w(A) represented as W(A). Thus we have constructed
a general non-commutative analogue of Hida distributions whose properties are
described in the following corollary.

Corollary 1. Suppose that the operator-function B(9) = 1® M(9) is defined by
the kernel M such that ||M||$(r) < oo,

19-7-, 19; KO (19— o) L, K®(9° °
M(ﬁi, 192) cK®(9, i) — K¥(9; UvT),

where
s — o — o 2 o — 1/2
) = [ avs ([ v [ avzess sup (s L03))
Xt Xt Xt V2eXt

for all t € Ry and for some r(9) = [ ey (@), s(9) = [[ ey s(x); v, s € Py.
Then the integral (6.7) defines an adapted family Ty, t € Ry, of g-bounded operators
T, = (A @ M), |Till, < |M||5(r) for ¢ >~ +1+ s, with adapted p-bounded
quantum-stochastic derivatives DH(x) = LE(I) (1 M(xH)).

7. GENERALIZED ITO FORMULA OF UNIFIED QUANTUM STOCHASTIC CALCULUS

Let H be a Hilbert space. We consider a Hilbert scale G(p) = H® F(p), p € P,
of complete tensor products of H and the Fock spaces over K(p), and we put G4 =
NG(p),G = G(1), and G_ = UG(p) which constitute the corresponding Gel’fand
triple G € G C G_. We consider operators T = €(K), not necessarily bounded,
in the Hilbert space G = H® F as the *-representation ¢ of operator-valued kernels

w w o o
(7.1) K(‘”i wo> H®K®w, Uw?) - Ho K®(wl Uw?),

satisfying the integrability condition || K||,(r) < oo for some r~! € Py and p € Py,

where
1/2
| K||p(r) = /dw; <// ess SBO}:){”;{(S;,;”}QT(wi I_Iwo)dwidwo> .

This representation € is defined for h € H® F by

R D I | K (i) LAt ey

w
O\_lw =x +’
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as the vacuum-adapted operator-valued multiple integral (6.7) with ¢ = oo of the
function B(¥) = 0y ® K (1), where

~ 1 2=0

[0of](5e) =£@)0 (). S0 () =1 ¢
is the vacuum projection on F such that [B(9)h(9° U 97)](3°) = 0 if »° =
2 \U\¥ # 0. The operator €(K) can be represented equivalently as the adapted
(i.e. identity-adapted) integral (6.7) with ¢ = oo of a scalar-valued integrant as the
function B(¥9) = 1 ® M (¥), where 1 is the unit operator on F and M (¥) is the
generalized Maassen-Meyer kernel-integrant. This follows from

[B(9)h(9; U02)](5°) = M(9)h(I5 LIS LI »°)

such that [LSO 1 M)h] (5¢) = [e(K)h](5¢) for the kernel

K(‘”i’ “’g) ZM(“"*’ “ )®f®< 2\ ),

w
+ YCws

which is connected with M by a one-to-one relation

v, Uy vy, U
M| O) K<+’ °)®—I®192 w),
(5 z =) & (0P \w)
where I?(v) = @, ¢, I is the unit operator in K®(v).

According to Corollary 1, || T, < || M|, (r) for ¢ > r~'+1+s~!. However, using
the equivalent representation (7.2) in the form of the non-adapted integral (6.7) of
B(¥9) = 6y ® K(¥9) and taking into account the fact that ||3@||p =1 for sufficiently
small p > 0, we obtain as p — 0 a more precise estimate ||T||, < || K]||s-1(r) for
g >rt+ s =limy~o(r~! +po + s7!). From this estimate the previous one
follows, since

I M@)@I®W\ )| < Y M@ < (1+s )W) M,

ICws YCws
where || M |3, = esssupyer{s(9)[| M (9)|},

=[[s@)., Q+sHw)=> s'= [ a+s"@)

z€V ICwg TEWY
and consequently || K||,(r) < ||M]|%,(r) for p > 1+1/s. Hence in particular there fol-
lows the existence of the adjoint operator T* bounded in norm || 7%||, < |K*||,(r) =
| K||,(r) as the representation

(73) w0y =ere) w0 (S ) =k (20 “%)*

Wi, We Wo s Wo

of the x-adjoint kernel K*(w) = K(w')*.
In the next theorem we prove that the x-map e : K — €(K) is an operator
representation of the x-algebra of kernels K (w) satisfying the boundedness condition

(7.4) |IK||o = esssup{|| K (w)]|/ H ab(wh)} < oo
w=(w) pu<v
relative to the product of the quadruple o = (a))Z o f of positive essentially

measurable product functions o#(w) = []. ., a#(z), w € X. These are defined

TEW
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by an integrable function o : X — R, by functions af,a; : X — R4, square
integrable with a certain weight » > 0, r~! € Py, and by a function a2 : X — R,
essentially bounded by unity relative to some p € P:

o I® < o0, a5 [P () < oo, [la | (r) < oo, [aZ ) < 1.
1/2
ol = [ la@)ds, [al®0) = ( [ ate)?ras) "

|a(z)]
p(x)

The conditional boundedness (7.4) ensures the projective boundedness of K by the
inequality || K||,(r) <

(16) < [ dw( [ [ dsup{IEcl [ ol /o) bos s du 4)1,

(7.7) /a;(w)dw(/ai(w)%(w)dw/a;(w)zr(w)dw) 1/2esssupcf(g‘;)||l(|a

< |K||o exp {/(o@(x) + r(z)(ai(x)Q + oy (gj)2)/2)d$} ,

(7.5) ||a||§7°°) = esssup

where we have taken account of the fact that [ a(w)dw = exp [ a(z)dz for a(w) =
[I,c. @(x) and

n

esssup{ag(w)/p(w)} = supess sup | |{ac(z:)/p(zi)} =1if ag < p.
w n wEX”Z- 1

Before we formulate the theorem we establish the following lemma.

Lemma 2. Suppose that the multiple quantum-stochastic integral T, = 15(B) is
defined in (6.7) by a kernel operator-function B(9¥) = ¢(M(9)) with values in the
operators of the form (7.2), where

K U-T—a Ug :M 1917 19;7 UI) U; 19# c X
Y 05, 0 wg, v ) e

and M(9) : v — M (9,v) is a kernel-valued integrant

M,v): HoK®(vy Ud;) @ K¥(vo udg) - He K® (v udg) ® K® (v UvT).

Then Ty = €(Ky) for the kernel Ki(w) = vl(w, M) given by the multiple counting
integral on the kernel-integrants M, that is, il o € = € o U, where

(7.8) volw, M) = Y M@, w\¥), w'=(X'nuwii= 7
ICwt
(the sum is taken over all possible ¥, C X' Nwt, u= —,0,v =o0,+ ). If M(9) is

relatively bounded in vt € X for each ¥ = (9) such that

IM@) |y < c]]Be@), BL0) =[] BU()
v zey
for a pair of quadruples B = (BY) , B4 >0 and v = (v4), v* > 0 satisfying (7.5),
then the kernel K is relatively bounded: |[vh(M)||o < cif at(x) > Bh(z)+~4(x) for
t(z) <t and ol(x) > () for all p, v when t(x) > t. In particular, the generalized
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single integral iy, (D) of the triangular operator-integrant D (z) = [8'.6,, DYt ()] with
DE(z) = e(CH(z)) is a representation il o € = € o n of the single counting integral

= Z Cx,w\x), CxbL,v)=CH(z,v),

XEw?
of the triangular kernel-integrant C(z,v) = [646, CY (x,v)], where the sum is
taken over all possible v € wt N X' for p = —,0,v = o,+, and x = XZE;C)) 18

one of the atomic matrices (6.9) with indices u(x) = u, v(x) = v, defined almost
everywhere by the condition x € wk. Moreover, we have the estimate

51 (0) < coxp{ [ (7)+ 02 @ + 25 (@) |

given the kernel-valued quadruple-integrant C¥ (xz,~) is relatively bounded for each
x € X in v = (v") in the sense that there exist such v = () that

)(r)
ez 1= [ Iez @l

Chr) + 162157 (1/p) < o0,
151 (] Ie@izrea) "
M (5) = S

Proof. If M (¥, v) is an operator-valued integrant-kernel that is bounded, || M||g~ <
¢, relative to the pair (3,4), then the relatively bounded operator T; = e(K3) is
well-defined for K; = vj)(M), since

c=lICT IS+ Ics 1

1CS 11,

()<t t(9L) <t t(97 )<t ()<t

1K@l <e > > > > M@\

9 Cwy 9 Cwl 97 Cws Y3Cws

p=—,0 t(94)<t p=—,0
<cH Z B () yh (wh \ ¥5) —cHa”w“
v= o+19“g K v=o0,+

where af(w) = [ B0 (@) + %)) - [1E7 yh(@) for BL0) = [1,cq Bh()
and v4(v) = [[,e, 74 (x). Applying the representation (7.2) to K(w) = vj(w, M)
it is easy to obtain the representation of the operator €(K;) in the form of the
generalized multiple integral (6.7) of B(1) = e(M(1)). Indeed, [T;h](>) =

S ]S Mo\ o e s oy

wslws =3 YCwt

/d19 / dv Z /M'ﬂv (Yo Uiy, vg Uvg )dug duy,
Xt Xt

YouU¥s Coct vsUvg =2

where 5° = 5\ (92 U9%), h(d,v) = h(v U¥). Consequently, T; = t5(B), where

[B(9)h(92 U D3 )](5) = Z / M9, v)h(92 Ud5, v3 Uy )dug duy,

'U°|_|U =
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that is, we have proved that € o v} = (f o e. In particular, if M(9,v) = 0 for
ST |98 # 1, then, obviously
I/(t)(va):ng(w7C)’ LB(B):'L(t)(D>7

where C¥(z,v) = M(xt,v) = C (x¢,v) and B(9) = 0 for > [99| # 1, D¥(z) =
B(x#). This yields the representation € o nfy = i} o€ for the single generalized
non-adapted integral (6.2) for A = X" in the form of the sum

SoAe(c),A) =e( Ve A)), Niw.CA) = 3 Claw\xE)
v v TEWHNA

of representations of four kernel measures Nt (w, CH, A) for that define kernel rep-
resentations € o N(A) = A(A) o € of the canonical measures (4.3) with D¥(x) =

(Y (). U

In the following theorem, which generalizes It6 formula to noncommutative and
nonadapted quantum stochastic processes Ty = € (K;) given by an operator-valued
kernel K; (w), we use the following triangular-matrix notation

T(z)=[T(x})], T(x)= vth|t:t(gc)

for the quantum stochastic germs VT = € (K (X)) given by the point derivatives

of the kernel K (x,v) = K (vUx), with T# (z) = T (x*) equal zero for u = +
or v = — and T (z) = Ty = T (x). We notice that if K; (w) = Ko (w) +
nf (C (w)), corresponding to the single-integral representation T, — Ty = i} (D)
with D (z) = € (C (2)), then K,;(x,v) = K;(v Ux) is given by
t(z)<t(z)<t
Ki(x,v) = Kipy(z) (x,0) + Z C(z,v\zUx).

VA Y

This proves that K;(x,v) does not depend on t € (t(z),t(z)], where tt (z) =
min {¢ (z') > ¢t (z) : 2’ € Uvk}, and therefore the right limit

Ky (%, 0) := t{iltﬂ(lm) Ki(x,v) = Ky(o) (x,0) + C (x,0)

trivially exists for each x € {x#} and v with Kt(w)] (xZ,v) = Ky (v) = Kt(w)] (xZ,v)
for Ky(xZ,v) = K;(v) = Ky(x],v) due to the independency of K (w) on w” and
wi. We may assume that the germs VT =€ (Kt (x) ) also converge from the right
to G (x) =T (x)+ D (x) with D (x) = € (C (x)) at t \, t (x) for z € X correspond-
ing to each atomic table x in (6.9) as they have limits e (Kt(x) (x:)) = Ty(a) =

€ (Kt(x) (xi)) for x € {x:,xi}. As it is proved in the following theorem, these
germ-limits G (x) are given by the matrix elements D (x#) of the QS-derivatives
D = [D# (x)] at least in the case K; = v} (M) (7.8) corresponding to the multiple
integral representation T; = i (B) (see (6.7)) with B(9) = (M (9)).
Theorem 5. If kernel K(w) is relatively bounded, then the same is true for the
N -
kernel K*(w) : [|[K*|ly = || K|y, where <’Yj‘ 7%) = (7"’ 71‘), and the oper-
PY+ IYO ’Yo PYO
ator T* = ¢(K*), as well as the operator T = €(K), is q-bounded by the estimate
(7.6) for ¢ > p+1/r. For any such kernels K(9) and K*(9), bounded relative to
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the quadruples o = () and v = (V%) of functions ot (x), v*(x) satisfying (7.5),
the operator

e(K)e(K)* =e(K-K*), €I®) =1

is well-defined as a x-representation of kernel product (2.9) of Chapter I with
the estimate ||K - K*|lg < [|[Kllal[K*[ly 4 8, = (a- )}, where (a-v)j(z) =

v’ v

> o (z)y)(x) is defined by the product of triangular matrices

1 a7 af 1 v 7% 1 agye+v,, 75 tagyi +al
0 as af 0 7% % =10 ag7e, vy +75%
0 0 1 0 0 1 0, 0, 1

Let T, = e(Ky) with K, (x,v) defining the right limit VTt i=t(z)] = e(f(t(m)] (x)) of
VxT: at t \, t(x). Let T(x) = [TF(x)] and G(z) = [G(x)] denote the triangular
matrices of germs T (x) = VyTt|i—(z) and G(x) = VxTt|i—¢(z) as operator-valued
matriz elements

(7.9) T} (z) = e(Ky) (X)), GU(2) = €(Kyay (x]))

corresponding to point-derivatives K; (x*) at t = t(x) and their right limits at
t = t(x)] respectively. Then the operator-functions DH(x) = GH(x) — TH(x) are
quantum-stochastic derivatives of the function t — Ty which define the QS differ-
ential dT; = dif(D) in the difference form so that Ty — Ty = it (G — T). Moreover,
Ty — Ty = it (GT — TT1), and we have the generalized non-adapted Ité formula

(7.10) T, T} — Ty Ty =it (TD' + DT + DD') = i} (GGT — TTT),

where D +— D' is the pseudo-Euclidean conjugation [D*(z)]t = [DZ;(x)]* of the
triangular operators

T Ty T: 0 Dy D% T G; G:
T=|0 7° T2 |, D=|0 D DI |, G=|0 G5 G2
0 0 T 0 0 0 0o 0 T

with the standard block-matriz multiplication (TG)! = STV G5 .

Proof. The adjoint operators €(K) and ¢(K*), which define the *-representation
(7.2) with respect to the kernels K bounded in the sense of (7.4) and (7.5), are
g-bounded for ¢ > p+1/r by the estimate |[e(K)|, < ||K||p(r) and inequality (7.6),
which leads to the exponential estimate

le(E) g < 1Ko exp{llai [V + 5o 1P (1) + llag [P (1))}

The formula for the kernel multiplication K*- K, which corresponds to the operator
product ¢(K*)e(K), has already been found for scalar H = C in the case of linear
combinations of exponential kernels

£9(9) = fr (9 FL(09) @ £3(92) ® fo (95),
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where f1'(0) = @, cg f(2)(f1 (V) =[],y [+ (). We shall now verify this formula
for operator-valued kernels K(w) and K*(w), noticing that their product is 3-

bounded for B8 = a - 4, since |K* - K| (w) <
Z K w;\017 U;UUI KK w-l_-\T'T" wg\v;
< M viUvg, wyUwvg

wg \ v, wiUvg

wy\oy, v Uvl wi \TL, g Vg
|mwam¢m§ja®( g v J>7®( TN @ )

wi\ v, wiUvg vy Uvg, wUug

I (1K [ (0 ) ()i (-l = >k,
u<ALy

IN

IN

where we have employed the multiplication formula a® - y® = (a - v)® for scalar
exponential kernels

=[] Buws); Bi(w) = [] Bl(= V() = AAl@)a)

Using the main formula (6.6) of the scalar integration we write the scalar square of
the action (7.2) in the form |le(K)h|* =
2

/ Z //K* h(wg Uwg)dw  dwy || dse

wg LJw =

Lz x e

O|_|O' = TOUT

h(ry UTg) >d%da+d0 dridrg

- f////f/ o (PSR [T NS

T+7 To — o — — — — —
( vl oD, v2Uvs ) h(rs Uvg Uwv, ))dvdo dog dridrg

= [ v oo (G20 )

T, Ty o
K~ <U+L|U+, 0 Uv- )h(T Uwg Uwv, ))dvde dog dridr,

- /(h(%)| > //K K*)(w)h(wy Uwd)dwidw; )ds,

°I_lw° =

where vg = oo N 75, v = oo N7, vg = 7o N0, v = 05 N7, and the
integral over dsc of the double sum Zoguaizx Z‘rgl_l'ri:% = 2 usLivs vy v = is
replaced by the quadruple integral over dv = dvgdvS dvsdvy. Since h € H® F(q)
is arbitrary, this proves the kernel multiplication formula (2.9) of Chapter I for K
and K*, which extends to any relatively bounded kernels K and M because of the
polarization formula for the Hermitian function K - K*.

We shall now consider the stochastic differential d7; of the multiple integral
T: = 15(B) of the operator function B(9¥) = ¢(M(9)) defined by the quantum-
stochastic derivatives

Dl (z) = oy (B(xt)) = e(C¥ (x)),

v
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representing the differences of the kernels
Cl(,0) = v (v, M(x})) = Kygay) (x5 v) = Koo (x4, 0).

Here v}y(v, M(x)) = Yocwt M(9Ux, v\ ¥), x is one of the atomic matrices (6.9),
and

Kt(z) (X7 U) = Z M(ﬁv (U U X) \ 19) = Kt(m)(v U X)v
YCout(@)
Kt(m)] (X7 U) = Z M(ﬁv (U U X) \ 7‘9)
YCout@)ux
= Kinwux)+ Y M@Uxv\V)
ICoHE)

= Ky (x,0) + 4" (v, M(x)).

We note that Kyj(w) = > gcpn M(9,w\¥) = K, (w), where £, = min{t(x) >
t:x € wh wl ={x €w:tx) <t} so that Kt(r)}(x,v) = Ky(x,v) for any
t € (t(x),t4(x)]. Thus the derivatives D¥(z),z € X!, defining the increment
Ty — Ty = i} (D), can be written in the form of the differences

Di(x) = e[Kya) (x5)] — e[ Ky (x})]
of the operators (7.9). If we consider K;(x) as one of the four entries K;(x") =
K¢(z)! in the triangular operator kernel K (z) with K;(z)~ = K;(,) = Ki(z)1, we
define the triangular functions
T(z) = e(Kyo)(2)),  G(2) = e(Ky(ay (2))-
This allows us to obtain the quantum non-adapted Ité6 formula in the form
T,T; — ToTy =it (TD' + DT' 4+ DDY),

where D(z) = G(z) — T(x). This is a consequence of the fact that the map (7.2) is
a *-homomorphism, T3T; = €(K - K*), and the formula (3.9) of Chapter I for the
product of the operator kernels K; and K/, which can be written in the form

v

(K:- KP)(wUxt) = Y [Ki(2)y - K7 (@))(w) = [Ke(@)K] (@)} (@),

A=p
where the right-hand side is computed as an entry in the product of triangular
matrices K(z) = [K}/(z)] which defines the multiplication of the entries as operator-
valued kernels K¢(z,w)” = Ki(w) = Ki(z,w)}, K(x,w) = K(w Ux). For from
(3.9) of Chapter I we obtain
K -K(wUxg) =
K -K*(wUx}) =
K K wUx;) =
K -K*(wuxy) =

K (x o) K (x3)] (w),

[K - K (x5) + K (x5 ) K* (x3))(w),

[K(x3) K" (x3) + K(x5) - K*](w),

[ K™ (x3) + K(x5) - K" (x3) + K (x7) - K*](w),

which are the matrix elements of

K- K*)(wUx) = [K@) - K7 (@)] (@) = (K- K') (,w).
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This allows us to write e[(K; - Kf)(2)] = S5_, e(Ky(x)y K (x)}) in the form of
the triangular operator

e(Ki(@)K{(2)) = e(Ky(@))e(Ki(2))"

which is the product of the triangular matrices Ty(z) and T (z) with operator
product of the entries. We put t = t(x) and ¢t = ¢4 (z) in the formula, and we
obtain

e[(Kiay) - K] () (@) — (Kie) - K] ,))(@)] = G(2)GT (2) - T(2) T (2),

which allows us to write the stochastic derivative of the quantum non-adapted
process 1T} in the form

AT, T7) = dif (GGT — TTT),
corresponding to (7.10). The theorem has been proved. O

Remark 5. Using the non-adapted table of stochastic multiplication

Gig-T!T = D'T+T'D+DD
0, T*Dy, T*Di+Di*T 0, D*DS, D3*DS
= 0, 0, D;*T + 10, DDS, DD
0, 0, 0 0, 0, 0

0, DTS +Ty* DS, DTS + T DS
+| 0, DTS +Te*DS, DS*TS + T DS
0, 0, 0

we can write (7.10) in a weak form
(T = [ Tohl* = [ 2Re(Tioh | D (@)h+ Dy (o)) do
Xi

+ /X t U\Di(x)h + Di(x)h(g;)Hz + 2Re <Vth(z)h | DS (2)h + Dg(x)h(x)ﬂ dz,

where V Ty(pyh = TS (2)h + 17 (x)h(x). This formula is valid for any non-adapted
single integral Ty = Ty + i,(D) with square integrable values Tyh for allh € G
if we understand by V, the Fock space representation of the Malliavin derivative
[V Ty(2)h](5) = [Tyayh](3c U z) at the point x € X.

Indeed, taking into account that
(] ih(D)n) = /X ({1 DT (@)h+ D7 k() ) + ((x) | D (@)h + DE(a)h(a) )lde,

we readily obtain the weak form of the non-adapted It6 formula if we substitute
DT + DD + T'D in place of D. This formula can also be obtained by a direct
computation

it(D)h|* + 2Re (i (D)h | Tyh) = ||T3h||* — || Toh|?

without assuming that the family T} is defined by the kernels (7.8) which represent
it in the form of the multiple stochastic integral (6.7) of B = e(M). For we compute
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the square of the norm of the full single integral

OB = [ DT @b+ D (@)h@)))da
+ Z (DS (z)h + DS (x)h(z)] (5 \ z),

and we obtain ||if(Dh[> = || [ >+ 2Re (> | [) + | X |I?, where

/X, /Xt 2)h + D3 (2)h(z) | DI (z)h+ Dy (x)ﬁ(x)> dz dz
— /Xt 2Re </Xt(m) [ L(2)h+ DZ(z)h(z)dz} | D} (z)h + Dy (x)h(x)> de,

the cross-term can be written as 2 Re <Z | f> =

2Re/<Z[D°( Jh + D2(z |/ 2)h + D (2)h(z )](%)d:p>dx

z€Ext

/ 2Re/<
Xt 2Ext(® )

+ /Xt 2Re <Vm /Xt(z) (D} (2)h+ D (2)h(z)]ds | DS (z)h + Dg(x)h(x)> dz

(2)h + DS (2)h(2)](>0) | D3 (2)h + Dy (2)h(z )>d%dw

and |37 = [ Xy ||[D3(2)h + DS (2 H

-|=I —/ZHD° ot D@6 ) e
/ i [DS (2)h + D3 (2)h(2)] (5¢ \ )I[Di(x)h+D§(x)h(x)](%\x)>d%

/Xt2Re/<V Ze;)fz%\z |fac%)>d%dx

where f (z, 3¢) = [DS (z)h + D2 (z)h(z)] (5). Here we have used (6.6) in the form
/Z f(x, 5) | h(z, >\ z) d%—// (z,xUz) | h(z, »)) dsede,
rExt Xt

which gives the It6 term of the Hudson-Parthasarathy formula for the adapted
integrals of the form

[ T Ipsn+ pxhenen o ae= [ oz

rext

2)h + D H
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and [V,f(2)](») = (2, ¢ U x) is the annihilation operator at € X. Adding up all
three integrals, we obtain

iy~ [ 2me <<z'5<x> (D) | D ()b + D (@)h() ) do

),
Xt

. 2
+ /X 2 Re (Vi (D)h | Di(x)h(x)+pg(x)h(x)> dz,

S (z)h(x) + D2 ( H

which leads to the weak form (7.11) of the non-adapted generalization of the quan-
tum It6 formula for Ty = Ty + 5 (D).
If T} = €(K) is the representation (7.2) of the kernel (7.6), then obviously

[e(Ko)h] (> U ) = [e(Ke(25))h + e(K (22))h(2)] (),

and therefore V, T}, )h = T% (x)h + Toh(z).
In particular, in the scalar case K, = C for Dy =0 = D2, D; (z) = D(x) =
DS (x) and Ty (2) = Ty(z), T, (z) = TS (x) = 0 (2) T we obtain

Tl = I17b1? = [ 2Re(Tih | dTioh)
+/ (1D (2)h]% + 2 Re (,Th | D(z)h]dz,
Xt

where 0,Th = V,T;;)h — Tt(x)h(sc) = [V, Ty(x]h. This gives the It formula for
the normally-ordered non-adapted integral

T~ T~ [ (AF@)D(@) + DA (do) = [ dTie

with respect to the Wiener stochastic measure w(A), A € §, which is represented
in F by commuting operators w(A) = AF(A) + A°(A). Consider a particular
case when the operators Ty, D(z), and consequently T; are anticipating functions
To(w), D(z,w), and T;(w) of w, that is, Ty = To(w), D(z) = D(z,w), and T3 =
Ty(w). Then the operators T'(z) = [V, Tyy)] = e(Kt(x)(x)) are defined by the
Malliavin derivative 0,7} (w)|;=¢(») as the Wiener representation of the pointwise
derivative Kt(x) (z,5) = Kt(x)(m U %) of operator-valued kernels in the multiple
stochastic integral T;(w) = [ K;(s0)w(ds) = I(K;). In this particular case (7.11)
was recently obtained by Nualart in [42].

We note that in the adapted case we always have Ty (z) = Ty(,) ® I(x) and
TH(x) = 0 for pu # v except, possibly, T (z) = €(K (x)). Hence we readily obtain
the following result.

Corollary 2. The quantum stochastic process Ty = €(K) is adapted if and only if
the kernel process K; is adapted in the sense that

o) = [ Kt( )dw—%( D12 (0)d0(Te)  Kiloh, 07, 70),

where 6p(s) = 1if x =0, §p(30) =0 if x # 0, I®(50) = Q. I(x), 5 = N XT,
s = {x € x : t(x) > t}. The quantum-stochastic It6 formula (7.10) for such
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processes can be written in the strong form
TiT, — TiTy = / (T30y AT (&) + AT (2)Tya) + AT*(2)dT ()
Xt
= i(G'G-T"T®1),

where

dT(z) = A(D,dz), dT*(z) = A(DT, dz),

1 0 0
dT*(z)dT(z) = A(D'D,dz), 1(z)=| 0 I(z) 0 |,
0 0 1

and in the weak form as (7.11), where V,Tyzyh = [Tyz) @ I(z)]h(z),

8. NON-STATIONARY QUANTUM EVOLUTIONS AND CHRONOLOGICAL PRODUCTS

We have proved the continuity of the %-representation € of an inductive x-algebra
B of relatively bounded operator-valued kernels K(w) in the operator x-algebra
B(G) of the inductive limit G = Nyep, G(p), and this property allows us to con-
struct the quantum-stochastic functional calculus. Namely, if K = f(Q1,...,@m)
is an analytic function of the kernels Q; € B as the limit of polynomials K,
with fixed ordering of non-commuting @ ..., Q,, the limit taken in the sense of
1K, — K|l — 0 for (p,q)-admissible quadruple @ = (a#) of positive functions
at(x) > 0, then T = €(K) is an ordered function f(Zi,...,Z,,) of operators
Z; = €(Q;) as the limit |T,, — T||; — 0 for ¢ > p + 1/r of the corresponding
polynomials T;, = €(K,). The function T* = f*(Z7,...,Z},) with transposed or-
der of action of the operators Z = ¢(Q}) is also defined as a ¢-bounded operator
T* = e(K™) in the scale {G(p)} for K* = f*(Q%,...,Q%).

The differential form of this unified QS calculus is given by the non-commutative
and non-adapted generalization of the function It6 formula

(8.1) Az, = dib(A) = df(Z) = dib(f(Z+A) - £(Z)),

defined for any analytic function Ty = f(Z;) of an operator-valued quantum sto-
chastic curve Z; = €(Q;) as the generalized QS-differential of e(K3) for K; = f(Q4)
as soon as this function is well-defined also on the germs Y (z) =Z(z) + A (z),
Z(z) = [Z (x*)] of Z; as the triangular matrix-functions with the elements Y (x) =
ViZy)), Z (X) = ViZy(y) for x € {x/}. Here

T)(x) = f(Z)p(x),  Gy(z) = f(Z+ A)j(x),

where f(Z)(z) = f(Z(z)) is a triangular matrix which as an analytic function of
the triangular matrix

Z(@) = [e (K (xt))]| = e (K (@), K (xt,0) = K (vUx)
with the elements representing Qt(,;)(x) and Qt(m)] (x), respectively, as
Z(@) = [(Qun)], Y (x) =[Z4() + AL@)],

AL = e[ Qua(xt) = Quin (8]
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For an ordered function Ty = f(Z1¢,. .., Zme) this can be written in terms of Zy,
with the differential dZ;; = dif(4;), and Y; = Z; + A; as

dTy = dil(f(Y1, ..., Y0) — f(Z1,..., Zp)).

In particular, if all triangular operator-matrices {Y;,Z;} commute, then we can
obtain the exponential function T; = exp{Z;} for Z, = 3", Z;; as a solution of
the following quantum-stochastic non-adapted differential equation:

(8.2) AT, = dil[T(S — 1)), Tp = I,
where S =exp { 37", A;}, T=exp{ > ", Z;} corresponding to

TS = exp{ZYi}.
i=1

We shall now deal with the problem of solving a general quantum-stochastic
equation

(8.3) T, = Ty + b (TA")

of type (8.2) corresponding to the integral equation Ty = I + i (TA) with T} = I
and A'(z) = S(z) — 1(2) independent of ¢. In general T¢ is given as a nonadapted
function of ¢ € R, with values in continuous operators G, — G_, and At(x) =
[Af(x)H] is a triangular matrix-function of z € X, where A'(z)# = 0 for y = + or
v = — and the non-zero values are continuous operators

AL (x): G4 —- G, AJ(x): Gy oK, —» G- ®K,,
A (2):GL - G ®K,, AJ(r):GLoK, —G_,

for example Tj = ToU§, A'(z) = A(z)(Uf,) ® I(z)), where {U; : t > s € Ry} isa
given two-parameter family of evolution operators on G;.. First of all we prove the

following lemma.

Lemma 3. Suppose that the operator-functions

Tj = e(Kp),  A'(x)y = (L (x5))=0 ¥
are the representations (7.2) of the kernel functions K§(w), L'(x!,v), where w =
(Wh),wh € X v = (Vi), v € X, and x! are the atomic tables (6.9). Then the

integral equation (8.3) is the operator representation Ty = €(K:) of a triangular
system of recurrence equations

(8.4) Ki(w) = K§(@) + Y [Kiw) - Li](w),

TEW?
where the kernel-operators Lt (w) are defined almost everywhere (for pairwise dis-
joint (W)= as

Li(vuxt) = L' (x4, v) = L' (z,v)"

by the matriz elements of L(z,v), with L, (w) = 0 if ¢ Uwl, and Ky - LY, is
the kernel product. The solution of (8.4) is uniquely defined almost everywhere (if
t(z) # t(z') for all x # 2’ € Uw#) as the sum

Ki(w) =Y M8, w\9) = vh(w, M)
YCwt
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of chronological kernel products

(8.5) My(9,0) = [Kg& - LY#2) . L) L )9 L)

Tm—1 Tm
over all decompositions 9= x1 U ... U X, of the tables 9= (V) into atomic tables

x;, each of the form (6.9), with the correspondence x; € 9% < x; = xt . It gives

the unique solution (8.3) in the form of the generalized multiple integral
T, = 15(Br),  Bi(9) = e(My(9)),
if Fock representation Bi(9) of the products (8.5) satisfies the condition || B||;(r) <
oo for some admissible p € Py and r=t, s71 € Py.
Proof. We substitute T¢ = €(K}), Al(z) = e(Li(z)), and T; = ¢(K;) in (8.3) and
we take into account the fact that
T(2)A"(z) = e(Kyu)(2) - L(2)),
where K;(z) = [K(z)!] is a triangular matrix, Ky(z)¥ = 0 if u > v, with the
non-zero kernel entries
Ki(z,v)~ = Ki(v) = K(z,v)], Ki(z,v)l = K(vUxh),
and Lf(z) = [L!(x)"], where L!(x)" = 0 if u > v and the entries
LY(z,v)- =0=L'(z,v)], z¢Llw", L'(z)!=L(x")

are defined by the kernels L) (w) = L'(x,w \ x), with L! (w) = 0 if ¢ w for all
W # +,v # —, in the same way as the entries K;(z,v)* are defined by the kernels
Ki(w). As a result we found that (8.3) is satisfied if

Ki(w) = Kj(w) + Y [Kyo) (@)L (@)] 00 (@ \ %)
xEw?
v>— t(z)<t
+Z Z (Kt - LE](xh Uw \ x4),
p<+ zewh
which corresponds to (8.4). The solution of this equation for any table w =
(wh)h=; Y with chronologically ordered entries is represented as the sum (7.6) of
the chronological products (8.5) of the operator-valued kernels M; (0, w) = K{(w)
and L! (w), since

9Cw!
=Y M(®9,w\9) =M(0w)+ Y M(9,w\D)
9Cwt |9]>1

=MDw)+ > Y M@uxw\(®Ux))

xEwt Yewt(®)
JW)+ D D My Li)(w) = Kj(w) + Y (K - Li](w),
XEw?t YCwt(e) XEw?
where we have used the representation (8.5) in the recurrent form

My(8 Ux, v) = [Mye(x) - L)) (9 U w) = [My) - LL(x U9 L),

This defines the representation of the solution T; = €(K}) in the form of the non-
adapted quantum-stochastic integral (6.7) of B; = (M), since by Lemma 2, eovf =
tf o € if the integrability condition (6.8) is fulfilled. O
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Theorem 6. Suppose that Ul = e(V!) is the representation on G of the evolution
family {V}!:t > s e Ry} of relatively bounded operator-valued kernels
Vt

S

(7 9)  He Ko W) 8 KOW) — He KOwl) 0 KO,
+ o
satisfying the condition V! - VI = V! for all r < s < t, where the representation

is considered with respect to the kernel product (7.10) of Chapter I with the unit
Vi(w) =1 ®1I%(w). Suppose that

Ky(w) = [K§ - Vl(w), Li(w)=I[L} Vi](w), Vt>s
are the kernel products defining the representation (8.4) of equation (8.3). Then
the kernels chronological product

(8.6) Ki(w) = [K§& Rl R B (w)

Tn—1

for Fi(w) = Li(w) + Vj{,y(w), w' = x1 U...UxXp, is a unique solution of the
system (8.4) for almost all w = (w¥) (if t(z) # t(z') for all x # 2’ € Uwk). This
yields the representation of the solution of (8.3) in the form Ty = e(K;) defined
on G for each t as a relatively bounded operator if the product (8.6) satisfies the
condition ||K¢||la < 0o with respect to the norm (7.4) for the quadruple o = (o)
of functions admissible in the sense of (7.5) and equal to zero for t(x) > t. The
operators Ty are isometric, that is, T; T, = I (unitary: T} = T;l) if and only if the
operators Ty and Ut t > s >0, are isometric (unitary). Consequently, for all t we
have T¢ = ToU} and the triangular operator-matrices S(x) = [S¥(x)] that define the
generators of the equation (8.3) in the form A'(z) = (S(x) — i)(Utt(m) ® 1(x)) are
pseudo-isometric, that is, ST(2)S(x) = I @ 1(z) (pseudo-unitary: St(x) = S(x)~1),
and such that

Se(2)"Se(x) = 1@ I(z), S (x)" + 85 (2)"S% (x) + S5 (z) =0,
®7)  So(x)" +55(x)"S5(x) =0, S(x)"S5(x) + 55 () =0
(and SS(z) are unitary, that is, S2(z)* = SS(z)~1) for almost all z € X*.

Proof. Suppose that v = vg Uv; U...Uw,, is a decomposition of the table v =
(v#) = w\V into the subtables v; = x} U...Ux." determined by the points z; € X’
of the atomic tables x; in the chronological decomposition Y= x; LI...UX,,, so that
t(z;) < t(xl) < <t(zl) < t(mis1),t(zo) = 0. Then
twr) _ pet(ep) | ytep) 1) pt(wisr) _ ptlad) | ) t(ziv1)
Koo = Ro ™ Vigyy - Viggey La ™0 = Lo Vighy -+ Vi)
Ki(w)= Y (K" L) L) L (9 uw)

ICwt

— [Ké(h) . (Vtt(zl)) + Li(lw)) . (Vtt(zn) + Lin)](w),

where the points 21,...,2, € X?, t(21) < ... < t(2,) define the decomposition
w = Uz; into atomic tables (6.9). Thus the chronological products (8.6) of the
kernels F; = L] + V) defines a unique solution of the system (8.4), which is a
pseudo-isometric (pseudo-unitary) kernel if and only if the same is true for each
factor KS(Zl), F;(ZQ), ..., F! . If, in addition, the kernel K;(w) is locally bounded
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for each t relative to the quadruple @ = () of positive functions o*(z) locally
integrable in the sense

/ a(r)dz < oo, (@S (2)? + oy (2)*)r(z)de < 0o, ess supaO(x) < 00,
Xt Xt

rzeX?t p($)
then, in accordance with Theorem 5, the representation (7.2) defines the map e :
K; — T} as x-homomorphism in the %-algebra of g-bounded, ¢ > p+ 1/r, operators
on Gy satisfying the exponential estimate (7.6). Moreover, T; is an isometry (a
unitary operator) if the kernel K; is pseudo-symmetric, that is, K} - K; = [ ® 1®
(pseudo-unitary, that is, K; = K; '), with respect to the kernel product (7.10) of
Chapter I and the pseudo-involution K; — K}. For any chronologically ordered
collection w = (w*) this is guaranteed by the corresponding properties of the kernels
Ko, Vi s <t and F, (for almost all z € X') by virtue of the representation of
(8.6) in the form of a finite product of the kernels Ko = K9, Vi and F, =
Fi) Vtt(z),z € w,t > t(z). Hence the kernel-matrices F(z) = [F}(x)], with the
entries

Fi() = 00> v, F-(2) =1 = FH(z), Fi(x) = Fa(xt),
are pseudo-isometric (pseudo-unitary). This implies that the operators Ty = (X))
and U! = €(V[) are isometric (unitary) and the triangular matrix S(x) = [e(F}'(z))]

(where St (z) = 0if u > v SZ(z) = I = ST (2) and S¥(z) = e(F(z4)) if p # +,v #
—), defining the generator A(x) = A" (z) as S(z) — I ® 1(z), is pseudo-isometric
(pseudo-unitary).

By virtue of the uniqueness of the representation Ty = €(Ky),U! = €(V}), and
S(x) = e(F(x)) up to the x-ideal described in Section 2 of Chapter I, the resulting
conditions are necessary and sufficient for the solution T; = €(K};) of the non-
adapted quantum-stochastic equation (8.3), uniquely (up to the ideal mentioned
above) determined by the pseudo-isometric (pseudo-unitary) kernels (8.6), to be
isometric (unitary). Writing the condition STS = I ®1 in terms of the matrix
entries S¥(z), ST = S+, we obtain the system (8.7):

1, S%(x)*, SIi(x)*| |1, S;(x), S{(x) 1, 0, 0
[8S](z) = |0, Sg(x)*, So(x)*| |0, SS(z), Si(x)| =T [0, I(z), O

0 0, 1 0, 0, 1 0, 0, 1
Thus Theorem 6 is proved. (]

Remark 6. Suppose that the evolution family {U!} is a solution of the non-
stochastic non-adapted equation

(8.8) Ut =1+ / Ut® ST (x)dz, S <t,
<t(z)<t

and in the dissipative case Si (x) + ST (x)* < 0 this solution is defined as an
adapted family of contractions Ut : G — G,||UL|| < 1. Then the solution of the
differential equation (8.2) can be written in the form of a purely stochastic quantum
multiple integral Ty = b(B") satisfying (8.3) with T, = U{ and the generators
Al(z) = A(z)(Uf,) ® 1(x)), where

Af(z) = 0,45 (2) = 85 (2), A () = 57 (), AS(2) = S3(x) — T © I(x).
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In the case when the operator function S| (x) is locally absolutely integrable in the
sense that [, ||S7 (z)||dz < oo for all t, and if we have

Z / / ~Sl(wn)f[dxi=/xst ST (9)dv

s<t(z1)< - <t(wn)<t

where X! = {9 € X : 9 < [s,t)}, 87 (x1,...,2p) = S{(x1)... 57 (xy), then this
representation can be directly obtained by the integration with respect to w € X of
the kernel Ky(w) = [F, ... F., ](w), defined for w' = z1Ll. . .Uz, as the chronological
product of the kernels Fy(w) = F!(z,w\x%) for allw = (W) if x € w¥ and F(w) =
I ®1%(w) if x ¢ Uw?, which correspond to the representation SH(z) = e(F4(x)).

For we write the solution of the equation Ty = I + i (T(S — 1)) in the form T} =
€(K;), where K is the kernel (8.6) with K} = I® and F! = F, independent of t. We
denote by {z1,...,2,} the subchain of the chain {z1,... 2} of the decomposition
w! = x; U...Ux,, that corresponds to the elements z; ¢ w7y, and we write the
integral of Ky(w) with respect to w; € X in the form of a multiple integral in

9 € Xtt((ji;rl),i =0,1,...,n, where t(z9) = 0,t(zpn41) =t,and z; € X,i=1,...,n.
Then, in accordance with (7.10) of Chapter I we obtain the kernel chronological
product

EKi(°,0,w0) = (Vg™ oy - Vi3 - By - Vi (0,0, 00).

Here in the square brackets we have the product of integral kernels F, (w®, v,w,) =

| F, (w wo> dw and

e =Y o[ ) e e [T

=1

s<t(xy)<---<t(zn)<t

where [F (2)](w°,v,wo) = F 5; L;Jjo ,z € X. On the other hand, we can
)
obtain the same result if we integrate the kernel product

with respect to w} € X, where the kernels V(w) = [F}, ... F,, ](w) (for XINw] =
x1 U...Uuxz,) define the representation U! = €(V!) of the solution of (8.8) for
S (z) = e(F_ (x)). Putting F(w) = I ® 1¥(w) for z € w; N X" and taking into
account the consistency condition V,* - V! = V!, we find the solution of (8.2) as the
solution of (8.3) with the generators At( V= e(Lt(x{f)) where

L(xl),v) = [(Fo = 1%) - Vi) (v Uxl) = 0 for (u,v) = (=, +).

This solution can be written in the form of the quantum-stochastic multiple non-
adapted integral (6.7) of By(?¥) = e(M¢(19)), where My (¥, v) is defined in (8.5) by
the kernels K = Vi and L = (F, —I®) - Vj{,,. The operator-function B;(9) is
equal to zero if 97 # (), since the product (8.5) is zero for ; € ¥} . From this we
can readily obtain the following corollary.

Corollary 3. Suppose that St(z) = F'(z) ® 1, where F; (z) are closed dissipa-
tive operators such that there exists a consistent family {V!} of contractions in H
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which allows us to write the solution of (8.8) in the form Ul = VI ® 1. (It is
sufficient, for example, to require that F (x) be locally absolutely integrable, that
is, [, IF (z)[|dz < oo for all t.)
Suppose that the operator-functions
Fi(z):H—-H®K,, F (z):H®K,—H

are locally square integrable in the sense that

17180 = (/| @) < oo

and ||F2|\) = esssup,ex: (| FS ()| /p(x)} < 1 for some r=' € Py and p € Py.
Then the solution Ty = 15(B), B(9) = M(9)®1 of the quantum-stochastic equation
(8.2) is uniquely determined for each t > 0 as a relatively bounded operator Ty =
e(Ky) representing by means of (7.9) the adapted chronological products

(89)  Ki(wv,w0) =V 0 Fex) 0 Vi 0.0 Fx) 0 Vi, )

Here {x1,...,2,} = (w° UvUw,) N X is the chronologically ordered chain 0 <
txy) < <tlwy) <t, x=x3 ifrcw’, x=xZifvcv, x=x7 ifr € w, are
atomic tables (6.9), F(xt) = F}(x) is one of the three functions F,Fy, F;, and
® denotes the semi-tensor product defined recurrently by

K(v)® F(9) = (K(v) ® I3 UI)(F(9) ® I® (v, Uv?)

where v3 = w,, v = v,V =w®, ¥ =x,,%x3,x3, and F(x]) = Vtt(z)
Moreover, the family T; is adapted, it can be written as the purely quantum-
stochastic integral (6.7) of the Maassen-Meyer kernels

My(w®,v,wo) = VA" @ L(zy) ® Vf((;f)) ©-® La) © iy,

where w° Uv Uws = {z1,...,2,}, L(xt) = F(xt) — I ® §) = L:(x), and the
following estimate holds:

(8.10) ITul(r) < exp {1 / (125 (@)1 + 113, @) |?)r(z)dz).

In fact since ||[VY|| < 1, the kernels (8.9) are bounded:
[ Kt (w®, v, wo) < IFL (W) e [1ES ()1 F5 (wo)lle,

relative to ||F(w)|ls = [[,co: [[F(2)]. To obtain (8.10) we use (7.6), where we put

o8.(x) = I13(@)] and as (x) = |15 ()] for = € X', a3(z) = 0 = o (z) for
re X' af(zx)=0=a; ( ) for t(z) > t, al(z) = ||F2(z)|| for z € X!, al(z) =1
for t(x) > t, and o (x) = 0 for all z € X, and now the estimate (8.10) corresponds
to ”TtHa =1.

Example 3. We construct the solution of (8.2) corresponding to the pseudo-
unitary operators S(x) = F(z) ® 1 with the triangular operators F(z) = @)
where H(z) = H(z) are pseudo-selfadjoint operators with the entries H* = 0 for
p=+orv=—, H () = H}(x), and H3(x)" = HS(x). We assume that the

local absolute integrability condition HF_;HEI) = [ IFf (z)||dz < oo is satisfied,
which leads, since ¥ is pseudo-unitary, to

. . 1/2 B B 1/2
#2017 = ([ IF @) < oo JENE = ([ 1F @)Pa) " < oo
Xt Xt
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and ||F§||E°o) = esssup,cx¢ | FS(2)]] = 1. We can now define the operators T, =
e(Ky) as the representations of the chronologically ordered products Ki(w) = F(x1)®
<O F(xy) for U x; = w', where F(x!) = F!(x) are entries in the exponen-
tial matriz exp{iH(x)}. We compute these entries by induction finding the powers
H'—1 H'—H,

0, HyHS, HjHS 0, H;HS"™', HyHSHS
H?= |0, HSHS, HSHS | ,H'™? =0, H"™,  HJ 'HS
0, O, 0 0, 0, 0

As a result we obtain F =Y ((iH"/n! as the triangular matriz with

Fr=0pu>v, F- =I=F],

Fe=éHe Fr = Hy (e —I¢ —iHS)/HSHHS +iH,

Fg =[5 —I)/HHS,  Fy = H, (e - 13)/H).
Substituting the adjoint operators Hy , HS in the form

HS =F*HJ —iE*, H} = HJF +iE,
where the operators E(x) are uniquely determined by the conditions HS (x)E(x) = 0,
we can obtain the following canonical decomposition for the operators
Li(x) = FY () — I © 041(x)

of the unitary quantum-stochastic evolution T:

(L_T_ Lo> _ <F*L2F7 F*Lg) + (%E*E, E*> + (iH, 0>

LS L3 L3F, L —FE, 0 0, 0/’

where H = H — F*HJF, L3 = exp{iH3} — IS. Each of these three tables L;, i =
1,2, 3, corresponds to a pseudo-unitary matriz ¥; = I+L;, these matrices commute,
and we have H?:l F, = I+Zf=1 L; = F by the orthogonality of L;. The first matriz
can be diagonalized by means of the pseudo-unitary transform FgFlFo so that

1, F*, —-K 0, 0, 0
Fo= [0, I, —F|, FiLFo= |0, L2 0],
0, 0, 1 0, 0, 0

where K = F*F/2. This defines the decomposition of the quantum stochastic evo-
lution into three types:

(1) Poissonian quantum unitary evolution, which is given by the diagonal ma-
triz F corresponding to HY = 0 except p,v = 0:

T, =K = F e Fiiy = owli [ H3@AZ(do))

where [F[‘S,t)h](%) = F2(21)® - -OF2 (x,)h(50) for the chain 3¢t = {x1,..., 2},
t(zy) < - <t(xp);

(2) Brownian quantum unitary evolution corresponding to HS = 0 = H and
iHS* = E = iH7;

(3) Lebesgue quantum unitary evolution corresponding to HY = 0 for all (p,v) #
(_7 +):

T, =¢(Ky) = /Xt i <ﬁ H+(x)> ds = eTIS{i . H;(a:)da:} ®1,

xrex



(1]

[16]
[17]
18]

[19]
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where ﬁ H (x)=H(x1)...H (x,) for x={x1 <--- <z}

xrECx
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