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Tangent and cotangent to Teichmüller

Lemma : given a vector �eld v on S , the corresponding variation of the
complex structure on S vanishes i� v is holomorphic. This �rst-order
variation is determined by the Beltrami di�erential of v , of the form
∂v ' bdz(∂/∂z) ' bdz/dz .
Thus, Beltrami di�erential form the tangent space TcT at a point c ∈ T .
Given a Beltrami di�erential bdz/dz and a QHD fdz2, their product
bf |dz |2 can be integrated over S . This pairing identi�es the space of
QHD with T ∗T .
There is a natural almost-complex structure on T , de�ned through T ∗T
by Jq = iq. It is in fact complex : ∀c ∈ T ,∃U 3 x , φ : U → CN sending J

to the multiplication by i .
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The Weil-Petersson metric

Given two QHD q = fdz2 and q′ = f ′dz2, one can consider the product
qq′ = f f ′|dz |4, and divide it by the hyperbolic metric ρ|dz |2 obtained by
solving the Liouville equation. The real part can be integrated over S .
This de�nes a scalar product on T ∗

c T , and a metric on T , the
Weil-Petersson metric gWP .
Thm (Weil, '50) : gWP is Kähler.
That is, gWP is compatible with the complex structure J on QHD, and
gWP(·, J·) is a symplectic form on T .
Note : this theorem is not so trivial, in the sequel we will see one (more
recent) approach to the proof. gWP is the natural metric on the space of
complex structures, however its de�nition needs the hyperbolic metric
(and the solution of the Liouville equation).
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Multicurves

A multicurve is a disjoint union of simple closed curves.
Given a hyperbolic metric, each curve
can be realized as a geodesic.
A weighted multicurve comes with
positive weights on the curves.
Multicurves can be complicated.

l

l

1

2

There is a natural topology for which the completion has �good�
properties.
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Measured laminations

Consider a (geodesic) weighted multicurve (ci , li )i=1,··· ,n.
The ci form a lamination and the li de-
�ne a transverse measure : gives a total
weight to γ, transverse to the ci .
This gives a topology to the space of
weighted multicurves.
Its completion is the space of measured

laminations MLS .

c c c
1

2 3

γ

MLS is topologically a ball of dimension 6g − 6.
Note : the notion of measured lamination is topological, although a given
measured lamination can be realized uniquely as a geodesic measured
lamination for any hyperbolic metric on S .

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces (continued)
Measured laminations

Earthquakes

Measured laminations

Consider a (geodesic) weighted multicurve (ci , li )i=1,··· ,n.
The ci form a lamination and the li de-
�ne a transverse measure : gives a total
weight to γ, transverse to the ci .
This gives a topology to the space of
weighted multicurves.
Its completion is the space of measured

laminations MLS .

c c c
1

2 3

γ

MLS is topologically a ball of dimension 6g − 6.
Note : the notion of measured lamination is topological, although a given
measured lamination can be realized uniquely as a geodesic measured
lamination for any hyperbolic metric on S .

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces (continued)
Measured laminations

Earthquakes

Measured laminations

Consider a (geodesic) weighted multicurve (ci , li )i=1,··· ,n.
The ci form a lamination and the li de-
�ne a transverse measure : gives a total
weight to γ, transverse to the ci .
This gives a topology to the space of
weighted multicurves.
Its completion is the space of measured

laminations MLS .

c c c
1

2 3

γ

MLS is topologically a ball of dimension 6g − 6.
Note : the notion of measured lamination is topological, although a given
measured lamination can be realized uniquely as a geodesic measured
lamination for any hyperbolic metric on S .

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces (continued)
Measured laminations

Earthquakes

Measured laminations

Consider a (geodesic) weighted multicurve (ci , li )i=1,··· ,n.
The ci form a lamination and the li de-
�ne a transverse measure : gives a total
weight to γ, transverse to the ci .
This gives a topology to the space of
weighted multicurves.
Its completion is the space of measured

laminations MLS .

c c c
1

2 3

γ

MLS is topologically a ball of dimension 6g − 6.
Note : the notion of measured lamination is topological, although a given
measured lamination can be realized uniquely as a geodesic measured
lamination for any hyperbolic metric on S .

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces (continued)
Measured laminations

Earthquakes

Measured laminations

Consider a (geodesic) weighted multicurve (ci , li )i=1,··· ,n.
The ci form a lamination and the li de-
�ne a transverse measure : gives a total
weight to γ, transverse to the ci .
This gives a topology to the space of
weighted multicurves.
Its completion is the space of measured

laminations MLS .

c c c
1

2 3

γ

MLS is topologically a ball of dimension 6g − 6.
Note : the notion of measured lamination is topological, although a given
measured lamination can be realized uniquely as a geodesic measured
lamination for any hyperbolic metric on S .

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces (continued)
Measured laminations

Earthquakes

Measured laminations

Consider a (geodesic) weighted multicurve (ci , li )i=1,··· ,n.
The ci form a lamination and the li de-
�ne a transverse measure : gives a total
weight to γ, transverse to the ci .
This gives a topology to the space of
weighted multicurves.
Its completion is the space of measured

laminations MLS .

c c c
1

2 3

γ

MLS is topologically a ball of dimension 6g − 6.
Note : the notion of measured lamination is topological, although a given
measured lamination can be realized uniquely as a geodesic measured
lamination for any hyperbolic metric on S .

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces (continued)
Measured laminations

Earthquakes

Measured laminations

Consider a (geodesic) weighted multicurve (ci , li )i=1,··· ,n.
The ci form a lamination and the li de-
�ne a transverse measure : gives a total
weight to γ, transverse to the ci .
This gives a topology to the space of
weighted multicurves.
Its completion is the space of measured

laminations MLS .

c c c
1

2 3

γ

MLS is topologically a ball of dimension 6g − 6.
Note : the notion of measured lamination is topological, although a given
measured lamination can be realized uniquely as a geodesic measured
lamination for any hyperbolic metric on S .

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Hyperbolic surfaces (continued)
Measured laminations

Earthquakes

Measured laminations as cotangent vectors

Let (ci , li ) be a weighted multicurve. It can be realised uniquely as a
geodesic multicurve in any hyperbolic metric. Its length L de�nes a
function on T . dL ∈ T ∗

c , for all c ∈ T .
Thm (Thurston) : this extends continuously to a one-to-one map from
MLS to T ∗

c TS , for all c ∈ TS .
Note : the a�ne structure on ML strongly depends on the choice of c ...
ML is actually not a vector space but rather a piecewise linear space.
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Thurston's compacti�cation of T

We consider a simple family of degenera-
ting metrics, scaling to constant diame-
ter.
In the limit, the length of a curve is either
0 or a constant. Weighted multicurves are
�limits� of some sequences of hyperbolic
metrics, after scaling.

Thm (Thurston, '70) : ML/R>0 is a compacti�cation of T .
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Fractional Dehn twists

Start with a hyperbolic surface.
Choose a simple closed geodesic c and
l > 0, cut the surface open along it,
rotate the right-hand side by l , then glue
back.

This de�nes a homeomorphism E r

c,l : TS → TS .
If c ′ is another simple curve c ′, disjoint from c , then E r

c,l and E r

c′,l′

commute.
So we have an �action� on TS of the space of weighted multicurves.
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Earthquakes

The Earthquake Theorem

The action of weighted multicurves by fractional Dehn twist extends to :

E r : MLS × TS → TS .

For λ ∈MLS , E
r (λ) : TS → TS is a right earthquake. Correspondingly,

left earthquakes : E l(λ) = E r (λ)−1.
Thm (Thurston) : any h, h′ ∈ T are connected by a unique right
earthquake.
This provides another nice parametrization of T from ML ' T ∗

h
T , for a

�xed h ∈ T . Thurston sketched a proof, another (more analytic) was
found by Kerckho�.
In lecture 5 we will outline a simpler proof, based on AdS geometry
(2+1D gravity).
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Earthquakes

The hyperbolic space

The 3-dim hyperbolic space can be de�ned as the hyperbolic plane. As a
quadric in R3,1 :

H3 = {x ∈ R4 | − x2
0

+ x2
1

+ x2
2

+ x2
3

= −1&x0 > 0} .

There is a projective model, as the inter-
ior of the unit ball, and a Poincaré model,
also in a ball (conformal). H3 has a boun-
dary at in�nity, identi�ed with S2 = CP1.

−

+

+

Hyperbolic isometries act by complex projective transformations (Möbius
transformation), in particular are complex. Isom+(H3) = PSL(2, C).
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Closed hyperbolic 3-manifolds

For closed hyperbolic manifolds the situation is di�erent than from
hyperbolic surfaces.
Thm (Mostow, '70) : a closed 3-manifold admits at most one hyperbolic
metric.
Moreover, those which do admit a hyperbolic metric are characterized in
simple topological terms (Thurston '80, Perelman 2003) :

any embedded sphere bounds a ball,

no incompressible immersed torus (more or less).
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Fuchsian manifolds

Start from a hyperbolic surface (S , g).

Consider ρ : π1(S) → PSL(2, R), as ac-
ting on H2 ⊂ H3.
There is a unique extension as an action
ρ′ on H3, from PSL(2, R) ⊂ PSL(2, C).
H3/ρ′(S) ' S × R, metric : dt2 +
cosh2(t)g .

In�nite volume, �grows� exponentially at in�nity.
Let Λ = limit set : accumulation points at in�nity of the orbit of a point
under ρ′(π1(S)). Then Λ is the �equator�.
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Quasifuchsian manifolds

Def : a complete hyperbolic 3-m�d M is quasifuchsian if :

M ' S ×R, S closed of genus ≥ 2,

M contains a compact convex
subset K which is a deformation
retract of M.

M has in�nite volume and �grows� expo-
nentially at in�nity.

K

M = H3/ρ(π1(S)), where ρ : π1(S) → PSL(2, C).
Quasifuchsian manifolds are obtained by deforming the fuchsian
manifolds presented above.
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