Hyperbolic geometry for 3d gravity 1. Introduction and motivations

Jean-Marc Schlenker

Institut de Mathématiques Université Toulouse III http://www.picard.ups-tlse.fr/~schlenker

March 23-27, 2007

Motivations

Classical gravity, empty space = 4-dim Einstein metric with Lorentz signature. $ric_g = \Lambda g$. Difficult.

Toy model : 3-dim analog. In dim 3, Einstein metrics have constant curvature. Much easyer (finite dimensional spaces of metrics). $\Lambda = -1$: AdS (anti-de Sitter) metrics. In particular GHMC.

- AdS manifolds are strongly related to hyperbolic surfaces and Teichmüller theory.
- GHMC AdS manifolds have Riemannian analogs : quasifuchsian hyperbolic 3-manifolds. Those quasifuchsian manifolds actually appear in the physical theory. They can also be described in terms of Teichmüller theory.
- Teichmüller theory is rich but fairly well understood ; possible quantization.

Motivations

Classical gravity, empty space = 4-dim Einstein metric with Lorentz signature. $ric_g = \Lambda g$. Difficult.

Toy model : 3-dim analog. In dim 3, Einstein metrics have constant

curvature. Much easyer (finite dimensional spaces of metrics). $\Lambda=-1$: AdS (anti-de Sitter) metrics. In particular GHMC.

AdS manifolds are strongly related to hyperbolic surfaces and Teichmüller theory.

GHMC AdS manifolds have Riemannian analogs : quasifuchsian hyperbolic 3-manifolds. Those quasifuchsian manifolds actually appear in the physical theory. They can also be described in terms of Teichmüller theory.

Teichmüller theory is rich but fairly well understood ; possible quantization.

Motivations

Classical gravity, empty space = 4-dim Einstein metric with Lorentz signature. $ric_g = \Lambda g$. Difficult.

Toy model : 3-dim analog. In dim 3, Einstein metrics have constant curvature. Much easyer (finite dimensional spaces of metrics). $\Lambda = -1$:

AdS (anti-de Sitter) metrics. In particular GHMC.

AdS manifolds are strongly related to hyperbolic surfaces and Teichmüller theory.

GHMC AdS manifolds have Riemannian analogs : quasifuchsian hyperbolic 3-manifolds. Those quasifuchsian manifolds actually appear in the physical theory. They can also be described in terms of Teichmüller theory.

Teichmüller theory is rich but fairly well understood ; possible quantization.

Motivations

Classical gravity, empty space = 4-dim Einstein metric with Lorentz signature. $ric_g = \Lambda g$. Difficult.

Toy model : 3-dim analog. In dim 3, Einstein metrics have constant curvature. Much easyer (finite dimensional spaces of metrics). $\Lambda = -1$: AdS (anti-de Sitter) metrics. In particular GHMC.

AdS manifolds are strongly related to hyperbolic surfaces and Teichmüller theory.

GHMC AdS manifolds have Riemannian analogs : quasifuchsian hyperbolic 3-manifolds. Those quasifuchsian manifolds actually appear in the physical theory. They can also be described in terms of Teichmüller theory.

Teichmüller theory is rich but fairly well understood ; possible quantization.

Motivations

Classical gravity, empty space = 4-dim Einstein metric with Lorentz signature. $ric_g = \Lambda g$. Difficult.

Toy model : 3-dim analog. In dim 3, Einstein metrics have constant curvature. Much easyer (finite dimensional spaces of metrics). $\Lambda=-1$: AdS (anti-de Sitter) metrics. In particular GHMC.

AdS manifolds are strongly related to hyperbolic surfaces and Teichmüller theory.

GHMC AdS manifolds have Riemannian analogs : quasifuchsian hyperbolic 3-manifolds. Those quasifuchsian manifolds actually appear in the physical theory. They can also be described in terms of Teichmüller theory.

Teichmüller theory is rich but fairly well understood ; possible quantization.

Motivations

Classical gravity, empty space = 4-dim Einstein metric with Lorentz signature. $ric_g = \Lambda g$. Difficult.

Toy model : 3-dim analog. In dim 3, Einstein metrics have constant curvature. Much easyer (finite dimensional spaces of metrics). $\Lambda = -1$: AdS (anti-de Sitter) metrics. In particular GHMC.

AdS manifolds are strongly related to hyperbolic surfaces and Teichmüller theory.

GHMC AdS manifolds have Riemannian analogs : quasifuchsian hyperbolic 3-manifolds. Those quasifuchsian manifolds actually appear in

the physical theory. They can also be described in terms of Teichmüller theory.

Teichmüller theory is rich but fairly well understood ; possible quantization.

Motivations

Classical gravity, empty space = 4-dim Einstein metric with Lorentz signature. $ric_g = \Lambda g$. Difficult.

Toy model : 3-dim analog. In dim 3, Einstein metrics have constant curvature. Much easyer (finite dimensional spaces of metrics). $\Lambda=-1$: AdS (anti-de Sitter) metrics. In particular GHMC.

AdS manifolds are strongly related to hyperbolic surfaces and Teichmüller theory.

GHMC AdS manifolds have Riemannian analogs : quasifuchsian hyperbolic 3-manifolds. Those quasifuchsian manifolds actually appear in the physical theory. They can also be described in terms of Teichmüller theory.

Teichmüller theory is rich but fairly well understood ; possible quantization.

Motivations

Classical gravity, empty space = 4-dim Einstein metric with Lorentz signature. $ric_g = \Lambda g$. Difficult.

Toy model : 3-dim analog. In dim 3, Einstein metrics have constant curvature. Much easyer (finite dimensional spaces of metrics). $\Lambda = -1$: AdS (anti-de Sitter) metrics. In particular GHMC.

AdS manifolds are strongly related to hyperbolic surfaces and Teichmüller theory.

GHMC AdS manifolds have Riemannian analogs : quasifuchsian hyperbolic 3-manifolds. Those quasifuchsian manifolds actually appear in the physical theory. They can also be described in terms of Teichmüller theory.

Teichmüller theory is rich but fairly well understood ; possible quantization.

We wish to present some of the relations between those three areas : hyperbolic surfaces, quasifuchsian 3-manifolds, GHMC AdS manifolds. Large parts extend with "particles", i.e. beyond empty space.

< 日 > (四 > (四 > (三 > (三 >))))

Motivations

Classical gravity, empty space = 4-dim Einstein metric with Lorentz signature. $ric_g = \Lambda g$. Difficult.

Toy model : 3-dim analog. In dim 3, Einstein metrics have constant curvature. Much easyer (finite dimensional spaces of metrics). $\Lambda = -1$: AdS (anti-de Sitter) metrics. In particular GHMC.

AdS manifolds are strongly related to hyperbolic surfaces and Teichmüller theory.

GHMC AdS manifolds have Riemannian analogs : quasifuchsian hyperbolic 3-manifolds. Those quasifuchsian manifolds actually appear in the physical theory. They can also be described in terms of Teichmüller theory.

Teichmüller theory is rich but fairly well understood ; possible quantization.

Motivations

Classical gravity, empty space = 4-dim Einstein metric with Lorentz signature. $ric_g = \Lambda g$. Difficult.

Toy model : 3-dim analog. In dim 3, Einstein metrics have constant curvature. Much easyer (finite dimensional spaces of metrics). $\Lambda = -1$: AdS (anti-de Sitter) metrics. In particular GHMC.

AdS manifolds are strongly related to hyperbolic surfaces and Teichmüller theory.

GHMC AdS manifolds have Riemannian analogs : quasifuchsian hyperbolic 3-manifolds. Those quasifuchsian manifolds actually appear in the physical theory. They can also be described in terms of Teichmüller theory.

Teichmüller theory is rich but fairly well understood; possible quantization.

We wish to present some of the relations between those three areas : hyperbolic surfaces, quasifuchsian 3-manifolds, GHMC AdS manifolds.

Large parts extend with "particles", i.e. beyond empty space.

Motivations

Classical gravity, empty space = 4-dim Einstein metric with Lorentz signature. $ric_g = \Lambda g$. Difficult.

Toy model : 3-dim analog. In dim 3, Einstein metrics have constant curvature. Much easyer (finite dimensional spaces of metrics). $\Lambda=-1$: AdS (anti-de Sitter) metrics. In particular GHMC.

AdS manifolds are strongly related to hyperbolic surfaces and Teichmüller theory.

GHMC AdS manifolds have Riemannian analogs : quasifuchsian hyperbolic 3-manifolds. Those quasifuchsian manifolds actually appear in the physical theory. They can also be described in terms of Teichmüller theory.

Teichmüller theory is rich but fairly well understood ; possible quantization.

Broad outline

A crash-course in hyperbolic geometry.

Designed for physicists : more statements than proofs. Goal : get a broad idea of what is going on. Then read further!

- def of Teichmüller space. (1)
- the hyperbolic plane. (2)
- Fenchel-Nielsen coordinates on Teichmüller space. (2)
- Riemann surfaces vs hyperbolic surfaces. (2)
- "hyperbolic" Teichmüller theory : measured laminations, earthquakes, etc. (3)
- quasifuchsian hyperbolic manifolds. (4)
- GHMC AdS manifolds and the Earthquake theorem. (5)

Broad outline

A crash-course in hyperbolic geometry. Designed for physicists : more statements than proofs. Goal : get a broad idea of what is going on. Then read further!

- def of Teichmüller space. (1)
- the hyperbolic plane. (2)
- Fenchel-Nielsen coordinates on Teichmüller space. (2)
- Riemann surfaces vs hyperbolic surfaces. (2)
- "hyperbolic" Teichmüller theory : measured laminations, earthquakes, etc. (3)
- quasifuchsian hyperbolic manifolds. (4)
- GHMC AdS manifolds and the Earthquake theorem. (5)

Broad outline

A crash-course in hyperbolic geometry. Designed for physicists : more statements than proofs. Goal : get a broad idea of what is going on. Then read further !

- def of Teichmüller space. (1)
- the hyperbolic plane. (2)
- Fenchel-Nielsen coordinates on Teichmüller space. (2)
- Riemann surfaces vs hyperbolic surfaces. (2)
- "hyperbolic" Teichmüller theory : measured laminations, earthquakes, etc. (3)
- quasifuchsian hyperbolic manifolds. (4)
- GHMC AdS manifolds and the Earthquake theorem. (5)

Broad outline

A crash-course in hyperbolic geometry. Designed for physicists : more statements than proofs. Goal : get a broad idea of what is going on. Then read further!

- def of Teichmüller space. (1)
- the hyperbolic plane. (2)
- Fenchel-Nielsen coordinates on Teichmüller space. (2)
- Riemann surfaces vs hyperbolic surfaces. (2)
- "hyperbolic" Teichmüller theory : measured laminations, earthquakes, etc. (3)
- quasifuchsian hyperbolic manifolds. (4)
- GHMC AdS manifolds and the Earthquake theorem. (5)

Broad outline

A crash-course in hyperbolic geometry. Designed for physicists : more statements than proofs. Goal : get a broad idea of what is going on. Then read further !

- def of Teichmüller space. (1)
- the hyperbolic plane. (2)
- Fenchel-Nielsen coordinates on Teichmüller space. (2)
- Riemann surfaces vs hyperbolic surfaces. (2)
- "hyperbolic" Teichmüller theory : measured laminations, earthquakes, etc. (3)
- quasifuchsian hyperbolic manifolds. (4)
- GHMC AdS manifolds and the Earthquake theorem. (5)

Broad outline

A crash-course in hyperbolic geometry. Designed for physicists : more statements than proofs. Goal : get a broad idea of what is going on. Then read further!

- def of Teichmüller space. (1)
- the hyperbolic plane. (2)
- Fenchel-Nielsen coordinates on Teichmüller space. (2)
- Riemann surfaces vs hyperbolic surfaces. (2)
- "hyperbolic" Teichmüller theory : measured laminations, earthquakes, etc. (3)
- quasifuchsian hyperbolic manifolds. (4)
- GHMC AdS manifolds and the Earthquake theorem. (5)

Broad outline

A crash-course in hyperbolic geometry. Designed for physicists : more statements than proofs. Goal : get a broad idea of what is going on. Then read further!

- def of Teichmüller space. (1)
- the hyperbolic plane. (2)
- Fenchel-Nielsen coordinates on Teichmüller space. (2)
- Riemann surfaces vs hyperbolic surfaces. (2)
- "hyperbolic" Teichmüller theory : measured laminations, earthquakes, etc. (3)
- quasifuchsian hyperbolic manifolds. (4)
- GHMC AdS manifolds and the Earthquake theorem. (5)

Broad outline

A crash-course in hyperbolic geometry. Designed for physicists : more statements than proofs. Goal : get a broad idea of what is going on. Then read further!

- def of Teichmüller space. (1)
- the hyperbolic plane. (2)
- Fenchel-Nielsen coordinates on Teichmüller space. (2)
- Riemann surfaces vs hyperbolic surfaces. (2)
- "hyperbolic" Teichmüller theory : measured laminations, earthquakes, etc. (3)
- quasifuchsian hyperbolic manifolds. (4)
- GHMC AdS manifolds and the Earthquake theorem. (5)

Broad outline

A crash-course in hyperbolic geometry. Designed for physicists : more statements than proofs. Goal : get a broad idea of what is going on. Then read further!

- def of Teichmüller space. (1)
- the hyperbolic plane. (2)
- Fenchel-Nielsen coordinates on Teichmüller space. (2)
- Riemann surfaces vs hyperbolic surfaces. (2)
- "hyperbolic" Teichmüller theory : measured laminations, earthquakes, etc. (3)
- quasifuchsian hyperbolic manifolds. (4)
- GHMC AdS manifolds and the Earthquake theorem. (5)

Broad outline

A crash-course in hyperbolic geometry. Designed for physicists : more statements than proofs. Goal : get a broad idea of what is going on. Then read further!

- def of Teichmüller space. (1)
- the hyperbolic plane. (2)
- Fenchel-Nielsen coordinates on Teichmüller space. (2)
- Riemann surfaces vs hyperbolic surfaces. (2)
- "hyperbolic" Teichmüller theory : measured laminations, earthquakes, etc. (3)
- quasifuchsian hyperbolic manifolds. (4)
- GHMC AdS manifolds and the Earthquake theorem. (5)

Broad outline

A crash-course in hyperbolic geometry. Designed for physicists : more statements than proofs. Goal : get a broad idea of what is going on. Then read further!

- def of Teichmüller space. (1)
- the hyperbolic plane. (2)
- Fenchel-Nielsen coordinates on Teichmüller space. (2)
- Riemann surfaces vs hyperbolic surfaces. (2)
- "hyperbolic" Teichmüller theory : measured laminations, earthquakes, etc. (3)
- quasifuchsian hyperbolic manifolds. (4)
- GHMC AdS manifolds and the Earthquake theorem. (5)

Surfaces

A surface is a topological space which near each points "looks like" the Euclidean plane. Possible to include boundary (sometimes necessary here). Def : atlas of charts $\phi_i : \Omega_i \to \mathbb{R}^2$. If $\Omega_i \cap \Omega_i \neq \emptyset$, $\phi_i \circ \phi_i^{-1}$ is smooth

Closed surfaces : compact, no boundary. Oriented if \exists non-vanishing area form. Or : if one can choose a "left-hand" side. The Möbius strip is not oriented. Classification : by genus. g = 0 : sphere. g = 1 : torus. g = 2, etc.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Surfaces

A surface is a topological space which near each points "looks like" the Euclidean plane. Possible to include boundary (sometimes necessary here). Def : atlas of charts $\phi_i : \Omega_i \to \mathbb{R}^2$. If $\Omega_i \cap \Omega_i \neq \emptyset$, $\phi_i \circ \phi_i^{-1}$ is smooth.

Closed surfaces : compact, no boundary. Oriented if \exists non-vanishing area form. Or : if one can choose a "left-hand" side. The Möbius strip is not oriented. Classification : by genus. g = 0 : sphere. g = 1 : torus. g = 2, etc.

(日) (四) (三) (三)

Surfaces

A surface is a topological space which near each points "looks like" the Euclidean plane. Possible to include boundary (sometimes necessary here). Def : atlas of charts $\phi_i : \Omega_i \to \mathbb{R}^2$. If $\Omega_i \cap \Omega_i \neq \emptyset$, $\phi_i \circ \phi_i^{-1}$ is smooth.

Closed surfaces : compact, no boundary. Oriented if \exists non-vanishing area form. Or : if one can choose a "left-hand" side. The Möbius strip is not oriented. Classification : by genus. g = 0 : sphere. g = 1 : torus. g = 2, etc.

Surfaces

A surface is a topological space which near each points "looks like" the Euclidean plane. Possible to include boundary (sometimes necessary here). Def : atlas of charts $\phi_i : \Omega_i \to \mathbb{R}^2$. If $\Omega_i \cap \Omega_j \neq \emptyset$, $\phi_j \circ \phi_i^{-1}$ is smooth.

Closed surfaces : compact, no boundary. Oriented if \exists non-vanishing area form. Or : if one can choose a "left-hand" side. The Möbius strip is not oriented. Classification : by genus. g = 0 : sphere. g = 1 : torus. g = 2, etc.

Surfaces

A surface is a topological space which near each points "looks like" the Euclidean plane. Possible to include boundary (sometimes necessary here). Def : atlas of charts $\phi_i : \Omega_i \to \mathbb{R}^2$. If $\Omega_i \cap \Omega_i \neq \emptyset$, $\phi_i \circ \phi_i^{-1}$ is smooth.

Closed surfaces : compact, no boundary. Oriented if \exists non-vanishing area form. Or : if one can choose a "left-hand" side. The Möbius strip is not oriented. Classification : by genus. g = 0 : sphere. g = 1 : torus. g = 2, etc.

(日) (四) (三) (三)

Surfaces

A surface is a topological space which near each points "looks like" the Euclidean plane. Possible to include boundary (sometimes necessary here). Def : atlas of charts $\phi_i : \Omega_i \to \mathbb{R}^2$. If $\Omega_i \cap \Omega_i \neq \emptyset$, $\phi_i \circ \phi_i^{-1}$ is smooth.

Closed surfaces : compact, no boundary. Oriented if \exists non-vanishing area form. Or : if one can choose a "left-hand" side. The Möbius strip is not oriented. Classification : by genus. g = 0 : sphere. g = 1 : torus. g = 2, etc.

(日) (四) (三) (三)

Surfaces

A surface is a topological space which near each points "looks like" the Euclidean plane. Possible to include boundary (sometimes necessary here). Def : atlas of charts $\phi_i : \Omega_i \to \mathbb{R}^2$. If $\Omega_i \cap \Omega_i \neq \emptyset$, $\phi_i \circ \phi_i^{-1}$ is smooth.

Closed surfaces : compact, no boundary. Oriented if \exists non-vanishing area form. Or : if one can choose a "left-hand" side. The Möbius strip is not oriented. Classification : by genus. g = 0 sphere. g = 1 : torus. g = 2, etc.

(ロ) (四) (三) (三)

Surfaces

A surface is a topological space which near each points "looks like" the Euclidean plane. Possible to include boundary (sometimes necessary here). Def : atlas of charts $\phi_i : \Omega_i \to \mathbb{R}^2$. If $\Omega_i \cap \Omega_i \neq \emptyset$, $\phi_i \circ \phi_i^{-1}$ is smooth.

Closed surfaces : compact, no boundary. Oriented if \exists non-vanishing area form. Or : if one can choose a "left-hand" side. The Möbius strip is not oriented.

Classification : by genus. g = 0 : sphere. g = 1 : torus. g = 2, etc.

Surfaces

A surface is a topological space which near each points "looks like" the Euclidean plane. Possible to include boundary (sometimes necessary here). Def : atlas of charts $\phi_i : \Omega_i \to \mathbb{R}^2$. If $\Omega_i \cap \Omega_i \neq \emptyset$, $\phi_i \circ \phi_i^{-1}$ is smooth.

Closed surfaces : compact, no boundary. Oriented if \exists non-vanishing area form. Or : if one can choose a "left-hand" side. The Möbius strip is not oriented. Classification : by genus. g = 0 : sphere. g = 1 : torus. g = 2. etc.

Surfaces

A surface is a topological space which near each points "looks like" the Euclidean plane. Possible to include boundary (sometimes necessary here). Def : atlas of charts $\phi_i : \Omega_i \to \mathbb{R}^2$. If $\Omega_i \cap \Omega_i \neq \emptyset$, $\phi_i \circ \phi_i^{-1}$ is smooth.

Closed surfaces : compact, no boundary. Oriented if \exists non-vanishing area form. Or : if one can choose a "left-hand" side. The Möbius strip is not oriented. Classification : by genus. g = 0 : sphere. g = 1 : torus. g = 2, etc.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Surfaces

A surface is a topological space which near each points "looks like" the Euclidean plane. Possible to include boundary (sometimes necessary here). Def : atlas of charts $\phi_i : \Omega_i \to \mathbb{R}^2$. If $\Omega_i \cap \Omega_i \neq \emptyset$, $\phi_i \circ \phi_i^{-1}$ is smooth.

Closed surfaces : compact, no boundary. Oriented if \exists non-vanishing area form. Or : if one can choose a "left-hand" side. The Möbius strip is not oriented. Classification : by genus. g = 0 : sphere. g = 1 : torus. g = 2, etc.

<ロト <部ト < 国ト < 国ト

Surfaces

A surface is a topological space which near each points "looks like" the Euclidean plane. Possible to include boundary (sometimes necessary here). Def : atlas of charts $\phi_i : \Omega_i \to \mathbb{R}^2$. If $\Omega_i \cap \Omega_i \neq \emptyset$, $\phi_i \circ \phi_i^{-1}$ is smooth.

Closed surfaces : compact, no boundary. Oriented if \exists non-vanishing area form. Or : if one can choose a "left-hand" side. The Möbius strip is not oriented. Classification : by genus. g = 0 : sphere. g = 1 : torus. g = 2, etc.

Riemann surfaces

A Riemann surface is a closed surface with a complex structure. Def : charts now in \mathbb{C} , $\phi_j \circ \phi_i^{-1}$ is holomorphic. Riemann surfaces are always oriented (multiply by *i* for left-hand side) Other possible def : by (S,J), where, $\forall x \in S, J : T_x S \to T_x S$ is such that $J^2 = -I \cdot J$ defines a complex structure on S. Question : understand all possible complex structures on a surface. To answer it, we will use hyperbolic metrics on S

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・
Riemann surfaces

A Riemann surface is a closed surface with a complex structure. Def : charts now in \mathbb{C} , $\phi_i \circ \phi_i^{-1}$ is holomorphic.

Riemann surfaces are always oriented (multiply by *i* for left-hand side). Other possible def : by (S, J), where, $\forall x \in S, J : T_x S \to T_x S$ is such that $J^2 = -1$. J defines a complex structure on S. **Question :** understand all possible complex structures on a surface. To answer it, we will use hyperbolic metrics on S.

Riemann surfaces

A Riemann surface is a closed surface with a complex structure. Def : charts now in \mathbb{C} , $\phi_j \circ \phi_i^{-1}$ is holomorphic. Riemann surfaces are always oriented (multiply by *i* for left-hand side). Other possible def : by (S, J), where, $\forall x \in S, J : T_x S \to T_x S$ is such that $J^2 = -I$. J defines a complex structure on S Question : understand all possible complex structures on a surface. To answer it, we will use hyperbolic metrics on S.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Riemann surfaces

A Riemann surface is a closed surface with a complex structure. Def : charts now in \mathbb{C} , $\phi_j \circ \phi_i^{-1}$ is holomorphic. Riemann surfaces are always oriented (multiply by *i* for left-hand side). Other possible def : by (S, J), where, $\forall x \in S, J : T_x S \to T_x S$ is such that $J^2 = -I$. J defines a complex structure on S. Question : understand all possible complex structures on a surface. To answer it, we will use hyperbolic metrics on S.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Riemann surfaces

A Riemann surface is a closed surface with a complex structure. Def : charts now in \mathbb{C} , $\phi_j \circ \phi_i^{-1}$ is holomorphic. Riemann surfaces are always oriented (multiply by *i* for left-hand side). Other possible def : by (S, J), where, $\forall x \in S, J : T_x S \to T_x S$ is such that $J^2 = -I$. J defines a complex structure on S. Question : understand all possible complex structures on a surface. To answer it, we will use hyperbolic metrics on S.

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity

イロト イヨト イヨト イヨト

Riemann surfaces

A Riemann surface is a closed surface with a complex structure. Def : charts now in \mathbb{C} , $\phi_j \circ \phi_i^{-1}$ is holomorphic. Riemann surfaces are always oriented (multiply by *i* for left-hand side). Other possible def : by (S, J), where, $\forall x \in S, J : T_x S \to T_x S$ is such that $J^2 = -I$. J defines a complex structure on S. Question : understand all possible complex structures on a surface. To answer it, we will use hyperbolic metrics on S.

Riemann surfaces

A Riemann surface is a closed surface with a complex structure. Def : charts now in \mathbb{C} , $\phi_j \circ \phi_i^{-1}$ is holomorphic. Riemann surfaces are always oriented (multiply by *i* for left-hand side). Other possible def : by (S, J), where, $\forall x \in S, J : T_x S \to T_x S$ is such that $J^2 = -I$. J defines a complex structure on S. **Question :** understand all possible complex structures on a surface. To answer it, we will use hyperbolic metrics on S.

Riemann surfaces

A Riemann surface is a closed surface with a complex structure. Def : charts now in \mathbb{C} , $\phi_j \circ \phi_i^{-1}$ is holomorphic. Riemann surfaces are always oriented (multiply by *i* for left-hand side). Other possible def : by (S, J), where, $\forall x \in S, J : T_x S \to T_x S$ is such that $J^2 = -I$. J defines a complex structure on S. **Question :** understand all possible complex structures on a surface. To answer it, we will use hyperbolic metrics on S.

Diffeos, isotopies

Two possible notions of equivalent complex structures on S.

Def : a diffeomorphism $f : S \to S$ is a smooth, one-to-one map, such that $df : T_x S \to T_{f(x)}S$ is an isomorphism at each point. Form a group, \mathcal{D}_S . J, J' can be considered to be equivalent if \exists a diffeo $f : S \to S$ sending J to J':

 $\forall x \in S, \forall u \in T_x S, df(Ju) = J'df(u) .$

The space of complex structures on S up to diffeomorphism is the moduli space \mathcal{M}_S .

Def : an *isotopy* is a diffeo $f : S \to S$ which is homotopic to the identity : $\exists (f_t)_{t \in [0,1]}$ diffeos, $f_0 = Id$, $f_1 = f$.

Form a group, \mathcal{D}_{0} .

The *Teichmüller space* \mathcal{T}_S is the space of complex structures up to instance.

isotopies.

(ロ) (部) (注) (注)

Diffeos, isotopies

Two possible notions of equivalent complex structures on S. Def : a diffeomorphism $f : S \to S$ is a smooth, one-to-one map, such that $df : T_x S \to T_{f(x)}S$ is an isomorphism at each point. Form a group, \mathcal{D}_S . J, J' can be considered to be equivalent if \exists a diffeo $f : S \to S$ sending Jto J':

 $\forall x \in S, \forall u \in T_x S, df(Ju) = J'df(u) .$

The space of complex structures on S up to diffeomorphism is the moduli space \mathcal{M}_S .

Def : an *isotopy* is a diffeo $f : S \to S$ which is homotopic to the identity : $\exists (f_t)_{t \in [0,1]}$ diffeos, $f_0 = Id$, $f_1 = f$.

Form a group, $\mathcal{D}_{0^{+}}$

The *Teichmüller space* \mathcal{T}_S is the space of complex structures up to

isotopies.

Diffeos, isotopies

Two possible notions of equivalent complex structures on S. Def : a diffeomorphism $f : S \to S$ is a smooth, one-to-one map, such that $df : T_x S \to T_{f(x)}S$ is an isomorphism at each point. Form a group, \mathcal{D}_S . J, J' can be considered to be equivalent if \exists a diffeo $f : S \to S$ sending Jto J':

 $\forall x \in S, \forall u \in T_x S, df(Ju) = J'df(u)$.

The space of complex structures on S up to diffeomorphism is the moduli space \mathcal{M}_S .

Def : an *isotopy* is a diffeo $f : S \to S$ which is homotopic to the identity : $\exists (f_t)_{t \in [0,1]}$ diffeos, $f_0 = Id$, $f_1 = f$.

Form a group, \mathcal{D}_{0} .

The *Teichmüller space* \mathcal{T}_S is the space of complex structures up to

isotopies.

Diffeos, isotopies

Two possible notions of equivalent complex structures on S. Def : a diffeomorphism $f : S \to S$ is a smooth, one-to-one map, such that $df : T_x S \to T_{f(x)}S$ is an isomorphism at each point. Form a group, \mathcal{D}_S . J, J' can be considered to be equivalent if \exists a diffeo $f : S \to S$ sending Jto J':

 $\forall x \in S, \forall u \in T_x S, df(Ju) = J'df(u)$.

The space of complex structures on S up to diffeomorphism is the moduli space \mathcal{M}_S .

Def : an *isotopy* is a diffeo $f : S \to S$ which is homotopic to the identity : $\exists (f_t)_{t \in [0,1]}$ diffeos, $f_0 = Id$, $f_1 = f$.

Form a group, \mathcal{D}_{0+}

The *Teichmüller space* \mathcal{T}_S is the space of complex structures up to

isotopies.

Diffeos, isotopies

Two possible notions of equivalent complex structures on S. Def : a diffeomorphism $f : S \to S$ is a smooth, one-to-one map, such that $df : T_x S \to T_{f(x)} S$ is an isomorphism at each point. Form a group, \mathcal{D}_S . J, J' can be considered to be equivalent if \exists a diffeo $f : S \to S$ sending Jto J':

 $\forall x \in S, \forall u \in T_x S, df(Ju) = J'df(u) .$

The space of complex structures on S up to diffeomorphism is the moduli space \mathcal{M}_S .

Def : an *isotopy* is a diffeo $f : S \to S$ which is homotopic to the identity : $\exists (f_t)_{t \in [0,1]}$ diffeos, $f_0 = Id$, $f_1 = f$.

Form a group, ${\cal D}_0$.

The *Teichmüller space* \mathcal{T}_{s} is the space of complex structures up to

isotopies.

Diffeos, isotopies

Two possible notions of equivalent complex structures on S. Def : a diffeomorphism $f : S \to S$ is a smooth, one-to-one map, such that $df : T_x S \to T_{f(x)}S$ is an isomorphism at each point. Form a group, \mathcal{D}_S . J, J' can be considered to be equivalent if \exists a diffeo $f : S \to S$ sending Jto J':

$$\forall x \in S, \forall u \in T_x S, df(Ju) = J'df(u) .$$

The space of complex structures on S up to diffeomorphism is the moduli space \mathcal{M}_S .

Def : an *isotopy* is a diffeo $f : S \to S$ which is homotopic to the identity : $\exists (f_t)_{t \in [0,1]}$ diffeos, $f_0 = Id$, $f_1 = f$. Form a group, \mathcal{D}_0 . The *Teichmüller space* \mathcal{T}_S is the space of complex structures up to isotopies.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Diffeos, isotopies

Two possible notions of equivalent complex structures on S. Def : a diffeomorphism $f : S \to S$ is a smooth, one-to-one map, such that $df : T_x S \to T_{f(x)} S$ is an isomorphism at each point. Form a group, \mathcal{D}_S . J, J' can be considered to be equivalent if \exists a diffeo $f : S \to S$ sending Jto J':

$$\forall x \in S, \forall u \in T_x S, df(Ju) = J'df(u) .$$

The space of complex structures on S up to diffeomorphism is the moduli space \mathcal{M}_S .

Def : an *isotopy* is a diffeo $f : S \to S$ which is homotopic to the identity : $\exists (f_t)_{t \in [0,1]}$ diffeos, $f_0 = Id$, $f_1 = f$. Form a group, \mathcal{D}_0 . The *Teichmüller space* T_S is the space of complex structures up to isotopies.

Diffeos, isotopies

Two possible notions of equivalent complex structures on S.

Def : a diffeomorphism $f : S \to S$ is a smooth, one-to-one map, such that $df : T_x S \to T_{f(x)}S$ is an isomorphism at each point. Form a group, \mathcal{D}_S . J, J' can be considered to be equivalent if \exists a diffeo $f : S \to S$ sending J to J':

$$\forall x \in S, \forall u \in T_x S, df(Ju) = J'df(u) .$$

The space of complex structures on S up to diffeomorphism is the moduli space \mathcal{M}_S .

Def : an *isotopy* is a diffeo $f : S \to S$ which is homotopic to the identity : $\exists (f_t)_{t \in [0,1]}$ diffeos, $f_0 = Id$, $f_1 = f$.

Form a group, \mathcal{D}_0 .

The *Teichmüller space* \mathcal{T}_S is the space of complex structures up to isotopies.

Diffeos, isotopies

Two possible notions of equivalent complex structures on S.

Def : a diffeomorphism $f : S \to S$ is a smooth, one-to-one map, such that $df : T_x S \to T_{f(x)}S$ is an isomorphism at each point. Form a group, \mathcal{D}_S . J, J' can be considered to be equivalent if \exists a diffeo $f : S \to S$ sending J to J':

$$\forall x \in S, \forall u \in T_x S, df(Ju) = J'df(u) .$$

The space of complex structures on S up to diffeomorphism is the moduli space \mathcal{M}_S .

Def : an *isotopy* is a diffeo $f : S \to S$ which is homotopic to the identity : $\exists (f_t)_{t \in [0,1]}$ diffeos, $f_0 = Id$, $f_1 = f$. Form a group, \mathcal{D}_0 .

The *Teichmüller space* \mathcal{T}_S is the space of complex structures up to isotopies.

Diffeos, isotopies

Two possible notions of equivalent complex structures on S.

Def : a diffeomorphism $f : S \to S$ is a smooth, one-to-one map, such that $df : T_x S \to T_{f(x)}S$ is an isomorphism at each point. Form a group, \mathcal{D}_S . J, J' can be considered to be equivalent if \exists a diffeo $f : S \to S$ sending J to J':

$$\forall x \in S, \forall u \in T_x S, df(Ju) = J'df(u) .$$

The space of complex structures on S up to diffeomorphism is the moduli space \mathcal{M}_S .

Def : an *isotopy* is a diffeo $f : S \to S$ which is homotopic to the identity : $\exists (f_t)_{t \in [0,1]}$ diffeos, $f_0 = Id$, $f_1 = f$.

Form a group, \mathcal{D}_0 .

The *Teichmüller space* T_S is the space of complex structures up to isotopies.

Teichmüller vs moduli space

Def : $\mathcal{D}/\mathcal{D}_0$ is the mapping-class group of S. Examples :

- $S = S^2$: $\mathcal{D} = \mathcal{D}_0$.
- $S = T^2 = \mathbb{R}^2/\mathbb{Z}^2 : \mathcal{D}/\mathcal{D}^0 = SL(2,\mathbb{Z}).$

 g ≥ 2 : the mapping-class group is much more complicated ! Interesting object to study.

イロト イヨト イヨト イヨト

Teichmüller vs moduli space

Def : $\mathcal{D}/\mathcal{D}_0$ is the mapping-class group of S. Examples :

- $S = S^2$: $\mathcal{D} = \mathcal{D}_0$.
- $S = T^2 = \mathbb{R}^2/\mathbb{Z}^2$: $\mathcal{D}/\mathcal{D}^0 = SL(2,\mathbb{Z})$. Any $M \in M(2,\mathbb{Z})$ with det $(M) \neq 0$ defines a diffeologic field sending \mathbb{Z}^2 to \mathbb{Z}^2 , hence a map $M \in I^2$ of $M \in SL(2,\mathbb{Z})$ then m is one to one. Any diffeologic for such a map
- g ≥ 2 : the mapping-class group is much more complicated ! Interesting object to study.

・ロト ・日下 ・日下・・日下

Teichmüller vs moduli space

Def : $\mathcal{D}/\mathcal{D}_0$ is the mapping-class group of S. Examples :

- $S = S^2 : D = D_0$.
- $S = T^2 = \mathbb{R}^2 / \mathbb{Z}^2 : \mathcal{D} / \mathcal{D}^0 = SL(2, \mathbb{Z})$. Any $M \in M(2, \mathbb{Z})$ with det $(M) \neq 0$ defines a diffeo $\mathbb{R}^2 \to \mathbb{R}^2$ sending \mathbb{Z}^2 to \mathbb{Z}^2 , hence a map $m : T^2 \to T^2$. If $M \in SL(2, \mathbb{Z})$ then m is one-to-one. Any diffeo for $T^2 \to T^2$ is isotopic to such a map
- g ≥ 2 : the mapping-class group is much more complicated ! Interesting object to study.

・ロット (四マ) (日マ) (日マ)

Teichmüller vs moduli space

Def : $\mathcal{D}/\mathcal{D}_0$ is the mapping-class group of S. Examples :

•
$$S = S^2 : D = D_0$$
.

• $S = T^2 = \mathbb{R}^2/\mathbb{Z}^2 : \mathcal{D}/\mathcal{D}^0 = SL(2,\mathbb{Z})$. Any $M \in M(2,\mathbb{Z})$ with $\det(M) \neq 0$ defines a diffeo $\mathbb{R}^2 \to \mathbb{R}^2$ sending \mathbb{Z}^2 to \mathbb{Z}^2 , hence a map $m : T^2 \to T^2$. If $M \in SL(2,\mathbb{Z})$ then m is one-to-one. Any diffeo $f : T^2 \to T^2$ is isotopic to such a map.

 g ≥ 2 : the mapping-class group is much more complicated ! Interesting object to study.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Teichmüller vs moduli space

Def : $\mathcal{D}/\mathcal{D}_0$ is the mapping-class group of S. Examples :

- $S = S^2 : D = D_0$.
- $S = T^2 = \mathbb{R}^2/\mathbb{Z}^2 : \mathcal{D}/\mathcal{D}^0 = SL(2,\mathbb{Z})$. Any $M \in M(2,\mathbb{Z})$ with $\det(M) \neq 0$ defines a diffeo $\mathbb{R}^2 \to \mathbb{R}^2$ sending \mathbb{Z}^2 to \mathbb{Z}^2 , hence a map $m: T^2 \to T^2$. If $M \in SL(2,\mathbb{Z})$ then m is one-to-one. Any diffeo $f: T^2 \to T^2$ is isotopic to such a map.
- g ≥ 2 : the mapping-class group is much more complicated ! Interesting object to study.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Teichmüller vs moduli space

Def : $\mathcal{D}/\mathcal{D}_0$ is the mapping-class group of S. Examples :

- $S = S^2 : D = D_0$.
- S = T² = ℝ²/ℤ² : D/D⁰ = SL(2,ℤ). Any M ∈ M(2,ℤ) with det(M) ≠ 0 defines a diffeo ℝ² → ℝ² sending ℤ² to ℤ², hence a map m : T² → T². If M ∈ SL(2,ℤ) then m is one-to-one. Any diffeo f : T² → T² is isotopic to such a map.
- g ≥ 2 : the mapping-class group is much more complicated ! Interesting object to study.

Teichmüller vs moduli space

Def : $\mathcal{D}/\mathcal{D}_0$ is the mapping-class group of S. Examples :

•
$$S = S^2 : D = D_0$$
.

- S = T² = ℝ²/ℤ² : D/D⁰ = SL(2,ℤ). Any M ∈ M(2,ℤ) with det(M) ≠ 0 defines a diffeo ℝ² → ℝ² sending ℤ² to ℤ², hence a map m : T² → T². If M ∈ SL(2,ℤ) then m is one-to-one. Any diffeo f : T² → T² is isotopic to such a map.
- g ≥ 2 : the mapping-class group is much more complicated ! Interesting object to study.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Teichmüller vs moduli space

Def : $\mathcal{D}/\mathcal{D}_0$ is the mapping-class group of S. Examples :

•
$$S = S^2 : D = D_0$$
.

- $S = T^2 = \mathbb{R}^2/\mathbb{Z}^2 : \mathcal{D}/\mathcal{D}^0 = SL(2,\mathbb{Z})$. Any $M \in M(2,\mathbb{Z})$ with $\det(M) \neq 0$ defines a diffeo $\mathbb{R}^2 \to \mathbb{R}^2$ sending \mathbb{Z}^2 to \mathbb{Z}^2 , hence a map $m : T^2 \to T^2$. If $M \in SL(2,\mathbb{Z})$ then m is one-to-one. Any diffeo $f : T^2 \to T^2$ is isotopic to such a map.
- g ≥ 2 : the mapping-class group is much more complicated ! Interesting object to study.

Dehn twists

A simple example of diffeo not isotopic to the identity.

Start with a closed surface S, choose a

simple closed curve γ . Open 5 along γ ,

turn the right-hand side by 2π , and glue

back alongn γ .

This defines a diffeo of ${\it S}$, not isotopic to the identity, a ${\it Dehn}$ twist.

Thm : Dehn twists generate $\mathcal{D}_+/\mathcal{D}_0$

・ロト ・日子・・ヨト ・ヨト

Dehn twists

A simple example of diffeo not isotopic to the identity. Start with a closed surface S, choose a

simple closed curve $\gamma.$ Open S along γ turn the right-hand side by $2\pi,$ and glue

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Dehn twists

A simple example of diffeo not isotopic to the identity. Start with a closed surface S, choose a

simple closed curve $\gamma.$ Open S along $\gamma.$

turn the right-hand side by 2π , and glue

back alongn γ .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Dehn twists

- A simple example of diffeo not isotopic to the identity.
- Start with a closed surface S, choose a
- simple closed curve γ . Open S along γ ,
- turn the right-hand side by 2π , and glue

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Dehn twists

A simple example of diffeo not isotopic to the identity.

Start with a closed surface S, choose a simple closed curve γ . Open S along γ ,

turn the right-hand side by 2π , and glue

(日) (四) (三) (三)

Dehn twists

- A simple example of diffeo not isotopic to the identity.
- Start with a closed surface S, choose a
- simple closed curve γ . Open S along γ , turn the right-hand side by 2π , and glue back alongn γ .

(日) (四) (三) (三)

Dehn twists

- A simple example of diffeo not isotopic to the identity.
- Start with a closed surface S, choose a
- simple closed curve γ . Open S along γ , turn the right-hand side by 2π , and glue back alongn γ .

Dehn twists

- A simple example of diffeo not isotopic to the identity.
- Start with a closed surface S, choose a
- simple closed curve γ . Open *S* along γ , turn the right-hand side by 2π , and glue back alongn γ .

Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g_x on $\mathcal{T}_x S$, $\forall x \in S$. The Levi-Cività connection ∇ : associates to two vector fields u, v a vector field $\nabla_u v$, such that

• connection : $\nabla_u(fv) = du(f)v + f\nabla_u v$,

- compatible with $g: u.g(v, w) = g(\nabla_u v, w) + g(v, \nabla_u w)$,
- torsion-free : $\nabla_u v \nabla_v u = [u, v]$.

The curvature operator : $R_{u,v}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$. Thm : $g(R_{u,v}w, z)$ at $x \in S$ only depends of u, v, w, z at x. Moreover, antisymetric in u, v and w, z and symmetric in (u, v), (w, z). Therefore, curvature K defined as : $g_x(R_{u,v}w, z) = -Kda_x(u, v)da_x(w, z)$.

Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g_x on T_xS , $\forall x \in S$.

The Levi-Cività connection ∇ : associates to two vector fields u, v a vector field $\nabla_u v$, such that

• connection : $\nabla_u(fv) = du(f)v + f\nabla_u v$,

- compatible with $g: u.g(v, w) = g(\nabla_u v, w) + g(v, \nabla_u w)$,
- torsion-free : $\nabla_u v \nabla_v u = [u, v]$.

The curvature operator : $R_{u,v}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$. Thm : $g(R_{u,v}w, z)$ at $x \in S$ only depends of u, v, w, z at x. Moreover, antisymetric in u, v and w, z and symmetric in (u, v), (w, z). Therefore, curvature K defined as : $g_x(R_{u,v}w, z) = -Kda_x(u, v)da_x(w, z)$.

Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g_x on $T_x S$, $\forall x \in S$. The Levi-Cività connection ∇ : associates to two vector fields u, v a vector field $\nabla_u v$, such that

• connection : $\nabla_u(fv) = du(f)v + f\nabla_u v$,

- compatible with $g: u.g(v,w) = g(\nabla_u v,w) + g(v,\nabla_u w)$,
- torsion-free : $\nabla_u v \nabla_v u = [u, v]$.

The curvature operator : $R_{u,v}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]}w$. Thm : $g(R_{u,v}w, z)$ at $x \in S$ only depends of u, v, w, z at x. Moreover, antisymetric in u, v and w, z and symmetric in (u, v), (w, z). Therefore, curvature K defined as : $g_x(R_{u,v}w, z) = -Kda_x(u, v)da_x(w, z)$.
Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g_x on $T_x S$, $\forall x \in S$. The Levi-Cività connection ∇ : associates to two vector fields u, v a vector field $\nabla_u v$, such that

- connection : $\nabla_u(fv) = du(f)v + f\nabla_u v$,
- compatible with $g: u.g(v, w) = g(\nabla_u v, w) + g(v, \nabla_u w)$,
- torsion-free : $\nabla_u v \nabla_v u = [u, v]$.

The curvature operator : $R_{u,v}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]}w$. Thm : $g(R_{u,v}w, z)$ at $x \in S$ only depends of u, v, w, z at x. Moreover, antisymetric in u, v and w, z and symmetric in (u, v), (w, z). Therefore, curvature K defined as : $g_x(R_{u,v}w, z) = -Kda_x(u, v)da_x(w, z)$.

Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g_x on $T_x S$, $\forall x \in S$. The Levi-Cività connection ∇ : associates to two vector fields u, v a vector field $\nabla_u v$, such that

- connection : $\nabla_u(fv) = du(f)v + f\nabla_u v$,
- compatible with $g: u.g(v, w) = g(\nabla_u v, w) + g(v, \nabla_u w)$,
- torsion-free : $\nabla_u v \nabla_v u = [u, v]$.

The curvature operator : $R_{u,v}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$. Thm : $g(R_{u,v}w, z)$ at $x \in S$ only depends of u, v, w, z at x. Moreover, antisymetric in u, v and w, z and symmetric in (u, v), (w, z). Therefore, curvature K defined as : $g_x(R_{u,v}w, z) = -Kda_x(u, v)da_x(w, z)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g_x on $T_x S$, $\forall x \in S$. The Levi-Cività connection ∇ : associates to two vector fields u, v a

vector field $\nabla_u v$, such that

- connection : $\nabla_u(fv) = du(f)v + f\nabla_u v$,
- compatible with $g: u.g(v, w) = g(\nabla_u v, w) + g(v, \nabla_u w)$,
- torsion-free : $\nabla_u v \nabla_v u = [u, v]$.

The curvature operator : $R_{u,v}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$. Thm : $g(R_{u,v}w, z)$ at $x \in S$ only depends of u, v, w, z at x. Moreover, antisymetric in u, v and w, z and symmetric in (u, v), (w, z). Therefore, curvature K defined as : $g_x(R_{u,v}w, z) = -Kda_x(u, v)da_x(w, z)$.

・ロン ・四と ・ヨン ・ヨン

Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g_x on T_xS , $\forall x \in S$. The Levi-Cività connection ∇ : associates to two vector fields u, v a

vector field $\nabla_u v$, such that

- connection : $\nabla_u(fv) = du(f)v + f\nabla_u v$,
- compatible with $g: u.g(v, w) = g(\nabla_u v, w) + g(v, \nabla_u w)$,
- torsion-free : $\nabla_u v \nabla_v u = [u, v]$.

The curvature operator : $R_{u,v}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$. Thm : $g(R_{u,v}w, z)$ at $x \in S$ only depends of u, v, w, z at x. Moreover, antisymetric in u, v and w, z and symmetric in (u, v), (w, z). Therefore, curvature K defined as : $g_x(R_{u,v}w, z) = -Kda_x(u, v)da_x(w, z)$.

< 日 > (四 > (四 > (三 > (三 >))))

Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g_x on $T_x S$, $\forall x \in S$. The Levi-Cività connection ∇ : associates to two vector fields u, v a

The Levi-Civita connection ∇ : associates to two vector fields u, v vector field $\nabla_u v$, such that

• connection :
$$\nabla_u(fv) = du(f)v + f\nabla_u v$$
,

• compatible with $g: u.g(v, w) = g(\nabla_u v, w) + g(v, \nabla_u w)$,

• torsion-free :
$$\nabla_u v - \nabla_v u = [u, v]$$
.

The curvature operator : $R_{u,v}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$. Thm : $g(R_{u,v}w, z)$ at $x \in S$ only depends of u, v, w, z at x. Moreover, antisymetric in u, v and w, z and symmetric in (u, v), (w, z).

Therefore, curvature *K* defined as : $g_x(R_{u,v}w,z) = -Kda_x(u,v)da_x(w,z)$

Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g_x on $T_x S$, $\forall x \in S$.

The Levi-Cività connection ∇ : associates to two vector fields u, v a vector field $\nabla_u v$, such that

- connection : $\nabla_u(fv) = du(f)v + f\nabla_u v$,
- compatible with $g: u.g(v, w) = g(\nabla_u v, w) + g(v, \nabla_u w)$,

• torsion-free :
$$\nabla_u v - \nabla_v u = [u, v]$$
.

The curvature operator : $R_{u,v}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$. Thm : $g(R_{u,v}w, z)$ at $x \in S$ only depends of u, v, w, z at x. Moreover, antisymetric in u, v and w, z and symmetric in (u, v), (w, z). Therefore, curvature K defined as : $g_x(R_{u,v}w, z) = -Kda_x(u, v)da_x(w, z)$.

< 日 > (四 > (四 > (三 > (三 >))))

The hyperbolic plane

The hyperbolic plane is an analogue of S^2 ...

but in the Minkowski 3-dim space, $\mathbb{R}^{2,1}$. $H^2 := \{x \in \mathbb{R}^{2,1} \mid \langle x, x \rangle = -1 \land x_0 > 0\}$ H^2 is complete, with constant curvature -1. Its geodesics are the intersections with the planes containing 0.

Its (orientation-preserving) isometry group is $SO_+(2,1) = PSL(2,\mathbb{R})$ Same construction in higher dim, in dim 3 the isometry group is $SO(3,1) = PSL(2,\mathbb{C})$.

The hyperbolic plane

The hyperbolic plane is an analogue of S^2 ...

but in the Minkowski 3-dim space, $\mathbb{R}^{2,1}$. $H^2 := \{x \in \mathbb{R}^{2,1} \mid \langle x, x \rangle = -1 \land x_0 > 0\}$ H^2 is complete, with constant curvature -1. Its geodesics are the intersections with the planes containing 0.

Its (orientation-preserving) isometry group is $SO_+(2,1) = PSL(2,\mathbb{R})$ Same construction in higher dim, in dim 3 the isometry group is $SO(3,1) = PSL(2,\mathbb{C})$.

• • • • • • • • • • • • •

The hyperbolic plane

The hyperbolic plane is an analogue of S^2 ...

but in the Minkowski 3-dim space, $\mathbb{R}^{2,1}$. $H^2 := \{x \in \mathbb{R}^{2,1} \mid \langle x, x \rangle = -1 \land x_0 > 0\}$ H^2 is complete, with constant curvature -1. Its geodesics are the intersections with the planes containing 0.

• • • • • • • • • • • • •

Its (orientation-preserving) isometry group is $SO_+(2,1) = PSL(2,\mathbb{R})$ Same construction in higher dim, in dim 3 the isometry group is $SO(3,1) = PSL(2,\mathbb{C})$.

The hyperbolic plane

The hyperbolic plane is an analogue of S^2 ...

but in the Minkowski 3-dim space, $\mathbb{R}^{2,1}$. $H^2 := \{x \in \mathbb{R}^{2,1} \mid \langle x, x \rangle = -1 \land x_0 > 0\}$ H^2 is complete, with constant curvature -1. Its geodesics are the intersections with the planes containing 0.

ヘロン ヘヨン ヘヨン ヘ

Its (orientation-preserving) isometry group is $SO_+(2,1) = PSL(2,\mathbb{R})$ Same construction in higher dim, in dim 3 the isometry group is $SO(3,1) = PSL(2,\mathbb{C})$.

The hyperbolic plane

The hyperbolic plane is an analogue of S^2 ...

but in the Minkowski 3-dim space, $\mathbb{R}^{2,1}$. $H^2 := \{x \in \mathbb{R}^{2,1} \mid \langle x, x \rangle = -1 \land x_0 > 0\}$ H^2 is complete, with constant curvature -1. Its geodesics are the intersections with the planes containing 0.

Its (orientation-preserving) isometry group is $SO_+(2,1) = PSL(2,\mathbb{R})$ Same construction in higher dim, in dim 3 the isometry group is $SO(3,1) = PSL(2,\mathbb{C})$.

The hyperbolic plane

The hyperbolic plane is an analogue of S^2 ...

but in the Minkowski 3-dim space, $\mathbb{R}^{2,1}$. $H^2 := \{x \in \mathbb{R}^{2,1} \mid \langle x, x \rangle = -1 \land x_0 > 0\}$ H^2 is complete, with constant curvature -1. Its geodesics are the intersections with the planes containing 0.

Its (orientation-preserving) isometry group is $SO_+(2,1) = PSL(2,\mathbb{R})$ Same construction in higher dim, in dim 3 the isometry group is $SO(3,1) = PSL(2,\mathbb{C})$.

The hyperbolic plane

The hyperbolic plane is an analogue of S^2 ...

but in the Minkowski 3-dim space, $\mathbb{R}^{2,1}$. $H^2 := \{x \in \mathbb{R}^{2,1} \mid \langle x, x \rangle = -1 \land x_0 > 0\}$ H^2 is complete, with constant curvature -1. Its geodesics are the intersections with the planes containing 0.

The projective model of H^2

Obtained by projecting each $x \in H^2$ on z = 1 in the direction of 0. The images of the geodesics of H^2 are the segments.

Not conformal : angles are not preserved.

・ロト ・日子・・ヨト ・ヨト

The projective model of H^2

Obtained by projecting each $x \in H^2$ on z = 1 in the direction of 0. The images of the geodesics of H^2 are the segments.

(ロ) (部) (注) (注)

Not conformal : angles are not preserved.

The projective model of H^2

Obtained by projecting each $x \in H^2$ on z = 1 in the direction of 0. The images of the geodesics of H^2 are the segments.

(日) (四) (三) (三)

Not conformal : angles are not preserved

The projective model of H^2

Obtained by projecting each $x \in H^2$ on z = 1 in the direction of 0. The images of the geodesics of H^2 are the segments.

Not conformal : angles are not preserved.

The Poincaré disk model

Project each $x \in H^2$ on z = 1 in the direction of (0, 0, -1). This model is *conformal*, angles are preserved. Geodesics are sent to circles arcs orthogonal to the boundary. Def : "boundary at infinity". The circles tangent to the boundary are the *horocycles*, they are at "constant distance" from a point at infinity.

The Poincaré disk model

Project each $x \in H^2$ on z = 1 in the direction of (0, 0, -1).

This model is *conformal*, angles are preserved. Geodesics are sent to circles arcs orthogonal to the boundary. Def : "boundary at infinity". The circles tangent to the boundary are the *horocycles*, they are at "constant distance" from a point at infinity.

The Poincaré disk model

Project each $x \in H^2$ on z = 1 in the direction of (0, 0, -1). This model is *conformal*, angles are preserved. Geodesics are sent to circles arcs orthogonal to the boundary. Def : "boundary at infinity". The circles tangent to the boundary are the *horocycles*, they are at "constant distance" from a point at infinity.

The Poincaré disk model

Project each $x \in H^2$ on z = 1 in the direction of (0, 0, -1).

This model is *conformal*, angles are preserved. Geodesics are sent to circles arcs orthogonal to the boundary. Def : "boun-

dary at infinity". The circles tangent to the boundary are the *horocycles*, they are at "constant distance" from a point at infinity.

The Poincaré disk model

Project each $x \in H^2$ on z = 1 in the direction of (0, 0, -1). This model is *conformal*, angles are preserved. Geodesics are sent to circles arcs orthogonal to the boundary. Def : "boundary at infinity". The circles tangent to the boundary are the *horocycles*, they are at "constant distance" from a point at infinity.

The Poincaré disk model

Project each $x \in H^2$ on z = 1 in the direction of (0, 0, -1).

This model is *conformal*, angles are preserved. Geodesics are sent to circles arcs orthogonal to the boundary. Def : "boundary at infinity". The circles tangent to the boundary are the *horocycles*, they are at "constant distance" from a point at infinity.

<ロト <部ト < 国ト < 国ト

The PoincarÃľ half-plane model

Apply to the Poincaré disk model the transformation $z \mapsto 1/(z - i) - i$ (conforme). Yields the "Poincaré half-plane".

The boundary at infinity is identified with the real line, plus a point "at infinity". The geodesics are the half-circles centered on \mathbb{R} and the vertical half-lines, the horocycles are the horizontal lines and the circles tangent to \mathbb{R} .

The metric is : $(dx^2 + dy^2)/y^2$. The identification $SO_+(2,1) = PSL(2,R)$ is best seen in this model : projective action on the real line.

The PoincarÃľ half-plane model

Apply to the Poincaré disk model the transformation $z \mapsto 1/(z - i) - i$ (conforme). Yields the "Poincaré half-plane".

The boundary at infinity is identified with the real line, plus a point "at infinity".

The geodesics are the half-circles centered on \mathbb{R} and the vertical half-lines, the horocycles are the horizontal lines and the circles tangent to \mathbb{R} .

<ロ> <同> <同> <巨> <巨>

The PoincarÃľ half-plane model

Apply to the Poincaré disk model the transformation $z \mapsto 1/(z - i) - i$ (conforme). Yields the "Poincaré half-plane".

The boundary at infinity is identified with the real line, plus a point "at infinity". The geodesics are the half-circles centered on \mathbb{R} and the vertical half-lines, the

(日) (四) (三) (三)

horocycles are the horizontal lines and the circles tangent to $\mathbb{R}.$

The PoincarÃľ half-plane model

Apply to the Poincaré disk model the transformation $z \mapsto 1/(z - i) - i$ (conforme). Yields the "Poincaré half-plane".

The boundary at infinity is identified with the real line, plus a point "at infinity". The geodesics are the half-circles centered on \mathbb{R} and the vertical half-lines, the horocycles are the horizontal lines and the circles tangent to \mathbb{R} .

(日) (四) (三) (三)

The PoincarÃľ half-plane model

Apply to the Poincaré disk model the transformation $z \mapsto 1/(z - i) - i$ (conforme). Yields the "Poincaré half-plane".

The boundary at infinity is identified with the real line, plus a point "at infinity". The geodesics are the half-circles centered on \mathbb{R} and the vertical half-lines, the horocycles are the horizontal lines and the circles tangent to \mathbb{R} .

(日) (四) (三) (三)

The PoincarÃl half-plane model

Apply to the Poincaré disk model the transformation $z \mapsto 1/(z - i) - i$ (conforme). Yields the "Poincaré half-plane".

The boundary at infinity is identified with the real line, plus a point "at infinity". The geodesics are the half-circles centered on \mathbb{R} and the vertical half-lines, the horocycles are the horizontal lines and the circles tangent to \mathbb{R} .

(日) (四) (三) (三)

Topology and Riemannian geometry

- Show that the two defs of a Riemann surface in terms of a map to C and in terms of J – are equivalent.
- **2** Show that S^2 is diffeomorphic to $\mathbb{C}P^1$.
- Show (properly) that the mapping-class group of the torus is SL(2, ℤ).
- Show that the Levi-Civitá connection of g is uniquely determined.
- Show that $g(R_{u,v}w, z)$ is anti-symmetric in u, v.
- Show that $g(R_{u,v}w, z)$ is anti-symmetric in w, z.
- Show that $g(R_{u,v}w,z)$ is symmetric in (u,v), (w,z).