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The AdS space
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Each family is parametrized by RP1, and the action on each family is
projective.
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Fuchsian AdS manifolds

Simplest examples � analogs of Fuchsian hyperbolic manifolds.
Start with a closed hyperbolic surface (S , g), consider the Lorentz
manifold :

M = (S × (−π/2, π/2),−dt2 + cos(t)2g) .

M has constant curvature −1, t = 0 is a Cauchy surface.
M = Ω/Γ, where Ω ⊂ AdS3 is the future cone of a point, and Γ ' π1(S)
acts on a totally geodesic surface in Ω, isometric to H2.
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GHMC AdS manifolds

An AdS 3-m�d is GHMC if :

it is globally hyperbolic

it contains a closed (oriented) space-like surface S of genus ≥ 2,

it is maximal.

General idea : GHMC AdS m�ds are very similar to quasifuchsian
hyperbolic m�ds.
Thm (Mess, 1990) : let M be a GHMC AdS m�d. Then
M = Ω/ρ(π1(S)), where Ω ⊂ AdS3 is convex and
ρ : π1(S) → Isom0(AdS

3). ρ = (ρl , ρr ) : π1(S) → PSL(2, R)×PSL(2, R),
and ρl , ρr ∈ TS . Any (ρl , ρr ) ∈ TS can be uniquely obtained.
AdS analog of the Bers theorem.
Applications to quantization ? T appears to be easier to quantize (Fock,
· · · ).
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The convex core

The limit set Λ ofM can be de�ned (almost) as for quasifuchsian manifolds.

It is still a Jordan curve, Cα. CC (M) =
CH(Λ)/ρ(π1(S)) is the smallest convex
subset of M containing a space-like sur-
face.
Its boundary has two components, each
is a convex, ruled space-like surface, with
hyperbolic induced metric h±, bent along
a measured lamination λ±.

AdS
3

+

R
3

Ω

Λ

AdS
3

+

R
3

Ω

Λ

Conjecture (Mess 1990) : the maps (h+, h−) : GH → T × T and
(λ+, λ−) : GH →ML×ML are homeomorphisms. ? ? ? ?
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A proof of Thurston's Earthquake Theorem (Mess)

GHMC AdS m�ds provide a direct proof of the Earthquake Theorem.

Thm (Mess 1990) : ρl = El(λ+)(h+), and
similarly for ρ−, h−.
Cor : given ρl = El(λ+)−1 ◦ Er (λ+)(ρr )
= Er (λ+)2(ρr ) = Er (2λ+)(ρr ).

l

λ

−

+

l
λE (   )+ rE (   )λ+

r

λE (   )−E (   )−

ρ

h

h

ρ

r
l

Given ρl , ρr ∈ T , they de�ne a unique GHMC AdS m�d M, then
ρl = Er (2λ+)(ρr ). The uniqueness also follows from this construction.
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Maximal surfaces and QHD (1)

Let S be a surface with a metric g and a bilinear symmetric form h.
Then :

1 tr[g ](h) = 0 i� h = Re(q) for a quadratic di�erential q.

2 then h satis�es the Codazzi equation with respect to [g ] i� q is
holomorphic (Hopf, '50).

3 and then (g , h) = (I , II ) for a maximal surface in AdS i�
K = −1− detg h (Gauss equation).

For �xed g , set g ′ = e2ug . Then K ′ = e−2u(−∆u + K ), while
detg ′h = e−4udetgh. So condition (3) for g ′ is :

∆u = e2u + K + e−2udetgh .
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Maximal surfaces and QHD (2)

∆u = e2u + K + e−2udetgh .

Sols correspond to critical points of :

F (u) =

∫
‖du‖2 + e2u + 2Ku − e−2udetgh ,

which is str. convex because detgh ≤ 0. So a maximal surface de�nes a
conformal structure and a QHD, i.e. an element of T ∗Tg , and conversely.
For quasifuchsian m�ds things work much less nicely.
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Maximal surfaces

Considering maximal surfaces yields another interesting parametrization
of GH.
Thm : any GHMC AdS manifold contains a unique closed space-like
maximal surface.
Conversely, the maximal surfaces in AdS constructed in the previous slide
all �extend� to a GHMC AdS manifold.
Recall that QHD for c ' T ∗

c T .
Thm (Krasnov, S. ; Fock, Taubes, etc) : the map ([I ], II ) : GH → T ∗T is
a homeomorphism.
Again the quasifuchsian analog is less satisfying
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Particles

Def : �particles� are cone singularities along time-like lines (cf �hinges� in
Ruth Williams' course). The angle is less than 2π. Two cases :

angles < π : the mathematical theory works well but collisions
between particles are (almost) forbidden.

angles ∈ (π, 2π) : collisions are possible but global descriptions are
more complicated.
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Teichmüller space with marked points

Now S is a closed surface of genus g ≥ 2 with some marked points
x1, · · · , xn. Tg ,n is the space of complex structures on S , up to isotopies
�xing the xi .
Thm : any h ∈ Tg ,n is compatible with a unique complete hyperbolic
metric with cusps at the xi .
Thm (Troyanov, '90) : let c ∈ Tg ,n, and let θ1, · · · , θn ∈ (0, 2π). There is
a unique hyperbolic metric h compatible with c , with cone singularities at
the xi of angle θi .
Proof : solving the Liouville equation again.
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The Mess parametrization with particles

Unfortunately, for M GHMC AdS with particles, the holonomy is rather
bad : no action on a �nice� space, etc. But hyperbolic metrics can be
used (Krasnov, S.). Let S ⊂ M be a closed space-like surface, orthogonal

to the particles, with |ki | < 1. Let I#± (x , y) = I ((E ± JB)x , (E ± JB)y).
Then

I
#
± are hyperbolic metrics on S ,

they do not depend on the choice of S ,

when no particle is present, they correspond to ρl , ρr .

with particles, they have cone sings of prescribed angle.

Thm (Bonsante, S.) : the map (I#+ , I#− ) : GH → Tg ,n × Tg ,n is a
homeomorpism.
Mathematical side : an extension of the earthquake theorem to
hyperbolic surfaces with cone singularities. There is also a
parametrization of GH by T ∗Tg ,n using maximal surfaces (Krasnov, S.).
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Multi Black holes

Simplest example (�non-rotating�) : start from a complete hyperbolic
surface (S , g) with ends of in�nite area (not cusps), consider again

M = (S × (−π/2, π/2),−dt2 + cos(t)2g) .

Not globally hyperbolic, the in�nite ends do not �see� what happens in
the part with topology, or in the other in�nite ends (wormhole).
M = Ω/Γ, where Ω ⊂ AdS3 and Γ ' π1(S) is a free group in
PSL(2, R)× PSL(2, R). This example can be deformed (�rotating� case).
The space of MBH of given topology is parametrized by two copies of the
Teichmüller space of hyperbolic metrics with geodesic boundary
components (Barbot).
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What to do with this ?

Quantization through the quantization of Teichmüller space ?

What happens with colliding particles (angles (π, 2π) ?

Does this add any light to higher dimensions ?
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