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A hyperbolic surface is locally modeled on the hyperbolic plane.
Equivalently : a surface with a Riemannian metric of curvature —1.

H? is the only 1-connected complete hyperbolic surface. If S is closed
and hyperbolic, its universal cover is H2.
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Hyperbolic surfaces

A hyperbolic surface is locally modeled on the hyperbolic plane.
Equivalently : a surface with a Riemannian metric of curvature —1.
H? is the only 1-connected complete hyperbolic surface. If S is closed
and hyperbolic, its universal cover is H2. Proof : complete, simply
connected, hence H2.
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Hyperbolic surfaces

A hyperbolic surface is locally modeled on the hyperbolic plane.
Equivalently : a surface with a Riemannian metric of curvature —1.
H? is the only 1-connected complete hyperbolic surface. If S is closed
and hyperbolic, its universal cover is H2. Proof : complete, simply
connected, hence H2.

So m1(S) C PSL(2, R).
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Hyperbolic surfaces

The Gauss-Bonnet formula

Consider a surface S, perhaps with
boundary, with a triangulation T.
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The Gauss-Bonnet formula

Consider a surface S, perhaps with
boundary, with a triangulation T. Let
x(S,t) = #(vertices) — #(edges) +
#(faces).
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The Gauss-Bonnet formula

Consider a surface S, perhaps with
boundary, with a triangulation T. Let
x(S,t) = #(vertices) — #(edges) +
#(faces).

Thm : x(S, T) does not depend on T,

i.e. x(S).
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The Gauss-Bonnet formula

Consider a surface S, perhaps with
boundary, with a triangulation T. Let
x(S,t) = #(vertices) — #(edges) +
#(faces).

Thm : x(S, T) does not depend on T,
i.e. X(S). x(S) = Euler characteristic of
S.
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The Gauss-Bonnet formula

Consider a surface S, perhaps with
boundary, with a triangulation T. Let
x(S,t) = #(vertices) — #(edges) +
#(faces).

Thm : x(S, T) does not depend on T,

i.e. X(S). x(S) = Euler characteristic of

S.

Gauss-Bonnet thm : on a hyperbolic \
surface, the sum of the exterior angles of

a polygonal region is 2wy + A.
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The Gauss-Bonnet formula

Consider a surface S, perhaps with
boundary, with a triangulation T. Let
x(S,t) = #(vertices) — #(edges) +
#(faces).

Thm : x(S, T) does not depend on T,

i.e. X(S). x(S) = Euler characteristic of

S.

Gauss-Bonnet thm : on a hyperbolic \
surface, the sum of the exterior angles of

a polygonal region is 2wy + A.

Disk : x = 1. Annulus, torus : x = 0. Sphere : x = 2.
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The Gauss-Bonnet formula

Consider a surface S, perhaps with
boundary, with a triangulation T. Let
x(S,t) = #(vertices) — #(edges) +
#(faces).

Thm : x(S, T) does not depend on T,

i.e. X(S). x(S) = Euler characteristic of

S.

Gauss-Bonnet thm : on a hyperbolic \
surface, the sum of the exterior angles of

a polygonal region is 2wy + A.

Disk : x = 1. Annulus, torus : x = 0. Sphere : x = 2.
Application : the area of an ideal triangle (all vertices at infinity) is 7.
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Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a
unique closed curve.
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Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a
unique closed curve.

Proof of existence : take shortest curve in
the homotopy class, has to be geodesic.
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Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a
unique closed curve.

Proof of existence : take shortest curve in
the homotopy class, has to be geodesic.

Proof of uniqueness : based on Gauss-
Bonnet.
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Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a
unique closed curve.

Proof of existence : take shortest curve in
the homotopy class, has to be geodesic.

Proof of uniqueness : based on Gauss-
Bonnet.

@ Two homotopic geodesic can not
intersect (x = 1 for a disk).

=
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Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a
unique closed curve.

Proof of existence : take shortest curve in
the homotopy class, has to be geodesic.

Proof of uniqueness : based on Gauss-
Bonnet.

@ Two homotopic geodesic can not
intersect (x = 1 for a disk).

@ They can not bound a cylinder
(x = 0 for an annulus).
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Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a
unique closed curve.

Proof of existence : take shortest curve in
the homotopy class, has to be geodesic.

Proof of uniqueness : based on Gauss-
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@ Two homotopic geodesic can not
intersect (x = 1 for a disk).
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Hyperbolic surfaces

Closed geodesics

Thm : any closed curve on a hyperbolic surface S is homotopic to a
unique closed curve.

Proof of existence : take shortest curve in
the homotopy class, has to be geodesic.

Proof of uniqueness : based on Gauss-
Bonnet.

@ Two homotopic geodesic can not
intersect (x = 1 for a disk).

@ They can not bound a cylinder
(x = 0 for an annulus).

Therefore, 71(S) is the set of closed geodesics (perhaps with
self-intersections).
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Beyond closed hyperbolic surfaces : surfaces with cusps.

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces

Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with
some vertices at infinity.
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Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with
some vertices at infinity. Its area is boun-
ded (Gauss-Bonnet).

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces

Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with
some vertices at infinity. Its area is boun-
ded (Gauss-Bonnet). Glue to another
copy of itself,
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Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with
some vertices at infinity. Its area is boun-
ded (Gauss-Bonnet). Glue to another
copy of itself, no singularity occurs on the
(geodesic) edges.
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Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with
some vertices at infinity. Its area is boun-
ded (Gauss-Bonnet). Glue to another
copy of itself, no singularity occurs on the
(geodesic) edges.

Result : finite area hyperbolic surface.

Same is possible with infinite area surfaces.
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Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with
some vertices at infinity. Its area is boun-
ded (Gauss-Bonnet). Glue to another
copy of itself, no singularity occurs on the
(geodesic) edges.

Result : finite area hyperbolic surface.

The “cusps” at infinity are all
the same (isometric neighborhoods).
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Hyperbolic surfaces

Surfaces with cusps

Beyond closed hyperbolic surfaces : surfaces with cusps.

Start with a hyperbolic polygon, with
some vertices at infinity. Its area is boun-
ded (Gauss-Bonnet). Glue to another
copy of itself, no singularity occurs on the
(geodesic) edges.

Result : finite area hyperbolic surface.

The “cusps” at infinity are all
the same (isometric neighborhoods). The corresponding representations
have “parabolic” elements (fixing a point at infinity).
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Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of
7T1(5) on H2,
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Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of
71(S) on H?, therefore a representation p : m1(S) — PSL(2,R).
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Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of
71(S) on H?, therefore a representation p : m1(S) — PSL(2,R). So T
embeds in the representation space Hom. (m1(S), PSL(2,R))/PSL(2,R).
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Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of
71(S) on H?, therefore a representation p : m1(S) — PSL(2,R). So T
embeds in the representation space Hom. (m1(S), PSL(2,R))/PSL(2,R).
This space is not connected : the connected components are
characterized by a topological invariant, the Euler number.
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Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of
71(S) on H?, therefore a representation p : m1(S) — PSL(2,R). So T
embeds in the representation space Hom. (m1(S), PSL(2,R))/PSL(2,R).
This space is not connected : the connected components are
characterized by a topological invariant, the Euler number.

T corresponds to the connected component with maximal Euler number.
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Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of
71(S) on H?, therefore a representation p : m1(S) — PSL(2,R). So T
embeds in the representation space Hom. (m1(S), PSL(2,R))/PSL(2,R).
This space is not connected : the connected components are
characterized by a topological invariant, the Euler number.

T corresponds to the connected component with maximal Euler number.
There are several “elementary” ways to understand 7 :
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Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of
71(S) on H?, therefore a representation p : m1(S) — PSL(2,R). So T
embeds in the representation space Hom. (m1(S), PSL(2,R))/PSL(2,R).
This space is not connected : the connected components are
characterized by a topological invariant, the Euler number.

T corresponds to the connected component with maximal Euler number.
There are several “elementary” ways to understand 7 :

@ Fenchel-Nielsen coordinates, based on the decomposition into “pairs
of pants’,
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Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of
71(S) on H?, therefore a representation p : m1(S) — PSL(2,R). So T
embeds in the representation space Hom. (m1(S), PSL(2,R))/PSL(2,R).
This space is not connected : the connected components are
characterized by a topological invariant, the Euler number.

T corresponds to the connected component with maximal Euler number.
There are several “elementary” ways to understand 7 :

@ Fenchel-Nielsen coordinates, based on the decomposition into “pairs
of pants’,

@ shear coordinates (for surfaces with a cusp),
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Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of
71(S) on H?, therefore a representation p : m1(S) — PSL(2,R). So T
embeds in the representation space Hom. (m1(S), PSL(2,R))/PSL(2,R).
This space is not connected : the connected components are
characterized by a topological invariant, the Euler number.

T corresponds to the connected component with maximal Euler number.
There are several “elementary” ways to understand 7 :

@ Fenchel-Nielsen coordinates, based on the decomposition into “pairs
of pants’,

@ shear coordinates (for surfaces with a cusp),

@ complex analytic viewpoint.
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Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of
71(S) on H?, therefore a representation p : m1(S) — PSL(2,R). So T
embeds in the representation space Hom. (m1(S), PSL(2,R))/PSL(2,R).
This space is not connected : the connected components are
characterized by a topological invariant, the Euler number.

T corresponds to the connected component with maximal Euler number.
There are several “elementary” ways to understand 7 :

@ Fenchel-Nielsen coordinates, based on the decomposition into “pairs
of pants’,

@ shear coordinates (for surfaces with a cusp),
@ complex analytic viewpoint.

Each is important for 3-dim geometry, in different ways.
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Hyperbolic surfaces as representations

Each hyperbolic metric on a surface S defines an isometric action of
71(S) on H?, therefore a representation p : m1(S) — PSL(2,R). So T
embeds in the representation space Hom. (m1(S), PSL(2,R))/PSL(2,R).
This space is not connected : the connected components are
characterized by a topological invariant, the Euler number.

T corresponds to the connected component with maximal Euler number.
There are several “elementary” ways to understand 7 :

@ Fenchel-Nielsen coordinates, based on the decomposition into “pairs
of pants’,

@ shear coordinates (for surfaces with a cusp),
@ complex analytic viewpoint.

Each is important for 3-dim geometry, in different ways. We will
concentrate first on Fenchel-Nielsen coordinates.
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Right-angled hexagons

The building block used here are hyperbolic pairs of pants, themselves
built from two copies of a hexagon with right angles.
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Right-angled hexagons

The building block used here are hyperbolic pairs of pants, themselves
built from two copies of a hexagon with right angles.

Lemma : Vi, h, 5 € Ryq,3! hyperbolic hexagon with right angles with
alternate lengths I, b, k.
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Right-angled hexagons

The building block used here are hyperbolic pairs of pants, themselves
built from two copies of a hexagon with right angles.

Lemma : Vi, h, 5 € Ryq,3! hyperbolic hexagon with right angles with
alternate lengths I, b, k.

Proof : start from one edge, length d,
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Right-angled hexagons

The building block used here are hyperbolic pairs of pants, themselves
built from two copies of a hexagon with right angles.

Lemma : Vi, h, 5 € Ryq,3! hyperbolic hexagon with right angles with
alternate lengths I, b, k.

Proof : start from one edge, length d, add
two orthogonal edges, length /i, b,
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Right-angled hexagons

The building block used here are hyperbolic pairs of pants, themselves
built from two copies of a hexagon with right angles.

Lemma : Vi, h, 5 € Ryq,3! hyperbolic hexagon with right angles with
alternate lengths I, b, k.

Proof : start from one edge, length d, add
two orthogonal edges, length /i, 5, then
two more orthogonal edges,
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Right-angled hexagons

The building block used here are hyperbolic pairs of pants, themselves
built from two copies of a hexagon with right angles.

Lemma : Vi, h, 5 € Ryq,3! hyperbolic hexagon with right angles with
alternate lengths I, b, k.

Proof : start from one edge, length d, add
two orthogonal edges, length /i, 5, then
two more orthogonal edges, if d > dy,
they are connected by a unique orthogo-
nal edge of length 5(d).
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Right-angled hexagons

The building block used here are hyperbolic pairs of pants, themselves
built from two copies of a hexagon with right angles.

Lemma : Vi, h, 5 € Ryq,3! hyperbolic hexagon with right angles with
alternate lengths I, b, k.

Proof : start from one edge, length d, add
two orthogonal edges, length /i, 5, then
two more orthogonal edges, if d > dy,
they are connected by a unique orthogo-
nal edge of length 5(d). k(d) is an in-
creasing function going from 0 (for dp)
to infinity. qed.
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Hyperbolic pairs of pants

Topologically, a pair of pants is a sphere with 3 holes.
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Hyperbolic pairs of pants

Topologically, a pair of pants is a sphere with 3 holes. A hyperbolic pair
of pants has a hyperbolic metric with geodesic boundary.
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Hyperbolic pairs of pants

Topologically, a pair of pants is a sphere with 3 holes. A hyperbolic pair
of pants has a hyperbolic metric with geodesic boundary.

Lemma : VL1, Ly, L3 € R-g, 3! hyperbolic pair of pants with boundary
Iengths Ly, Ly, Ls.
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Hyperbolic pairs of pants

Topologically, a pair of pants is a sphere with 3 holes. A hyperbolic pair
of pants has a hyperbolic metric with geodesic boundary.
Lemma : VL1, Ly, L3 € R-g, 3! hyperbolic pair of pants with boundary
Iengths Ly, Ly, Ls.
Proof : given a hyperbolic pair of pants
P, 3!l geodesic segment orthogonal to
two boundary curves.
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Topologically, a pair of pants is a sphere with 3 holes. A hyperbolic pair
of pants has a hyperbolic metric with geodesic boundary.
Lemma : VL1, Ly, L3 € R-g, 3! hyperbolic pair of pants with boundary
Iengths Ly, Ly, Ls.
Proof : given a hyperbolic pair of pants
P, 3!l geodesic segment orthogonal to
two boundary curves. Existence by mini-
mal length, uniqueness by Gauss-Bonnet
as for closed geodesics.
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Topologically, a pair of pants is a sphere with 3 holes. A hyperbolic pair
of pants has a hyperbolic metric with geodesic boundary.
Lemma : VL1, Ly, L3 € R-g, 3! hyperbolic pair of pants with boundary
Iengths Ly, Ly, Ls.
Proof : given a hyperbolic pair of pants
P, 3!l geodesic segment orthogonal to
two boundary curves. Existence by mini-
mal length, uniqueness by Gauss-Bonnet
as for closed geodesics.
Let ¢1, ¢, c3 be those curves, with length
A1, A2, As.
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Topologically, a pair of pants is a sphere with 3 holes. A hyperbolic pair
of pants has a hyperbolic metric with geodesic boundary.
Lemma : VL1, Ly, L3 € R-g, 3! hyperbolic pair of pants with boundary
Iengths Ly, Ly, Ls.
Proof : given a hyperbolic pair of pants
P, 3!l geodesic segment orthogonal to
two boundary curves. Existence by mini-
mal length, uniqueness by Gauss-Bonnet
as for closed geodesics.
Let ¢1, ¢, c3 be those curves, with length
A1, A2, A3. C1,C,¢3 cut P into two
right-angled hexagons,
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Hyperbolic pairs of pants

Topologically, a pair of pants is a sphere with 3 holes. A hyperbolic pair
of pants has a hyperbolic metric with geodesic boundary.
Lemma : VL1, Ly, L3 € R-g, 3! hyperbolic pair of pants with boundary
Iengths Ly, Ly, Ls.
Proof : given a hyperbolic pair of pants
P, 3!l geodesic segment orthogonal to
two boundary curves. Existence by mini-
mal length, uniqueness by Gauss-Bonnet
as for closed geodesics.
Let ¢1, ¢, c3 be those curves, with length
A1, A2, A3. C1,C,¢3 cut P into two
right-angled hexagons, which have the
same alternate length,
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Hyperbolic pairs of pants

Topologically, a pair of pants is a sphere with 3 holes. A hyperbolic pair
of pants has a hyperbolic metric with geodesic boundary.
Lemma : VL1, Ly, L3 € R-g, 3! hyperbolic pair of pants with boundary
Iengths Ly, Ly, Ls.
Proof : given a hyperbolic pair of pants
P, 3!l geodesic segment orthogonal to
two boundary curves. Existence by mini-
mal length, uniqueness by Gauss-Bonnet
as for closed geodesics.
Let ¢1, ¢, c3 be those curves, with length
A1, A2, A3. C1,C,¢3 cut P into two
right-angled hexagons, which have the
same alternate length, therefore are the /-
same.
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Hyperbolic pairs of pants

Topologically, a pair of pants is a sphere with 3 holes. A hyperbolic pair
of pants has a hyperbolic metric with geodesic boundary.
Lemma : VL1, Ly, L3 € R-g, 3! hyperbolic pair of pants with boundary
Iengths Ly, Ly, Ls.
Proof : given a hyperbolic pair of pants
P, 3!l geodesic segment orthogonal to
two boundary curves. Existence by mini-
mal length, uniqueness by Gauss-Bonnet
as for closed geodesics.
Let ¢1, ¢, c3 be those curves, with length
A1, A2, A3. C1,C,¢3 cut P into two
right-angled hexagons, which have the
same alternate length, therefore are the /-
same.

So, any P is obtained by gluing two copies of a right-angled hexégon,
with boundary lengths L;/2.
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Hyperbolic pairs of pants

Topologically, a pair of pants is a sphere with 3 holes. A hyperbolic pair
of pants has a hyperbolic metric with geodesic boundary.
Lemma : VL1, Ly, L3 € R-g, 3! hyperbolic pair of pants with boundary
Iengths Ly, Ly, Ls.
Proof : given a hyperbolic pair of pants
P, 3!l geodesic segment orthogonal to
two boundary curves. Existence by mini-
mal length, uniqueness by Gauss-Bonnet
as for closed geodesics.
Let ¢1, ¢, c3 be those curves, with length
A1, A2, A3. C1,C,¢3 cut P into two
right-angled hexagons, which have the
same alternate length, therefore are the /-
same.

So, any P is obtained by gluing two copies of a right-angled hexégon,
with boundary lengths L; /2. Pairs of pant have area 4.
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Fenchel-Nielsen coordinates

Consider a surface S of genus > 2,
with a pant decomposition : a family
of n disjoint simple closed curves with
complement pairs of pants.
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Fenchel-Nielsen coordinates
formizatio

Fenchel-Nielsen coordinates

Consider a surface S of genus > 2,
with a pant decomposition : a family
of n disjoint simple closed curves with
complement pairs of pants.

Let g be a hyperbolic metric on S.
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Fenchel-Nielsen coordinates

Consider a surface S of genus > 2,
with a pant decomposition : a family
of n disjoint simple closed curves with
complement pairs of pants.

Let g be a hyperbolic metric on S. The
lengths of the curves define n numbers

I17 Ty ln-
Moreover, the gluing angles definel > N
ola e 70n-
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Fenchel-Nielsen coordinates

Consider a surface S of genus > 2,
with a pant decomposition : a family
of n disjoint simple closed curves with
complement pairs of pants.

Let g be a hyperbolic metric on S. The
lengths of the curves define n numbers

I17 Tty ln-

Moreover, the gluing angles definel > N
01, -+ ,0,. The [;,0; describe the metric

up to diffeo.
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Fenchel-Nielsen coordinates

Consider a surface S of genus > 2,
with a pant decomposition : a family
of n disjoint simple closed curves with
complement pairs of pants.

Let g be a hyperbolic metric on S. The
lengths of the curves define n numbers

I17 Tty ln-

Moreover, the gluing angles definel > N
01, -+ ,0,. The [;,0; describe the metric

up to diffeo.

Thm : the 6; € R are well-defined on 7s.
The (/;,0;) are global coordinates on 7.
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Fenchel-Nielsen coordinates

Consider a surface S of genus > 2,
with a pant decomposition : a family
of n disjoint simple closed curves with
complement pairs of pants.

Let g be a hyperbolic metric on S. The
lengths of the curves define n numbers

I17 Tty ln-

Moreover, the gluing angles definel > N
01, -+ ,0,. The [;,0; describe the metric

up to diffeo.

Thm : the 6; € R are well-defined on 7s.
The (/;,0;) are global coordinates on 7.
Cor : 75 is homeomorphic to a ball of
dimension 6g — 6.

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Fenchel-Nielsen
L

Fenchel-Nielsen coordinates

Consider a surface S of genus > 2,
with a pant decomposition : a family
of n disjoint simple closed curves with
complement pairs of pants.

Let g be a hyperbolic metric on S. The
lengths of the curves define n numbers

I17 Tty ln-

Moreover, the gluing angles definel > N
01, -+ ,0,. The [;,0; describe the metric

up to diffeo.

Thm : the 6; € R are well-defined on 7s.
The (/;,0;) are global coordinates on 7.
Cor : 75 is homeomorphic to a ball of
dimension 6g — 6.

The construction strongly depends on the pant decomposition.
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The Weil-Petersson metric

=== thm

=== the Liouville equation

=== resolution by minimization

=== holomorphic vector fields

=== Beltrami differentials as tangent space
=== quadratic holomorphic diff as cotangent
=== the WP metric
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The Weil-Petersson metric
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