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GHMC AdS manifolds

The AdS space

Ad53:{X€R2’2 \ —xg—x12+x22—|—x§:—1}.
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GHMC AdS manifolds

The AdS space

Ad53:{x€R2’2\ —xg—x12+x22—|—x§:—1}.

AdS3 is a Lorentz space with constant
curvature —1. It has a projective model
(as for H?), interior of a quadric Q.

Isomo(AdS?) = PSL(2,R) x PSL(2,R) :

&
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GHMC AdS manifolds

The AdS space

Ad53:{x€R2’2\ —xg—x12+x22—|—x§:—1}.

AdS3 is a Lorentz space with constant
curvature —1. It has a projective model
(as for H?), interior of a quadric Q.
Isomo(AdS?) = PSL(2,R) x PSL(2,R) :
@ is ruled by two families of lines, preser-
ved by Isomo(AdS?).
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GHMC AdS manifolds

The AdS space

Ad53:{x€R2’2\ —xg—x12+x22—|—x§:—1}.

AdS3 is a Lorentz space with constant
curvature —1. It has a projective model
(as for H?), interior of a quadric Q.
Isomo(AdS?) = PSL(2,R) x PSL(2,R) :
@ is ruled by two families of lines, preser-
ved by Isomo(AdS?).

Each family is parametrized by RP!, and the action on each family is

NrYo H /a 1 a
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GHMC AdS manifolds

Fuchsian AdS manifolds

Simplest examples — analogs of Fuchsian hyperbolic manifolds.
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GHMC AdS manifolds

Fuchsian AdS manifolds

Simplest examples — analogs of Fuchsian hyperbolic manifolds.
Start with a closed hyperbolic surface (S, g), consider the Lorentz
manifold :

M = (S x (—7/2,7/2), —dt® + cos(t)?g) .
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GHMC AdS manifolds

Fuchsian AdS manifolds

Simplest examples — analogs of Fuchsian hyperbolic manifolds.
Start with a closed hyperbolic surface (S, g), consider the Lorentz
manifold :

M = (S x (—7/2,7/2), —dt® + cos(t)?g) .

M has constant curvature —1, t = 0 is a Cauchy surface.
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GHMC AdS manifolds

Fuchsian AdS manifolds

Simplest examples — analogs of Fuchsian hyperbolic manifolds.
Start with a closed hyperbolic surface (S, g), consider the Lorentz
manifold :

M= (S x (—7/2,7/2), —dt® + cos(t)’g) .

M has constant curvature —1, t = 0 is a Cauchy surface.
M = Q/T, where Q C AdS3 is the future cone of a point, and I ~ 7;(S)
acts on a totally geodesic surface in €2, isometric to H?.
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GHMC AdS manifolds

An AdS 3-mfld is GHMC if :
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An AdS 3-mfld is GHMC if :
@ it is globally hyperbolic
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GHMC AdS manifolds

GHMC AdS manifolds

An AdS 3-mfld is GHMC if :
@ it is globally hyperbolic

@ it contains a closed (oriented) space-like surface S of genus > 2,
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GHMC AdS manifolds

GHMC AdS manifolds

An AdS 3-mfld is GHMC if :
@ it is globally hyperbolic
@ it contains a closed (oriented) space-like surface S of genus > 2,

@ it is maximal.
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GHMC AdS manifolds

GHMC AdS manifolds

An AdS 3-mfld is GHMC if :
@ it is globally hyperbolic
@ it contains a closed (oriented) space-like surface S of genus > 2,
@ it is maximal.

General idea : GHMC AdS mflds are very similar to quasifuchsian
hyperbolic mflds.
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GHMC AdS manifolds

An AdS 3-mfld is GHMC if :
@ it is globally hyperbolic
@ it contains a closed (oriented) space-like surface S of genus > 2,
@ it is maximal.

General idea : GHMC AdS mflds are very similar to quasifuchsian
hyperbolic mflds.

Thm (Mess, 1990) : let M be a GHMC AdS mfld. Then

M = Q/p(71(S)), where Q C AdS? is convex and

p: m1(S) — Isomg(AdS?).
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GHMC AdS manifolds

GHMC AdS manifolds

An AdS 3-mfld is GHMC if :
@ it is globally hyperbolic
@ it contains a closed (oriented) space-like surface S of genus > 2,
@ it is maximal.

General idea : GHMC AdS mflds are very similar to quasifuchsian
hyperbolic mflds.

Thm (Mess, 1990) : let M be a GHMC AdS mfld. Then

M = Q/p(71(S)), where Q C AdS? is convex and

p: m1(S) — Isomg(AdS3). p = (p1, pr) : T1(S) — PSL(2,R) x PSL(2,R),
and P, Pr € ,I?
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GHMC AdS manifolds

An AdS 3-mfld is GHMC if :
@ it is globally hyperbolic
@ it contains a closed (oriented) space-like surface S of genus > 2,
@ it is maximal.

General idea : GHMC AdS mflds are very similar to quasifuchsian
hyperbolic mflds.

Thm (Mess, 1990) : let M be a GHMC AdS mfld. Then

M = Q/p(71(S)), where Q C AdS? is convex and

p: m1(S) — Isomg(AdS3). p = (p1, pr) : T1(S) — PSL(2,R) x PSL(2,R),
and py, pr € Ts. Any (pr, pr) € Ts can be uniquely obtained.
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GHMC AdS manifolds

An AdS 3-mfld is GHMC if :
@ it is globally hyperbolic
@ it contains a closed (oriented) space-like surface S of genus > 2,
@ it is maximal.

General idea : GHMC AdS mflds are very similar to quasifuchsian
hyperbolic mflds.

Thm (Mess, 1990) : let M be a GHMC AdS mfld. Then

M = Q/p(71(S)), where Q C AdS? is convex and

p: m1(S) — Isomg(AdS3). p = (p1, pr) : T1(S) — PSL(2,R) x PSL(2,R),
and py, pr € Ts. Any (pr, pr) € Ts can be uniquely obtained.

AdS analog of the Bers theorem.
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GHMC AdS manifolds

An AdS 3-mfld is GHMC if :
@ it is globally hyperbolic
@ it contains a closed (oriented) space-like surface S of genus > 2,
@ it is maximal.

General idea : GHMC AdS mflds are very similar to quasifuchsian
hyperbolic mflds.

Thm (Mess, 1990) : let M be a GHMC AdS mfld. Then

M = Q/p(71(S)), where Q C AdS? is convex and

p: m1(S) — Isomg(AdS3). p = (p1, pr) : T1(S) — PSL(2,R) x PSL(2,R),
and py, pr € Ts. Any (pr, pr) € Ts can be uniquely obtained.

AdS analog of the Bers theorem.

Applications to quantization 7 7 appears to be easier to quantize (Fock,
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The convex core

The limit set A of M can be defined (almost) as for quasifuchsian manifolds.
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The convex core and earthquakes

The convex core

The limit set A of M can be defined (almost) as for quasifuchsian manifolds.

It is still a Jordan curve, C©.

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



> ma
The convex core and earthquakes

The convex core

The limit set A of M can be defined (almost) as for quasifuchsian manifolds.

It is still a Jordan curve, C*. CC(M) =
CH(N)/p(m1(S)) is the smallest convex
subset of M containing a space-like sur-
face.
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The limit set A of M can be defined (almost) as for quasifuchsian manifolds.

It is still a Jordan curve, C*. CC(M) =
CH(N)/p(m1(S)) is the smallest convex
subset of M containing a space-like sur-
face.

Its boundary has two components, each
is a convex, ruled space-like surface, with
hyperbolic induced metric hy.,
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The convex core

The limit set A of M can be defined (almost) as for quasifuchsian manifolds.

It is still a Jordan curve, C*. CC(M) =
CH(N)/p(m1(S)) is the smallest convex
subset of M containing a space-like sur-
face.

Its boundary has two components, each
is a convex, ruled space-like surface, with
hyperbolic induced metric h., bent along
a measured lamination A\L.
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The convex core and earthquakes

The convex core

The limit set A of M can be defined (almost) as for quasifuchsian manifolds.

It is still a Jordan curve, C*. CC(M) =
CH(N)/p(m1(S)) is the smallest convex
subset of M containing a space-like sur-
face.

Its boundary has two components, each
is a convex, ruled space-like surface, with
hyperbolic induced metric h., bent along
a measured lamination A\L.

Conjecture (Mess 1990) : the maps (hy,h_): GH — T x T and
(A4, A2) : GH — ML x ML are homeomorphisms.
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The convex core and earthquakes

The convex core

The limit set A of M can be defined (almost) as for quasifuchsian manifolds.

It is still a Jordan curve, C*. CC(M) =
CH(N)/p(m1(S)) is the smallest convex
subset of M containing a space-like sur-
face.

Its boundary has two components, each
is a convex, ruled space-like surface, with
hyperbolic induced metric h., bent along
a measured lamination A\L.

Conjecture (Mess 1990) : the maps (hy,h_): GH — T x T and
(A, A2) : GH — ML x ML are homeomorphisms. 27?727
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A proof of Thurston's Earthquake Theorem (Mess)

GHMC AdS mflds provide a direct proof of the Earthquake Theorem.
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A proof of Thurston's Earthquake Theorem (Mess)

GHMC AdS mflds provide a direct proof of the Earthquake Theorem.

h,
E,\) E.(\)
Thm (Mess 1990) : p; = E/(A4)(hy),
pl pr
E& /47»)
h’
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A proof of Thurston's Earthquake Theorem (Mess)

GHMC AdS mflds provide a direct proof of the Earthquake Theorem.

h,
E,\) E.(\)
Thm (Mess 1990) : p; = E/(A+)(hy), and
similarly for p_, h_.
pl pr
E& /47»)
h’
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The convex core and earthquakes
Ma a T

A proof of Thurston's Earthquake Theorem (Mess)

GHMC AdS mflds provide a direct proof of the Earthquake Theorem.

E M) E.(A)
Thm (Mess 1990) : p; = E;(A+)(hy), and
similarly for p_, h_.
Cor : given p; = E(A+)" Lo E.(\y)(pr)

E& /7\._)
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A proof of Thurston's Earthquake Theorem (Mess)

GHMC AdS mflds provide a direct proof of the Earthquake Theorem.

E ) E,(\)
Thm (Mess 1990) : p; = E/(A+)(hy), and
similarly for p_, h_.

Cor : given p; = E(A+)" Lo E.(\y)(pr)

= E(\)%(pr)
E(\) ()
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A proof of Thurston's Earthquake Theorem (Mess)

GHMC AdS mflds provide a direct proof of the Earthquake Theorem.

E ) E,(\)
Thm (Mess 1990) : p; = E/(A+)(hy), and
similarly for p_, h_.

Cor : given p; = E(A+)" Lo E.(\y)(pr)

= E(A\)%(pr) = E(221)(pr).
E(\) ()
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The convex core and earthquakes
Ma a T

A proof of Thurston's Earthquake Theorem (Mess)

GHMC AdS mflds provide a direct proof of the Earthquake Theorem.

E ) E,(\)
Thm (Mess 1990) : p; = E/(A+)(hy), and
similarly for p_, h_.

Cor : given p; = E(A+)" Lo E.(\y)(pr)

= E(A\)%(pr) = E(221)(pr).
E(\) ()

Given py, pr € T, they define a unique GHMC AdS mfld I\/I, then
o1 = E.2X4)(p)).
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The convex core and earthquakes
Ma a T

A proof of Thurston's Earthquake Theorem (Mess)

GHMC AdS mflds provide a direct proof of the Earthquake Theorem.

E ) E,(\)
Thm (Mess 1990) : p; = E/(A+)(hy), and
similarly for p_, h_.

Cor : given p; = E(A+)" Lo E.(\y)(pr)

= E(A\)%(pr) = E(221)(pr).
E(\) ()

Given py, pr € T, they define a unique GHMC AdS mfld I\/I, then
o1 = E.(2XA1)(pr). The uniqueness also follows from this construction.
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Maximal surfaces and T*7

Maximal surfaces and QHD (1)

Let S be a surface with a metric g and a bilinear symmetric form h.
Then :
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Maximal surfaces and QHD (1)

Let S be a surface with a metric g and a bilinear symmetric form h.
Then :

Q trg(h) = 0 iff h = Re(q) for a quadratic differential q.
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Maximal surfaces and QHD (1)

Let S be a surface with a metric g and a bilinear symmetric form h.
Then :

Q trg(h) = 0 iff h = Re(q) for a quadratic differential q.

@ then h satisfies the Codazzi equation with respect to [g] iff g is
holomorphic (Hopf, '50).
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Maximal surfaces and QHD (1)

Let S be a surface with a metric g and a bilinear symmetric form h.
Then :

Q trg(h) = 0 iff h = Re(q) for a quadratic differential q.

@ then h satisfies the Codazzi equation with respect to [g] iff g is
holomorphic (Hopf, '50).

© and then (g, h) = (I,1l) for a maximal surface in AdS iff
K = —1 — det, h (Gauss equation).
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Maximal surfaces and QHD (1)

Let S be a surface with a metric g and a bilinear symmetric form h.
Then :

Q trg(h) = 0 iff h = Re(q) for a quadratic differential q.

@ then h satisfies the Codazzi equation with respect to [g] iff g is
holomorphic (Hopf, '50).

© and then (g, h) = (I,1l) for a maximal surface in AdS iff
K = —1 — det, h (Gauss equation).

For fixed g, set g’ = e?“g.
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Maximal surfaces and QHD (1)

Let S be a surface with a metric g and a bilinear symmetric form h.
Then :

Q trg(h) = 0 iff h = Re(q) for a quadratic differential q.

@ then h satisfies the Codazzi equation with respect to [g] iff g is
holomorphic (Hopf, '50).

© and then (g, h) = (I,1l) for a maximal surface in AdS iff
K = —1 — det, h (Gauss equation).

For fixed g, set g’ = e?“g. Then K' = e 2¢(—Au + K),
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Maximal surfaces and QHD (1)

Let S be a surface with a metric g and a bilinear symmetric form h.
Then :

Q trg(h) = 0 iff h = Re(q) for a quadratic differential q.

@ then h satisfies the Codazzi equation with respect to [g] iff g is
holomorphic (Hopf, '50).

© and then (g, h) = (I,1l) for a maximal surface in AdS iff
K = —1 — det, h (Gauss equation).

For fixed g, set g’ = e?“g. Then K' = e 2¢(—Au + K), while
dety h = e~ *detgh.
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Maximal surfaces and T*7
Extensio

Maximal surfaces and QHD (1)

Let S be a surface with a metric g and a bilinear symmetric form h.
Then :

Q trg(h) = 0 iff h = Re(q) for a quadratic differential q.

@ then h satisfies the Codazzi equation with respect to [g] iff g is
holomorphic (Hopf, '50).

© and then (g, h) = (I,1l) for a maximal surface in AdS iff
K = —1 — det, h (Gauss equation).

For fixed g, set g’ = e?“g. Then K' = e 2¢(—Au + K), while
dety h = e=*“detgh. So condition (3) for g’ is :

Au=e* + K + e *“det,h .
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Maximal surfaces and T*7
Extens

Maximal surfaces and QHD (2)

Au= e + K+ e *“detgh .
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Maximal surfaces and T*7
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Maximal surfaces and QHD (2)

Au= e + K+ e *“detgh .

Sols correspond to critical points of :

F(u) = / |dull® + e2“ + 2Ku — e 2" det, h ,
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Maximal surfaces and QHD (2)

Au= e + K+ e *“detgh .

Sols correspond to critical points of :
F(u) = / |dull® + e2“ + 2Ku — e 2" det, h ,

which is str. convex because detgh < 0.
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Maximal surfaces and QHD (2)

Au= e + K+ e *“detgh .

Sols correspond to critical points of :
F(u) = / |dull® + e2“ + 2Ku — e 2" det, h ,

which is str. convex because detgzh < 0. So a maximal surface defines a
conformal structure and a QHD, i.e. an element of T*7,, and conversely.
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Maximal surfaces and T*7

Maximal surfaces and QHD (2)

Au= e + K+ e *“detgh .

Sols correspond to critical points of :
F(u) = / |dull® + e2“ + 2Ku — e 2" det, h ,

which is str. convex because detgzh < 0. So a maximal surface defines a
conformal structure and a QHD, i.e. an element of T*7,, and conversely.
For quasifuchsian mflds things work much less nicely.
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Maximal surfaces and T*7

Maximal surfaces

Considering maximal surfaces yields another interesting parametrization

of GH.
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Maximal surfaces and T*7

Maximal surfaces

Considering maximal surfaces yields another interesting parametrization
of GH.

Thm : any GHMC AdS manifold contains a unique closed space-like
maximal surface.

Jean-Marc Schlenker Hyperbolic geometry for 3d gravity



Maximal surfaces and T*7

Maximal surfaces

Considering maximal surfaces yields another interesting parametrization
of GH.

Thm : any GHMC AdS manifold contains a unique closed space-like
maximal surface.

Conversely, the maximal surfaces in AdS constructed in the previous slide
all “extend” to a GHMC AdS manifold.
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Maximal surfaces

Considering maximal surfaces yields another interesting parametrization
of GH.

Thm : any GHMC AdS manifold contains a unique closed space-like
maximal surface.

Conversely, the maximal surfaces in AdS constructed in the previous slide
all “extend” to a GHMC AdS manifold.

Recall that QHD for ¢ ~ T}7.
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Maximal surfaces

Considering maximal surfaces yields another interesting parametrization
of GH.

Thm : any GHMC AdS manifold contains a unique closed space-like
maximal surface.

Conversely, the maximal surfaces in AdS constructed in the previous slide
all “extend” to a GHMC AdS manifold.

Recall that QHD for ¢ ~ T}7.

Thm (Krasnov, S.; Fock, Taubes, etc) : the map ([/],/l) : GH — T*T is
a homeomorphism.
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Maximal surfaces

Considering maximal surfaces yields another interesting parametrization
of GH.

Thm : any GHMC AdS manifold contains a unique closed space-like
maximal surface.

Conversely, the maximal surfaces in AdS constructed in the previous slide
all “extend” to a GHMC AdS manifold.

Recall that QHD for ¢ ~ T}7.

Thm (Krasnov, S.; Fock, Taubes, etc) : the map ([/],/l) : GH — T*T is
a homeomorphism.

Again the quasifuchsian analog is less satisfying
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Extensions

Particles

Def : “particles” are cone singularities along time-like lines (cf “hinges” in
Ruth Williams' course).
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Particles

Def : “particles” are cone singularities along time-like lines (cf “hinges” in
Ruth Williams’ course). The angle is less than 2. Two cases :
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Extensions

Particles

Def : “particles” are cone singularities along time-like lines (cf “hinges” in
Ruth Williams’ course). The angle is less than 2. Two cases :

@ angles < 7 : the mathematical theory works well but collisions
between particles are (almost) forbidden.
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Extensions

Particles

Def : “particles” are cone singularities along time-like lines (cf “hinges” in
Ruth Williams’ course). The angle is less than 2. Two cases :

@ angles < 7 : the mathematical theory works well but collisions
between particles are (almost) forbidden.

@ angles € (,27) : collisions are possible but global descriptions are
more complicated.
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VE e T
Extensions

Teichmiiller space with marked points

Now S is a closed surface of genus g > 2 with some marked points
X1, Xp.
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Extensions
What next ?

Teichmiiller space with marked points

Now S is a closed surface of genus g > 2 with some marked points
X1, - ,Xn. Tg n is the space of complex structures on S, up to isotopies
fixing the x;.
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Extensions
What next ?

Teichmiiller space with marked points

Now S is a closed surface of genus g > 2 with some marked points

X1, - ,Xn. Tg n is the space of complex structures on S, up to isotopies
fixing the x;.

Thm : any h € 7, , is compatible with a unique complete hyperbolic
metric with cusps at the x;.
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Extensions
What next ?

Teichmiiller space with marked points

Now S is a closed surface of genus g > 2 with some marked points

X1, - ,Xn. Tg n is the space of complex structures on S, up to isotopies
fixing the x;.

Thm : any h € 7, , is compatible with a unique complete hyperbolic
metric with cusps at the x;.

Thm (Troyanov, '90) : let ¢ € 7, 5, and let 01, -- ,6, € (0,27). There is
a unique hyperbolic metric h compatible with ¢, with cone singularities at
the x; of angle 6;.
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VE e T
Extensions

Teichmiiller space with marked points

Now S is a closed surface of genus g > 2 with some marked points

X1, - ,Xn. Tg n is the space of complex structures on S, up to isotopies
fixing the x;.

Thm : any h € 7, , is compatible with a unique complete hyperbolic
metric with cusps at the x;.

Thm (Troyanov, '90) : let ¢ € 7, 5, and let 01, -- ,6, € (0,27). There is
a unique hyperbolic metric h compatible with ¢, with cone singularities at
the x; of angle 6;.

Proof : solving the Liouville equation again.
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Extensions

The Mess parametrization with particles

Unfortunately, for M GHMC AdS with particles, the holonomy is rather
bad : no action on a “nice” space, etc.
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Extensions

The Mess parametrization with particles

Unfortunately, for M GHMC AdS with particles, the holonomy is rather
bad : no action on a “nice” space, etc. But hyperbolic metrics can be
used (Krasnov, S.).
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Extensions
What next ?

The Mess parametrization with particles

Unfortunately, for M GHMC AdS with particles, the holonomy is rather
bad : no action on a “nice” space, etc. But hyperbolic metrics can be
used (Krasnov, S.). Let S C M be a closed space-like surface, orthogonal
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The Mess parametrization with particles

Unfortunately, for M GHMC AdS with particles, the holonomy is rather
bad : no action on a “nice” space, etc. But hyperbolic metrics can be
used (Krasnov, S.). Let S C M be a closed space-like surface, orthogonal
to the particles, with |k;| < 1. Let 17 (x,y) = I((E = JB)x, (E + JB)y).
Then

° If are hyperbolic metrics on S,
@ they do not depend on the choice of S,
@ when no particle is present, they correspond to py, p,.

@ with particles, they have cone sings of prescribed angle.

Thm (Bonsante, S.) : the map (17, 1%): GH — T, x Ty, is a
homeomorpism.

Mathematical side : an extension of the earthquake theorem to
hyperbolic surfaces with cone singularities. There is also a
parametrization of GH by T*7, , using maximal surfaces (Krasnoy, S.).
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Extensions

Multi Black holes

Simplest example (“non-rotating”’) : start from a complete hyperbolic
surface (S, g) with ends of infinite area (not cusps), consider again

M = (S x (—7n/2,7/2), —dt? + cos(t)?g) .
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Multi Black holes

Simplest example (“non-rotating”’) : start from a complete hyperbolic
surface (S, g) with ends of infinite area (not cusps), consider again

M = (S x (—7n/2,7/2), —dt? + cos(t)?g) .

Not globally hyperbolic, the infinite ends do not “see” what happens in
the part with topology, or in the other infinite ends (wormhole).

M = Q/T, where Q C AdS3 and T ~ 71(S) is a free group in

PSL(2,R) x PSL(2,R). This example can be deformed (‘rotating” case).
The space of MBH of given topology is parametrized by two copies of the
Teichmiiller space of hyperbolic metrics with geodesic boundary
components (Barbot).
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What to do with this?

@ Quantization through the quantization of Teichmiiller space?
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Extens
What next ?

What to do with this?

@ Quantization through the quantization of Teichmiiller space?
@ What happens with colliding particles (angles (7, 27) 7

@ Does this add any light to higher dimensions ?
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