Hyperbolic geometry for 3d gravity 3. More on hyperbolic surfaces

Jean-Marc Schlenker

Institut de Mathématiques Université Toulouse III http://www.picard.ups-tlse.fr/~schlenker

March 23-27, 2007

Lemma : given a vector field v on S, the corresponding variation of the complex structure on S vanishes iff v is holomorphic. This first-order

variation is determined by the *Beltrami differential* of v, of the form $\overline{\partial}v \simeq bd\overline{z}(\partial/\partial z) \simeq bd\overline{z}/dz$.

Thus, Beltrami differential form the tangent space $T_c \mathcal{T}$ at a point $c \in \mathcal{T}$. Given a Beltrami differential $bd\overline{z}/dz$ and a QHD fdz^2 , their product $bf|dz|^2$ can be integrated over S. This pairing identifies the space of QHD with $\mathcal{T}^*\mathcal{T}$.

There is a natural almost-complex structure on \mathcal{T} , defined through $\mathcal{T}^*\mathcal{T}$ by Jq = iq. It is in fact complex : $\forall c \in \mathcal{T}, \exists U \ni x, \phi : U \to \mathbb{C}^N$ sending Jto the multiplication by *i*.

Lemma : given a vector field v on S, the corresponding variation of the complex structure on S vanishes iff v is holomorphic. This first-order variation is determined by the *Beltrami differential* of v, of the form $\overline{\partial}v \simeq bd\overline{z}(\partial/\partial z) \simeq bd\overline{z}/dz$.

Thus, Beltrami differential form the tangent space $\mathcal{T}_c \mathcal{T}$ at a point $c \in \mathcal{T}$. Given a Beltrami differential $bd\overline{z}/dz$ and a QHD fdz^2 , their product $bf |dz|^2$ can be integrated over S. This pairing identifies the space of QHD with $\mathcal{T}^*\mathcal{T}$.

There is a natural almost-complex structure on \mathcal{T} , defined through $\mathcal{T}^*\mathcal{T}$ by Jq = iq. It is in fact complex : $\forall c \in \mathcal{T}, \exists U \ni x, \phi : U \to \mathbb{C}^N$ sending Jto the multiplication by *i*.

Lemma : given a vector field v on S, the corresponding variation of the complex structure on S vanishes iff v is holomorphic. This first-order variation is determined by the *Beltrami differential* of v, of the form $\overline{\partial}v \simeq bd\overline{z}(\partial/\partial z) \simeq bd\overline{z}/dz$.

Thus, Beltrami differential form the tangent space $T_c \mathcal{T}$ at a point $c \in \mathcal{T}$. Given a Beltrami differential $bd\overline{z}/dz$ and a QHD fdz^2 , their product $bf |dz|^2$ can be integrated over S. This pairing identifies the space of OHD with $\mathcal{T}^*\mathcal{T}$.

There is a natural almost-complex structure on \mathcal{T} , defined through $\mathcal{T}^*\mathcal{T}$ by Jq = iq. It is in fact complex : $\forall c \in \mathcal{T}, \exists U \ni x, \phi : U \to \mathbb{C}^N$ sending J to the multiplication by i.

Lemma : given a vector field v on S, the corresponding variation of the complex structure on S vanishes iff v is holomorphic. This first-order variation is determined by the *Beltrami differential* of v, of the form $\overline{\partial}v \simeq bd\overline{z}(\partial/\partial z) \simeq bd\overline{z}/dz$.

Thus, Beltrami differential form the tangent space $T_c \mathcal{T}$ at a point $c \in \mathcal{T}$. Given a Beltrami differential $bd\overline{z}/dz$ and a QHD fdz^2 , their product $bf |dz|^2$ can be integrated over S. This pairing identifies the space of QHD with $\mathcal{T}^*\mathcal{T}$.

There is a natural almost-complex structure on \mathcal{T} , defined through $T^*\mathcal{T}$ by Jq = iq. It is in fact complex : $\forall c \in \mathcal{T}, \exists U \ni x, \phi : U \to \mathbb{C}^N$ sending J to the multiplication by i.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Lemma : given a vector field v on S, the corresponding variation of the complex structure on S vanishes iff v is holomorphic. This first-order variation is determined by the *Beltrami differential* of v, of the form $\overline{\partial}v \simeq bd\overline{z}(\partial/\partial z) \simeq bd\overline{z}/dz$.

Thus, Beltrami differential form the tangent space $T_c \mathcal{T}$ at a point $c \in \mathcal{T}$. Given a Beltrami differential $bd\overline{z}/dz$ and a QHD fdz^2 , their product $bf |dz|^2$ can be integrated over S. This pairing identifies the space of QHD with $\mathcal{T}^*\mathcal{T}$.

There is a natural almost-complex structure on \mathcal{T} , defined through $T^*\mathcal{T}$ by Jq = iq. It is in fact complex : $\forall c \in \mathcal{T}, \exists U \ni x, \phi : U \to \mathbb{C}^N$ sending J to the multiplication by i.

・ロン ・四と ・ヨン ・ヨン

Lemma : given a vector field v on S, the corresponding variation of the complex structure on S vanishes iff v is holomorphic. This first-order variation is determined by the *Beltrami differential* of v, of the form $\overline{\partial}v \simeq bd\overline{z}(\partial/\partial z) \simeq bd\overline{z}/dz$.

Thus, Beltrami differential form the tangent space $T_c \mathcal{T}$ at a point $c \in \mathcal{T}$. Given a Beltrami differential $bd\overline{z}/dz$ and a QHD fdz^2 , their product $bf |dz|^2$ can be integrated over S. This pairing identifies the space of QHD with $\mathcal{T}^*\mathcal{T}$.

There is a natural almost-complex structure on \mathcal{T} , defined through $T^*\mathcal{T}$ by Jq = iq. It is in fact complex : $\forall c \in \mathcal{T}, \exists U \ni x, \phi : U \to \mathbb{C}^N$ sending J to the multiplication by i.

Given two QHD $q = fdz^2$ and $q' = f'dz^2$, one can consider the product $q\overline{q'} = f\overline{f'}|dz|^4$, and divide it by the hyperbolic metric $\rho|dz|^2$ obtained by

(ロ) (四) (三) (三) (三)

Given two QHD $q = fdz^2$ and $q' = f'dz^2$, one can consider the product $q\overline{q'} = f\overline{f'}|dz|^4$, and divide it by the hyperbolic metric $\rho|dz|^2$ obtained by solving the Liouville equation. The real part can be integrated over S.

(D) (B) (E) (E)

Given two QHD $q = fdz^2$ and $q' = f'dz^2$, one can consider the product $q\overline{q'} = f\overline{f'}|dz|^4$, and divide it by the hyperbolic metric $\rho|dz|^2$ obtained by solving the Liouville equation. The real part can be integrated over S.

This defines a scalar product on $I_c^*\mathcal{I}$, and a metric on \mathcal{I} , the

Weil-Petersson metric g_{WP} .

Thm (Weil, '50) : g_{WP} is Kähler.

That is, g_{WP} is compatible with the complex structure J on QHD, and $g_{WP}(\cdot, J \cdot)$ is a symplectic form on \mathcal{T} .

Note : this theorem is not so trivial, in the sequel we will see one (more recent) approach to the proof. g_{WP} is the natural metric on the space of complex structures, however its definition needs the hyperbolic metric (and the solution of the Liouville equation).

(D) (B) (E) (E)

Given two QHD $q = fdz^2$ and $q' = f'dz^2$, one can consider the product $q\overline{q'} = f\overline{f'}|dz|^4$, and divide it by the hyperbolic metric $\rho|dz|^2$ obtained by solving the Liouville equation. The real part can be integrated over S. This defines a scalar product on $T_c^*\mathcal{T}$, and a metric on \mathcal{T} , the Weil-Petersson metric g_{WP} .

Thm (Weil, '50) : g_{WP} is Kähler.

That is, g_{WP} is compatible with the complex structure J on QHD, and $g_{WP}(\cdot, J \cdot)$ is a symplectic form on \mathcal{T} .

Note : this theorem is not so trivial, in the sequel we will see one (more recent) approach to the proof. g_{WP} is the natural metric on the space of complex structures, however its definition needs the hyperbolic metric (and the solution of the Liouville equation).

Given two QHD $q = fdz^2$ and $q' = f'dz^2$, one can consider the product $q\overline{q'} = f\overline{f'}|dz|^4$, and divide it by the hyperbolic metric $\rho|dz|^2$ obtained by solving the Liouville equation. The real part can be integrated over S. This defines a scalar product on $T_c^*\mathcal{T}$, and a metric on \mathcal{T} , the Weil-Petersson metric g_{WP} .

Thm (Weil, '50) : g_{WP} is Kähler.

That is, g_{WP} is compatible with the complex structure J on QHD, and $g_{WP}(\cdot, J \cdot)$ is a symplectic form on \mathcal{T} .

Note : this theorem is not so trivial, in the sequel we will see one (more recent) approach to the proof. g_{WP} is the natural metric on the space of complex structures, however its definition needs the hyperbolic metric (and the solution of the Liouville equation).

Given two QHD $q = fdz^2$ and $q' = f'dz^2$, one can consider the product $q\overline{q'} = f\overline{f'}|dz|^4$, and divide it by the hyperbolic metric $\rho|dz|^2$ obtained by solving the Liouville equation. The real part can be integrated over S. This defines a scalar product on $T_c^*\mathcal{T}$, and a metric on \mathcal{T} , the Weil-Petersson metric g_{WP} . Thm (Weil, '50) : g_{WP} is Kähler.

That is, g_{WP} is compatible with the complex structure J on QHD, and $g_{WP}(\cdot, J \cdot)$ is a symplectic form on \mathcal{T} .

Note : this theorem is not so trivial, in the sequel we will see one (more recent) approach to the proof. g_{WP} is the natural metric on the space of complex structures, however its definition needs the hyperbolic metric (and the solution of the Liouville equation).

Given two QHD $q = fdz^2$ and $q' = f'dz^2$, one can consider the product $q\overline{q'} = f\overline{f'}|dz|^4$, and divide it by the hyperbolic metric $\rho|dz|^2$ obtained by solving the Liouville equation. The real part can be integrated over S. This defines a scalar product on $T_c^*\mathcal{T}$, and a metric on \mathcal{T} , the Weil-Petersson metric g_{WP} . Thm (Weil, '50) : g_{WP} is Kähler. That is, g_{WP} is compatible with the complex structure J on QHD, and $g_{WP}(\cdot, J \cdot)$ is a symplectic form on \mathcal{T} . Note : this theorem is not so trivial, in the sequel we will see one (more recent) approach to the proof. g_{WP} is the natural metric on the space of

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Given two QHD $q = fdz^2$ and $q' = f'dz^2$, one can consider the product $q\overline{q'} = f\overline{f'}|dz|^4$, and divide it by the hyperbolic metric $\rho|dz|^2$ obtained by solving the Liouville equation. The real part can be integrated over S. This defines a scalar product on $T_c^*\mathcal{T}$, and a metric on \mathcal{T} , the Weil-Petersson metric g_{WP} .

Thm (Weil, '50) : g_{WP} is Kähler.

That is, g_{WP} is compatible with the complex structure J on QHD, and $g_{WP}(\cdot, J \cdot)$ is a symplectic form on \mathcal{T} .

Note : this theorem is not so trivial, in the sequel we will see one (more recent) approach to the proof. g_{WP} is the natural metric on the space of complex structures, however its definition needs the hyperbolic metric (and the solution of the Liouville equation).

・ロト ・日ト ・ヨト ・ヨト

A *multicurve* is a disjoint union of simple closed curves.

Given a hyperbolic metric, each cu can be realized as a geodesic. A weighted multicurve comes w positive weights on the curves. Multicurves can be complicated.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

There is a natural topology for which the completion has "good" properties.

- A *multicurve* is a disjoint union of simple closed curves. Given a hyperbolic metric, each curve can be realized as a geodesic.
 - A weighted multicurve comes v positive weights on the curves. Multicurves can be complicated.

There is a natural topology for which the completion has "good" properties.

A multicurve is a disjoint union of simple closed curves.
Given a hyperbolic metric, each curve
can be realized as a geodesic.
A weighted multicurve comes with
positive weights on the curves.

Multicurves can be complicated.

(日) (四) (三) (三)

There is a natural topology for which the completion has ''good'' properties.

A *multicurve* is a disjoint union of simple closed curves. Given a hyperbolic metric, each curve can be realized as a geodesic. A weighted multicurve comes with, positive weights on the curves. Multicurves can be complicated.

A *multicurve* is a disjoint union of simple closed curves. Given a hyperbolic metric, each curve can be realized as a geodesic. A weighted multicurve comes with, positive weights on the curves. Multicurves can be complicated.

There is a natural topology for which the completion has "good" properties.

Consider a (geodesic) weighted multicurve $(c_i, l_i)_{i=1,\dots,n}$.

The c_i form a *lamination* and the l_i de-

weight to γ transverse to the c

This gives a topology to the space weighted multicurves.

(日) (四) (三) (三)

Its completion is the space of *measured*

 \mathcal{ML}_S is topologically a ball of dimension 6g-6.

Consider a (geodesic) weighted multicurve $(c_i, l_i)_{i=1,\dots,n}$.

The c_i form a lamination and the l_i de-

fine a transverse measure : gives a total

weight to γ , transverse to the c_i .

This gives a topology to the space o weighted multicurves.

(ロ) (四) (三) (三)

Its completion is the space of measured

laminations \mathcal{ML}_S

 \mathcal{ML}_S is topologically a ball of dimension 6g-6.

Consider a (geodesic) weighted multicurve $(c_i, l_i)_{i=1,\dots,n}$. The c_i form a *lamination* and the l_i define a *transverse measure* : gives a total weight to γ , transverse to the c_i .

This gives a topology to the space of weighted multicurves.

(ロ) (四) (三) (三)

Its completion is the space of *measured*

 \mathcal{ML}_S is topologically a ball of dimension 6g - 6.

Consider a (geodesic) weighted multicurve $(c_i, l_i)_{i=1,\dots,n}$. The c_i form a *lamination* and the l_i define a *transverse measure* : gives a total weight to γ , transverse to the c_i . This gives a topology to the space of weighted multicurves.

(ロ) (四) (三) (三)

Its completion is the space of *measured* laminations \mathcal{ML}_S .

 \mathcal{ML}_S is topologically a ball of dimension 6g - 6.

Consider a (geodesic) weighted multicurve $(c_i, l_i)_{i=1,\dots,n}$.

The c_i form a *lamination* and the l_i de-

fine a transverse measure : gives a total

weight to γ , transverse to the c_i .

This gives a topology to the space of weighted multicurves.

(ロ) (四) (三) (三)

Its completion is the space of *measured* laminations \mathcal{ML}_S .

 \mathcal{ML}_S is topologically a ball of dimension 6g-6.

Consider a (geodesic) weighted multicurve $(c_i, l_i)_{i=1,\dots,n}$.

- The c_i form a *lamination* and the l_i de-
- fine a transverse measure : gives a total
- weight to γ , transverse to the c_i .
- This gives a topology to the space of weighted multicurves.

(ロ) (四) (三) (三)

Its completion is the space of *measured* laminations \mathcal{ML}_{S} .

 \mathcal{ML}_S is topologically a ball of dimension 6g - 6.

Consider a (geodesic) weighted multicurve $(c_i, l_i)_{i=1,\dots,n}$.

The c_i form a *lamination* and the l_i de-

fine a transverse measure : gives a total

weight to γ , transverse to the c_i .

This gives a topology to the space of weighted multicurves.

Its completion is the space of *measured* laminations \mathcal{ML}_{S} .

 \mathcal{ML}_S is topologically a ball of dimension 6g - 6.

Let (c_i, l_i) be a weighted multicurve. It can be realised uniquely as a geodesic multicurve in any hyperbolic metric. Its length L defines a function on T. $dL \in T_c^*$, for all $c \in T$. Thus, (Thurston): this extends continuously to a one-to-one map from \mathcal{ML}_S to $T_c^*T_S$, for all $c \in T_S$. Note : the affine structure on \mathcal{ML} strongly depends on the choice of c... \mathcal{ML} is actually not a vector space but rather a piecewise linear space.

Let (c_i, l_i) be a weighted multicurve. It can be realised uniquely as a geodesic multicurve in any hyperbolic metric. Its length L defines a function on \mathcal{T} . $dL \in \mathcal{T}_c^*$, for all $c \in \mathcal{T}$.

Thm (Thurston) : this extends continuously to a one-to-one map from \mathcal{ML}_S to $\mathcal{T}_c^*\mathcal{T}_S$, for all $c\in\mathcal{T}_S$.

Note : the affine structure on \mathcal{ML} strongly depends on the choice of c... \mathcal{ML} is actually not a vector space but rather a piecewise linear space.

Let (c_i, l_i) be a weighted multicurve. It can be realised uniquely as a geodesic multicurve in any hyperbolic metric. Its length L defines a function on \mathcal{T} . $dL \in \mathcal{T}_c^*$, for all $c \in \mathcal{T}$.

Thm (Thurston) : this extends continuously to a one-to-one map from \mathcal{ML}_S to $\mathcal{T}_c^*\mathcal{T}_S$, for all $c \in \mathcal{T}_S$.

Note : the affine structure on \mathcal{ML} strongly depends on the choice of c_{\cdots} . \mathcal{ML} is actually not a vector space but rather a piecewise linear space.

イロト イヨト イヨト イヨト

Let (c_i, l_i) be a weighted multicurve. It can be realised uniquely as a geodesic multicurve in any hyperbolic metric. Its length L defines a function on \mathcal{T} . $dL \in \mathcal{T}_c^*$, for all $c \in \mathcal{T}$. Thm (Thurston) : this extends continuously to a one-to-one map from \mathcal{ML}_S to $\mathcal{T}_c^*\mathcal{T}_S$, for all $c \in \mathcal{T}_S$. Note : the affine structure on \mathcal{ML} strongly depends on the choice of c

 \mathcal{ML} is actually not a vector space but rather a piecewise linear space.

イロト イヨト イヨト イヨト

Let (c_i, l_i) be a weighted multicurve. It can be realised uniquely as a geodesic multicurve in any hyperbolic metric. Its length L defines a function on \mathcal{T} . $dL \in \mathcal{T}_c^*$, for all $c \in \mathcal{T}$. Thm (Thurston) : this extends continuously to a one-to-one map from \mathcal{ML}_S to $\mathcal{T}_c^*\mathcal{T}_S$, for all $c \in \mathcal{T}_S$. Note : the affine structure on \mathcal{ML} strongly depends on the choice of c... \mathcal{ML} is actually not a vector space but rather a piecewise linear space.

Let (c_i, l_i) be a weighted multicurve. It can be realised uniquely as a geodesic multicurve in any hyperbolic metric. Its length L defines a function on \mathcal{T} . $dL \in \mathcal{T}_c^*$, for all $c \in \mathcal{T}$.

Thm (Thurston) : this extends continuously to a one-to-one map from \mathcal{ML}_S to $\mathcal{T}_c^*\mathcal{T}_S$, for all $c \in \mathcal{T}_S$.

Note : the affine structure on \mathcal{ML} strongly depends on the choice of c... \mathcal{ML} is actually not a vector space but rather a piecewise linear space.

Thurston's compactification of ${\mathcal T}$

We consider a simple family of degenerating metrics, scaling to constant diame-

ter.

In the limit, the length of a curve is either 0 or a constant. Weighted multicurves are "limits" of some sequences of hyperbolic metrics, after scaling.

(ロ) (四) (三) (三)

Thm (Thurston, '70) $: \mathcal{ML}/\mathbb{R}_{>0}$ is a compactification of \mathcal{T}_+

Thurston's compactification of ${\mathcal T}$

We consider a simple family of degenerating metrics, scaling to constant diameter.

In the limit, the length of a curve is either 0 or a constant. Weighted multicurves are "limits" of some sequences of hyperbolic metrics, after scaling.

(ロ) (四) (三) (三)

Thm (Thurston, '70) : $\mathcal{ML}/\mathbb{R}_{>0}$ is a compactification of \mathcal{T} .

Thurston's compactification of ${\mathcal T}$

We consider a simple family of degenerating metrics, scaling to constant diameter.

In the limit, the length of a curve is either 0 or a constant. Weighted multicurves are "limits" of some sequences of hyperbolic metrics, after scaling. Thm (Thurston, '70) : $\mathcal{ML}/\mathbb{R}_{>0}$ is a compactification

We consider a simple family of degenerating metrics, scaling to constant diameter.

In the limit, the length of a curve is either 0 or a constant. Weighted multicurves are "limits" of some sequences of hyperbolic metrics, after scaling. Thm (Thurston, '70) : $\mathcal{ML}/\mathbb{R}_{>0}$ is a compactification

(D) (B) (E) (E)

We consider a simple family of degenerating metrics, scaling to constant diameter.

In the limit, the length of a curve is either

0 or a constant. Weighted multicurves are

"limits" of some sequences of hyperbolic metrics, after scaling

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Thm (Thurston, '70) $\widetilde{:}$ $\mathcal{ML}/\mathbb{R}_{>0}$ is a compactification of $\mathcal{T}.$

We consider a simple family of degenerating metrics, scaling to constant diameter.

In the limit, the length of a curve is either 0 or a constant. Weighted multicurves are "limits" of some sequences of hyperbolic metrics, after scaling.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Thm (Thurston, '70) : $\mathcal{ML}/\mathbb{R}_{>0}$ is a compactification of \mathcal{T} .

We consider a simple family of degenerating metrics, scaling to constant diameter.

In the limit, the length of a curve is either 0 or a constant. Weighted multicurves are "limits" of some sequences of hyperbolic metrics, after scaling.

 $\bigcirc \bigcirc \bigcirc \bigcirc$

Thm (Thurston, '70) $\mathcal{ML}/\mathbb{R}_{>0}$ is a compactification of \mathcal{T} .

Start with a hyperbolic surface.

Choose a simple closed geodesic c and l > 0, cut the surface open along it, rotate the right-hand side by l, then glue back.

(ロ) (四) (三) (三)

This defines a homeomorphism $E_{c,l}^r: \mathcal{T}_S \to \mathcal{T}_S$. If c' is another simple curve c', disjoint from c, then $E_{c,l}^r$ and $E_{c',l'}^r$ commute.

So we have an "action" on \mathcal{T}_S of the space of weighted multicurves.

Start with a hyperbolic surface. Choose a simple closed geodesic c and l > 0, cut the surface open along it, rotate the right-hand side by l, then glue back.

イロン イロン イヨン イヨン

This defines a homeomorphism $E_{c,l}^r: \mathcal{T}_S \to \mathcal{T}_S$. If c' is another simple curve c', disjoint from c, then $E_{c,l}^r$ and $E_{c',l'}^r$ commute.

So we have an "action" on \mathcal{T}_S of the space of weighted multicurves.

Start with a hyperbolic surface. Choose a simple closed geodesic c and l > 0, cut the surface open along it, rotate the right-hand side by l, then glue back.

(ロ) (四) (三) (三)

This defines a homeomorphism $E_{c,l}^r: \mathcal{T}_S \to \mathcal{T}_S$. If c' is another simple curve c', disjoint from c, then $E_{c,l}^r$ and $E_{c',l'}^r$ commute.

So we have an "action" on $\mathcal{T}_{\mathcal{S}}$ of the space of weighted multicurves.

Start with a hyperbolic surface. Choose a simple closed geodesic c and l > 0, cut the surface open along it, rotate the right-hand side by l, then glue back.

(ロ) (四) (三) (三)

This defines a homeomorphism $E_{c,l}^r: \mathcal{T}_S \to \mathcal{T}_S$. If c' is another simple curve c', disjoint from c, then $E_{c,l}^r$ and $E_{c',l'}^r$ commute.

So we have an ''action'' on $\mathcal{T}_{\mathcal{S}}$ of the space of weighted multicurves.

Start with a hyperbolic surface. Choose a simple closed geodesic c and l > 0, cut the surface open along it, rotate the right-hand side by l, then glue back.

(ロ) (四) (三) (三)

This defines a homeomorphism $E_{c,l}^r: \mathcal{T}_S \to \mathcal{T}_S$. If c' is another simple curve c', disjoint from c, then $E_{c,l}^r$ and $E_{c',l'}^r$ commute.

So we have an "action" on $\mathcal{T}_{m{S}}$ of the space of weighted multicurves.

Start with a hyperbolic surface. Choose a simple closed geodesic c and l > 0, cut the surface open along it, rotate the right-hand side by l, then glue back.

(ロ) (四) (三) (三) (三)

This defines a homeomorphism $E_{c,l}^r : \mathcal{T}_S \to \mathcal{T}_S$. If c' is another simple curve c', disjoint from c, then $E_{c,l}^r$ and $E_{c',l'}^r$ commute. So we have an "action" on \mathcal{T}_S of the space of weighted multicurves

Start with a hyperbolic surface. Choose a simple closed geodesic c and l > 0, cut the surface open along it, rotate the right-hand side by l, then glue back.

・ロト ・回ト ・ヨト ・ヨ

This defines a homeomorphism $E_{c,l}^r: \mathcal{T}_S \to \mathcal{T}_S$. If c' is another simple curve c', disjoint from c, then $E_{c,l}^r$ and $E_{c',l'}^r$ commute.

So we have an ''action'' on $\mathcal{T}_{\mathcal{S}}$ of the space of weighted multicurves.

Start with a hyperbolic surface. Choose a simple closed geodesic c and l > 0, cut the surface open along it, rotate the right-hand side by l, then glue back.

This defines a homeomorphism $E_{c,l}^r: \mathcal{T}_S \to \mathcal{T}_S$. If c' is another simple curve c', disjoint from c, then $E_{c,l}^r$ and $E_{c',l'}^r$ commute.

So we have an "action" on \mathcal{T}_S of the space of weighted multicurves.

The action of weighted multicurves by fractional Dehn twist extends to :

 $E^r:\mathcal{ML}_S\times\mathcal{T}_S\to\mathcal{T}_S$.

For $\lambda \in \mathcal{ML}_S$, $E^r(\lambda) : \mathcal{T}_S \to \mathcal{T}_S$ is a *right earthquake*. Correspondingly, left earthquakes : $E^l(\lambda) = E^r(\lambda)^{-1}$.

Thm (Thurston) : any $h,h'\in \mathcal{T}$ are connected by a unique right earthquake.

This provides another nice parametrization of \mathcal{T} from $\mathcal{ML} \simeq T_h^* \mathcal{T}$, for a fixed $h \in \mathcal{T}$. Thurston sketched a proof, another (more analytic) was found by Kerckhoff.

In lecture 5 we will outline a simpler proof, based on AdS geometry (2+1D gravity).

(ロ) (部) (注) (注)

The action of weighted multicurves by fractional Dehn twist extends to :

$$E^r:\mathcal{ML}_S imes \mathcal{T}_S o \mathcal{T}_S$$
 .

For $\lambda \in \mathcal{ML}_S$, $E^r(\lambda) : \mathcal{T}_S \to \mathcal{T}_S$ is a *right earthquake*. Correspondingly, left earthquakes : $E^i(\lambda) = E^r(\lambda)^{-1}$.

Thm (Thurston) : any $h, h' \in \mathcal{T}$ are connected by a unique right earthquake.

This provides another nice parametrization of \mathcal{T} from $\mathcal{ML} \simeq T_h^* \mathcal{T}$, for a fixed $h \in \mathcal{T}$. Thurston sketched a proof, another (more analytic) was found by Kerckhoff.

In lecture 5 we will outline a simpler proof, based on AdS geometry (2+1D gravity).

(ロ) (部) (注) (注)

The action of weighted multicurves by fractional Dehn twist extends to :

$$E^r:\mathcal{ML}_S imes \mathcal{T}_S o \mathcal{T}_S$$
 .

For $\lambda \in \mathcal{ML}_S$, $E^r(\lambda) : \mathcal{T}_S \to \mathcal{T}_S$ is a *right earthquake*. Correspondingly, left earthquakes : $E^l(\lambda) = E^r(\lambda)^{-1}$.

Thm (Thurston) : any $h,h' \in \mathcal{T}$ are connected by a unique right earthquake.

This provides another nice parametrization of \mathcal{T} from $\mathcal{ML} \simeq \mathcal{T}_h^* \mathcal{T}$, for a fixed $h \in \mathcal{T}$. Thurston sketched a proof, another (more analytic) was found by Kerckhoff.

In lecture 5 we will outline a simpler proof, based on AdS geometry (2+1D gravity).

(ロ) (部) (注) (注)

The action of weighted multicurves by fractional Dehn twist extends to :

$$E^r:\mathcal{ML}_S imes \mathcal{T}_S o \mathcal{T}_S$$
 .

For $\lambda \in \mathcal{ML}_S$, $E^r(\lambda) : \mathcal{T}_S \to \mathcal{T}_S$ is a *right earthquake*. Correspondingly, left earthquakes : $E^l(\lambda) = E^r(\lambda)^{-1}$.

Thm (Thurston) : any $h, h' \in \mathcal{T}$ are connected by a unique right earthquake.

This provides another nice parametrization of \mathcal{T} from $\mathcal{ML} \simeq T_h^* \mathcal{T}$, for a fixed $h \in \mathcal{T}$. Thurston sketched a proof, another (more analytic) was found by Kerckhoff.

In lecture 5 we will outline a simpler proof, based on AdS geometry (2+1D gravity).

イロト イヨト イヨト イヨト

The action of weighted multicurves by fractional Dehn twist extends to :

$$E^r:\mathcal{ML}_S imes \mathcal{T}_S o \mathcal{T}_S$$
 .

For $\lambda \in \mathcal{ML}_S$, $E^r(\lambda) : \mathcal{T}_S \to \mathcal{T}_S$ is a *right earthquake*. Correspondingly, left earthquakes : $E^l(\lambda) = E^r(\lambda)^{-1}$.

Thm (Thurston) : any $h, h' \in \mathcal{T}$ are connected by a unique right earthquake.

This provides another nice parametrization of \mathcal{T} from $\mathcal{ML} \simeq \mathcal{T}_h^* \mathcal{T}$, for a fixed $h \in \mathcal{T}$. Thurston sketched a proof, another (more analytic) was found by Kerckhoff.

In lecture 5 we will outline a simpler proof, based on AdS geometry (2+1D gravity).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The action of weighted multicurves by fractional Dehn twist extends to :

$$E^r:\mathcal{ML}_S imes \mathcal{T}_S o \mathcal{T}_S$$
 .

For $\lambda \in \mathcal{ML}_S$, $E^r(\lambda) : \mathcal{T}_S \to \mathcal{T}_S$ is a *right earthquake*. Correspondingly, left earthquakes : $E^l(\lambda) = E^r(\lambda)^{-1}$.

Thm (Thurston) : any $h, h' \in \mathcal{T}$ are connected by a unique right earthquake.

This provides another nice parametrization of \mathcal{T} from $\mathcal{ML} \simeq T_h^* \mathcal{T}$, for a fixed $h \in \mathcal{T}$. Thurston sketched a proof, another (more analytic) was found by Kerckhoff.

In lecture 5 we will outline a simpler proof, based on AdS geometry (2+1D gravity).

The action of weighted multicurves by fractional Dehn twist extends to :

$$E^r:\mathcal{ML}_S imes \mathcal{T}_S o \mathcal{T}_S$$
 .

For $\lambda \in \mathcal{ML}_S$, $E^r(\lambda) : \mathcal{T}_S \to \mathcal{T}_S$ is a *right earthquake*. Correspondingly, left earthquakes : $E^l(\lambda) = E^r(\lambda)^{-1}$.

Thm (Thurston) : any $h, h' \in \mathcal{T}$ are connected by a unique right earthquake.

This provides another nice parametrization of \mathcal{T} from $\mathcal{ML} \simeq \mathcal{T}_h^* \mathcal{T}$, for a fixed $h \in \mathcal{T}$. Thurston sketched a proof, another (more analytic) was found by Kerckhoff.

In lecture 5 we will outline a simpler proof, based on AdS geometry (2+1D gravity).

The 3-dim hyperbolic space can be defined as the hyperbolic plane. As a quadric in $\mathbb{R}^{3,1}$:

$H^3 = \{ x \in \mathbb{R}^4 \ | \ -x_0^2 + x_1^2 + x_2^2 + x_3^2 = -1 \& x_0 > 0 \} \ .$

There is a projective model, as the interior of the unit ball, and a Poincaré model, also in a ball (conformal). H^3 has a boundary at infinity, identified with $S^2 = \mathbb{C}P^1$.

The 3-dim hyperbolic space can be defined as the hyperbolic plane. As a quadric in $\mathbb{R}^{3,1}$:

$$\mathcal{H}^3 = \{x \in \mathbb{R}^4 \mid \ -x_0^2 + x_1^2 + x_2^2 + x_3^2 = -1\&x_0 > 0\} \;.$$

There is a projective model, as the interior of the unit ball, and a Poincaré model, also in a ball (conformal). H^3 has a boundary at infinity, identified with $S^2 = \mathbb{C}P^1$.

The 3-dim hyperbolic space can be defined as the hyperbolic plane. As a quadric in $\mathbb{R}^{3,1}$:

$${\cal H}^3=\{x\in {\mathbb R}^4 \ | \ -x_0^2+x_1^2+x_2^2+x_3^2=-1\& x_0>0\} \; .$$

There is a projective model, as the interior of the unit ball, and a Poincaré model, also in a ball (conformal). H^3 has a boundary at infinity, identified with $S^2 = \mathbb{C}P^1$.

The 3-dim hyperbolic space can be defined as the hyperbolic plane. As a quadric in $\mathbb{R}^{3,1}$:

$$H^3 = \{x \in \mathbb{R}^4 \ | \ -x_0^2 + x_1^2 + x_2^2 + x_3^2 = -1\&x_0 > 0\} \; .$$

There is a projective model, as the interior of the unit ball, and a Poincaré model, also in a ball (conformal). H^3 has a boundary at infinity, identified with $S^2 = CP^1$

The 3-dim hyperbolic space can be defined as the hyperbolic plane. As a quadric in $\mathbb{R}^{3,1}$:

$$H^3 = \{x \in \mathbb{R}^4 \mid -x_0^2 + x_1^2 + x_2^2 + x_3^2 = -1\&x_0 > 0\} \;.$$

There is a projective model, as the interior of the unit ball, and a Poincaré model, also in a ball (conformal). H^3 has a boundary at infinity, identified with $S^2 = \mathbb{C}P^1$.

The 3-dim hyperbolic space can be defined as the hyperbolic plane. As a quadric in $\mathbb{R}^{3,1}$:

$$\mathcal{H}^3 = \{x \in \mathbb{R}^4 \mid \ -x_0^2 + x_1^2 + x_2^2 + x_3^2 = -1\&x_0 > 0\} \;.$$

There is a projective model, as the interior of the unit ball, and a Poincaré model, also in a ball (conformal). H^3 has a boundary at infinity, identified with $S^2 = \mathbb{C}P^1$.

The 3-dim hyperbolic space can be defined as the hyperbolic plane. As a quadric in $\mathbb{R}^{3,1}$:

$$\mathcal{H}^3 = \{x \in \mathbb{R}^4 \mid \ -x_0^2 + x_1^2 + x_2^2 + x_3^2 = -1\&x_0 > 0\} \;.$$

There is a projective model, as the interior of the unit ball, and a Poincaré model, also in a ball (conformal). H^3 has a boundary at infinity, identified with $S^2 = \mathbb{C}P^1$.

For closed hyperbolic manifolds the situation is different than from hyperbolic surfaces.

Thm (Mostow, '70) : a closed 3-manifold admits at most one hyperbolic metric.

Moreover, those which do admit a hyperbolic metric are characterized in simple topological terms (Thurston '80, Perelman 2003) :

• any embedded sphere bounds a ball,

no incompressible immersed torus (more or less).

(ロ) (四) (三) (三)

For closed hyperbolic manifolds the situation is different than from hyperbolic surfaces.

Thm (Mostow, '70) : a closed 3-manifold admits at most one hyperbolic metric.

Moreover, those which do admit a hyperbolic metric are characterized in simple topological terms (Thurston '80, Perelman 2003) :

• any embedded sphere bounds a ball,

no incompressible immersed torus (more or less).

For closed hyperbolic manifolds the situation is different than from hyperbolic surfaces.

Thm (Mostow, '70) : a closed 3-manifold admits at most one hyperbolic metric.

Moreover, those which do admit a hyperbolic metric are characterized in simple topological terms (Thurston '80, Perelman 2003) :

any embedded sphere bounds a ball,

• no incompressible immersed torus (more or less).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

For closed hyperbolic manifolds the situation is different than from hyperbolic surfaces.

Thm (Mostow, '70) : a closed 3-manifold admits at most one hyperbolic metric.

Moreover, those which do admit a hyperbolic metric are characterized in simple topological terms (Thurston '80, Perelman 2003) :

• any embedded sphere bounds a ball,

• no incompressible immersed torus (more or less).

For closed hyperbolic manifolds the situation is different than from hyperbolic surfaces.

Thm (Mostow, '70) : a closed 3-manifold admits at most one hyperbolic metric.

Moreover, those which do admit a hyperbolic metric are characterized in simple topological terms (Thurston '80, Perelman 2003) :

- any embedded sphere bounds a ball,
- no incompressible immersed torus (more or less).

Start from a hyperbolic surface (S, g).

```
Consider \rho : \pi_1(S) \to PSL(2, \mathbb{R}), as acting on H^2 \subset H^3.
There is a unique extension as an action \rho' on H^3, from PSL(2, \mathbb{R}) \subset PSL(2, \mathbb{C}).
H^3/\rho'(S) \simeq S \times \mathbb{R}, metric : dt^2 + \cosh^2(t)g.
```

Infinite volume, "grows" exponentially at infinity. Let $\Lambda =$ limit set : accumulation points at infinity of the orbit of a point under $\rho'(\pi_1(S))$. Then Λ is the "equator".

(ロ) (四) (三) (三)

Start from a hyperbolic surface (S, g).

Consider $\rho : \pi_1(S) \to PSL(2, \mathbb{R})$, as acting on $H^2 \subset H^3$. There is a unique extension as an action ρ' on H^3 , from $PSL(2, \mathbb{R}) \subset PSL(2, \mathbb{C})$. $H^3/\rho'(S) \simeq S \times \mathbb{R}$, metric : $dt^2 + \cosh^2(t)g$.

(ロ) (四) (三) (三)

Infinite volume, "grows" exponentially at infinity. Let $\Lambda =$ limit set : accumulation points at infinity of the orbit of a point under $\rho'(\pi_1(S))$. Then Λ is the "equator".

Start from a hyperbolic surface (S, g).

Consider $\rho : \pi_1(S) \to PSL(2,\mathbb{R})$, as acting on $H^2 \subset H^3$.

There is a unique extension as an actior ho' on H^3 , from $PSL(2,\mathbb{R}) \subset PSL(2,\mathbb{C})$ $H^3/
ho'(S) \simeq S \times \mathbb{R}$, metric : dt^2 + $\cosh^2(t)g$.

(ロ) (四) (三) (三)

Infinite volume, "grows" exponentially at infinity. Let $\Lambda =$ limit set : accumulation points at infinity of the orbit of a point under $\rho'(\pi_1(S))$. Then Λ is the "equator".

Start from a hyperbolic surface (S, g).

Consider $\rho : \pi_1(S) \to PSL(2, \mathbb{R})$, as acting on $H^2 \subset H^3$. There is a unique extension as an action ρ' on H^3 , from $PSL(2, \mathbb{R}) \subset PSL(2, \mathbb{C})$. $H^3/\rho'(S) \simeq S \times \mathbb{R}$, metric $: dt^2 + \cosh^2(t)g$.

(ロ) (四) (三) (三)

Infinite volume, "grows" exponentially at infinity. Let $\Lambda =$ limit set : accumulation points at infinity of the orbit of a point under $\rho'(\pi_1(S))$. Then Λ is the "equator".

Start from a hyperbolic surface (S, g). Consider $\rho : \pi_1(S) \to PSL(2, \mathbb{R})$, as acting on $H^2 \subset H^3$. There is a unique extension as an action ρ' on H^3 , from $PSL(2, \mathbb{R}) \subset PSL(2, \mathbb{C})$. $H^3/\rho'(S) \simeq S \times \mathbb{R}$, metric : $dt^2 + \cosh^2(t)g$.

Infinite volume, "grows" exponentially at infinity. Let $\Lambda =$ limit set : accumulation points at infinity of the orbit of a point under $\rho'(\pi_1(S))$. Then Λ is the "equator".

(ロ) (四) (三) (三)
Start from a hyperbolic surface (S, g). Consider $\rho : \pi_1(S) \to PSL(2, \mathbb{R})$, as acting on $H^2 \subset H^3$. There is a unique extension as an action ρ' on H^3 , from $PSL(2, \mathbb{R}) \subset PSL(2, \mathbb{C})$. $H^3/\rho'(S) \simeq S \times \mathbb{R}$, metric : dt^2 + $\cosh^2(t)g$.

Infinite volume, "grows" exponentially at infinity. Let $\Lambda =$ limit set : accumulation points at infinity of the orbit of a point under $\rho'(\pi_1(S))$. Then Λ is the "equator".

Start from a hyperbolic surface (S, g).

Consider
$$\rho : \pi_1(S) \to PSL(2, \mathbb{R})$$
, as acting on $H^2 \subset H^3$.
There is a unique extension as an action ρ' on H^3 , from $PSL(2, \mathbb{R}) \subset PSL(2, \mathbb{C})$.
 $H^3/\rho'(S) \simeq S \times \mathbb{R}$, metric : $dt^2 + \cosh^2(t)g$.

Infinite volume, "grows" exponentially at infinity. Let $\Lambda =$ limit set : accumulation points at infinity of the orbit of a point under $\rho'(\pi_1(S))$. Then Λ is the "equator".

Start from a hyperbolic surface (S, g). Consider $\rho : \pi_1(S) \to PSL(2, \mathbb{R})$, as acting on $H^2 \subset H^3$. There is a unique extension as an action ρ' on H^3 , from $PSL(2, \mathbb{R}) \subset PSL(2, \mathbb{C})$. $H^3/\rho'(S) \simeq S \times \mathbb{R}$, metric : dt^2 + $\cosh^2(t)g$.

Infinite volume, "grows" exponentially at infinity.

Let $\Lambda = \text{limit set}$: accumulation points at infinity of the orbit of a point under $\rho'(\pi_1(S))$. Then Λ is the "equator".

Start from a hyperbolic surface (S, g).

Consider
$$\rho : \pi_1(S) \to PSL(2, \mathbb{R})$$
, as acting on $H^2 \subset H^3$.
There is a unique extension as an action ρ' on H^3 , from $PSL(2, \mathbb{R}) \subset PSL(2, \mathbb{C})$.
 $H^3/\rho'(S) \simeq S \times \mathbb{R}$, metric : $dt^2 + \cosh^2(t)g$.

Infinite volume, "grows" exponentially at infinity. Let $\Lambda =$ limit set : accumulation points at infinity of the orbit of a point under $\rho'(\pi_1(S))$. Then Λ is the "equator".

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Start from a hyperbolic surface (S, g).

Infinite volume, "grows" exponentially at infinity. Let $\Lambda =$ limit set : accumulation points at infinity of the orbit of a point under $\rho'(\pi_1(S))$. Then Λ is the "equator".

Def : a complete hyperbolic 3-mfld M is quasifuchsian if :

- $M\simeq S imes \mathbb{R}$, S closed of genus \geq 2,
- *M* contains a compact convex subset *K* which is a deformation retract of *M*.

M has infinite volume and "grows" exponentially at infinity.

 $M = H^3/\rho(\pi_1(S))$, where $\rho : \pi_1(S) \to PSL(2, \mathbb{C})$. Quasifuchsian manifolds are obtained by deforming the fuchsian manifolds presented above.

Def : a complete hyperbolic 3-mfld M is quasifuchsian if :

- $M \simeq S \times \mathbb{R}$, S closed of genus ≥ 2 ,
- *M* contains a compact convex subset *K* which is a deformation retract of *M*.

M has infinite volume and "grows" exponentially at infinity.

(ロ) (四) (三) (三) (三)

Def : a complete hyperbolic 3-mfld M is quasifuchsian if :

- $M \simeq S \times \mathbb{R}$, S closed of genus ≥ 2 ,
- *M* contains a compact convex subset *K* which is a deformation retract of *M*.

M has infinite volume and "grows" exponentially at infinity.

(日) (四) (三) (三)

Def : a complete hyperbolic 3-mfld M is quasifuchsian if :

- $M \simeq S \times \mathbb{R}$, S closed of genus \geq 2,
- *M* contains a compact convex subset *K* which is a deformation retract of *M*.

M has infinite volume and "grows" exponentially at infinity.

(日) (四) (三) (三)

Def : a complete hyperbolic 3-mfld M is quasifuchsian if :

- $M \simeq S \times \mathbb{R}$, S closed of genus ≥ 2 ,
- *M* contains a compact convex subset *K* which is a deformation retract of *M*.

M has infinite volume and "grows" exponentially at infinity.

Def : a complete hyperbolic 3-mfld M is quasifuchsian if :

- $M \simeq S \times \mathbb{R}$, S closed of genus \geq 2,
- *M* contains a compact convex subset *K* which is a deformation retract of *M*.

 ${\it M}$ has infinite volume and "grows" exponentially at infinity.

