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Hyperbolic surfaces

A hyperbolic surface is locally modeled on the hyperbolic plane.
Equivalently : a surface with a Riemannian metric of curvature −1.
H2 is the only 1-connected complete hyperbolic surface. If S is closed
and hyperbolic, its universal cover is H2. Proof : complete, simply
connected, hence H2.
So π1(S) ⊂ PSL(2,R).
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The Gauss-Bonnet formula

Consider a surface S , perhaps with
boundary, with a triangulation T . Let
χ(S , t) = #(vertices) − #(edges) +
#(faces).
Thm : χ(S ,T ) does not depend on T ,
i.e. χ(S). χ(S) = Euler characteristic of
S .
Gauss-Bonnet thm : on a hyperbolic
surface, the sum of the exterior angles of
a polygonal region is 2πχ + A.

Disk : χ = 1. Annulus, torus : χ = 0. Sphere : χ = 2.
Application : the area of an ideal triangle (all vertices at in�nity) is π.
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Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a
unique closed curve.

Proof of existence : take shortest curve in
the homotopy class, has to be geodesic.
Proof of uniqueness : based on Gauss-
Bonnet.

Two homotopic geodesic can not
intersect (χ = 1 for a disk).

They can not bound a cylinder
(χ = 0 for an annulus).

Therefore, π1(S) is the set of closed geodesics (perhaps with
self-intersections).

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces
Fenchel-Nielsen coordinates

Uniformization
The Weil-Petersson metric

Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a
unique closed curve.

Proof of existence : take shortest curve in
the homotopy class, has to be geodesic.
Proof of uniqueness : based on Gauss-
Bonnet.

Two homotopic geodesic can not
intersect (χ = 1 for a disk).

They can not bound a cylinder
(χ = 0 for an annulus).

Therefore, π1(S) is the set of closed geodesics (perhaps with
self-intersections).

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces
Fenchel-Nielsen coordinates

Uniformization
The Weil-Petersson metric

Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a
unique closed curve.

Proof of existence : take shortest curve in
the homotopy class, has to be geodesic.
Proof of uniqueness : based on Gauss-
Bonnet.

Two homotopic geodesic can not
intersect (χ = 1 for a disk).

They can not bound a cylinder
(χ = 0 for an annulus).

Therefore, π1(S) is the set of closed geodesics (perhaps with
self-intersections).

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces
Fenchel-Nielsen coordinates

Uniformization
The Weil-Petersson metric

Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a
unique closed curve.

Proof of existence : take shortest curve in
the homotopy class, has to be geodesic.
Proof of uniqueness : based on Gauss-
Bonnet.

Two homotopic geodesic can not
intersect (χ = 1 for a disk).

They can not bound a cylinder
(χ = 0 for an annulus).

Therefore, π1(S) is the set of closed geodesics (perhaps with
self-intersections).

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces
Fenchel-Nielsen coordinates

Uniformization
The Weil-Petersson metric

Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a
unique closed curve.

Proof of existence : take shortest curve in
the homotopy class, has to be geodesic.
Proof of uniqueness : based on Gauss-
Bonnet.

Two homotopic geodesic can not
intersect (χ = 1 for a disk).

They can not bound a cylinder
(χ = 0 for an annulus).

Therefore, π1(S) is the set of closed geodesics (perhaps with
self-intersections).

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces
Fenchel-Nielsen coordinates

Uniformization
The Weil-Petersson metric

Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a
unique closed curve.

Proof of existence : take shortest curve in
the homotopy class, has to be geodesic.
Proof of uniqueness : based on Gauss-
Bonnet.

Two homotopic geodesic can not
intersect (χ = 1 for a disk).

They can not bound a cylinder
(χ = 0 for an annulus).

Therefore, π1(S) is the set of closed geodesics (perhaps with
self-intersections).

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces
Fenchel-Nielsen coordinates

Uniformization
The Weil-Petersson metric

Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a
unique closed curve.

Proof of existence : take shortest curve in
the homotopy class, has to be geodesic.
Proof of uniqueness : based on Gauss-
Bonnet.

Two homotopic geodesic can not
intersect (χ = 1 for a disk).

They can not bound a cylinder
(χ = 0 for an annulus).

Therefore, π1(S) is the set of closed geodesics (perhaps with
self-intersections).

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces
Fenchel-Nielsen coordinates

Uniformization
The Weil-Petersson metric

Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with
some vertices at in�nity. Its area is boun-
ded (Gauss-Bonnet). Glue to another
copy of itself, no singularity occurs on the
(geodesic) edges.
Result : �nite area hyperbolic surface.

Same is possible with in�nite area surfaces. The �cusps� at in�nity are all
the same (isometric neighborhoods). The corresponding representations
have �parabolic� elements (�xing a point at in�nity).
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Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S de�nes an isometric action of
π1(S) on H2, therefore a representation ρ : π1(S) → PSL(2, R). So T
embeds in the representation space Homirr (π1(S),PSL(2, R))/PSL(2, R).
This space is not connected : the connected components are
characterized by a topological invariant, the Euler number.
T corresponds to the connected component with maximal Euler number.
There are several �elementary� ways to understand T :

Fenchel-Nielsen coordinates, based on the decomposition into �pairs
of pants�,

shear coordinates (for surfaces with a cusp),

complex analytic viewpoint.

Each is important for 3-dim geometry, in di�erent ways. We will
concentrate �rst on Fenchel-Nielsen coordinates.
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This space is not connected : the connected components are
characterized by a topological invariant, the Euler number.
T corresponds to the connected component with maximal Euler number.
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of pants�,
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complex analytic viewpoint.
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concentrate �rst on Fenchel-Nielsen coordinates.
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Right-angled hexagons

The building block used here are hyperbolic pairs of pants, themselves
built from two copies of a hexagon with right angles.
Lemma : ∀l1, l2, l3 ∈ R>0,∃! hyperbolic hexagon with right angles with
alternate lengths l1, l2, l3.

Proof : start from one edge, length d , add
two orthogonal edges, length l1, l2, then
two more orthogonal edges, if d ≥ d0,
they are connected by a unique orthogo-
nal edge of length l3(d). l3(d) is an in-
creasing function going from 0 (for d0)
to in�nity. qed.
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Hyperbolic pairs of pants

Topologically, a pair of pants is a sphere with 3 holes. A hyperbolic pair
of pants has a hyperbolic metric with geodesic boundary.
Lemma : ∀L1, L2, L3 ∈ R>0,∃! hyperbolic pair of pants with boundary
lengths L1, L2, L3.
Proof : given a hyperbolic pair of pants
P, ∃! geodesic segment orthogonal to
two boundary curves. Existence by mini-
mal length, uniqueness by Gauss-Bonnet
as for closed geodesics.
Let c1, c2, c3 be those curves, with length
λ1, λ2, λ3. c1, c2, c3 cut P into two
right-angled hexagons, which have the
same alternate length, therefore are the
same.

So, any P is obtained by gluing two copies of a right-angled hexagon,
with boundary lengths Li/2. Pairs of pant have area 4π.
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Fenchel-Nielsen coordinates

Consider a surface S of genus ≥ 2,
with a pant decomposition : a family
of n disjoint simple closed curves with
complement pairs of pants.
Let g be a hyperbolic metric on S . The
lengths of the curves de�ne n numbers
l1, · · · , ln.
Moreover, the gluing angles de�ne
θ1, · · · , θn. The li , θi describe the metric
up to di�eo.
Thm : the θi ∈ R are well-de�ned on TS .
The (li , θi ) are global coordinates on TS .
Cor : TS is homeomorphic to a ball of
dimension 6g − 6.

l

l

l
1

2

3

The construction strongly depends on the pant decomposition.
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=== thm
=== the Liouville equation
=== resolution by minimization
=== holomorphic vector �elds
=== Beltrami di�erentials as tangent space
=== quadratic holomorphic di� as cotangent
=== the WP metric
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