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Riemann surfaces
The Teichmüller space
The hyperbolic plane

Exercises

Motivations

Classical gravity, empty space = 4-dim Einstein metric with Lorentz
signature. ricg = Λg . Di�cult.
Toy model : 3-dim analog. In dim 3, Einstein metrics have constant
curvature. Much easyer (�nite dimensional spaces of metrics). Λ = −1 :
AdS (anti-de Sitter) metrics. In particular GHMC.
AdS manifolds are strongly related to hyperbolic surfaces and Teichmüller
theory.
GHMC AdS manifolds have Riemannian analogs : quasifuchsian
hyperbolic 3-manifolds. Those quasifuchsian manifolds actually appear in
the physical theory. They can also be described in terms of Teichmüller
theory.
Teichmüller theory is rich but fairly well understood ; possible
quantization.
We wish to present some of the relations between those three areas :
hyperbolic surfaces, quasifuchsian 3-manifolds, GHMC AdS manifolds.
Large parts extend with �particles�, i.e. beyond empty space.
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Riemann surfaces
The Teichmüller space
The hyperbolic plane

Exercises

Broad outline

A crash-course in hyperbolic geometry.
Designed for physicists : more statements than proofs. Goal : get a broad
idea of what is going on. Then read further !

def of Teichmüller space. (1)

the hyperbolic plane. (2)

Fenchel-Nielsen coordinates on Teichmüller space. (2)

Riemann surfaces vs hyperbolic surfaces. (2)

�hyperbolic� Teichmüller theory : measured laminations,
earthquakes, etc. (3)

quasifuchsian hyperbolic manifolds. (4)

GHMC AdS manifolds and the Earthquake theorem. (5)

Not done : the �classical� Teichmüller theory in terms of complex analysis.
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Riemann surfaces
The Teichmüller space
The hyperbolic plane
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Surfaces

A surface is a topological space which near each points �looks like� the
Euclidean plane. Possible to include boundary (sometimes necessary
here). Def : atlas of charts φi : Ωi → R2. If Ωi∩Ωj 6= ∅, φj ◦φ−1

i is smooth.

Closed surfaces : compact, no boundary.
Oriented if ∃ non-vanishing area form.
Or : if one can choose a �left-hand� side.
The Möbius strip is not oriented.
Classi�cation : by genus. g = 0 : sphere.
g = 1 : torus. g = 2, etc.

φ
i

Ω
i

φ
i

Ω i

φj
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Riemann surfaces

A Riemann surface is a closed surface with a complex structure.
Def : charts now in C, φj ◦ φ−1

i is holomorphic.
Riemann surfaces are always oriented (multiply by i for left-hand side).
Other possible def : by (S , J), where, ∀x ∈ S , J : TxS → TxS is such
that J2 = −I . J de�nes a complex structure on S .
Question : understand all possible complex structures on a surface.
To answer it, we will use hyperbolic metrics on S .
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Di�eos, isotopies

Two possible notions of equivalent complex structures on S .
Def : a di�eomorphism f : S → S is a smooth, one-to-one map, such that
df : TxS → Tf (x)S is an isomorphism at each point. Form a group, DS .
J, J ′ can be considered to be equivalent if ∃ a di�eo f : S → S sending J

to J ′ :
∀x ∈ S ,∀u ∈ TxS , df (Ju) = J ′df (u) .

The space of complex structures on S up to di�eomorphism is the
moduli space MS .
Def : an isotopy is a di�eo f : S → S which is homotopic to the identity :
∃(ft)t∈[0,1] di�eos, f0 = Id , f1 = f .
Form a group, D0.
The Teichmüller space TS is the space of complex structures up to
isotopies.
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Teichmüller vs moduli space

Def : D/D0 is the mapping-class group of S .
Examples :

S = S2 : D = D0.

S = T 2 = R2/Z2 : D/D0 = SL(2, Z). Any M ∈ M(2, Z) with
det(M) 6= 0 de�nes a di�eo R2 → R2 sending Z2 to Z2, hence a
map m : T 2 → T 2. If M ∈ SL(2, Z) then m is one-to-one. Any
di�eo f : T 2 → T 2 is isotopic to such a map.

g ≥ 2 : the mapping-class group is much more complicated !
Interesting object to study.
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Dehn twists

A simple example of di�eo not isotopic to the identity.
Start with a closed surface S , choose a
simple closed curve γ. Open S along γ,
turn the right-hand side by 2π, and glue
back alongn γ.

This de�nes a di�eo of S , not isotopic to the identity, a Dehn twist.
Thm : Dehn twists generate D+/D0.
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Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form gx
on TxS , ∀x ∈ S .
The Levi-Cività connection ∇ : associates to two vector �elds u, v a
vector �eld ∇uv , such that

connection : ∇u(fv) = du(f )v + f∇uv ,

compatible with g : u.g(v ,w) = g(∇uv ,w) + g(v ,∇uw),

torsion-free : ∇uv −∇vu = [u, v ].

The curvature operator : Ru,vw = ∇u∇vw −∇v∇uw −∇[u,v ]w . Thm :
g(Ru,vw , z) at x ∈ S only depends of u, v ,w , z at x . Moreover,
antisymetric in u, v and w , z and symmetric in (u, v), (w , z).
Therefore, curvature K de�ned as :
gx(Ru,vw , z) = −Kdax(u, v)dax(w , z).
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The hyperbolic plane

The hyperbolic plane is an analogue of S2...

but in the Minkowski 3-dim space, R2,1.
H2 := {x ∈ R2,1 | 〈x , x〉 = −1 ∧ x0 > 0}
H2 is complete, with constant curva-

ture −1. Its geodesics are the intersec-
tions with the planes containing 0.

−

+

+

−

+

+

Its (orientation-preserving) isometry group is SO+(2, 1) = PSL(2, R)
Same construction in higher dim, in dim 3 the isometry group is
SO(3, 1) = PSL(2, C).
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The projective model of H2

Obtained by projecting each x ∈ H2 on
z = 1 in the direction of 0.
The images of the geodesics of H2 are the
segments.

−

+

+

−

+

+

Not conformal : angles are not preserved.
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The Poincaré disk model

Project each x ∈ H2 on z = 1 in the di-
rection of (0, 0,−1).
This model is conformal, angles are pre-
served. Geodesics are sent to circles arcs
orthogonal to the boundary. Def : �boun-
dary at in�nity�. The circles tangent to
the boundary are the horocycles, they are
at �constant distance� from a point at in-
�nity.

−

+

+
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The PoincarÃ© half-plane model

Apply to the Poincaré disk model the
transformation z 7→ 1/(z − i) − i

(conforme). Yields the �Poincaré half-
plane�.
The boundary at in�nity is identi�ed with
the real line, plus a point �at in�nity�.
The geodesics are the half-circles cente-
red on R and the vertical half-lines, the
horocycles are the horizontal lines and the
circles tangent to R.

1

i

1

i

1

i

The metric is : (dx2 + dy2)/y2. The identi�cation SO+(2, 1) = PSL(2,R)
is best seen in this model : projective action on the real line.
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Topology and Riemannian geometry

1 Show that the two defs of a Riemann surface � in terms of a map to
C and in terms of J � are equivalent.

2 Show that S2 is di�eomorphic to CP1.

3 Show (properly) that the mapping-class group of the torus is
SL(2, Z).

4 Show that the Levi-Civitá connection of g is uniquely determined.

5 Show that g(Ru,vw , z) is anti-symmetric in u, v .

6 Show that g(Ru,vw , z) is anti-symmetric in w , z .

7 Show that g(Ru,vw , z) is symmetric in (u, v), (w , z).
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