
ON QUANTUM ITÔ ALGEBRAS
AND THEIR DECOMPOSITIONS.

V. P. BELAVKIN.

Abstract. A simple axiomatic characterization of the noncommutative Itô
algebra is given and a pseudo-Euclidean fundamental representation for such
algebra is described. It is proved that every quotient Itô algebra has a faithful
representation in a Minkowski space and is canonically decomposed into the
orthogonal sum of quantum Brownian (Wiener) algebra and quantum Lévy
(Poisson) algebra. In particular, every quantum thermal noise of a �nite num-
ber of degrees of freedom is the orthogonal sum of a quantum Wiener noise
and a quantum Poisson noise as it is stated by the Lévy-Khinchin theorem in
the classical case. Two basic examples of non-commutative Itô �nite group
algebras are considered.

1. Introduction

The classical di¤erential calculus for the in�nitesimal increments dx = x (t+ dt)�
x (t) became generally accepted only after Newton gave a very simple algebraic rule
(dt)

2
= 0 for the formal computations of �rst order di¤erentials for smooth trajec-

tories t 7! x (t) in a phase space. The linear space of the di¤erentials dx = �dt for
a (complex) trajectory became treated at each x = x (t) 2 C as a one-dimensional
algebra a = C� of the elements a = �� with involution a? = ��� given by the
complex conjugation � 7! �� of the derivative � = dx=dt 2 C and the nilpotent
multiplication a � a? = 0 corresponding to the multiplication table ���? = 0 for the
basic nilpotent element �=�?, the abstract notation of dt. Note that the nilpotent
?-algebra a of abstract in�nitesimals �� has no realization in complex numbers,
as well as no operator representation �Ð with a Hermitian nilpotent Ð=Ðy in a
Euclidean (complex pre-Hilbert) space, but it can be represented by the algebra
of complex nilpotent 2 � 2 matrices â = ���, where ��= 1

2 (�̂3 + i�̂1) =
��y with re-

spect to the standard Minkowski metric (xjx) = j�j2 � j�j2 for x = �e+ + �e� in
C2. The complex pseudo-Hermitian nilpotent matrix ��, ��2 = 0, representing the
multiplication �2 =���= 0, has the canonical triangular form

(1.1) Ð =
�
0 1
0 0

�
; Ðy =

�
0 1
1 0

�
Ð�
�
0 1
1 0

�
= Ð; Ð� =

�
0 0
1 0

�
in the basis k� = (e+ � e�) =

p
2 in which (xÐjx) = (xÐjx) for all x =

�
��; �+

�
with respect to the pseudo-Euclidean scalar product (xjx) = ���� + �+�+, where
�� = (� � �) =

p
2 = ��� 2 C.
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The Newton�s formal computations can be generalized to non-smooth paths to
include the calculus of �rst order forward di¤erentials dy ' (dt)

1=2 of continuous
di¤usions y (t) 2 R which have no derivative at any t, and the forward di¤erentials
dn 2 f0; 1g of left continuous counting trajectories n (t) 2 Z+ which have zero
derivative for almost all t (except the points of discontinuity when dn = 1). The
�rst is usually done by adding the rules

(1.2) (dw)
2
= dt; dwdt = 0 = dtdw

in formal computations of continuous trajectories having the �rst order forward
di¤erentials dx = �dt + �dw with the di¤usive part given by the increments of
standard Brownian paths w (t). The second can be done by adding the rules

(1.3) (dm)
2
= dm+ dt; dmdt = 0 = dtdm

in formal computations of left continuous and smooth for almost all t trajectories
having the forward di¤erentials dx = �dt+
dm with jumping part dz 2 f
;�
dtg
given by the increments of standard Lévy paths m (t) = n (t)� t. These rules, well
known since the beginning of this century, were formalized by Itô [1] into the form
of a stochastic calculus: the �rst one is now known as the multiplication rule for
the forward di¤erential of the standard Wiener process w (t), and the second one is
the multiplication rule for the forward di¤erential of the standard Poisson process
n (t), compensated by its mean value t.
The linear span of dt and dw forms a two-dimensional di¤erential Itô algebra

b = C�+Cdw for the complex Brownian motions x (t) =
R
�dt +

R
�dw, where

dw = d
?
w is a nilpotent of second order element, representing the real increment dw,

with multiplication table d2w =�, dw��= 0 =��dw, while the linear span of dt and
dm forms a two-dimensional di¤erential Itô algebra c = C�+Cdm for the complex
Lévy motions x =

R
�dt+

R
�dm, where dm = d?m is a basic element, representing

the real increment dm, with multiplication table d2m = dm+�, dm��= 0 =��dm. As
in the case of the Newton algebra, the Itô ?-algebras b and c have no Euclidean
operator realization, but they can be represented by the algebras of triangular
matrices B = �Ð+�Dw, C = �Ð+�Dm with pseudo-Hermitian basis elements

(1.4) Ð =

24 0 0 1
0 0 0
0 0 0

35 ; Dw =

24 0 1 0
0 0 1
0 0 0

35 ; Dm=

24 0 1 0
0 1 1
0 0 0

35 ;
Ðy = Ð; Dyw = Dw; Dym = Dm

where
�
xByjx

�
= (xBjx) for all x =

�
��; ��; �+

�
2 C3 in the complex three-

dimensional Minkowski space with respect to the inde�nite metric (xjx) = ����+
���

� + �+�
+, where �� = ���� with � (�; �;+) = (+; �;�).

Note that according to the Lévy-Khinchin theorem, every stochastic process
x (t) with independent increments can be canonically decomposed into a smooth,
Wiener and Poisson parts as in the mixed case of one-dimensional complex motion
x (t) =

R
�dt+

R
�dw +

R
�dm given by the orthogonal and thus commutative in-

crements dwdm = 0 = dmdw. In fact such generalized commutative di¤erential
calculus applies not only to the stochastic integration with respect to the processes
with independent increments; these formal algebraic rules, or their multidimen-
sional versions, can be used for formal computations of forward di¤erentials for any
classical trajectories decomposed into the smooth, di¤usive and jumping parts.
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Two natural questions arise: are there other then these two commutative dif-
ferential algebras which could be useful, in particular, for formal computations of
the noncommutative di¤erentials in quantum theory, and if there are, is it pos-
sible to characterize them by simple axioms and to give a generalized version of
the Lévy-Khinchin decomposition theorem? The �rst question has been already
positively answered since the well known di¤erential realization of the simplest
non-commutative table dwd?w = �+�, d

?
wdw = ��� for �+ > �� � 0 was given in

the mid of 60-th in terms of the annihilators ŵ (t) and creators ŵy (t) of a quantum
Brownian thermal noise [2]. This paper gives a systematic answer on the second
question, the �rst part of which has been in principle positively resolved in our
papers [4, 5].
Although the orthogonality condition dw � dm = 0 = dw � dm for the classical

independent increments dw and dm can be realized only in a higher, at least four,
dimensional Minkowski space, it is interesting to make sense of the non-commutative
?-algebra, generated by three dimensional non-orthogonal matrix representations
(1.4) of these di¤erentials with dw � dm 6= dw � dm:

DwDm = (DmDw)
y
=

24 0 1 1
0 0 0
0 0 0

35 6=
24 0 0 1
0 0 1
0 0 0

35 = (DwDm)y = DmDw:
This is the four-dimensional ?-algebra a = CÐ+CE� + CE+ + CE of triangular
matrices A = �+ z�E� + z+E+ + zE,

E� =

24 0 1 0
0 0 0
0 0 0

35 ; E+=
24 0 0 0
0 0 1
0 0 0

35 ; E =
24 0 0 0
0 1 0
0 0 0

35 ;
where E+ = GE��G = E

y
�, E = E

y with respect to the Minkowski metric tensor G
in the canonical basis. given by the algebraic combinations

E� = DwDm � ; E+ = DmDw � ; E = Dm �Dw
of three matrices (1.4). It realizes the multiplication table

e� � e+ = �; e� � e = e�;
e � e+ = e+; e � e = e

with the products for all other pairs being zero, unifying the commutative tables
(1.2), (1.3). It is well known HP (Hudson-Parthasarathy) table of the vacuum
quantum stochastic calculus [3]

d��d�
+ = Idt; d��d� = d��;

d�d�+ = d�+; d� � d� = d�;
with zero products for all other pairs, for the multiplication of the canonical number
d�, creation d�+, annihilation d��, and preservation d�

�
+ = Idt di¤erentials in

Fock space over the Hilbert space L2 (R+) of square-integrable complex functions
f (t) ; t 2 R+.
Note that any two-dimensional Itô ?-algebra a is commutative as �a = 0 = a�

for any other element a 6= �of the basis fa;�g in a. Moreover, each such algebra is
either of the Wiener or of the Poisson type, as it is either second order nilpotent, or
contains a unital one-dimensional subalgebra, as the cases of the subalgebras b; c.
Other two-dimensional sub-algebras containing �, are generated by either Wiener
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dw = ��e� + �e
+ or Poisson dm = e + �dw element with the special case dm = e,

corresponding to the only non-faithful Itô algebra of the Poisson process with zero
intensity �2 = 0. However there is only one three dimensional ?-subalgebra of
the four-dimensional HP algebra with �, namely the noncommutative subalgebra
of vacuum Brownian motion, generated by the creation e+ and annihilation e�
di¤erentials: Thus our results on the classi�cation of noncommutative Itô ?-algebras
will be nontrivial only in the higher dimensions of a.
The well known Lévy-Khinchin classi�cation of the classical noise can be refor-

mulated in purely algebraic terms as the decomposability of any commutative Itô
algebra into Wiener (Brownian) and Poisson (Lévy) orthogonal components. In
the general case we shall show that every Itô ?-algebra is also decomposable into a
quantum Brownian, and a quantum Lévy orthogonal components.
Thus classical stochastic calculus developed by Itô, and its quantum stochastic

analog, given by Hudson and Parthasarathy in [3], was uni�ed in our ?-algebraic
approach to the operator integration in Fock space [4], in which the classical and
quantum calculi become represented as two extreme commutative and noncommu-
tative cases of a generalized Itô calculus.
In the next section we remind the de�nition of the general Itô algebra given in

[4], and show that every such algebra can be embedded as a ?-subalgebra into an
in�nite dimensional vacuum Itô algebra as it was �rst proved in [5].

2. Representations of Itô ?-algebras

The generalized Itô algebra was de�ned in [4] as a linear span of the di¤erentials

d� (t; a) = � (t+ dt; a)� � (t; a) ; a 2 a

for a family f� (a) : a 2 ag of operator-valued integrators � (t; a) on a pre-Hilbert
space, satisfying for each t 2 R+ the ?-semigroup conditions

d� (t; a � b) = d� (t; a) d� (t; b) ;(2.1)

� (t; a?) = � (t; a)
y
; � (t;�) = tI;(2.2)

with mean values hd� (t; a)i = l (a) dt in a given vector state h�i, absolutely con-
tinuous with respect to dt. Here � (t; a)y means the Hermitian conjugation of the
(unbounded) operator � (t; a), which is de�ned on the pre-Hilbert space for each
t 2 R+ as the operator � (t; a?),

d� (t; a) d� (t; b) = d (� (t; a) � (t; b))� d� (t; a) � (t; b)� � (t; a) d� (t; b) ;

and dt is embedded into the family of the operator-valued di¤erentials as d� (t;�)
with the help of a special element �= �? of the parametrizing ?-semigroup a.
Assuming that the parametrization is exact such that d� (t; a) = 0 ) a = 0,

where 0 = a� for any a 2 a, we can always identify a with the linear span,X
�id� (t; ai) = d�

�
t;
X

�iai

�
; 8�i 2 C; ai 2 a;

and consider it as a complex associative ?-algebra, having the death � 2 a, a ?-
invariant annihilator a��= f0g corresponding to d� (t; a) dt = f0g. The derivative
l of the di¤erential expectations a 7! l (a) dt with respect to the Lebesgue measure
dt, called the Itô algebra state, is a linear positive ?-functional

l : a! C; l (a � a?) � 0; l (a?) = l (a); 8a 2 a;
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normalized as l (�) = 1 correspondingly to the determinism hIdti = dt of d� (t;�).
We shall identify the Itô algebra (d� (a) ; ldt) and the parametrizing algebra (a; l)
and assume that it is faithful in the sense that the ?-ideal

(2.3) i = fb 2 a : l (b) = l (b � c) = l (a � b) = l (a � b � c) = 0 8a; c 2 ag
is trivial, i = f0g, otherwise a should be factorized with respect to this ideal. Note
that the associativity of the algebra a as well as the possibility of its noncommu-
tativity is inherited from the associativity and noncommutativity of the operator
product ��(t; a)�� (t; b) on the pre-Hilbert space.
Now we can study the representations of the Itô algebra (a; l). Because any

Itô algebra contains the Newton nilpotent subalgebra (C�; l), it has no identity
and cannot be represented by operators in a Euclidean space even if it is �nite-
dimensional ?-algebra. Thus we have to consider the operator representations of
a in a pseudo-Euclidean space, and we shall �nd such representations in a Krein
space, including the simplest one, a complex Minkowski space.
Let K be a complex pseudo-Euclidean space with respect to a separating inde�-

nite metric (xjx), and k2K be a non-zero vector. We denote by L (K) the y-algebra
of all operators A : K! K with AyK � K, where Ay is de�ned as the kernel of the
Hermitian adjoint sesquilinear form

�
xjAyx

�
= (xjAx). A linear map i : a! L (K)

is a representation of the Itô ?-algebra (a; l) on (K; k) if

(2.4) i (a?) = i (a)
y
; i (a � b) = i (a) i (b) ; (kji (a) k) = l (a) 8a; b 2 a.

We can always assume that (kjk) = 0, otherwise k should be replaced by the vector
k+ = k� 1

2 (kjk) k�, where k� = i (�) k, with the same result

(2.5) (k+ji (a) k+) = l (a)�
1

2
(kjk)

�
kji
�
�a+ a�� 1

2
(kjk)�a�

�
k

�
= l (a) .

Proposition 1. Every operator representation (K,i; k) of any Itô algebra (a; l) is
equivalent to the triangular-matrix representation i = [i�� ]

�=�;�;+
�=�;�;+ with i�� (a) = 0

if � = + or � = � and i�+ (a) = l (a) for all a 2 a. Here a�� = i�� (a) are
linear operators K� ! K� on a pseudo-Hilbert (Euclidean if minimal) space K�
and on K+ = C = K�, having the adjoints a�y� : K� ! K� , which de�ne the
pseudo-Hermitian involution a 7! ay by a?��� = a

�y
��, where � (�; �;+) = (+; �;�).

Moreover, if the representation is minimal, then K� is a Euclidean space and
i�� (�) = �

�
��

+
� .

Proof. In the matrix notation i�� (a) = k�i (a) k� , where k� = ky+, k
+ = ky� are

de�ned by kyx = (kjx) for all k;x 2 K, (2.5) can be written as i�+ (a) = l (a), and
i++ (a) = 0 = i

�
� (a) and i

+
� (a) = 0 as

i (a) k� = i (a�) k = 0 = kyi (�a) = k+i (a) 8a 2 a.
Moreover, due to the pseudo-orthogonality

(xjx) = ���� + (x�jx�) + �+�+ � (xjx) ;

of the decomposition x=��k�+x�+�
+k+, where �

� = k�x = ��+, �
+ = k+x = ���,

x =
�
��; x

y
�; �+

�
, the representation of the Itô ?-algebra (a; l) is de�ned by the

homomorphism i : a 7! [i�� (a)] into the space of triangular block-matrices a =
[a�� ]

�=�;�;+
�=�;�;+ with a

�
� = 0 if � = + or � = �.
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If the representation is minimal in the sense that K=i (a) k, and k has zero length,
it is pseudo-unitary equivalent to the triangular representation on the complex
Minkowski space C�K��C, as it can be easily seen in the basis k+ = k, k� = i (�) k.
Indeed, the pseudo-orthogonal to the zero length vectors k�; k+ space K� in this
case is the complex Euclidean space K� = fi (a) k : l (a) = 0g as

�+ = k+i (a) k = 0; �� = k�i (a) k = l (a) 8a 2 a;

and (x�jx�) = l (a? � a) � 0 for all x� = i (a) k� ��k� = i (a� l (a)�) k. Moreover,
in the minimal representation i�� (�) = 0 = i

�
+ (�) and i

�
� (�) = 0 as

i (�) x� = i (�a) k = 0 = i (a?�) k = xy�i (�) 8x� 2 K�:

Thus, the only nonzero matrix element of i (�) is i�+ (�) = 1: �

Note that the matrix representation is also de�ned as the right representation
x 7! xa on all raw-vectors x =

�
��; �; �+

�
, � 2 Ky�, into the dual space K� =

C�K���C � Ky with the invariant Ky =
�
xy : x 2 K

	
such that a�+ = (k

�ajk�) =
l (a), where k� = (1; 0; 0). We shall call the triangular matrix representation on a
Minkowski space C�K�C canonical if K is a minimal pre-Hilbert space. Thus we
have proved the second part of the following

Theorem 2. Every Itô ?-algebra (a; l) can be canonically realized in a complex
Minkowski space. Moreover, every minimal closed pseudo-Euclidean representation
is equivalent to the canonical one in the Minkowski space.

Proof. Now we construct a faithful canonical operator representation for any Itô
algebra (a; l). The functional l de�nes for each a 2 a the canonical quadruple

(2.6) a�� = i (a) ; a�+ = k (a) ; a�� = k
y (a) ; a�+ = l (a) ;

where i (a) = i (a?)
y is the GNS representation k (ab) = i (a) k (b) of a in the

pre-Hilbert space K� 3 k (b), b 2 a of the Kolmogorov decomposition l (a � b) =
ky (a) k (b), and ky (a) = k (a?)

y. Such quadrupole representation i : a 7! a =

(a�� )
�=�;�
�=+;� of a is multiplicative, i (a � b) = (a

�
�b
�
�)
�=�;�
�=+;� with respect to the product

given by the convolution of the components a� and b� over the common index values
� = � = �:

i (a) i (b) = i (a � b) ; ky (a) i (b) = ky (a � b)
i (a) k (b) = k (a � b) ; ky (a) k (b) = l (a � b) .

It is faithful because of the triviality of the ideal (2.3). One can also use the
convenience a�� = 0 = a

+
� of the tensor notations (2.6), extending the quadruples

a = i (a) to the triangular matrices a = [a�� ]
�=�;�;+
�=�;�;+ , in which (3.2) is simply

given by i (a � b) = ab in terms of the usual product of the matrices a = i (a)
and b = i (b). However the involution a 7! a?, which is given by the Hermitian

conjugation i (a?) =
�
a��y��

��=�;�
�=+;�

of the quadruples a, where �(�) = +, �� = �,

�(+) = �, is represented by the adjoint matrix ay = Ga�G w.r.t. the pseudo-
Euclidean (complex Minkowski) metric tensor G =

�
����

��=�;�;+
�=�;�;+ . Thus, we have
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constructed the faithful canonical representation

i (a) =

24 0 ky (a) l (a)
0 i (a) k (a)
0 0 0

35 ; i (a � b) = i (a) i (b) ;(2.7)

i (a?) = Gi (a)
�
G; G =

24 0 0 1
0 I 0
1 0 0

35(2.8)

in the Minkowski space C�K � C with K = k (a) and k� = (1; 0; 0). �

3. Decomposition of Itô ?-algebras

This was already noted in [4, 5] that every (classical or quantum) stochastic
noise described by a process t 2 R+ 7! � (t; a) ; a 2 a with independent increments
d� (t; a) = � (t+ dt; a) � � (t; a) forming an Itô y-algebra, can be represented in
the Fock space F over the space of K-valued square-integrable functions on R+ with
the vacuum vector state. This representation is given by � (t; a) = a���

�
� (t), where

(3.1) a���
�
� (t) = a

�
��

�
� (t) + a

�
+�

+
� (t) + a

�
� �

�
� (t) + a

�
+�

+
� (t) ;

is the canonical decomposition of � into the exchange ���, creation �
+
� , annihilation

��� and preservation (time) �
+
� = tI operator-valued processes of the vacuum quan-

tum stochastic calculus, having the mean values


��� (t)

�
= t��+�

�
� , and a

�
� = i

�
� (a)

are the matrix elements of the canonical representation associated with the Itô al-
gebra state l. If the Itô algebra a is faithful in the sense of the triviality of the
ideal (2.3), the constructed canonical representation (2.7) is obviously also faith-
ful. Thus we can identify the faithful algebra a with the family of quadrupoles
a = (i�� (a))

�=�;�
�=+;� , and the state l on a with l (a) = i

�
+ (a), by saying that the Itô

algebra is given in its fundamental representation.

De�nition 1. Let K be a pre-Hilbert space, and l (K) be the associated ?-algebra
of all quadrupoles A = (a�� )

�=�;�
�=+;� , where a

�
� are linear operators K� ! K� with

K� = K, K+ = C = K�, having the adjoints a�y� : K� ! K� , with the product and
involution

(3.2) A �B = (a��b��)
�=�;�
�=+;� ; A� =

�
a��y��

��=�;�
�=+;�

.

It is an Itô algebra with respect to l (a) = a�+ and the death Ð=
�
����

+
�

��=�;�
�=+;� =Ð

�,
A�Ð= 0, 8A 2 l (K), called the vacuum, or HP (Hudson-Parthasarathy) algebra
associated with the space K. The fundamental representation of an Itô algebra (a; l)
is given by the constructed canonical homomorphism i : a! l (K)

i (a) =

�
l (a) ky (a)
k (a) i (a)

�
; i (a?) =

 
l (a?) k (a)

y

k (a?) i (a)
y

!
;

i (a � b) = i (a) � i (b) ; i (a?) = i (a)
�

into the HP algebra, associated with the space K of its canonical representation. An
Itô algebra is called vacuum B*-algebra if n?+ = n

�, where

(3.3) n+ = fc 2 a : k (c) = 0g ; n� =
�
b 2 a : ky (b) = 0

	
;
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and n?+ is the right (and left) orthogonal complement to n+, and it is called thermal
algebra if n+ = C�= n� and the involution ? is left (or right) closable on the
pre-Hilbert space D = a=C�.

A subalgebra of l (K) is a vacuum Itô algebra i¤ from orthogonality of k (a) to all
k (c) with ky (c) = 0 it follows that k (a) = 0. This means the maximality n+ = k�

of the left ideal n+ = k�1 (0) � k�, where
(3.4) k� =

�
a 2 a : hajbi+ = 0;8b 2 n

�	 = k?+
or n� = k+ as the right null ideal n� = n?+ for the map k

y in terms of the right
orthogonal complement k+ = n?+. It follows from the canonical construction of K
as the quotient space a=n+. Note that due to the orthogonality of k+ and k� in
vacuum Itô algebras, the involution ? is never de�ned in k+ or in k� except on the
jointly null ideal n� \ n+.
In the case of thermal Itô algebras the ideals n+ (and n�) are minimal, and the

involution ? is de�ned into k+ on the whole k+ = a = k�, and thus on the pre-Hilbert
space D = a=C� identi�ed with fx = a� l (a)� : a 2 ag, by x? = a? � l (a?)� . So
the subalgebra of l (K) is a thermal algebra i¤ the involution is closable on the dense
domain D = k (a) of the GNS space K, as it is in the case of tracial Itô algebras,
when the involution is isometric. The involution ? onto D has densely de�ned left
and right adjoints in D (coinciding with it in the tracial case) i¤ it is closable.
We shall call an Itô algebra a the Brownian algebra if i (a) = 0, and the Lévy

algebra in the opposite case, when i (a) is non-degenerated on k (a) and thus i (a)
has an identity operator I 2 i (a) in the �nite dimensional case. We shall say
that an Itô algebra has a quotient identity e 2 a if E = i (e) = Ey is the identity
for the operator algebra A = i (a). The following theorem proves that every Itô
algebra is an orthogonal sum of a Brownian algebra and of a Lévy algebra at least
in the �nite dimensional case, as it states the famous Lévy-Khinchin theorem in the
commutative case. A general in�nite dimensional non-commutative version of the
Lévy-Khinchin decomposition theorem is also true and will be published elsewhere.

Theorem 3. Let a be an Itô algebra with a quotient identity. Then it is an or-
thogonal sum b+ c, b � c = 0 of a quantum Brownian algebra b and a quantum Lévy
algebra c.

Proof. We assume that the quotient algebra a=n with respect to the null ?-ideal
n = fa 2 a : i (a) = 0g has an identity, which de�nes the supporting ortho-projector
E = i (e) for the operator representation A = i (a) ' a=n on a pre-Hilbert space
K. This means that there exists an element e = e? 2 a such that aec = ac for all
a; c 2 a, where

ac = a � c� l (a � c)�
is the associative factor-product of the ?-algebra a=C�' fa 2 a : l (a) = 0g for the
zero mean elements a� l (a)�. Ideed, it is so in the canonical representation (2.7)
as i (ae) = i (a) = i (ea) for all a 2 a because i (�) = 0 and i (e) = E,

k (aec) = i (ae) k (c) = k (ac) ; ky (aec) = ky (c) i (ea) = ky (ac) ;

and l (aec) = 0 = l (ac). We assume that e is an idempotent, otherwise it should
be replaced by e2.
We can easily then de�ne the required orthogonal decomposition a = b+ c by

a = b+ c; c = ae+ ea� eae:
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Here b is an element of the quantum Brownian algebra b = fb 2 a : be = 0 = ebg � n
which is orthogonal to the subalgebra aa as

b � a = bea+ l(b � a)�= l (b � a)�; a � b = aeb+ l (a � b)�= l (a � b)�
for all b 2 b, and hence

b � aa? = ba � a? = 0 = a? � ab = a?a � b
for all a 2 a. And c is an element of a quantum Lévy algebra c, the closure of aa in
a which coincides with all the algebraic combinations c as c?c = a?a for all a 2 a.
Thus a = b + c, b � c = 0 for all a 2 a, where b 2 b is in a Brownian algebra with
the fundamental representation b � C� G+ � G�, where G+ = Pk (a), P = I �E,
G� = ky (a)P , and c 2 c is in a Lévy algebra, having the fundamental representation
c � C� E+�E��A with non-degenerated operator algebra A = i (a), left and right
represented on E+ = Ek (a) and E� = ky (a)E. �

4. Vacuum and Thermal Itô algebras

Here we consider the two extreme cases of Itô algebras as sub-algebras of the vac-
uum algebra l (K) associated with a pre-Hilbert space K. The �rst case corresponds
to a pure state l on a as it is in the case of a quantum noise of zero temperature, and
the second case corresponds to a completely mixed l as in the case of a quantum
noise of a �nite temperature.

4.1. Vacuum noise ?-algebra. Let K be a pre-Hilbert space of ket-vectors �
with scalar product (�j�) and A � L (K) be a ?-algebra, represented on K by
the operators A 3 A : � 7! A� with the adjoints

�
Ay�j�

�
= (�jA�), AyK � K.

We denote by Ky the dual space of bra-vectors � = �y, � 2 K with the scalar

product
�
�j�y

�
= �� =

�
�yj�

�
, � 2 K given by inverting anti-linear isomorphism

Ky 3 � 7! �y 2 K, and the dual representation of A as the right representation
A0 : � 7! �A, � 2 Ky, given by (�A) � = � (A�) such that

�
�Ayj�

�
= (�j�A) on Ky.

Then the direct sum K �Ky of � = � � � becomes a two-sided A-module
(4.1) A (� � �) = A�; (� � �)A = �A; 8� 2 K; � 2 Ky;
with the �ip-involution �? = �y � �y and two scalar products

(4.2)


� � �0j� 0 � �

�
+
=
�
�j� 0
�
;


� � �0j� 0 � �

��
= (�0j�) :

The space a = C�K�Ky �A of triples a = (�; �; A) becomes an Itô ?-algebra
with respect to the non-commutative product

(4.3) a? � a =
�
h�j�i+ ; �

?A+Ay�; AyA
�
; a � a? =

�
h�j�i� ; A�? + �Ay; AAy

�
;

where (�; �; A)? =
�
��; �?; Ay

�
, with death �= (1; 0; 0) and l (�; �; A) = �. Obvi-

ously a? � a 6= a � a? if k�k+ = k�k 6= k�k = k�k� even if the operator algebra A is
commutative, AyA = AAy.
We shall call such Itô algebra the vacuum algebra as l (a? � a) = 0 for any a 2 a

with � 2 Ky (the Hudson-Parthasarathy algebra a = l (K) if A = L (K)). Every Itô
algebra is a subalgebra a � l (K) of the HP algebra l (K) for a pre-Hilbert space K
with the operator factor-algebra A represented on K.
If the algebra A is completely degenerated on K, A = f0g, the Itô algebra a is

nilpotent of second order, and contains only two-dimensional subalgebras of Wiener
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type b = C � C � f0g generated by an a = (�; � � �; 0) with k�k = k�k. Every
Itô subalgebra b � a of the HP algebra a = l (K) is called the Itô algebra of a
vacuum Brownian motion if it is de�ned by a ?-invariant direct sum G � Gy given
by a subspace G � K and A = f0g.
In the case I 2 A the algebra A is not degenerated and contains also the vacuum

Poisson subalgebra C � f0g � CI of the total quantum number on K, and other
Poisson two-dimensional subalgebras, generated by a = (�; � � �; I) with � = ei��y.
We shall call a closed Itô subalgebra c � a of the HP algebra a = l (K) the algebra
of a vacuum Lévy motion if it is given by a direct sum E � Ey and a ?-subalgebra
A � L (K) non-degenerated on the subspace E � K.
Our decomposition theorem for the vacuum algebras can be reformulated as

follows

Theorem 4. Every vacuum algebra a having the unital factor-algebra A can be
decomposed into an orthogonal sum a = b+ c, b � c = f0g of the Brownian vacuum
algebra b and the Lévy vacuum algebra c.

Proof. This decomposition is uniquely de�ned for all a = (�; �; A) by a = ��+b+c,
with b = (0; �; 0), c = (0; �; A), � = P���P 2 G, � = ��� 2 E , where P = I�E =
P y is the maximal projector in K, for which AP = f0g, G = PK, and E = G? is
the range of the identity orthoprojector E 2 A. �
4.2. Thermal noise ?-algebra. Let D be a left ?-algebra [6] with respect to a
Hilbert norm k�k+ = 0) � = 0, and thus a right pre-Hilbert ?-algebra with respect
to k�k� = k�?k+. This means that D is a complex Euclidean space with left (right)
multiplications C : � 7! �� (C 0 : � 7! ��) w.r.t. k�k+ (w.r.t. k�k

�) of the elements
�; � 2 D respectively, de�ned by an associative product in D, and the involution
D 3 � 7! �? 2 D such that

(4.4) h��?j�i� = h�j��i� ; h�?�j�i+ = h�j��i+ 8�; �; � 2 D;

were h�j�?i� = h�?j�i+ is the right scalar product. The involution is assumed to
have the adjoints

(4.5) h�j�?i� =


�j�]

��
; h�j�?i+ =

D
�j�[

E
+

8� 2 D�; � 2 D+;

where D+ = D[+ is a dense domain for the left adjoint involution � 7! �[, �[[ = �,

and D� = D?+ is the dense domain for the right adjoint involution � 7! �],
�
�]�
�]
=

�]� such that �[? = �?\, �]? = �?[.
Note that we do not require the sub-space DD � D of all products f�� : �; � 2 Dg

to be dense in D w.r.t. any of two Hilbert norms on D. Hence the operator factor-
algebra C = fC : D 3 � 7! ��j� 2 Dg w.r.t. the left scalar product, which is also
represented on the D 3 � equipped with h�j�i� by the right multiplications �C = ��,
� 2 D, can be degenerated on D.
Thus the direct sum a = C�D of pairs a = (�; �) becomes an Itô ?-algebra with

the product

(4.6) a?a =
�
h�j�i+ ; �

?�
�
; aa? =

�
h�j�i� ; ��?

�
;

where (�; �)? = (��; �?), with death �= (1; 0) and l (�; �) = �. Obviously a?a 6= aa?
if the involution a 7! a? is not isometric w.r.t. any of two Hilbert norms even if the
algebra D is commutative.
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We shall call such Itô algebra the thermal Itô algebra as l (a?a) = k�k2+ 6= 0 for
any a 2 a with � 6= 0. If �� = 0 for all �; � 2 D, it is the Itô algebra of a thermal
Brownian motion. A thermal subalgebra b � a with such trivial product is given
by any involutive pre-Hilbert ?-invariant two-normed subspace G � D. We shall
call such Brownian algebra b = C�G the quantum (if k�k+ 6= k�k

�) Wiener algebra
associated with the space G.
In the opposite case, ifDD = f�� : �; � 2 Dg is dense inD, it has non-degenerated

operator representation C on D. Any involutive sub-algebra E � D which is non-
degenerated on E de�nes an Itô algebra c = C � E of thermal Lévy motion. We
shall call such Itô algebra the quantum (if E is non-commutative) Poisson algebra.
Our decomposition theorem for the thermal algebras can be reformulated as

follows

Theorem 5. Every thermal Itô algebra a having the unital subalgebra DD is an
orthogonal sum a = b+ c, bc = f0g of the Wiener algebra b and the Poisson algebra
c.

Proof. The orthogonal decomposition a = ��+ b+ c for all a = (�; �) 2 a, uniquely
given by the decomposition � = �+ � w.r.t. any of two scalar products in D, where
� = P� = �P is the orthogonal projection onto G ? DD w.r.t. any of two Hilbert
norms, and � = � � � .
Indeed, if � 2 D is left orthogonal to DD, then it is also right orthogonal to DD

and vice versa:

h��?j�i� = h��?j�?i+ =
D
�j�]?�[

E
+
= 0; 8� 2 D�; � 2 D+;

h�?�j�i+ = h�?�j�?i� =
D
�j�]�[?

E�
= 0; 8� 2 D�; � 2 D+:

From these and (4.4) equations it follows that �� = 0 = �� for all �; � 2 D if � is
(right or left) orthogonal to DD, and so i (�) = 0 for such � and vice versa. Thus
the orthogonal subspace G = f� 2 D : i (�) = 0g is the range of the orthoprojector
P = I � E, where E is the identity orthoprojector of C, representing the unity
" = "? of DD such that "� = � = �" 2 D is in E = DD and � = � � � 2 G. �

Example 1. The commutative multiplication table dbid�bk = �ikdt for the complex
Itô di¤erentials dbk = d�b�k, k = 0;�1; : : : ;�K of the complex amplitudes

bk (t) =
NX
n=1

ejk�nwn (t) ; dwi (t) dwn (t) =
1

N
�indt

for N independent Wiener processes wn; n = 1; : : : ; N with N � 2K + 1; �n =
2�
N n� � can be generalized in the following way.
Let �k > 0, k = 0;�1; : : : ;�K be a self-inverse family of spectral eigen-values

��k = �
�1
k . The generalized multiplication table di � d?k = �k�

i
k� for abstract in�ni-

tesimals dk = d?�k, k 2 Z is obviously non-commutative for all k with �k 6= 1. The
?-semigroup f0;�; dk : jkj � Kg generates a 2 (K + 1)-dimensional Itô algebra (b; l)
of a quantum Wiener periodic motion on [��; �] as it is the second order nilpo-
tent algebra a of a = ��+b, y =

P
�kdk with y? =

P
�kd

?
k and l (y) = 0 for all

�k = ��k 2 C. It is a Brownian algebra with closed involution on the complex space D
of all � given by all complex sequences � = (�k)jkj�K . The operator representation of
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a in Fock space is de�ned by the forward di¤erentials of � (t; a) = �tI+
P
�kŵk (t),

where ŵk (t) = v̂
�
k (t) + v̂

+
k (t),

v̂�k (t) =
���k
N

� 1
2

NX
n=1

ejk�n�n� (t) ; v̂+k (t) =
��k
N

� 1
2

NX
n=1

ejk�n�+n (t)

are given by the annihilation and creation measures in Fock space over square in-
tegrable functions on R+ � [��; �] with the standard multiplication table

d�n� (t) d�
+
m (t) = �

n
mIdt; d�+m (t) d�

n
� (t) = 0:

Example 2. The commutative multiplication table dcid�ck = �ikdt + dci�k for the
complex Itô di¤erentials dck = d�c�k, k = 0;�1; : : : ;�K of the complex amplitudes
ck (t) =

PN
n=1 e

jk�nmn (t), �n = �n = 2�
N n� �, given by N � 2K + 1 compensated

Poisson processes mn (t) with

dmi (t) dmn (t) =
1

N
�indt+ dmn (t) �

i
n; i; n = 1; : : : ; N;

can be generalized in the following way.
Let G be a �nite group, and G3g 7! �g 2 C be a positive-de�nite function, �g�1 =

��g, which is self-inverse in the convolutional sense
�
�� � �

�
g
=
P

h
��gh�1�h = �1g.

The generalized multiplication table for abstract in�nitesimals

dg = d
?
�g; dg � d?h = �gh�1�+ dgh�1 ; g; h 2 G

is obviously associative and commutative if G is Abelian as in the above case, but
it is non-commutative for non Abelian G even if �k = �1k as in the above case.
The ?-semigroup f0;�; dg : g 2 Gg generates �nite dimensional Itô algebra (a; l) of
a quantum compensated Poisson motion on the spectrum 
 of the group G as a
is the sum of C� and the unital group algebra D of z =

P
�gdg with involution

z? =
P
�gd

?
g and l (z) = 0 for all �g = ��g 2 C. It is a Lévy algebra with closed

involution on the complex space D of all complex sequences � =
�
�g
�
g2G with

k�k� =
�X�

�� � ~�
�2
g
�g

�1=2
= k�?k+ ;

where ~� =
�
�g�1

�
g2G. The operator representation of a in Fock space is de�ned

over the Hilbert space of square integrable function on R+ with values in the direct
sum K = �n2ĜK (n) dn of �nite dimensional Euclidean spaces K (n) for unitary
irreducible representations Ug (n) of spectrum Ĝ of the group G with the Plansherel
measure dn; n 2 Ĝ. It is given by the forward di¤erentials of � (t; a) = �tI +P
�gm̂g (t), where

m̂g (t) =
X
n2N

TrK(n)

n
Ug (n)

h
�1=2n �n� (t) + �

+
n (t) �

1=2
n + �nn (t)

io
;

with the standard annihilation, creation and exchange operators in this Fock space,
and a family (�n)n2Ĝ of positive operators in K (n) with the traces Tr�n, de�ning
the spectral decomposition

�g =
X
n2Ĝ

Tr [�nUg (n)] dn:
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