Hyperbolic geometry for 3d gravity 2. Hyperbolic surfaces

Jean-Marc Schlenker

Institut de Mathématiques Université Toulouse III http://www.picard.ups-tlse.fr/~schlenker

March 23-27, 2007

Hyperbolic surfaces

A hyperbolic surface is locally modeled on the hyperbolic plane.

Equivalently : a surface with a Riemannian metric of curvature -1. H^2 is the only 1-connected complete hyperbolic surface. If S is closed and hyperbolic, its universal cover is H^2 . Proof : complete, simply connected, hence H^2 . So $\pi_1(S) \subset PSL(2, R)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Hyperbolic surfaces

A hyperbolic surface is locally modeled on the hyperbolic plane. Equivalently : a surface with a Riemannian metric of curvature -1. H^2 is the only 1-connected complete hyperbolic surface. If S is closed and hyperbolic, its universal cover is H^2 . Proof : complete, simply connected, hence H^2 . So $\pi_1(S) \subset PSL(2, R)$.

・ロン ・四と ・ヨン ・ヨン

Hyperbolic surfaces

A hyperbolic surface is locally modeled on the hyperbolic plane. Equivalently : a surface with a Riemannian metric of curvature -1. H^2 is the only 1-connected complete hyperbolic surface. If S is closed and hyperbolic, its universal cover is H^2 . Proof : complete, simply connected, hence H^2 . So $\pi_1(S) \subset PSL(2, R)$.

・ロン ・四と ・ヨン ・ヨン

Hyperbolic surfaces

A hyperbolic surface is locally modeled on the hyperbolic plane. Equivalently : a surface with a Riemannian metric of curvature -1. H^2 is the only 1-connected complete hyperbolic surface. If S is closed and hyperbolic, its universal cover is H^2 . Proof : complete, simply connected, hence H^2 . So $\pi_1(S) \subset PSL(2, R)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Hyperbolic surfaces

A hyperbolic surface is locally modeled on the hyperbolic plane. Equivalently : a surface with a Riemannian metric of curvature -1. H^2 is the only 1-connected complete hyperbolic surface. If S is closed and hyperbolic, its universal cover is H^2 . Proof : complete, simply connected, hence H^2 .

So $\pi_1(S)\subset \mathit{PSL}(2,R)$.

Hyperbolic surfaces

A hyperbolic surface is locally modeled on the hyperbolic plane. Equivalently : a surface with a Riemannian metric of curvature -1. H^2 is the only 1-connected complete hyperbolic surface. If S is closed and hyperbolic, its universal cover is H^2 . Proof : complete, simply connected, hence H^2 . So $\pi_1(S) \subset PSL(2, R)$.

The Gauss-Bonnet formula

Consider a surface S, perhaps with boundary, with a triangulation T. Let

 $\chi(S, t) = \#(vertices) - \#(edges) + \#(faces).$

Thm : $\chi(S, T)$ does not depend on T, i.e. $\chi(S)$. $\chi(S)$ = Euler characteristic of S.

Gauss-Bonnet thm : on a hyperbolic surface, the sum of the exterior angles of a polygonal region is $2\pi\chi + A$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The Gauss-Bonnet formula

Consider a surface *S*, perhaps with boundary, with a triangulation *T*. Let $\chi(S, t) = \#(vertices) - \#(edges) + \#(faces)$.

Thm : $\chi(S, T)$ does not depend on T, i.e. $\chi(S)$. $\chi(S) =$ Euler characteristic of S.

Gauss-Bonnet thm : on a hyperbolic surface, the sum of the exterior angles of a polygonal region is $2\pi\chi + A$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The Gauss-Bonnet formula

Consider a surface *S*, perhaps with boundary, with a triangulation *T*. Let $\chi(S, t) = \#(vertices) - \#(edges) + \#(faces)$. Thm : $\chi(S, T)$ does not depend on *T*, i.e. $\chi(S)$. $\chi(S) =$ Euler characteristic of *S*.

Gauss-Bonnet thm : on a hyperbolic surface, the sum of the exterior angles of a polygonal region is $2\pi\chi + A$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The Gauss-Bonnet formula

Consider a surface S, perhaps with boundary, with a triangulation T. Let $\chi(S,t) = \#(vertices) - \#(edges) + \#(faces)$. Thm : $\chi(S,T)$ does not depend on T, i.e. $\chi(S)$. $\chi(S) =$ Euler characteristic of S.

Gauss-Bonnet thm : on a hyperbolic surface, the sum of the exterior angles of a polygonal region is $2\pi\chi + A$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The Gauss-Bonnet formula

Consider a surface S, perhaps with boundary, with a triangulation T. Let $\chi(S, t) = \#(vertices) - \#(edges) + \#(faces)$. Thm : $\chi(S, T)$ does not depend on T, i.e. $\chi(S)$. $\chi(S) =$ Euler characteristic of S. Gauss-Bonnet thm : on a hyperbolic

surface, the sum of the exterior angles of a polygonal region is $2\pi\chi + A$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The Gauss-Bonnet formula

Consider a surface S, perhaps with boundary, with a triangulation T. Let $\chi(S,t) = \#(vertices) - \#(edges) + \#(faces)$. Thm : $\chi(S,T)$ does not depend on T, i.e. $\chi(S)$. $\chi(S) =$ Euler characteristic of S. Gauss-Bonnet thm : on a hyperbolic surface, the sum of the exterior angles of

a polygonal region is $2\pi\chi + A$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Disk : $\chi = 1$. Annulus, torus : $\chi = 0$. Sphere : $\chi = 2$.

The Gauss-Bonnet formula

Consider a surface S, perhaps with boundary, with a triangulation T. Let $\chi(S,t) = \#(vertices) - \#(edges) + \#(faces)$. Thm : $\chi(S,T)$ does not depend on T, i.e. $\chi(S)$. $\chi(S) =$ Euler characteristic of S. Gauss-Bonnet thm : on a hyperbolic surface, the sum of the exterior angles of

a polygonal region is $2\pi\chi + A$.

Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a unique closed curve.

Proof of existence : take shortest curve in the homotopy class, has to be geodesic. Proof of uniqueness : based on Gauss-Bonnet.

- Two homotopic geodesic can not intersect (\chi = 1 for a disk).
- They can not bound a cylinder (χ = 0 for an annulus).

Therefore, $\pi_1(S)$ is the set of closed geodesics (perhaps with self-intersections).

Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a unique closed curve.

Proof of existence : take shortest curve in the homotopy class, has to be geodesic.

Proof of uniqueness : based on Gauss-Bonnet.

- Two homotopic geodesic can not intersect (\chi = 1 for a disk).
- They can not bound a cylinder (χ = 0 for an annulus).

Therefore, $\pi_1(S)$ is the set of closed geodesics (perhaps with self-intersections).

Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a unique closed curve.

Proof of existence : take shortest curve in the homotopy class, has to be geodesic. Proof of uniqueness : based on Gauss-Bonnet.

- Two homotopic geodesic can not intersect (\chi = 1 for a disk).
- They can not bound a cylinder (χ = 0 for an annulus).

Therefore, $\pi_1(S)$ is the set of closed geodesics (perhaps with self-intersections).

Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a unique closed curve.

Proof of existence : take shortest curve in the homotopy class, has to be geodesic. Proof of uniqueness : based on Gauss-Bonnet.

- Two homotopic geodesic can not intersect (χ = 1 for a disk).
- They can not bound a cylinder (χ = 0 for an annulus).

(日) (四) (三) (三)

Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a unique closed curve.

Proof of existence : take shortest curve in the homotopy class, has to be geodesic. Proof of uniqueness : based on Gauss-Bonnet.

- Two homotopic geodesic can not intersect (χ = 1 for a disk).
- They can not bound a cylinder (χ = 0 for an annulus).

Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a unique closed curve.

Proof of existence : take shortest curve in the homotopy class, has to be geodesic. Proof of uniqueness : based on Gauss-Bonnet.

- Two homotopic geodesic can not intersect (χ = 1 for a disk).
- They can not bound a cylinder (χ = 0 for an annulus).

Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a unique closed curve.

Proof of existence : take shortest curve in the homotopy class, has to be geodesic. Proof of uniqueness : based on Gauss-Bonnet.

- Two homotopic geodesic can not intersect (χ = 1 for a disk).
- They can not bound a cylinder (χ = 0 for an annulus).

Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with some vertices at infinity. Its area is bounded (Gauss-Bonnet). Glue to another copy of itself, no singularity occurs on the (geodesic) edges. Result : finite area hyperbolic surface.

Same is possible with infinite area surfaces. The "cusps" at infinity are all the same (isometric neighborhoods). The corresponding representations have "parabolic" elements (fixing a point at infinity).

Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with some vertices at infinity. Its area is bounded (Gauss-Bonnet). Glue to another copy of itself, no singularity occurs on the (geodesic) edges. Result : finite area hyperbolic surface.

(日) (四) (三) (三)

Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with some vertices at infinity. Its area is bounded (Gauss-Bonnet). Glue to another copy of itself, no singularity occurs on the (geodesic) edges. Result in finite area hyperbolic surface

(日) (四) (三) (三)

Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with some vertices at infinity. Its area is bounded (Gauss-Bonnet). Glue to another copy of itself, no singularity occurs on the (geodesic) edges. Result : finite area hyperbolic surface.

(D) (B) (E) (E)

Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with some vertices at infinity. Its area is bounded (Gauss-Bonnet). Glue to another copy of itself, no singularity occurs on the (geodesic) edges.

Result : finite area hyperbolic surface.

(D) (B) (E) (E)

Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with some vertices at infinity. Its area is bounded (Gauss-Bonnet). Glue to another copy of itself, no singularity occurs on the (geodesic) edges.

Result : finite area hyperbolic surface.

(日) (四) (三) (三)

Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with some vertices at infinity. Its area is bounded (Gauss-Bonnet). Glue to another copy of itself, no singularity occurs on the (geodesic) edges. Result : finite area hyperbolic surface.

(日) (四) (三) (三)

Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with some vertices at infinity. Its area is bounded (Gauss-Bonnet). Glue to another copy of itself, no singularity occurs on the (geodesic) edges. Result : finite area hyperbolic surface.

(D) (B) (E) (E)

Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with some vertices at infinity. Its area is bounded (Gauss-Bonnet). Glue to another copy of itself, no singularity occurs on the (geodesic) edges.

Result : finite area hyperbolic surface.

Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with some vertices at infinity. Its area is bounded (Gauss-Bonnet). Glue to another copy of itself, no singularity occurs on the (geodesic) edges. Result : finite area hyperbolic surface.

Same is possible with infinite area surfaces. The "cusps" at infinity are all the same (isometric neighborhoods). The corresponding representations have "parabolic" elements (fixing a point at infinity).

(D) (A) (A) (A)

Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of $\pi_1(S)$ on H^2 , therefore a representation $\rho: \pi_1(S) \to PSL(2, \mathbb{R})$. So T embeds in the representation space $Hom_{irr}(\pi_1(S), PSL(2, \mathbb{R}))/PSL(2, \mathbb{R})$. This space is not connected : the connected components are characterized by a topological invariant, the Euler number. T corresponds to the connected component with maximal Euler number. There are several "elementary" ways to understand T :

- Fenchel-Nielsen coordinates, based on the decomposition into "pairs of pants",
- shear coordinates (for surfaces with a cusp).
- complex analytic viewpoint.

Each is important for 3-dim geometry, in different ways. We will concentrate first on Fenchel-Nielsen coordinates.

Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of $\pi_1(S)$ on H^2 , therefore a representation $\rho : \pi_1(S) \to PSL(2, \mathbb{R})$. So \mathcal{T} embeds in the representation space $Hom_{irr}(\pi_1(S), PSL(2, \mathbb{R}))/PSL(2, \mathbb{R})$. This space is not connected : the connected components are characterized by a topological invariant, the Euler number. \mathcal{T} corresponds to the connected component with maximal Euler number. There are several "elementary" ways to understand \mathcal{T} :

- Fenchel-Nielsen coordinates, based on the decomposition into "pairs of pants",
- shear coordinates (for surfaces with a cusp)
- complex analytic viewpoint.

Each is important for 3-dim geometry, in different ways. We will concentrate first on Fenchel-Nielsen coordinates.

Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of $\pi_1(S)$ on H^2 , therefore a representation $\rho : \pi_1(S) \to PSL(2,\mathbb{R})$. So \mathcal{T} embeds in the *representation space Hom*_{irr}($\pi_1(S), PSL(2,\mathbb{R}))/PSL(2,\mathbb{R})$.

This space is not connected : the connected components are characterized by a topological invariant, the Euler number. ${\mathcal T}$ corresponds to the connected component with maximal Euler number. There are several "elementary" ways to understand ${\mathcal T}$:

- Fenchel-Nielsen coordinates, based on the decomposition into "pairs of pants",
- shear coordinates (for surfaces with a cusp)
- complex analytic viewpoint.

Each is important for 3-dim geometry, in different ways. We will concentrate first on Fenchel-Nielsen coordinates.

Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of $\pi_1(S)$ on H^2 , therefore a representation $\rho : \pi_1(S) \to PSL(2, \mathbb{R})$. So \mathcal{T} embeds in the *representation space* $Hom_{irr}(\pi_1(S), PSL(2, \mathbb{R}))/PSL(2, \mathbb{R})$. This space is not connected : the connected components are characterized by a topological invariant, the Euler number.

 ${\mathcal T}$ corresponds to the connected component with maximal Euler number. There are several "elementary" ways to understand ${\mathcal T}$:

- Fenchel-Nielsen coordinates, based on the decomposition into "pairs of pants",
- shear coordinates (for surfaces with a cusp).
- complex analytic viewpoint.

Each is important for 3-dim geometry, in different ways. We will concentrate first on Fenchel-Nielsen coordinates.

Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of $\pi_1(S)$ on H^2 , therefore a representation $\rho: \pi_1(S) \to PSL(2, \mathbb{R})$. So \mathcal{T} embeds in the *representation space* $Hom_{irr}(\pi_1(S), PSL(2, \mathbb{R}))/PSL(2, \mathbb{R})$. This space is not connected : the connected components are characterized by a topological invariant, the Euler number. \mathcal{T} corresponds to the connected component with maximal Euler number. There are several "elementary" ways to understand \mathcal{T} :

- Fenchel-Nielsen coordinates, based on the decomposition into "pairs of pants",
- shear coordinates (for surfaces with a cusp)
- complex analytic viewpoint.

Each is important for 3-dim geometry, in different ways. We will concentrate first on Fenchel-Nielsen coordinates.

Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of $\pi_1(S)$ on H^2 , therefore a representation $\rho: \pi_1(S) \to PSL(2, \mathbb{R})$. So \mathcal{T} embeds in the *representation space* $Hom_{irr}(\pi_1(S), PSL(2, \mathbb{R}))/PSL(2, \mathbb{R})$. This space is not connected : the connected components are characterized by a topological invariant, the Euler number. \mathcal{T} corresponds to the connected component with maximal Euler number. There are several "elementary" ways to understand \mathcal{T} :

- Fenchel-Nielsen coordinates, based on the decomposition into "pairs of pants",
- shear coordinates (for surfaces with a cusp).
- complex analytic viewpoint.

Each is important for 3-dim geometry, in different ways. We will concentrate first on Fenchel-Nielsen coordinates.

Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of $\pi_1(S)$ on H^2 , therefore a representation $\rho: \pi_1(S) \to PSL(2, \mathbb{R})$. So \mathcal{T} embeds in the *representation space* $Hom_{irr}(\pi_1(S), PSL(2, \mathbb{R}))/PSL(2, \mathbb{R})$. This space is not connected : the connected components are characterized by a topological invariant, the Euler number. \mathcal{T} corresponds to the connected component with maximal Euler number. There are several "elementary" ways to understand \mathcal{T} :

- Fenchel-Nielsen coordinates, based on the decomposition into "pairs of pants",
- shear coordinates (for surfaces with a cusp),
- complex analytic viewpoint.

Each is important for 3-dim geometry, in different ways. We will concentrate first on Fenchel-Nielsen coordinates.

Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of $\pi_1(S)$ on H^2 , therefore a representation $\rho: \pi_1(S) \to PSL(2, \mathbb{R})$. So \mathcal{T} embeds in the *representation space* $Hom_{irr}(\pi_1(S), PSL(2, \mathbb{R}))/PSL(2, \mathbb{R})$. This space is not connected : the connected components are characterized by a topological invariant, the Euler number. \mathcal{T} corresponds to the connected component with maximal Euler number. There are several "elementary" ways to understand \mathcal{T} :

- Fenchel-Nielsen coordinates, based on the decomposition into "pairs of pants",
- shear coordinates (for surfaces with a cusp),
- complex analytic viewpoint.

Each is important for 3-dim geometry, in different ways. We will concentrate first on Fenchel-Nielsen coordinates.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of $\pi_1(S)$ on H^2 , therefore a representation $\rho: \pi_1(S) \to PSL(2, \mathbb{R})$. So \mathcal{T} embeds in the *representation space* $Hom_{irr}(\pi_1(S), PSL(2, \mathbb{R}))/PSL(2, \mathbb{R})$. This space is not connected : the connected components are characterized by a topological invariant, the Euler number. \mathcal{T} corresponds to the connected component with maximal Euler number. There are several "elementary" ways to understand \mathcal{T} :

- Fenchel-Nielsen coordinates, based on the decomposition into "pairs of pants",
- shear coordinates (for surfaces with a cusp),
- complex analytic viewpoint.

Each is important for 3-dim geometry, in different ways. We will concentrate first on Fenchel-Nielsen coordinates.

Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of $\pi_1(S)$ on H^2 , therefore a representation $\rho: \pi_1(S) \to PSL(2, \mathbb{R})$. So \mathcal{T} embeds in the *representation space* $Hom_{irr}(\pi_1(S), PSL(2, \mathbb{R}))/PSL(2, \mathbb{R})$. This space is not connected : the connected components are characterized by a topological invariant, the Euler number. \mathcal{T} corresponds to the connected component with maximal Euler number. There are several "elementary" ways to understand \mathcal{T} :

- Fenchel-Nielsen coordinates, based on the decomposition into "pairs of pants",
- shear coordinates (for surfaces with a cusp),
- complex analytic viewpoint.

Each is important for 3-dim geometry, in different ways. We will concentrate first on Fenchel-Nielsen coordinates.

Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of $\pi_1(S)$ on H^2 , therefore a representation $\rho: \pi_1(S) \to PSL(2, \mathbb{R})$. So \mathcal{T} embeds in the *representation space* $Hom_{irr}(\pi_1(S), PSL(2, \mathbb{R}))/PSL(2, \mathbb{R})$. This space is not connected : the connected components are characterized by a topological invariant, the Euler number. \mathcal{T} corresponds to the connected component with maximal Euler number. There are several "elementary" ways to understand \mathcal{T} :

- Fenchel-Nielsen coordinates, based on the decomposition into "pairs of pants",
- shear coordinates (for surfaces with a cusp),
- complex analytic viewpoint.

Each is important for 3-dim geometry, in different ways. We will concentrate first on Fenchel-Nielsen coordinates.

Right-angled hexagons

The building block used here are hyperbolic pairs of pants, themselves built from two copies of a hexagon with right angles.

Lemma : $\forall I_1, I_2, I_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic hexagon with right angles with alternate lengths I_1, I_2, I_3 .

Proof : start from one edge, length d, add two orthogonal edges, length l_1, l_2 , then two more orthogonal edges, if $d \ge d_0$, they are connected by a unique orthogonal edge of length $l_3(d)$. $l_3(d)$ is an increasing function going from 0 (for d_0) to infinity. qed.

(D) (B) (E) (E)

Right-angled hexagons

The building block used here are hyperbolic pairs of pants, themselves built from two copies of a hexagon with right angles.

Lemma : $\forall l_1, l_2, l_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic hexagon with right angles with alternate lengths l_1, l_2, l_3 .

Proof : start from one edge, length d, add two orthogonal edges, length l_1, l_2 , then two more orthogonal edges, if $d \ge d_0$, they are connected by a unique orthogonal edge of length $l_3(d)$. $l_3(d)$ is an increasing function going from 0 (for d_0) to infinity. qed.

Right-angled hexagons

The building block used here are hyperbolic pairs of pants, themselves built from two copies of a hexagon with right angles.

Lemma : $\forall l_1, l_2, l_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic hexagon with right angles with alternate lengths l_1, l_2, l_3 .

Proof : start from one edge, length d, add two orthogonal edges, length l_1, l_2 , then two more orthogonal edges, if $d \ge d_0$, they are connected by a unique orthogonal edge of length $l_3(d)$. $l_3(d)$ is an increasing function going from 0 (for d_0) to infinity, ged.

Right-angled hexagons

The building block used here are hyperbolic pairs of pants, themselves built from two copies of a hexagon with right angles.

Lemma : $\forall l_1, l_2, l_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic hexagon with right angles with alternate lengths l_1, l_2, l_3 .

Proof : start from one edge, length d, add two orthogonal edges, length l_1, l_2 , then two more orthogonal edges, if $d \ge d_0$, they are connected by a unique orthogonal edge of length $l_3(d)$. $l_3(d)$ is an increasing function going from 0 (for d_0) to infinity, ged.

Right-angled hexagons

The building block used here are hyperbolic pairs of pants, themselves built from two copies of a hexagon with right angles.

Lemma : $\forall l_1, l_2, l_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic hexagon with right angles with alternate lengths l_1, l_2, l_3 .

Proof : start from one edge, length d, add two orthogonal edges, length l_1, l_2 , then two more orthogonal edges, if $d \ge d_0$, they are connected by a unique orthogonal edge of length $l_3(d)$. $l_3(d)$ is an increasing function going from 0 (for d_0) to infinity, qed.

Right-angled hexagons

The building block used here are hyperbolic pairs of pants, themselves built from two copies of a hexagon with right angles.

Lemma : $\forall l_1, l_2, l_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic hexagon with right angles with alternate lengths l_1, l_2, l_3 .

Proof : start from one edge, length d, add two orthogonal edges, length l_1, l_2 , then two more orthogonal edges, if $d \ge d_0$, they are connected by a unique orthogonal edge of length $l_3(d)$. $l_3(d)$ is an increasing function going from 0 (for d_0) to infinity. ged.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Right-angled hexagons

The building block used here are hyperbolic pairs of pants, themselves built from two copies of a hexagon with right angles.

Lemma : $\forall l_1, l_2, l_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic hexagon with right angles with alternate lengths l_1, l_2, l_3 .

Proof : start from one edge, length d, add two orthogonal edges, length l_1, l_2 , then two more orthogonal edges, if $d \ge d_0$, they are connected by a unique orthogonal edge of length $l_3(d)$. $l_3(d)$ is an increasing function going from 0 (for d_0) to infinity. qed.

Hyperbolic pairs of pants

Topologically, a *pair of pants* is a sphere with 3 holes. A hyperbolic pair

So, any *P* is obtained by gluing two copies of a right-angled hexagon, with boundary lengths $L_i/2$. Pairs of pant have area 4π .

Hyperbolic pairs of pants

Topologically, a *pair of pants* is a sphere with 3 holes. A hyperbolic pair of pants has a hyperbolic metric with geodesic boundary.

Lemma : $orall L_1, L_2, L_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic pair of pants with boundary lengths L_1, L_2, L_3 .

Proof : given a hyperbolic pair of pants P, \exists ! geodesic segment orthogonal to two boundary curves. Existence by minimal length, uniqueness by Gauss-Bonnet as for closed geodesics.

Let c_1, c_2, c_3 be those curves, with length $\lambda_1, \lambda_2, \lambda_3$. c_1, c_2, c_3 cut P into two right-angled hexagons, which have the same alternate length, therefore are the same.

So, any *P* is obtained by gluing two copies of a right-angled hexagon, with boundary lengths $L_i/2$. Pairs of pant have area 4π .

Hyperbolic pairs of pants

Topologically, a *pair of pants* is a sphere with 3 holes. A hyperbolic pair of pants has a hyperbolic metric with geodesic boundary. Lemma : $\forall L_1, L_2, L_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic pair of pants with boundary lengths L_1, L_2, L_3 .

Proof : given a hyperbolic pair of pants P, \exists ! geodesic segment orthogonal to two boundary curves. Existence by minimal length, uniqueness by Gauss-Bonnet as for closed geodesics.

Let c_1, c_2, c_3 be those curves, with length $\lambda_1, \lambda_2, \lambda_3$. c_1, c_2, c_3 cut P into two right-angled hexagons, which have the same alternate length, therefore are the same.

So, any *P* is obtained by gluing two copies of a right-angled hexagon, with boundary lengths $L_i/2$. Pairs of pant have area 4π

Hyperbolic pairs of pants

Topologically, a *pair of pants* is a sphere with 3 holes. A hyperbolic pair of pants has a hyperbolic metric with geodesic boundary.

Lemma : $\forall L_1, L_2, L_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic pair of pants with boundary lengths L_1, L_2, L_3 .

Proof : given a hyperbolic pair of pants P, \exists ! geodesic segment orthogonal to two boundary curves. Existence by mini-

mal length, uniqueness by Gauss-Bonnet as for closed geodesics.

Let c_1, c_2, c_3 be those curves, with length $\lambda_1, \lambda_2, \lambda_3$. c_1, c_2, c_3 cut P into two right-angled hexagons, which have the same alternate length, therefore are the same.

So, any *P* is obtained by gluing two copies of a right-angled hexagon, with boundary lengths $L_i/2$. Pairs of pant have area 4π

Hyperbolic pairs of pants

Topologically, a *pair of pants* is a sphere with 3 holes. A hyperbolic pair of pants has a hyperbolic metric with geodesic boundary.

Lemma : $\forall L_1, L_2, L_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic pair of pants with boundary lengths L_1, L_2, L_3 .

Proof : given a hyperbolic pair of pants P, \exists ! geodesic segment orthogonal to two boundary curves. Existence by minimal length, uniqueness by Gauss-Bonnet as for closed geodesics.

Let c_1, c_2, c_3 be those curves, with length $\lambda_1, \lambda_2, \lambda_3$. c_1, c_2, c_3 cut P into two right-angled hexagons, which have the same alternate length, therefore are the same.

So, any *P* is obtained by gluing two copies of a right-angled hexagon, with boundary lengths $L_i/2$. Pairs of pant have area 4π .

Hyperbolic pairs of pants

Topologically, a *pair of pants* is a sphere with 3 holes. A hyperbolic pair of pants has a hyperbolic metric with geodesic boundary.

Lemma : $\forall L_1, L_2, L_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic pair of pants with boundary lengths L_1, L_2, L_3 .

Proof : given a hyperbolic pair of pants P, \exists ! geodesic segment orthogonal to two boundary curves. Existence by minimal length, uniqueness by Gauss-Bonnet as for closed geodesics.

Let c_1, c_2, c_3 be those curves, with length $\lambda_1, \lambda_2, \lambda_3$. c_1, c_2, c_3 cut P into two right-angled hexagons, which have the same alternate length, therefore are the same

So, any *P* is obtained by gluing two copies of a right-angled hexagon, with boundary lengths $L_i/2$. Pairs of pant have area 4π

Hyperbolic pairs of pants

Topologically, a *pair of pants* is a sphere with 3 holes. A hyperbolic pair of pants has a hyperbolic metric with geodesic boundary.

Lemma : $\forall L_1, L_2, L_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic pair of pants with boundary lengths L_1, L_2, L_3 .

Proof : given a hyperbolic pair of pants P, \exists ! geodesic segment orthogonal to two boundary curves. Existence by minimal length, uniqueness by Gauss-Bonnet as for closed geodesics.

Let c_1, c_2, c_3 be those curves, with length $\lambda_1, \lambda_2, \lambda_3$. c_1, c_2, c_3 cut P into two right-angled hexagons, which have the same alternate length, therefore are the came.

So, any *P* is obtained by gluing two copies of a right-angled hexagon, with boundary lengths $L_i/2$. Pairs of pant have area 4π

Hyperbolic pairs of pants

Topologically, a *pair of pants* is a sphere with 3 holes. A hyperbolic pair of pants has a hyperbolic metric with geodesic boundary.

Lemma : $\forall L_1, L_2, L_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic pair of pants with boundary lengths L_1, L_2, L_3 .

Proof : given a hyperbolic pair of pants P, \exists ! geodesic segment orthogonal to two boundary curves. Existence by minimal length, uniqueness by Gauss-Bonnet as for closed geodesics.

Let c_1, c_2, c_3 be those curves, with length $\lambda_1, \lambda_2, \lambda_3$. c_1, c_2, c_3 cut P into two right-angled hexagons, which have the same alternate length, therefore are the came

So, any *P* is obtained by gluing two copies of a right-angled hexagon, with boundary lengths $L_i/2$. Pairs of pant have area $4\pi_i$

Hyperbolic pairs of pants

Topologically, a *pair of pants* is a sphere with 3 holes. A hyperbolic pair of pants has a hyperbolic metric with geodesic boundary.

Lemma : $\forall L_1, L_2, L_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic pair of pants with boundary lengths L_1, L_2, L_3 .

Proof : given a hyperbolic pair of pants P, \exists ! geodesic segment orthogonal to two boundary curves. Existence by minimal length, uniqueness by Gauss-Bonnet as for closed geodesics.

Let c_1, c_2, c_3 be those curves, with length $\lambda_1, \lambda_2, \lambda_3$. c_1, c_2, c_3 cut P into two right-angled hexagons, which have the same alternate length, therefore are the same.

So, any *P* is obtained by gluing two copies of a right-angled hexagon, with boundary lengths $L_i/2$. Pairs of pant have area $4\pi_{a}$

Hyperbolic pairs of pants

Topologically, a *pair of pants* is a sphere with 3 holes. A hyperbolic pair of pants has a hyperbolic metric with geodesic boundary.

Lemma : $\forall L_1, L_2, L_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic pair of pants with boundary lengths L_1, L_2, L_3 .

Proof : given a hyperbolic pair of pants P, \exists ! geodesic segment orthogonal to two boundary curves. Existence by minimal length, uniqueness by Gauss-Bonnet as for closed geodesics.

Let c_1, c_2, c_3 be those curves, with length $\lambda_1, \lambda_2, \lambda_3$. c_1, c_2, c_3 cut P into two right-angled hexagons, which have the same alternate length, therefore are the same.

So, any P is obtained by gluing two copies of a right-angled hexagon, with boundary lengths $L_i/2$. Pairs of pant have area 4π

Hyperbolic pairs of pants

Topologically, a *pair of pants* is a sphere with 3 holes. A hyperbolic pair of pants has a hyperbolic metric with geodesic boundary.

Lemma : $\forall L_1, L_2, L_3 \in \mathbb{R}_{>0}, \exists !$ hyperbolic pair of pants with boundary lengths L_1, L_2, L_3 .

Proof : given a hyperbolic pair of pants P, \exists ! geodesic segment orthogonal to two boundary curves. Existence by minimal length, uniqueness by Gauss-Bonnet as for closed geodesics.

Let c_1, c_2, c_3 be those curves, with length $\lambda_1, \lambda_2, \lambda_3$. c_1, c_2, c_3 cut P into two right-angled hexagons, which have the same alternate length, therefore are the same.

So, any P is obtained by gluing two copies of a right-angled hexagon, with boundary lengths $L_i/2$. Pairs of pant have area 4π .

Fenchel-Nielsen coordinates

Consider a surface S of genus ≥ 2 , with a *pant decomposition* : a family of n disjoint simple closed curves with complement pairs of pants.

Let g be a hyperbolic metric on S. The lengths of the curves define n numbers l_1, \dots, l_n .

Moreover, the *gluing angles* define $\theta_1, \dots, \theta_n$. The l_i, θ_i describe the metric up to diffeo.

Thm : the $heta_i \in \mathbb{R}$ are well-defined on \mathcal{T}_S . The $(l_i, heta_i)$ are global coordinates on \mathcal{T}_S . Cor : \mathcal{T}_S is homeomorphic to a ball of dimension 6g - 6.

The construction strongly depends on the pant decomposition

・ロン (雪) (目) (日)

Fenchel-Nielsen coordinates

Consider a surface S of genus ≥ 2 , with a pant decomposition : a family of n disjoint simple closed curves with complement pairs of pants. Let g be a hyperbolic metric on S. The Moreover, the gluing angles define

・ロン (雪) (目) (日)

The construction strongly depends on the pant decomposition.

Fenchel-Nielsen coordinates

Consider a surface S of genus ≥ 2 , with a *pant decomposition* : a family of n disjoint simple closed curves with complement pairs of pants. Let g be a hyperbolic metric on S. The lengths of the curves define n numbers l_1, \cdots, l_n Moreover, the *gluing* angles define $\theta_1, \cdots, \theta_n$. The l_i, θ_i describe the metric

The construction strongly depends on the pant decomposition.

< 日 > (四 > (四 > (三 > (三 >))))

Fenchel-Nielsen coordinates

Consider a surface S of genus ≥ 2 , with a *pant decomposition* : a family of n disjoint simple closed curves with complement pairs of pants. Let g be a hyperbolic metric on S. The lengths of the curves define n numbers I_1, \cdots, I_n Moreover, the *gluing* angles define $\theta_1, \cdots, \theta_n$. The l_i, θ_i describe the metric up to diffeo.

The construction strongly depends on the pant decomposition.

・ロト ・日本・ ・ヨト・ ・ヨト・

Fenchel-Nielsen coordinates

Consider a surface S of genus ≥ 2 , with a *pant decomposition* : a family of n disjoint simple closed curves with complement pairs of pants. Let g be a hyperbolic metric on S. The lengths of the curves define n numbers I_1, \cdots, I_n Moreover, the *gluing* angles define $\theta_1, \cdots, \theta_n$. The l_i, θ_i describe the metric up to diffeo. Thm : the $\theta_i \in \mathbb{R}$ are well-defined on \mathcal{T}_S . The (I_i, θ_i) are global coordinates on \mathcal{T}_S .

The construction strongly depends on the pant decomposition.

< 日 > (四 > (四 > (三 > (三 >))))

Fenchel-Nielsen coordinates

Consider a surface S of genus ≥ 2 , with a *pant decomposition* : a family of n disjoint simple closed curves with complement pairs of pants. Let g be a hyperbolic metric on S. The lengths of the curves define n numbers l_1, \cdots, l_n Moreover, the *gluing* angles define $\theta_1, \cdots, \theta_n$. The l_i, θ_i describe the metric up to diffeo. Thm : the $\theta_i \in \mathbb{R}$ are well-defined on \mathcal{T}_S . The (I_i, θ_i) are global coordinates on \mathcal{T}_S . Cor : \mathcal{T}_{S} is homeomorphic to a ball of dimension 6g - 6.

The construction strongly depends on the pant decomposition.

・ロト ・日本・ ・ヨト・ ・ヨト・

Fenchel-Nielsen coordinates

Consider a surface S of genus ≥ 2 , with a *pant decomposition* : a family of n disjoint simple closed curves with complement pairs of pants. Let g be a hyperbolic metric on S. The lengths of the curves define n numbers l_1, \cdots, l_n Moreover, the *gluing angles* define $\theta_1, \cdots, \theta_n$. The l_i, θ_i describe the metric up to diffeo. Thm : the $\theta_i \in \mathbb{R}$ are well-defined on \mathcal{T}_S . The (I_i, θ_i) are global coordinates on \mathcal{T}_S . Cor : \mathcal{T}_{S} is homeomorphic to a ball of dimension 6g - 6.

The construction strongly depends on the pant decomposition.

・ロト ・四ト ・ヨト ・ヨトー

- === thm
- === the Liouville equation
- === resolution by minimization
- === holomorphic vector fields
- === Beltrami differentials as tangent space
- === quadratic holomorphic diff as cotangent
- === the WP metric

< 日 > (四 > (四 > (三 > (三 >))))

E

◆□→ ◆圖→ ◆注→ ◆注→ □注□