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Motivations

Classical gravity, empty space = 4-dim Einstein metric with Lorentz
signature. ric, = Ag. Difficult.

Toy model : 3-dim analog. In dim 3, Einstein metrics have constant
curvature. Much easyer (finite dimensional spaces of metrics). A = —1 :
AdS (anti-de Sitter) metrics. In particular GHMC.

AdS manifolds are strongly related to hyperbolic surfaces and Teichmiiller
theory.

GHMC AdS manifolds have Riemannian analogs : quasifuchsian
hyperbolic 3-manifolds. Those quasifuchsian manifolds actually appear in
the physical theory. They can also be described in terms of Teichmiiller
theory.

Teichmiiller theory is rich but fairly well understood ; possible
quantization.

We wish to present some of the relations between those three areas :
hyperbolic surfaces, quasifuchsian 3-manifolds, GHMC AdS manifolds.
Large parts extend with “particles”, i.e. beyond empty space.
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Broad outline

A crash-course in hyperbolic geometry.
Designed for physicists : more statements than proofs. Goal : get a broad
idea of what is going on. Then read further!

def of Teichmiiller space. (1)

the hyperbolic plane. (2)

Fenchel-Nielsen coordinates on Teichmiiller space. (2)
Riemann surfaces vs hyperbolic surfaces. (2)

“hyperbolic” Teichmiiller theory : measured laminations,
earthquakes, etc. (3)

quasifuchsian hyperbolic manifolds. (4)

GHMC AdS manifolds and the Earthquake theorem. (5)

Not done : the “classical” Teichmiiller theory in terms of complex analysis.
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Surfaces

A surface is a topological space which near each points “looks like" the
Euclidean plane. Possible to include boundary (sometimes necessary
here). Def : atlas of charts ¢; : Q; — R2. 1f Q;NQ; # 0, qS-oqb,Tl is smooth.

Closed surfaces : compact, no boundary.
Oriented if 3 non-vanishing area form.
Or : if one can choose a “left-hand” side.
The MGobius strip is not oriented.

Classification : by genus. g = 0 : sphere.

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Riemann surfaces

Surfaces

A surface is a topological space which near each points “looks like" the
Euclidean plane. Possible to include boundary (sometimes necessary
here). Def : atlas of charts ¢; : Q; — R2. 1f Q;NQ; # 0, qﬁjoqblfl is smooth.

Closed surfaces : compact, no boundary.
Oriented if 3 non-vanishing area form.
Or : if one can choose a “left-hand” side.
The MGobius strip is not oriented.
Classification : by genus. g = 0 : sphere.
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Riemann surfaces

Surfaces

A surface is a topological space which near each points “looks like" the
Euclidean plane. Possible to include boundary (sometimes necessary
here). Def : atlas of charts ¢; : Q; — R2. 1f Q;NQ; # 0, qﬁjoqblfl is smooth.

Closed surfaces : compact, no boundary.
Oriented if 3 non-vanishing area form.
Or : if one can choose a “left-hand” side.
The MGobius strip is not oriented.
Classification : by genus. g = 0 : sphere.
g =1:torus. g =2, etc.
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Riemann surfaces

A Riemann surface is a closed surface with a complex structure.

Def : charts now in C, ¢; o (;5,-_1 is holomorphic.

Riemann surfaces are always oriented (multiply by i for left-hand side).
Other possible def : by (S, J), where, Vx € S, J: T,S — T,S is such
that J2 = —1.
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Riemann surfaces

A Riemann surface is a closed surface with a complex structure.

Def : charts now in C, ¢; o (;5,-_1 is holomorphic.

Riemann surfaces are always oriented (multiply by i for left-hand side).
Other possible def : by (S, J), where, Vx € S, J: T,S — T,S is such
that J2 = —/. J defines a complex structure on S.

Question : understand all possible complex structures on a surface.
To answer it, we will use hyperbolic metrics on S.
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Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



The Teichmiiller space

Diffeos, isotopies

Two possible notions of equivalent complex structures on S.
Def : a diffeomorphism f : S — S is a smooth, one-to-one map, such that
df : T,S — TS is an isomorphism at each point.

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



The Teichmiiller space

Diffeos, isotopies

Two possible notions of equivalent complex structures on S.
Def : a diffeomorphism f : S — S is a smooth, one-to-one map, such that
df : T,S — TS is an isomorphism at each point. Form a group, Ds.

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



The Teichmiiller space

Diffeos, isotopies

Two possible notions of equivalent complex structures on S.

Def : a diffeomorphism f : S — S is a smooth, one-to-one map, such that
df : T,S — TS is an isomorphism at each point. Form a group, Ds.
J,J' can be considered to be equivalent if 3 a diffeo f : S — S sending J
to J':

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



The Teichmiiller space

Diffeos, isotopies

Two possible notions of equivalent complex structures on S.
Def : a diffeomorphism f : S — S is a smooth, one-to-one map, such that
df : T,S — TS is an isomorphism at each point. Form a group, Ds.
J,J" can be considered to be equivalent if 3 a diffeo f : S — S sending J
to J':

Vx € S,Vu € TS, df (Ju) = J'df (u) .

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Diffeos, isotopies

Two possible notions of equivalent complex structures on S.
Def : a diffeomorphism f : S — S is a smooth, one-to-one map, such that
df : T,S — TS is an isomorphism at each point. Form a group, Ds.
J,J" can be considered to be equivalent if 3 a diffeo f : S — S sending J
to J':

Vx € S,Vu € TS, df (Ju) = J'df (u) .

The space of complex structures on S up to diffeomorphism is the
moduli space M.

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



The Teichmiiller space

Diffeos, isotopies

Two possible notions of equivalent complex structures on S.
Def : a diffeomorphism f : S — S is a smooth, one-to-one map, such that
df : T,S — TS is an isomorphism at each point. Form a group, Ds.
J,J" can be considered to be equivalent if 3 a diffeo f : S — S sending J
to J':

Vx € S,Vu € TS, df (Ju) = J'df (u) .

The space of complex structures on S up to diffeomorphism is the
moduli space M.
Def : an isotopy is a diffeo f : S — S which is homotopic to the identity :

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



The Teichmiiller space

Diffeos, isotopies

Two possible notions of equivalent complex structures on S.
Def : a diffeomorphism f : S — S is a smooth, one-to-one map, such that
df : T,S — TS is an isomorphism at each point. Form a group, Ds.
J,J' can be considered to be equivalent if 3 a diffeo f : S — S sending J
to J':

Vx € S,Vu € TS, df (Ju) = J'df (u) .
The space of complex structures on S up to diffeomorphism is the
moduli space M.

Def : an isotopy is a diffeo f : S — S which is homotopic to the identity :
I(f:)ecpo,1) diffeos, fo = Id, f; = f.
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The Teichmiiller space

Diffeos, isotopies

Two possible notions of equivalent complex structures on S.
Def : a diffeomorphism f : S — S is a smooth, one-to-one map, such that
df : T,S — TS is an isomorphism at each point. Form a group, Ds.
J,J" can be considered to be equivalent if 3 a diffeo f : S — S sending J
to J':

Vx € S,Vu € TS, df (Ju) = J'df (u) .

The space of complex structures on S up to diffeomorphism is the
moduli space M.

Def : an isotopy is a diffeo f : S — S which is homotopic to the identity :
3(f:)eeqo,1) diffeos, fo = Id, f = f.

Form a group, Dy.

The Teichmiiller space Ts is the space of complex structures up to
isotopies.
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Teichmiiller vs moduli space

Def : D/Dy is the mapping-class group of S.
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Teichmiiller vs moduli space

Def : D/Dy is the mapping-class group of S.
Examples :

e S= 52 :D :Do.
o S=T2=R?/7?: D/D° = SL(2,Z).
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Teichmiiller vs moduli space

Def : D/Dy is the mapping-class group of S.
Examples :

05:52ZD:D0.

o S=T2=R2/Z?: D/D° = SL(2,Z). Any M € M(2,Z) with
det(M) # 0 defines a diffeo R? — R? sending Z?2 to Z?, hence a
map m: T2 — T2
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05:52ZD:D0.

o S=T2=R2/Z?: D/D° = SL(2,Z). Any M € M(2,Z) with
det(M) # 0 defines a diffeo R? — R? sending Z?2 to Z?, hence a
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Teichmiiller vs moduli space

Def : D/Dy is the mapping-class group of S.
Examples :
e S= 52 :D = Do.

o S=T2=R?/Z?: D/T° = SL(2,Z). Any M € M(2,Z) with
det(M) # 0 defines a diffeo R? — R? sending Z?2 to Z?, hence a
map m: T2 — T2, If M € SL(2,7Z) then m is one-to-one. Any
diffeo f : T2 — T2 is isotopic to such a map.
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The Teichmiiller space

Teichmiiller vs moduli space

Def : D/Dy is the mapping-class group of S.
Examples :
e S= 52 :D = Do.

o S=T2=R?/Z?: D/T° = SL(2,Z). Any M € M(2,Z) with
det(M) # 0 defines a diffeo R? — R? sending Z?2 to Z?, hence a
map m: T2 — T2, If M € SL(2,7Z) then m is one-to-one. Any
diffeo f : T2 — T2 is isotopic to such a map.

@ g > 2 : the mapping-class group is much more complicated !
Interesting object to study.
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The Teichmiiller space

Dehn twists

A simple example of diffeo not isotopic to the identity.

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



The Teichmiiller space

Dehn twists

A simple example of diffeo not isotopic to the identity.
Start with a closed surface S,

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



The Teichmiiller space

Dehn twists

A simple example of diffeo not isotopic to the identity.
Start with a closed surface S, choose a

simple closed curve 7.
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The Teichmiiller space

Dehn twists

A simple example of diffeo not isotopic to the identity.
Start with a closed surface S, choose a

simple closed curve . Open S along 7,
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The Teichmiiller space

Dehn twists

A simple example of diffeo not isotopic to the identity.
Start with a closed surface S, choose a

simple closed curve v. Open S along ~,
turn the right-hand side by 27,
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turn the right-hand side by 27, and glue

back alongn ~.
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The Teichmiiller space

Dehn twists

A simple example of diffeo not isotopic to the identity.
Start with a closed surface S, choose a

simple closed curve v. Open S along ~,
turn the right-hand side by 27, and glue

back alongn ~.
This defines a diffeo of S, not isotopic to the identity, a Dehn twist.

Thm : Dehn twists generate D, /Dy.

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



he Teichmiille ce
The hyperbolic plane

Riemannian metrics on surfaces

A geometer's viewpoint.
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Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g,
on T,5,VxeS.
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Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g,
on T,5,VxeS.
The Levi-Civita connection V :
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A geometer's viewpoint. Riemannian metric : symmetric bilinear form g,
on TS5, Vx €8S.

The Levi-Civita connection V : associates to two vector fields u, v a
vector field Vv, such that

@ connection : V,(fv) = du(f)v + fV,v,
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Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g,
on TS5, Vx €8S.

The Levi-Civita connection V : associates to two vector fields u, v a
vector field Vv, such that

@ connection : V,(fv) = du(f)v + fV,v,
@ compatible with g : v.g(v,w) = g(V,v,w) + g(v,V,w),
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Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g,
on TS5, Vx €8S.

The Levi-Civita connection V : associates to two vector fields u, v a
vector field Vv, such that

@ connection : V,(fv) = du(f)v + fV,v,
@ compatible with g : v.g(v,w) = g(V,v,w) + g(v,V,w),

@ torsion-free : V,v — V,u = [u, v].
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The hyperbolic plane

Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g,
on TS5, Vx €8S.

The Levi-Civita connection V : associates to two vector fields u, v a
vector field Vv, such that

@ connection : V,(fv) = du(f)v + fV,v,
@ compatible with g : v.g(v,w) = g(V,v,w) + g(v,V,w),
@ torsion-free : V,v — V,u = [u, v].

The curvature operator : R, ,w =V, V,w -V, V,w — V|, jw.
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The hyperbolic plane

Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g,
on TS5, Vx €8S.

The Levi-Civita connection V : associates to two vector fields u, v a
vector field Vv, such that

@ connection : V,(fv) = du(f)v + fV,v,
@ compatible with g : v.g(v,w) = g(V,v,w) + g(v,V,w),
@ torsion-free : V,v — V,u = [u, v].

The curvature operator : R, ,w =V, V,w -V, V,w — V|, yw. Thm :
g(Ry,vw,z) at x € S only depends of u, v, w, z at x. Moreover,
antisymetric in u, v and w, z and symmetric in (u, v), (w, z).
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Riemannian metrics on surfaces

A geometer's viewpoint. Riemannian metric : symmetric bilinear form g,
on TS5, Vx €8S.

The Levi-Civita connection V : associates to two vector fields u, v a
vector field Vv, such that

@ connection : V,(fv) = du(f)v + fV,v,
@ compatible with g : v.g(v,w) = g(V,v,w) + g(v,V,w),
@ torsion-free : V,v — V,u = [u, v].

The curvature operator : R, ,w =V, V,w -V, V,w — V|, yw. Thm :
g(Ry,vw,z) at x € S only depends of u, v, w, z at x. Moreover,
antisymetric in u, v and w, z and symmetric in (u, v), (w, z).

Therefore, curvature K defined as :

&x(Ruvw,z) = —Kday(u, v)dax(w, z).
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but in the Minkowski 3-dim space, R?*.
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The hyperbolic plane is an analogue of S2...
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but in the Minkowski 3-dim space, R?*.
H? .= {x e R?1 | (x,x) = =1 A xo > 0}
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The hyperbolic plane is an analogue of S2...

A

but in the Minkowski 3-dim space, R?*.
H? .= {x e R?1 | (x,x) = =1 A xo > 0}

H? is complete, with constant curva-
ture —1.
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The hyperbolic plane is an analogue of S2...
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but in the Minkowski 3-dim space, R?*.
H? .= {x e R?1 | (x,x) = =1 A xo > 0}

H? is complete, with constant curva-
ture —1. Its geodesics are the intersec-
tions with the planes containing 0.
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The hyperbolic plane is an analogue of S2...

A

but in the Minkowski 3-dim space, R?*.
H? .= {x e R?1 | (x,x) = =1 A xo > 0}

H? is complete, with constant curva-
ture —1. Its geodesics are the intersec-
tions with the planes containing 0.

-
Its (orientation-preserving) isometry group is SO, (2,1) = PSL(2,R)
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The hyperbolic plane

The hyperbolic plane is an analogue of S2...

A

but in the Minkowski 3-dim space, R?*.
H? .= {x e R?1 | (x,x) = =1 A xo > 0}

H? is complete, with constant curva-
ture —1. Its geodesics are the intersec-
tions with the planes containing 0.

o
Its (orientation-preserving) isometry group is SO, (2,1) = PSL(2,R)
Same construction in higher dim, in dim 3 the isometry group is
50(3,1) = PSL(2,C).
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The projective model of H?

Obtained by projecting each x € H? on
z = 1 in the direction of 0.
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The projective model of H?

N
\
=

Obtained by projecting each x € H? on
z = 1 in the direction of 0.

The images of the geodesics of H? are the
segments.
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The hyperbolic plane

The projective model of H?

N
\
=

Obtained by projecting each x € H? on
z = 1 in the direction of 0.

The images of the geodesics of H? are the
segments.

Not conformal : angles are not preserved.
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The Poincaré disk model
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The hyperbolic plane

The Poincaré disk model

Project each x € H2 on z = 1 in the di-
rection of (0,0, —1). ‘
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The Poincaré disk model

Project each x € H2 on z = 1 in the di-
rection of (0,0, —1).

This model is conformal, angles are pre-
served.
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The Poincaré disk model

Project each x € H2 on z = 1 in the di-
rection of (0,0, —1).

This model is conformal, angles are pre-
served. Geodesics are sent to circles arcs
orthogonal to the boundary.
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The Poincaré disk model

Project each x € H2 on z = 1 in the di-
rection of (0,0, —1).

This model is conformal, angles are pre-
served. Geodesics are sent to circles arcs
orthogonal to the boundary. Def : “boun-
dary at infinity".
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The hyperbolic plane

The Poincaré disk model

Project each x € H2 on z = 1 in the di-

rection of (0,0, —1).

This model is conformal, angles are pre-

served. Geodesics are sent to circles arcs

orthogonal to the boundary. Def : “boun-

dary at infinity”. The circles tangent to

the boundary are the horocycles, they are /

at “constant distance” from a point at in- ¥
finity.
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The hyperbolic plane

The PoincarAl half-plane model

Apply to the Poincaré disk model the
transformation z +— 1/(z — i) — i
(conforme). Yields the “Poincaré half-
plane”.
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The PoincarAl half-plane model

Apply to the Poincaré disk model the

transformation z — 1/(z — i) — i
(conforme). Yields the “Poincaré half-
plane”.

The boundary at infinity is identified with
the real line, plus a point “at infinity".
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The PoincarAl half-plane model

Apply to the Poincaré disk model the

transformation z — 1/(z — i) — i
(conforme). Yields the “Poincaré half-
plane”.

The boundary at infinity is identified with

the real line, plus a point “at infinity".
The geodesics are the half-circles cente- m ’i
1

red on R and the vertical half-lines,
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The hyperbolic plane

The PoincarAl half-plane model

Apply to the Poincaré disk model the
transformation z +— 1/(z — i) — i
(conforme). Yields the “Poincaré half-
plane”.

The boundary at infinity is identified with “;’/ \\

the real line, plus a point “at infinity". T /‘r\
The geodesics are the half-circles cente- / K\ /§/ \
red on R and the vertical half-lines, the :
horocycles are the horizontal lines and the
circles tangent to R.
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The hyperbolic plane

The PoincarAl half-plane model

Apply to the Poincaré disk model the

transformation z — 1/(z — i) — i
(conforme). Yields the “Poincaré half-
plane”. /”/7 \\

The boundary at infinity is identified with | \
the real line, plus a point “at infinity". T /‘r\

The geodesics are the half-circles cente- / K\ /§/ \
red on R and the vertical half-lines, the :
horocycles are the horizontal lines and the

circles tangent to R.
The metric is : (dx? + dy?)/y>.
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The hyperbolic plane

The PoincarAl half-plane model

Apply to the Poincaré disk model the

transformation z — 1/(z — i) — i
(conforme). Yields the “Poincaré half-
plane”. /” B \\

The boundary at infinity is identified with / \
the real line, plus a point “at infinity". T /‘r\
The geodesics are the half-circles cente- / K\ /§/ \
red on R and the vertical half-lines, the :
horocycles are the horizontal lines and the
circles tangent to R.

The metric is : (dx? + dy?)/y?. The identification SO, (2,1) = PSL(2, R)

is best seen in this model : projective action on the real line.
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Exercises

Topology and Riemannian geometry

@ Show that the two defs of a Riemann surface — in terms of a map to
C and in terms of J — are equivalent.

Show that S? is diffeomorphic to CP!.

© 0

Show (properly) that the mapping-class group of the torus is
SL(2,7Z).

Show that the Levi-Civita connection of g is uniquely determined.
Show that g(R,, . w, z) is anti-symmetric in u, v.

Show that g(Ry,,,w, z) is anti-symmetric in w, z.

© 00O

Show that g(R,,,w, z) is symmetric in (u, v), (w, z).
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