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1 Introduction

The generalised Fibonacci group F (r, n) is the group defined by the cyclic presentation

〈x1, . . . , xn | x1x2 . . . xrx
−1
r+1, x2x3 . . . xr+1x

−1
r+2, . . . , xn−1xnx1 . . . xr−2x

−1
r−1, xnx1x2 . . . xr−1x

−1
r 〉,

where r > 1, n > 1 and all the subscripts are assumed to be reduced modulo n. There
has been a great deal of interest in the study of these groups since the question in [5] by
Conway about the order of F (2, 5). Up to now the order of F (r, n) was known except for
the two infinite families F{7, 5} and F{8, 5} where F{r, n} := {F (r+ kn, n) : k ≥ 0}. The
reader is referred to [15] and the references therein together with [4] and [14] for further
details. In this paper we will show that each group in F{7, 5} or F{8, 5} is infinite. This
together with previous results yields the following theorem.

Theorem 1.1 The generalised Fibonacci group F (r, n) is finite if and only if one of the
following conditions is satisfied:

(i) r = 2 and n ∈ {2, 3, 4, 5, 7}: indeed F (2, 2) is trivial ; F (2, 3) ∼= Q8, the quaternion
group of order 8; F (2, 4) ∼= Z5; F (2, 5) ∼= Z11; and F (2, 7) ∼= Z29;

(ii) r = 3 and n ∈ {2, 3, 5, 6}: indeed F (3, 2) ∼= Q8; F (3, 3) ∼= Z2; F (3, 5) ∼= Z22; and
F (3, 6) is non-metacyclic, soluble of order 1512;

(iii) r ≥ 4 and r ≡ 0 (modn), in which case F (r, n) ∼= Zr−1;

(iv) r ≥ 4 and r ≡ 1 (modn), in which case F (r, n) is metacyclic of order rn − 1;

(v) r ≥ 4, n = 4 and r ≡ 2 (modn), in which case F (r, n) = F (4k + 2, 4) (k ≥ 1) is
metacyclic of order (4k + 1)(2(4)2k + 2(−4)k + 1).
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A relative group presentation is a presentation of the form P = 〈G,x|r〉 where G is a group,
x a set disjoint from G, and r a set of cyclically reduced words in the free product G ∗ 〈x〉
where 〈x〉 denotes the free group on x [2]. If G(P) denotes the group defined by P then
G(P) is the quotient group G ∗ 〈x〉/N where N denotes the normal closure in G ∗ 〈x〉 of
r. A relative group presentation is defined in [2] to be aspherical if every spherical picture
over it contains a dipole, that is, fails to be reduced. There is interest in when a relative
presentation is aspherical, see, for example, [1], [2], [6], [7], [9] and [13]. In this paper we
consider the situation when G = 〈t|t5〉, x = {u} and r = {t2utu−n} and prove the following
theorem.

Theorem 1.2 The relative presentation Pn = 〈t, u|t5, t2utu−n〉 is aspherical for n ≥ 7.

Applying, for example, statement (0.4) in the introduction of [2] and the fact that the
group defined by Pn is neither trivial nor cyclic of order 5 we immediately obtain

Corollary 1.3 If G(Pn) is the group defined by Pn then G(Pn) is infinite for n ≥ 7,
indeed u has infinite order in G(Pn) for n ≥ 7.

We shall show in Section 2 that Corollary 1.3 implies that each group in F{7, 5}, F{8, 5}
is infinite. The remaining Sections 3–8 of the paper will be devoted entirely to proving
Theorem 1.2.

2 Fibonacci groups

Consider the generalised Fibonacci group F (r, n) of the introduction. If r = 2 or 2 ≤ n ≤ 4
or (r, n) ∈ {(3, 5), (3, 6)} or n divides r or r ≡ 1 (modn) then Theorem 1.1 applies and
these cases are discussed fully with relevant references in [15]. Assume then that none of
these conditions holds. In particular r ≥ 3 and n ≥ 5. In [14] it is shown that if n does not
divide any of r ± 1, r + 2, 2r, 2r + 1 or 3r then F (r, n) is infinite. If n divides r + 1 then
F (r, n) is infinite for r ≥ 3 [11] so assume otherwise. We are left therefore to consider the
families F{r, r + 2}; F{r, 2r}; F{r, 2r + 1} and F{r, 3r}. In [4] it is shown that if r ≥ 4
then each group in F{r, r + 2} and F{r, 2r} is infinite; and if r ≥ 3 then each group in
F{r, 2r+1} is infinite. This leaves F{8, 5}, F{9, 6}, F{7, 5} and F{r, 3r}. In [14] it is also
shown that if n does not divide any of r± 1, r± 2, r+3, 2r, 2r+1 then F (r, n) is infinite.
If n divides 3r and r + 2 we obtain the family F{4, 6} which is F{r, r + 2} for r = 4; if n
divides 3r and r−2 we obtain F{8, 6} and each group in this family is infinite [3]; and if n
divides 3r and r+ 3 we obtain F{6, 9}. By our assumptions n does not divide 3r together
with any of r±1, 2r or 2r+1. It is also shown in [4] that each group in F{9, 6} or F{6, 9}
is infinite, all of which leaves F{7, 5} and F{8, 5}. These families are

{F (7 + 5k, 5) : k ≥ 0} and {F (8 + 5k, 5) : k ≥ 0},

where F (7 + 5k, 5) and F (8 + 5k, 5) are defined respectively by the presentations

〈x1, x2, x3, x4, x5 | (x1x2x3x4x5)
k+1x1x2x

−1
3 , . . . , (x5x1x2x3x4)

k+1x5x1x
−1
2 〉,

〈x1, x2, x3, x4, x5 | (x1x2x3x4x5)
k+1x1x2x3x

−1
4 , . . . , (x5x1x2x3x4)

k+1x5x1x2x
−1
3 〉.
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We show how Corollary 1.3 can be used to prove Theorem 1.1. Forming a semi-direct
product with the cyclic group of order 5 in the standard way (see, for example, Chapter
10 of [10]) yields the groups E(7 + 5k, 5) and E(8 + 5k, 5) defined respectively by the
presentations

〈x, t | t5, (xt−1)7+5kx−1t2〉,
〈x, t | t5, (xt−1)8+5kx−1t3〉.

Now

〈x, t | t5, (xt−1)7+5kx−1t2〉 = 〈x, t, y | t5, (xt−1)7+5kx−1t2, y−1xt−1〉

= 〈y, t | t5, y7+5kt−1y−1t2〉

= 〈y, t | t5, y7+5kty−1t3〉 (replacing t by t−1)

= 〈y, t, s | t5, y7+5kty−1t3, st−3〉 (s2 = t6 = t)

= 〈y, s | s5, y7+5ks2y−1s〉 (s = t3)

= 〈u, t | t5, t2utu−(7+5k)〉 (s ↔ t, y = u−1) (cyclic conjugate)

and

〈x, t | t5, (xt−1)8+5kx−1t3〉 = 〈x, t, y | t5, (xt−1)8+5kx−1t3, y−1xt−1〉

= 〈t, y | t5, y8+5kt−1y−1t3〉 (inverse, t−3 = t2)

= 〈u, t | t5, t2utu−(8+5k)〉 (y = u).

Therefore Corollary 1.3 implies that each group in {E(7 + 5k, 5) and E(8 + 5k, 5) : k ≥ 0}
is infinite and, given this, Theorem 1.1 now follows.

3 The amended picture and curvature

The reader is referred to [2] and [12] for definitions of many of the basic terms used in this
and subsequent sections.

Suppose by way of contradiction that the relative presentation

Pn = 〈t, u | t5, t2utu−n〉 (n ≥ 7)

is not aspherical, that is, there exists a reduced spherical picture P over Pn. Then each arc of
P is equipped with a normal orientation and labelled by an element of {u, u−1}; each corner
of P is labelled by an element of {ti : − 2 ≤ i ≤ 2}; reading the labels clockwise on the
corners and arcs at a given vertex yields t2utu−n (up to cyclic permutation and inversion);
and the product of the sequence of corner labels encountered in an anti-clockwise traversal
of any given region of P yields the identity in G = 〈t | t5〉.
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Now let D be the dual of the picture P with the labelling of D inherited from that of P .
Then D is a tessellation of the 2-sphere S2 such that: each corner label of D is ti where
−2 ≤ i ≤ 2; each edge is oriented and labelled u or u−1; and each region ∆ of D is given
(up to cyclic permutation and inversion) by Figure 3.1(i). (In all subsequent figures for
ease of presentation we will not show the orientation of the edges or the edge labels u, u−1.)
For convenience we will use the following notation for corner labels:

a for t1; b for t2; λ for t0;

and in figures we denote the inverse θ−1 of a corner label θ by θ. Note that the sum of the
powers of t read around any given vertex of D is congruent to 0 modulo 5.

The star graph Γ for D is given by Figure 3.1(ii) with the following convention: we use µ
for λ−1 with the understanding that the edges labelled λ and µ in Γ are traversed only in
the direction indicated.

We can make the following assumptions without any loss of generality:

A1. D is minimal with respect to number of regions.

A2. Subject to assumption 1, D is maximal with respect to number of vertices of degree
2.

We introduce some further notation. If v is a vertex of D then l(v), the label of v, is the
cyclic word obtained from the corner labels of v in a clockwise direction; and d(v) denotes
the degree of v. If ∆ is a region of D then d(∆) denotes the degree of ∆. A (v1, v2)-edge
is an edge with endpoints v1 and v2; and an edge is a (θ1, θ2)-edge relative to the region ∆
if its corner labels in ∆ are θ1 and θ2. (When there is no ambiguity we will simply talk of
a (θ1, θ2)-edge.)

Lemma 3.1 If v is a vertex of D then l(v) 6= (λµ)±k for k ≥ 2.

Proof. The proof is by induction on k. Consider the vertex of Figure 3.2(i) having label
(λµ)2. Apply m = min{l1, l2} bridge moves of the type shown in Figure 3.2(ii). Then each
of the first m − 1 bridge moves will create and destroy two vertices of degree 2, leaving
the total number unchanged. The mth bridge move however will create two vertices of
degree 2 but destroy at most one. Since bridge moves leave the total number of regions
unchanged we obtain a contradiction to assumption A2. Now consider the vertex of Figure
3.2(iii) having label (λµ)k where k ≥ 3. Again apply m = min{l1, l2} bridge moves of the
type shown in Figure 3.2(iv). The first such bridge move may decrease the total number of
vertices of degree 2 by one, each subsequent bridge move creates two and destroys two until
the mth bridge which increases the number by at least one. This produces a new diagram
with at most the same number of vertices of degree 2 as D. But applying an induction
argument to the vertex v of Figure 3.2(iv) where l(v) = (λµ)k−1 will yield a contradiction
to A2 as before. �
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Lemma 3.2 Let v ∈ D. (i) If d(v) = 2 then l(v) = (λµ)±1 and (ii) if d(v) > 2 then l(v)
contains at least three occurrences of a±1, b±1.

Proof. Both statements follow from the fact that the sum of the corner labels is congruent
to 0mod 5 together with Lemma 3.1 for (ii) and the fact that no adjacent corner labels are
inverse to each other. �

We amendD as follows. Delete all vertices of degree 2 and all edges that are not (b, a)-edges
(relative to any region), and relabel the corners accordingly to obtain K. Then Lemmas
3.1 and 3.2 ensure the existence of a connected, simply connected, component K0 of K
such that d(v) ≥ 3 for each v ∈ K0 and that K0 is a map in the sense of [12]. Indeed

let K
(1)
0 be the 1-skeleton of K0. Since K0 is connected, K\K

(1)
0 is the disjoint union

of connected and simply connected submaps of K. These submaps ∆K are the regions
of K0 in the sense of [12] and c := ∂∆K is a minimal closed curve. We claim that each
2-segment of ∆K in K has its endpoints in c. Now, ∆K cannot contain a vertex v ∈ K0\c
for otherwise minimality would force the intersection of ∆K and the connected component
containing v in K0 to be a tree, contradicting each vertex in K0 has degree ≥ 3 by Lemma
3.2. Consequently it follows from Lemma 3.1 that all inner vertices of ∆K in K have degree
2 and then each 2-segment of ∆K in K has its endpoints in c.

The corner labels of K0 are:

ã = a(λµ)k1 (odd length)

b̃ = (µλ)k2b (odd length)

λ̃ = (λµ)k3λ (odd length)

x = ãλ (even length)

y = λb̃ (even length)

z = ãλb̃ (odd length)

(3.1)

where ki ≥ 0 (1 ≤ i ≤ 3). The star graph Γ0 for K0 is given by Figure 3.3(i), and the
table in Figure 3.3(ii) gives the power of t each corner label represents. Observe that (λµ)k

for k ≥ 1 cannot be a corner label in K0 for otherwise K0 would contain a subdiagram
of the form shown in Figure 3.3(iii) and this contradicts A1 since after bridge moves and
cancellation it would be possible to reduce the number of regions of D by at least two.
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Lemma 3.3 Let v ∈ K0. If d(v) ≤ 6 then l(v) is one of the following:

(i) d(v) = 3 : ãxy−1

b̃µ̃z

(ii) d(v) = 4 : ããzµ̃

b̃b̃x−1y

(iii) d(v) = 5 : ããããã

b̃b̃b̃b̃b̃

ãzx−1yµ̃

b̃x−1λ̃z−1y

Proof. This follows from checking all reduced closed paths in Γ0 whose exponent sum
is 0 modulo 5 together with the fact that equations (3.1) can be used to show that the
following paths of length 2 together with their inverses do not occur as sublabels: ãλ̃;
ãy; ã−1x; ã−1z; b̃y−1; b̃z−1; b̃−1x−1; b̃−1µ̃; λ̃x−1; λ̃µ; µ̃y; µ̃λ̃; x−1z; yz−1. For example
ãλ̃ = a(λµ)k1(λµ)k2λ = a(λµ)k1+k2λ = ãλ = x after rewriting using equations (3.1). �

Convention: We will usually write a, b, λ, µ for ã, b̃, λ̃, µ̃ simply for ease of presentation.
For example if v ∈ D has label l(v) = aλµaλµλb−1µλµ then inK0 this transforms uniquely
to (aλµ)(aλµλ)(b−1µλµ) = ãxy−1 which we write as axy−1 or as axȳ in the figures. This
is illustrated in Figure 3.3(iv).

We turn now to the regions of K0. The edges or 2-segments deleted in forming K from
D will be referred to as shadow edges and will usually be denoted by dotted edges in our
figures. The number of edges in a 2-segment will be called its length. Much use will be
made of the fact that the number of edges in a region of D is n+1. By length contradiction
we mean either a contradiction to this fact or to the fact that n ≥ 7.

We will also use the fact that no region of K0 can contain the configuration of edges and
shadow edges shown in Figure 3.4. To see this observe in Figure 3.4(i) that {φ1, φ2} ⊆ {λ, µ}
forcing each θi ∈ {a±1, b±1} and any attempt at labelling forces θ2θ3 = aa−1 or bb−1, a
contradiction to D being reduced. In Figure 3.4(ii) each φi ∈ {λ, µ} and this produces a
region in D without corner label a±1 or d±1. We refer to the existence of each of these
situations as a basic labelling contradiction.

For example suppose that ∆ ∈ K0 and d(∆) = 6. If ∆ contains no shadow edges as
in Figure 3.5(i) then we obtain the length contradiction n + 1 = 6. Let (pq) denote the
shadow edge with endpoints p and q. If ∆ contains exactly one shadow edge e then,
working modulo cyclic permutation and inversion, e ∈ {(13), (14)}. But e = (13) yields
the length contradiction n + 1 = n + 3 as shown in Figure 3.5(ii) since the length of
(13) must be n − 1. If ∆ contains exactly two shadow edges e1 and e2 then (e1, e2) ∈
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{((13), (14)), ((13), (15)), ((13), (46))}. But (e1, e2) = ((13), (14)) yields the length con-
tradiction n + 1 = 4; and (e1, e2) = ((13), (15)) or ((13), (46)) implies n + 1 = 2n
(see Figure 3.5(iii)-(v)). Finally if ∆ contains three shadow edges e1, e2 and e3 then
(e1, e2, e3) = ((13), (14), (15)) or ((13), (15), (35)) yielding a basic labelling contradiction
(see Figure 3.5(vi)-(vii)); or (e1, e2, e3) = ((13), (14), (46)).

Similar elementary but somewhat lengthy arguments are given in the Appendix to prove
the following.

Lemma 3.4 Let ∆ be a region of K0. If d(∆) ≤ 9 then d(∆) ∈ {4, 6, 8, 9} and ∆ is
given by Figure 3.6.

For example it follows from Lemma 3.4 that if d(∆) = 6 then up to cyclic permutation and
inversion ∆ is given by Figure 3.7. In particular, if ∆ contains a (a, b)-edge or (x, y)-edge
then d(∆) ≥ 8.

We will use similar curvature arguments to those used in [8]. Thus, if ∆ is an m-gon of K0

and the degrees of the vertices of ∆ are di (1 ≤ i ≤ m), then the curvature of ∆ is given
by

c(∆) = c(d1, . . . , dm) = (2−m)π + 2π

m
∑

i=1

1

di
. (3.2)

(Observe that if ρ is any permutation of {1, . . . , m} then c(∆) = c(dρ(1), . . . , dρ(m)). This
fact will be used throughout without explicit reference.) A list of c(d1, . . . , dm) used in the
paper is given in the tables below for the reader’s benefit.

c(3, 3, 3, 3) = 2π
3

c(3, 3, 5, 5) = 2π
15

c(3, 4, 5, 5) = − π
30

c(3, 3, 3, 4) = π
2

c(3, 3, 5, 6) = π
15

c(3, 4, 5, 6) = − π
10

c(3, 3, 3, 5) = 2π
5

c(3, 3, 5, 7) = 2π
105

c(3, 4, 5, 7) = −31π
210

c(3, 3, 3, 6) = π
3

c(3, 3, 6, 6) = 0 c(3, 4, 6, 6) = π
6

c(3, 3, 4, 4) = π
3

c(3, 4, 4, 5) = π
15

c(3, 5, 5, 5) = −2π
15

c(3, 3, 4, 5) = 7π
30

c(3, 4, 4, 6) = 0 c(4, 4, 4, 6) = −π
6

c(3, 3, 4, 6) = π
6

c(3, 4, 4, 7) = − π
21

c(4, 4, 6, 6) = −π
3

c(3, 3, 3, 3, 3, 4) = −π
6

c(3, 3, 3, 4, 4, 4) = −π
2

c(3, 3, 3, 3, 4, 4) = −π
3

c(3, 3, 3, 4, 4, 5) = −3π
5

c(3, 3, 3, 3, 4, 5) = −13π
30

c(3, 3, 3, 4, 4, 6) = −2π
3

c(3, 3, 3, 3, 4, 6) = −π
2

c(3, 3, 4, 4, 4, 4) = −2π
3
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We now give a brief outline of the strategy for the proof of Theorem 1.2.

Suppose first that K0 = K. Our aim is to show that c(K0) :=
∑

∆∈K0
c(∆) ≤ 0. From

this the result follows by essentially known methods (see Section 8). By Lemma 3.4, K0

has no regions of degree 5 and since c(∆) ≤ 0 for d(∆) ≥ 6 it follows that

c(K0) =
∑

d(∆)=4

c(∆) +
∑

d(∆)=6

c(∆) +
∑

d(∆)≥8

c(∆) := Σ4 + Σ6 + Σ8+ .

Clearly Σ6 ≤ 0 and Σ8+ < 0 while Σ4 may be positive. The idea is to compensate the
positive curvature obtained from Σ4 by the non-positive and negative curvature obtained
from Σ6 and Σ8+ in a uniform and systematic way by distribution of positive curvature
rules, depending on configuration.

Now suppose that K0 6= K. In this case we delete all vertices and edges in K\K0 to
produce a tessellation K1 of S

2 consisting of the union of K0 and a single region ∆0. Note
that Lemma 3.3 holds for K1. Therefore

c(K1) ≤ Σ4 + Σ6 + Σ8+ + c(∆0).

The first step of the proof, given in Section 4, will be to locate regions ∆ 6= ∆0 for which
c(∆) > 0, and so d(∆) = 4, and distribute c(∆) (in a way to be made precise later) to near
regions ∆̂ of ∆.

(Remark. Throughout the paper ∆ or ∆i will generally be used to denote regions from
which positive curvature is transferred, and ∆̂, ∆̂j regions that receive positive curvature.)

For the region ∆̂ define c∗(∆̂) to equal c(∆̂) plus all the positive curvature ∆̂ receives
minus all the curvature ∆̂ distributes as a result of the distribution of positive curvature
that has been defined. The main result of Section 4 is (for the cases K0 = K and K0 6= K,
respectively)

c(K0) ≤
∑

d(∆̂)≥6

c∗(∆̂) or c(K1) ≤
∑

d(∆̂)≥6

∆̂6=∆0

c∗(∆̂) + c∗(∆0).

The second step of the proof, given in Section 5, will be to define a positive curvature
distribution scheme for regions of degree 6, that is, we locate regions ∆ 6= ∆0 of degree 6
for which c∗(∆) > 0 and distribute c∗(∆) to near regions. The main result of Section 5 is

c(K0) ≤
∑

d(∆̂)≥8

c∗(∆̂) or c(K1) ≤
∑

d(∆̂)≥8

∆̂6=∆0

c∗(∆̂) + c∗(∆0).

In Sections 6 and 7 we prove that if d(∆̂) ≥ 8 and ∆̂ 6= ∆0 then c∗(∆̂) ≤ 0, that is,
c(K0) ≤ 0 or c(K1) ≤ c∗(∆0).

Finally in Section 8 we complete the proof of Theorem 1.2.
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4 Distribution of positive curvature from 4-gons

In the section we will describe the distribution of positive curvature from regions ∆ of the
diagram K0 such that c(∆) > 0. It follows from Lemma 3.4 that d(∆) = 4 and ∆ is given
by Figure 4.1(i) with neighbouring regions ∆̂i (1 ≤ i ≤ 4) and vertices vi (1 ≤ i ≤ 4) which
we fix for the remainder of this section. There are 15 cases to consider according to which
vertices of ∆ have degree 3. Our approach will be to consider neighbouring regions of ∆,
the valency and labels of their vertices and, if necessary, the neighbours of these also.

There will be exactly fourteen exceptions to the distribution of positive curvature rules
given for the 15 cases. These are contained within six exceptional Configurations A-F and
will be fully described later in this section.

Note. In the figures the upper bound of the amount of curvature transferred will generally
be indicated.

Note. It should be emphasised that whenever we identify regions, we do so modulo cyclic
permutation and inversion. For example in what follows we will identify ∆ of Figure 4.15(v)
with ∆1 of Figure 4.27(i).

d(vi) = 3 (1 ≤ i ≤ 4): (here and in what follows we use Lemma 3.3 to classify the pos-
sible labellings of the vertices) add 1

4
c(∆) = 1

4
c(3, 3, 3, 3) = π

6
to each of c(∆̂i) (1 ≤ i ≤ 4)

as shown in Figure 4.1(ii).

d(vi) = 3 (1 ≤ i ≤ 3) (Figures 4.1(iii)-(vii)): if d(v4) > 5 then add 1
2
c(∆) ≤ 1

2
c(3, 3, 3, 6) =

π
6
to each of c(∆̂1) and c(∆̂2) as in Figure 4.1(iii); if d(v4) = 5 then c(∆) = c(3, 3, 3, 5) = 2π

5

in which case add π
6
to c(∆̂1), c(∆̂2) and π

30
to c(∆̂3), c(∆̂4) when v4 is given by Figure

4.1(iv), or add π
5
to c(∆̂1), c(∆̂2) when v4 is given by Figure 4.1(v); if d(v4) = 4 then either

add 1
3
c(∆) = 1

3
c(3, 3, 3, 4) = π

6
to c(∆̂1), c(∆̂2) and c(∆̂4) when v4 is given by Figure 4.1(vi),

or add 1
3
c(∆) = π

6
to c(∆̂i) (1 ≤ i ≤ 3) when v4 is given by Figure 4.1(vii).

d(v1) = d(v2) = d(v4) = 3 (Figures 4.2(i)-(iv)): if d(v3) > 5 then add 1
2
c(∆) ≤ 1

2
c(3, 3, 3, 6) =

π
6

to each of c(∆̂1) and c(∆̂4) as shown in Figure 4.2(i); if d(v3) = 5 then c(∆) =

c(3, 3, 3, 5) = 2π
5

so add π
6
to each of c(∆̂1) and c(∆̂4), and add the remaining π

15
to c(∆̂2)

as shown in the two possibilities for v5, Figure 4.2(ii) and (iii); and if d(v3) = 4 then
c(∆) = c(3, 3, 3, 4) = π

2
so add π

5
to each of c(∆̂1) and c(∆̂4), and add the remaining π

10
to

c(∆̂2) as shown in Figure 4.2(iv).

d(v1) = d(v3) = d(v4) = 3 (Figures 4.3(i)-(v) and 4.30(ii), (iv)) (Configurations E,
F): if d(v2) > 4 then add 1

2
c(∆) ≤ π

5
to each of c(∆̂3) and c(∆̂4) as in Figure 4.3(i); and if

d(v2) = 4 then either ∆ is given by Figure 4.3(ii) in which case add 1
3
c(∆) = π

6
to each of

c(∆̂2), c(∆̂3) and c(∆̂4), or ∆ is given by Figure 4.3(iii) in which case add 1
3
c(∆) = π

6
to each

of c(∆̂1), c(∆̂3) and c(∆̂4). There are exactly two exceptions to the rules given here, namely
when ∆ occurs in Configurations E and F, that is, when ∆ (and its neighbourhood) is given
by Figures 4.3(iv) and (v). If ∆ is given by Figure 4.3(iv) then ∆ occurs in Configuration F
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as ∆1 in Figure 4.30(iv); and if ∆ is given by Figure 4.3(v) then ∆ occurs in Configuration
E as (the inverse of) ∆1 in 4.30(ii). In Figure 4.3(iv), (v) the exceptional rules that are
applied in Configuration F, E (respectively) are shown in dotted lines.

d(vi) = 3 (2 ≤ i ≤ 4) (Figures 4.3(vi)-(vii)): if d(v1) > 4 then add 1
2
c(∆) ≤ π

5
to each of

c(∆̂2) and c(∆̂3) as in Figure 4.3(vi); and if d(v1) = 4 then c(∆) = π
2
so add π

5
to each of

c(∆̂2) and c(∆̂3), and add the remaining π
10

to c(∆̂1) as in Figure 4.3(vii).

d(v1) = d(v2) = 3 (Figures 4.4(i)-(viii)): ((d(v3), d(v4)) ∈ {(4, 4), (4, 5), (4,≥ 6), (5, 4), (≥
6, 4), (≥ 5,≥ 5)}) if d(v3) = 4 and d(v4) ≥ 6 or d(v3) ≥ 5 and d(v4) ≥ 5 or d(v3) ≥ 6 and
d(v4) = 4 then c(∆) ≤ c(3, 3, 4, 6) = π

6
so add 2π

15
to c(∆̂1) and the remaining (at most) π

30

to c(∆̂2) as in Figure 4.4(i); if d(v3) = 5 and d(v4) = 4 then c(∆) = c(3, 3, 4, 5) = 7π
30

so add
2π
15

to c(∆̂1),
π
15

to c(∆̂2) and
π
30

to c(∆̂3) in each of the four possibilities shown in Figure

4.4(ii)–(v); if d(v3) = 4 and d(v4) = 5 then c(∆) = 7π
30

so add 2π
15

to c(∆̂1) and the remaining
π
10

to c(∆̂2) as in Figure 4.4(vi); and if d(v3) = d(v4) = 4 then c(∆) = π
3
so add 2π

15
to c(∆̂1),

π
10

to c(∆̂2) and
π
10

to c(∆̂3) as in Figure 4.4(vii)–(viii) where the two possibilities for ∆ are
shown.

d(v2) = d(v3) = 3 (Figures 4.5(i)-(viii)): if d(v1) = 4 and d(v4) ≥ 6 or d(v1) ≥ 5 and
d(v4) ≥ 5 or d(v1) ≥ 6 and d(v4) = 4 then c(∆) ≤ c(3, 3, 4, 6) = π

6
so add π

30
to c(∆̂1) and

the remaining 2π
15

to c(∆̂2) as in Figure 4.5(i); if d(v1) = 5 and d(v4) = 4 then c(∆) = 7π
30

so add 2π
15

to c(∆̂2),
π
15

to c(∆̂4) and
π
30

either to c(∆̂3) when ∆ is given by Figure 4.5(ii)–

(iii), or to c(∆̂1) when ∆ is given by Figure 4.5(iv)–(v); if d(v1) = 4 and d(v4) = 5 then
c(∆) = 7π

30
so add π

10
to c(∆̂1) and

2π
15

to c(∆̂2) as in Figure 4.5(vi); and if d(v1) = d(v4) = 4

then c(∆) = π
3
so add π

10
to each of c(∆̂1) and c(∆̂4) and add 2π

15
to c(∆̂2) as in Figure

4.5(vii)–(viii) where the two possibilities for ∆ are shown.

d(v3) = d(v4) = 3 (Figures 4.6(i), (iii), (iv), 4.27(ii)-(iv), and 4.30(i)) (Configurations
A, C and E): add c(∆) ≤ c(3, 3, 4, 4) = π

3
to c(∆̂3) as in Figure 4.6(i). There are exactly

five exceptions to the rules given here. The first three exceptions are when ∆ occurs in
Configuration A where it is given by ∆3 of Figure 4.27(ii)-(iv); the fourth exception is when
∆ occurs in Configuration C and is given by Figure 4.29(i), and the fifth exception is when
∆ occurs in Configuration E and is given by ∆1 of Figure 4.30(i) (the case d(v) > 3). In
Figures 4.6(iii) and (iv) the exceptional rules that are applied in Configurations A and C
are shown in dotted lines.

d(v4) = d(v1) = 3 (Figures 4.6(ii), (v), (vi), 4.28(ii)-(iv), and 4.30(iii)) (Configurations
B, D and F): add c(∆) ≤ c(3, 3, 4, 4) = π

3
to c(∆̂4) as in Figure 4.6(ii). There are exactly

five exceptions to the rules given here. The first three exceptions are when ∆ occurs in
Configuration B where it is given by ∆3 of Figure 4.28(ii)-(iv); the fourth exception is when
∆ occurs in Configuration D and is given by Figure 4.29(ii); and the fifth exception is when
∆ occurs in Configuration F and is given by ∆1 of Figure 4.30(iii) (the case d(v) > 3). In
Figures 4.6(v) and (vi) the exceptional rules that are applied in Configurations B and D
are shown in dotted lines.
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d(v2) = d(v4) = 3 (Figures 4.7-4.14): if d(v3) = 4 and d(v1) > 5 then c(∆) ≤ c(3, 3, 4, 6) =
π
6
so add π

15
to c(∆̂1) and

π
10

to c(∆̂2) as in Figure 4.7(i); if d(v3) = 4 and d(v1) = 5 then

c(∆) = c(3, 3, 4, 5) = 7π
30

so add π
10

to c(∆̂2) and either π
15

to each of c(∆̂1) and c(∆̂4) when

∆ is given by Figure 4.7(ii), or 2π
15

to c(∆̂1) if ∆ is given by Figure 4.7(iii); if d(v1) = 4

and d(v3) > 5 then c(∆) ≤ π
6
so add π

10
to c(∆̂1) and π

15
to c(∆̂2) as in Figure 4.7(iv); if

d(v1) = 4 and d(v3) = 5 then c(∆) = 7π
30

so add π
10

to c(∆̂1) and either π
15

to each of c(∆̂2)

and c(∆̂3) if ∆ is given by Figure 4.7(v), or add 2π
15

to c(∆̂2) if ∆ is given by Figure 4.7(vi);
if d(v1) ≥ 5 and d(v3) ≥ 5 then c(∆) ≤ c(3, 3, 5, 5) = 2π

15
or c(∆) ≤ c(3, 3, 5, 6) = π

15
so add

π
15

to c(∆̂1) if d(v1) = 5 as shown in Figure 4.7(vii)–(viii) and if d(v3) = 5 add π
15

either

to c(∆̂3) when ∆ is given by Figure 4.7(ix), or add π
15

to c(∆̂2) when ∆ is given by Figure
4.7(x).

This leaves the case d(v1) = d(v3) = 4 and c(∆) = c(3, 3, 4, 4) = π
3
. Add π

10
to each of

c(∆̂1) and c(∆̂2) as in Figure 4.7(xi) leaving a further 2π
15

to be distributed from c(∆). If

d(∆̂3) ≥ 6 and d(∆̂4) ≥ 6 then add π
15

to each of c(∆̂3) and c(∆̂4) as shown in Figure

4.7(xi); if d(∆̂3) = 4 and d(∆̂4) > 6 then add 2π
15

to c(∆̂4) as in Figure 4.7(xii) and if

d(∆̂3) > 6 and d(∆̂4) = 4 then add 2π
15

to c(∆̂3) as in Figure 4.7(xiii). It can be assumed

from now on that (d(∆̂3), d(∆̂4)) ∈ {(4, 6), (6, 4), (4, 4)} in which case add π
15

to each of

c(∆̂3) and c(∆̂4) except in two specific cases which occur when d(∆̂3) = d(∆̂4) = 4 and
d(u2) ≥ 6 and will be made explicit in what follows (ex4.1). (For the reader’s benefit we
have included a few signposts ex*.* for “exit” and en*.* for “entrance” within the text.)
It remains to describe the further transfer of positive curvature (if any) from c(∆̂3) and
c(∆̂4).

Let d(∆̂3) = 4 and d(∆̂4) = 6. This is shown in Figure 4.8(i) in which d(u1) ≥ 3 and
d(u2) ≥ 4. If c(∆̂3) ≤ − π

15
then the π

15
from c(∆) remains with c(∆̂3) as in Figure 4.8(i);

and if − π
15

< c(∆̂3) ≤ 0 then π
15

+ c(∆̂3) ≤
π
15

is added to c(∆̂4) as in Figure 4.8(ii). We
now proceed according to the values of d(u1) and d(u2). If d(u1) = 4 and d(u2) = 5 then
(c(∆̂3) = c(3, 4, 4, 5) = π

15
and) π

15
+ c(∆̂3) =

2π
15

so add π
15

to each of c(∆̂4) and c(∆̂6) as

in Figure 4.8(iii); if d(u1) = 4 = d(u2) then
π
15

+ c(∆̂3) =
7π
30

so add π
15

to c(∆̂4) and
π
6
to

c(∆̂6) as in (iv); if d(u1) = 5 and d(u2) = 4 then add π
15

+ c(∆̂3) =
2π
15

to c(∆̂4) as in (v);

if d(u1) = 3 and d(u2) ≥ 6 then π
15

+ c(∆̂3) ≤
7π
30

so add π
15

to c(∆̂4) and
π
6
to c(∆̂5) as in

(vi); if d(u1) = 3 and d(u2) = 5 then π
15

+ c(∆̂3) =
9π
30

so add π
15

to c(∆̂4) and c(∆̂6), and

add π
6
to c(∆̂5) as in (vii); and if d(u1) = 3 and d(u2) = 4 then π

15
+ c(∆̂3) =

6π
15

so add 2π
15

to c(∆̂4) and
4π
15

to c(∆̂5) as in (viii).

Now let d(∆̂3) = 6 and d(∆̂4) = 4. This is shown in Figure 4.9(i) where d(u3) ≥ 3 and
d(u2) ≥ 4. If c(∆̂4) ≤ − π

15
then the π

15
from c(∆) remains with c(∆̂4) as in Figure 4.9(i); and

if − π
15

< c(∆̂4) ≤ 0 then π
15
+ c(∆̂4) ≤

π
15

is added to c(∆̂3) as in Figure 4.9(ii). We proceed

according to the values of d(u2) and d(u3). If d(u3) = 4 and d(u2) = 5 then π
15
+c(∆̂4) =

2π
15

so add π
15

to each of c(∆̂3) and c(∆̂7) as in Figure 4.9(iii); if d(u3) = 4 = d(u2) then
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π
15

+ c(∆̂4) =
7π
30

so add π
15

to c(∆̂3) and
π
6
to c(∆̂7) as in (iv); if d(u3) = 5 and d(u2) = 4

then add π
15

+ c(∆̂4) = 2π
15

to c(∆̂3) as in (v); if d(u3) = 3 and d(u2) ≥ 6 then add
π
15
+ c(∆̂4) ≤

7π
30

to c(∆̂8) as in (vi); if d(u3) = 3 and d(u2) = 5 then π
15
+ c(∆̂4) =

3π
10

so add
π
15

to c(∆̂3) and
7π
30

to c(∆̂8) as in (vii); and if d(u3) = 3 and d(u2) = 4 then π
15
+c(∆̂4) =

6π
15

so add 2π
15

to c(∆̂3) and
4π
15

to c(∆̂8) as in (viii).

Finally let d(∆̂3) = d(∆̂4) = 4 as shown in Figure 4.10(i) in which d(u1) ≥ 3, d(u2) ≥ 4
and d(u3) ≥ 3. If c(∆̂3) ≤ − π

15
then the π

15
from c(∆) remains with c(∆̂3) and similarly for

c(∆̂4) as shown in Figure 4.10(i). Assume from now on that c(∆̂3) > − π
15

and c(∆̂4) > − π
15
.

Let d(u2) = 4. If d(u1) ≥ 6 then add π
15

+ c(∆̂3) ≤ π
15

to c(∆̂6) as in Figure 4.10(ii); if

d(u1) = 5 then add π
15

+ c(∆̂3) =
2π
15

to c(∆̂6) if l(u1) is given by (iii), or add π
15

to each

of c(∆̂5) and c(∆̂6) if l(u1) is given by (iv); if d(u1) = 4 then add π
15

+ c(∆̂3) = 7π
30

to

c(∆̂6) as in (v); if d(u1) = 3 then π
15

+ c(∆̂3) =
6π
15

so add 4π
15

to c(∆̂5) and
2π
15

to c(∆̂6) as

in (vi); if d(u3) ≥ 6 then add π
15

+ c(∆̂4) ≤ π
15

to c(∆̂7) as in (ii); if d(u3) = 5 then add
π
15

+ c(∆̂4) =
2π
15

to c(∆̂7) if l(u3) is given by (vii), or add π
15

to each of c(∆̂7) and c(∆̂8) if

l(u3) is given by (viii); if d(u3) = 4 then add π
15

+ c(∆̂4) =
7π
30

to c(∆̂7) as in (ix); and if

d(u3) = 3 then π
15

+ c(∆̂4) =
6π
15

so add 2π
15

to c(∆̂7) and
4π
15

to c(∆̂8) as in (x).

Let d(u2) = 5 and so l(u2) = a5. If d(u1) = 5 then add π
30

from c(∆) to c(∆̂3) =

c(3, 4, 5, 5) = − π
30

and π
30

from c(∆) to c(∆̂6) as in Figure 4.11(i) and (ii); if d(u1) = 4 then

add π
15

+ c(∆̂3) =
2π
15

to c(∆̂6) as in (iii); if d(u1) = 3 then add π
15

+ c(∆̂3) =
9π
30

to c(∆̂5) as

in (iv); if d(u3) = 5 then add π
30

from c(∆) to c(∆̂4) and
π
30

from c(∆) to c(∆̂7) as in (v)

and (vi); if d(u3) = 4 then add π
15

+ c(∆̂4) =
2π
15

to c(∆̂7) as in (vii); and if d(u3) = 3 then

add π
15

+ c(∆̂4) =
3π
10

to c(∆̂8) as in (viii).

Let d(u2) ≥ 6 so that by assumption 3 ≤ d(u1), d(u3) ≤ 4 (since c(3, 4, 5, 6) = − π
10
). If

d(u1) = 3 then add π
15
+ c(∆̂3) ≤

7π
30

to c(∆̂5) as in Figure 4.12(i); and if d(u3) = 3 then add
π
15
+ c(∆̂4) ≤

7π
30

to c(∆̂8) as in (ii). If d(u1) = 4 and d(∆̂6) > 4 then add all of the 2π
15

from

c(∆) to c(∆̂6) as in Figure 4.12(iii); otherwise if d(u3) = 4 and d(∆̂7) > 4 then add all of
the 2π

15
to c(∆̂7) as in (iii) (en4.1). (These are the two specific cases mentioned above.)

This leaves d(u1) = d(u3) = d(∆̂6) = d(∆̂7) = 4. First consider ∆̂6 as shown in Figure
4.13. If d(u4) > 3 and d(u5) > 3 then add π

15
+ c(∆̂3) ≤

π
15

to c(∆̂6) ≤ c(4, 4, 4, 6) = −π
6

as in (i); if d(u4) = 3 and d(u5) > 3 then add π
15

+ c(∆̂3) + c(∆̂6) ≤
π
15

to c(∆̂9) as in (ii);

if d(u4) = 3 = d(u5) then
π
15

+ c(∆̂3) + c(∆̂6) ≤
7π
30

so add π
10

to c(∆̂9) and
2π
15

to c(∆̂10) as

in (iii); if d(u4) = 4, d(u5) = 3 and d(u2) > 6 then c(∆̂3) ≤ − π
21

so add π
21

from c(∆) to

c(∆̂3) and the remaining π
15

− π
21

= 2π
105

to c(∆̂6) ≤ − π
21

as in (iv); if d(u4) = 4, d(u5) = 3
and d(u2) = 6 then (checking the star graph Γ0 for possible labels shows that) u2 is given
by (v) in which case add π

15
+ c(∆̂3) + c(∆̂6) =

π
15

to c(∆̂11) as in (v); and if d(u4) > 4 and

d(u5) = 3 then add π
15

+ c(∆̂3) ≤
π
15

to c(∆̂6) ≤ − π
10

as in (vi).
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Now consider ∆̂7 as in Figure 4.14(i). If d(u6) > 3 and d(u7) > 3 then add π
15
+ c(∆̂4) ≤

π
15

to c(∆̂7) ≤ −π
6
as in (i); if d(u7) = 3 and d(u6) > 3 then add π

15
+c(∆̂6) ≤

π
15

to c(∆̂14) as in

(ii); if d(u7) = 3 = d(u6) then
π
15
+ c(∆̂4)+ c(∆̂7) =

7π
30

so add 2π
15

to c(∆̂13) and
π
10

to c(∆̂14)

as in (iii); if d(u7) = 4, d(u6) = 3 and d(u2) > 6 then c(∆̂4) ≤ − π
21

so add π
21

from c(∆) to

c(∆̂4) and the remaining π
15

− π
21

= 2π
105

to c(∆̂7) ≤ − π
21

as in (iv); if d(u7) = 4, d(u6) = 3

and d(u2) = 6 then u2 is given by (v) in which case add π
15

+ c(∆̂4) + c(∆̂7) =
π
15

to c(∆̂12)

as in (v); and if d(u7) > 4 and d(u6) = 3 then add π
15

+ c(∆̂4) ≤
π
15

to c(∆̂7) ≤ − π
10

as in
(vi).

d(v1) = d(v3) = 3 (Figures 4.15-4.19, 4.27(i) and 4.28(i)) (Configurations A and B):
if d(v2) = d(v4) = 4 then add 1

2
c(∆) = π

6
to each of c(∆̂2) and c(∆̂4) if ∆ is given by

Figure 4.15(i), or to c(∆̂1) and c(∆̂4) if by (ii), or to c(∆̂2) and c(∆̂3) if by (iii), or to c(∆̂1)
and c(∆̂3) if by (iv); if d(v2) = 4 and d(v4) = 5 and v2 and v4 are given by (v) then add
c(∆) = 7π

30
to c(∆̂2) as shown apart from the one exception when ∆ occurs in Configuration

B in which case ∆ is given by ∆1 of Figure 4.28(i) (and in Figure 4.15(v) the exceptional
rule applied in Configuration B is shown in dotted lines); if d(v2) = 4 and d(v4) = 5 and
v2 and v4 are given by (vi) then add c(∆) = 7π

30
to c(∆̂1) as shown apart from the one

exception when ∆ occurs in Configuration A in which case ∆ is given by ∆1 of Figure
4.27(i) (and in Figure 4.15(vi) the exceptional rule applied in Configuration A is shown in
dotted lines); if d(v2) = 4 and d(v4) = 5 and v2 and v4 are given by (vii) then add 2π

15
to

c(∆̂2),
π
15

to c(∆̂1) and
π
30

to c(∆̂4) as shown; if d(v2) = 4 and d(v4) = 5 and v2 and v4 are

given by (viii) then add 2π
15

to c(∆̂1),
π
15

to c(∆̂3) and π
30

to c(∆̂4) as shown; if d(v2) = 5

and d(v4) = 4 then add c(∆) = 7π
30

to c(∆̂4) if ∆ is given by (ix), or to c(∆̂3) if by (x); if

d(v2) = 4 and d(v4) ≥ 6 then add c(∆) ≤ π
6
to c(∆̂2) if ∆ is given by (xi), or to c(∆̂1) if

∆ is given by (xii); if d(v2) ≥ 6 and d(v4) = 4 then add c(∆) ≤ π
6
to c(∆̂4) if ∆ is given

by (xiii), or to c(∆̂3) if ∆ is given by (xiv). This leaves the two cases d(v2) ≥ 6, d(v4) = 5
and d(v2) = 5, d(v4) ≥ 5 (ex4.2).

First let d(v2) ≥ 6 and d(v4) = 5. If ∆ is given by Figure 4.15(xv) then add 1
2
c(∆) ≤ π

30
to

each of c(∆̂3) and c(∆̂4) as shown. Otherwise l(v4) = a5 and this subcase is now considered
using Figures 4.16 and 4.17.

Let d(v2) ≥ 6 and l(v4) = a5. Then c(∆) ≤ π
15
, half of which (≤ π

30
) is distributed to c(∆̂1)

and c(∆̂4) whilst the other half is distributed to c(∆̂2) and c(∆̂3) (ex4.3). The distribution
of 1

2
c(∆) to c(∆̂1) and c(∆̂4) is as follows. If d(∆̂1) > 4 then add 1

2
c(∆) ≤ π

30
to c(∆̂1) as

in Figure 4.16(i), or if d(∆̂1) = 4 and d(∆̂4) > 4 then add 1
2
c(∆) ≤ π

30
to c(∆̂4) again as

in (i). It can be assumed therefore that ∆, ∆̂1 and ∆̂j (4 ≤ j ≤ 8) are given by Figure
4.16(ii). We proceed according to d(u4) ≥ 3, d(u5) ≥ 4, d(u6) ≥ 3 of Figure 4.16(ii). If
d(u6) = 3, d(u5) = 4 and d(u4) ≥ 5 then add 1

2
c(∆) ≤ π

30
to c(∆̂4) ≤ − π

30
as in Figure

4.16(iii); if d(u6) = 3, d(u5) = 4 and d(u4) = 4 then add 1
2
c(∆) ≤ π

30
to c(∆̂4) and then

add π
30

+ c(∆̂4) ≤
π
10

to c(∆̂5) as in (iv); if d(u6) = 3, d(u5) = 4 and d(u4) = 3 then add
1
2
c(∆) ≤ π

30
to c(∆̂4) and then add π

30
+ c(∆̂4) ≤

4π
15

to c(∆̂6) as in (v); if d(u6) = 3 and

13



d(u5) = 5 then add 1
2
c(∆) ≤ π

30
to c(∆̂1) ≤

π
15

and then add π
15

to c(∆̂7) and add π
30

to c(∆̂8)

as in (vi); if d(u6) = 3 and d(u5) ≥ 6 then add 1
2
c(∆) ≤ π

30
to c(∆̂1) ≤ 0 and then add π

30

to c(∆̂8) as in (vii); if d(u6) = 4, d(u5) = 4 and d(v2) = 7 (note that c(3, 3, 5, 8) < 0) then
add 1

2
c(∆) ≤ π

105
to c(∆̂1) ≤ − π

21
as in (viii). Let d(u6) = 4, d(u5) = 4 and d(v2) = 6 so, in

particular, c(∆̂1) = 0. If u6 is given by Figure 4.16(ix) then add 1
2
c(∆) = π

30
to c(∆̂7), so

from now on suppose that u6 is given by Figure 4.16(x). If d(∆̂8) > 4 then add 1
2
c(∆) = π

30

to ∆̂8 as shown in Figure 4.16(x), so suppose from now on that d(∆̂8) = 4. Suppose that ∆̂8

is given by Figure 4.16(xi). If d(u4) ≥ 5 then add 1
2
c(∆) ≤ π

30
to c(∆̂4) ≤ − π

30
as in Figure

4.16(xii); if d(u4) = 4 then add 1
2
c(∆) ≤ π

30
to c(∆̂4) and then add π

30
+ c(∆̂4) ≤

π
10

to c(∆̂5)

as in (xiii); and if d(u4) = 3 then add 1
2
c(∆) ≤ π

30
to c(∆̂4) and then add π

30
+ c(∆̂4) ≤

4π
15

to c(∆̂6) as in (xiv). Suppose now that ∆̂8 is not given by Figure 4.16(xi). Then again
add 1

2
c(∆) = π

30
to ∆̂8 as in Figure 4.16(x). We proceed according to the degrees of the

vertices w1 and w2 of Figure 4.16(x). If d(w1) = d(w2) = 3 then 1
2
c(∆) + c(∆̂8) =

π
5
so add

π
10

to c(∆̂9) and
π
10

to c(∆̂10) as shown in Figure 4.16(xv); if d(w1) = 3 and d(w2) > 3 then
1
2
c(∆) + c(∆̂8) =

π
30

so add π
30

to c(∆̂9) as shown in (xvi); if d(w1) = 4 and d(w2) = 3 then

by assumption ∆̂8 is given by (xvii) and c(∆̂8) = 0 so add 1
2
c(∆) + c(∆̂8) =

π
30

to c(∆̂10)
as shown; and if either d(w1) ≥ 5 and d(w2) = 3 or d(w1) ≥ 4 and d(w2) ≥ 4 then add
1
2
c(∆) ≤ π

30
to c(∆̂8) ≤ − π

10
as shown in (xviii). This completes the subcase d(u6) = 4,

d(u5) = 4 and d(v2) = 6. Finally if d(u5) ≥ 5 and d(u6) ≥ 4 then add 1
2
c(∆) = π

30
to

c(∆̂1) ≤ c(3, 4, 5, 6) = − π
10

as shown in Figure 4.16(xix).

The remaining 1
2
c(∆) ≤ π

30
is distributed to c(∆̂2) and c(∆̂3) as follows (en4.3). If d(∆̂2) >

4 then add 1
2
c(∆) ≤ π

30
to c(∆̂2) as in Figure 4.16(i), or if d(∆̂2) = 4 and d(∆̂3) > 4 then

add 1
2
c(∆) ≤ π

30
to c(∆̂3) again as in (i). It can be assumed therefore that ∆, ∆̂2, ∆̂3

and ∆̂j (5 ≤ j ≤ 8) are now given by Figure 4.17(i). We proceed according to d(u1) ≥ 3,
d(u2) ≥ 4, d(u3) ≥ 3 of Figure 4.17(i). If d(u1) = 3, d(u2) = 4 and d(u3) ≥ 5 then add
1
2
c(∆) ≤ π

30
to c(∆̂3) ≤ − π

30
as in Figure 4.17(ii); if d(u1) = 3, d(u2) = 4 and d(u3) = 4 then

add 1
2
c(∆) ≤ π

30
to c(∆̂3) and then add π

30
+ c(∆̂3) ≤

π
10

to c(∆̂5) as in (iii); if d(u1) = 3,

d(u2) = 4 and d(u3) = 3 then add 1
2
c(∆) ≤ π

30
to c(∆̂3) and then add π

30
+ c(∆̂3) ≤

4π
15

to

c(∆̂6) as in (iv); if d(u1) = 3 and d(u2) = 5 then add 1
2
c(∆) ≤ π

30
to c(∆̂2) ≤

π
15

and add
π
15

to c(∆̂7) and
π
30

to c(∆̂8) as in (v); if d(u1) = 3 and d(u2) ≥ 6 then add 1
2
c(∆) ≤ π

30
to

c(∆̂2) ≤ 0 and then add π
30

to c(∆̂8) as in (vi); if d(u1) = 4, d(u2) = 4 and d(v2) = 7 then

add 1
2
c(∆) ≤ π

105
to c(∆̂2) ≤ − π

21
as in (vii). Let d(u1) = 4, d(u2) = 4 and d(v2) = 6 so, in

particular, c(∆̂2) = 0. If u2 is given by Figure 4.17(viii) then add 1
2
c(∆) = π

30
to c(∆̂7), so

from now on suppose that u2 is given by Figure 4.17(ix). If d(∆̂8) > 4 then add 1
2
c(∆) = π

30

to ∆̂8 as shown in Figure 4.17(ix), so suppose from now on that d(∆̂8) = 4. Suppose that ∆̂8

is given by Figure 4.17(x). If d(u3) ≥ 5 then add 1
2
c(∆) ≤ π

30
to c(∆̂3) ≤ − π

30
as in Figure

4.17(xi); if d(u3) = 4 then add 1
2
c(∆) ≤ π

30
to c(∆̂3) and then add π

30
+ c(∆̂3) ≤

π
10

to c(∆̂5)

as in (xii); and if d(u3) = 3 then add 1
2
c(∆) ≤ π

30
to c(∆̂3) and then add π

30
+ c(∆̂3) ≤

4π
15

14



to c(∆̂6) as in (xiii). Suppose now that ∆̂8 is not given by Figure 4.17(x). Then again add
1
2
c(∆) = π

30
to ∆̂8 as in Figure 4.17(ix). We proceed according to the degrees of the vertices

w3 and w4 of Figure 4.17(ix). If d(w3) = d(w4) = 3 then 1
2
c(∆) + c(∆̂8) =

π
30

+ π
6
= π

5
so

add π
10

to c(∆̂9) and
π
10

to c(∆̂10) as shown in Figure 4.17(xiv); if d(w3) = 3 and d(w4) > 3

then 1
2
c(∆) + c(∆̂8) =

π
30

so add π
30

to c(∆̂9) as shown in (xv); if d(w3) = 4 and d(w4) = 3

then by assumption ∆̂8 is given by (xvi) and c(∆̂8) = 0 so add 1
2
c(∆) = π

30
to c(∆̂10) as

shown; and if either d(w3) ≥ 5 and d(w4) = 3 or d(w3) ≥ 4 and d(w4) ≥ 4 then add
1
2
c(∆) ≤ π

30
to c(∆̂8) ≤ − π

10
as shown in (xvii). This completes the subcase d(u1) = 4,

d(u2) = 4 and d(v2) = 6. Finally if d(u1) ≥ 4 and d(u2) ≥ 5 then add 1
2
c(∆) = π

30
to

c(∆̂2) ≤ c(3, 4, 5, 6) = − π
10

as shown in Figure 4.17(xviii).

Finally let d(v2) = 5 and d(v4) ≥ 5 (en4.2). If ∆ is given by Figure 4.15(xvi) then add
1
2
c(∆) ≤ π

15
to each of c(∆̂1) and c(∆̂2). Otherwise l(v2) = bx−1λz−1y and ∆ is given by

Figure 4.15(xvii). Here add 1
2
c(∆) ≤ π

15
to c(∆̂4) if d(∆̂4) > 4, otherwise add 1

2
c(∆) ≤ π

15

to c(∆̂1); and add 1
2
c(∆) ≤ π

15
to c(∆̂3) if d(∆̂3) > 4, otherwise add 1

2
c(∆) ≤ π

15
to c(∆̂2).

If 1
2
c(∆) ≤ π

15
is added to c(∆̂1) and d(∆̂1) > 4 there is no further distribution of curvature

from ∆̂1 and the same statement holds for ∆̂2. This leaves the subcases d(∆̂1) = d(∆̂4) = 4
and d(∆̂2) = d(∆̂3) = 4.

Assume first that d(∆̂1) = d(∆̂4) = 4 in Figure 4.15(vii). Then ∆ is given by Figure 4.18(i)
where d(u5) ≥ 4. If d(u5) = 4 and d(u6) = 3 then π

15
+ c(∆̂1) ≤

3π
10

so add π
10

to c(∆̂7) and
π
5
to c(∆̂8) as in Figure 4.18(ii); if d(u5) = 4 and d(u6) = 4 then add 1

2
( π
15

+ c(∆̂1)) ≤
π
15

to each of c(∆̂7) and c(∆̂8) if u6 is given by (iii), or add π
15

+ c(∆̂1) ≤
2π
15

to c(∆̂8) if u6 is

given by (iv); if d(u5) = 4 and d(u6) = 5 then c(∆̂1) = − π
30

so add π
15
+ c(∆̂1) ≤

π
30

to c(∆̂8)

as in (v); if d(u5) = 4 and d(u6) ≥ 6 then add 1
2
c(∆) ≤ π

15
to c(∆̂1) ≤ − π

10
as in (vi); if

d(u5) = 5 and d(u6) = 3 then π
15
+c(∆̂1) ≤

π
5
so add π

15
to c(∆̂7) and

2π
15

to c(∆̂8) as in (vii);

if d(u5) = 5 and d(u6) = 4 then c(∆̂1) ≤ − π
30

so add π
15

+ c(∆̂1) ≤
π
30

to c(∆̂8) as shown
in the two possibilities for u6, namely (viii) and (ix); if d(u5) = 5 and d(u6) ≥ 5 then add
1
2
c(∆) ≤ π

15
to c(∆̂1) ≤ −2π

15
as in (x); if d(u5) > 5 and d(u6) = 3 then add π

15
+ c(∆̂1) ≤

2π
15

to c(∆̂8) as in (xi); and if d(u5) > 5 and d(u6) > 3 then add 1
2
c(∆) ≤ π

15
to c(∆̂1) ≤ − π

10
as

in (xii).

Now assume that d(∆̂2) = d(∆̂3) = 4 in Figure 4.15(vii). Then ∆ is given by Figure
4.19(i). We proceed according to d(u1) ≥ 3 and d(u2) ≥ 4. If d(u2) = 4 and d(u1) = 3 then
π
15

+ c(∆̂2) ≤
3π
10

so add π
5
to c(∆̂9) and

π
10

to c(∆̂10) as in Figure 4.19(ii); if d(u2) = 4 and

d(u1) = 4 then add 1
2
( π
15
+ c(∆̂)) ≤ π

15
to each of c(∆̂9) and c(∆̂10) if u1 is given by (iii), or

π
15
+c(∆̂2) ≤

2π
15

to c(∆̂9) if u1 is given by (iv); if d(u2) = 4 and d(u1) = 5 then c(∆̂2) = − π
30

so π
15

+ c(∆̂2) ≤
π
30

is added to c(∆̂9) as shown in (v); if d(u2) = 4 and d(u1) ≥ 6 then add
1
2
c(∆) ≤ π

15
to c(∆̂2) ≤ − π

10
as in (vi); if d(u2) = 5 and d(u1) = 3 then π

15
+ c(∆̂2) ≤

π
5
so

add 2π
15

to c(∆̂9) and
π
15

to c(∆̂10) as in (vii); if d(u2) = 5 and d(u1) = 4 then c(∆̂2) = − π
30

so add π
15
+c(∆̂2) =

π
30

to c(∆̂9) as shown in the two possibilities (viii) and (ix); if d(u2) = 5

15



and d(u1) > 4 then add 1
2
c(∆) ≤ π

15
to c(∆̂2) ≤ −2π

15
as in (x); if d(u2) > 5 and d(u1) = 3

then add π
15

+ c(∆̂2) ≤ 2π
15

to c(∆̂9) as in (xi); and if d(u2) > 5 and d(u1) > 3 then add
1
2
c(∆) ≤ π

15
to c(∆̂2) ≤ − π

10
as in (xii).

d(v1) = 3 (Figure 4.20): if d(v3) = 5 then add c(∆) = π
15

to c(∆̂3) if ∆ is given by Figure

4.20 (i) or (ii), or add c(∆) = π
15

to c(∆̂4) if ∆ is given by (iii); if d(v4) = 5 then add

c(∆) = π
15

to c(∆̂3) if ∆ is given by (iv), or add c(∆) = π
15

to c(∆̂4) if ∆ is given by (v).
Let d(v3) = d(v4) = 4. If (reading clockwise from ∆) l(v4) = a−2λz−1 and d(v2) = 4 then
add π

15
to c(∆̂3) and c(∆)− π

15
= π

10
to c(∆̂4) as in Figure 4.20(vi); if l(v4) = a−2λz−1 and

d(v2) = 5 then add c(∆) = π
15

to c(∆̂4) as in (vii); if l(v4) = a−1λz−1a−1 and d(v2) = 4

then add c(∆) = π
6
to c(∆̂3) as in (viii); and if l(v4) = a−1λz−1a−1 and d(v2) = 5 then add

c(∆) = π
15

to c(∆̂3) as in (ix).

d(v2) = 3 (Figure 4.21): if d(v1) = 5 then add c(∆) = π
15

to c(∆̂2) as in Figure 4.21(i);

if d(v3) = 5 then add c(∆) = π
15

to c(∆̂1) as in (ii); and if d(v1) = d(v3) = 4 then add
1
2
c(∆) ≤ π

12
to each of c(∆̂1) and c(∆̂2) as in (iii).

d(v3) = 3 (Figure 4.22): if d(v1) = 5 then add c(∆) = π
15

to c(∆̂3) if ∆ is given by

Figure 4.22(i), or add c(∆) = π
15

to c(∆̂4) if ∆ is given by (ii) or (iii); if d(v4) = 5 then

add c(∆) = π
15

to c(∆̂4) as shown in (iv) and (v). Let d(v1) = d(v4) = 4. If (reading

clockwise from ∆) l(v4) = a−2λz−1 and d(v2) = 4 then add c(∆) = π
6
to c(∆̂4) as in Figure

4.22(vi); if l(v4) = a−2λz−1 and d(u2) = 5 then add c(∆) = π
15

to c(∆̂4) as in (vii); if

l(v4) = a−1λz−1a−1 and d(v2) = 4 then add π
10

to c(∆̂3) and c(∆)− π
10

= π
15

to c(∆̂4) as in

(viii); and if l(v4) = a−1λz−1a−1 and d(v2) = 5 then add c(∆) = π
15

to c(∆̂3) as in (ix).

d(v4) = 3 (Figures 4.23-4.26): if d(v1) = 5 then add c(∆) = π
15

to c(∆̂4) if ∆ is given by

Figure 4.23(i), or to c(∆̂1) if ∆ is given by (ii) or (iii); if d(v3) = 5 then add c(∆) = π
15

to

c(∆̂3) if ∆ is given by (iv), or to c(∆̂2) if ∆ is given by (v) or (vi); if d(v1) = d(v3) = 4 and
d(v2) = 4 then add c(∆) = π

6
to c(∆̂1) if ∆ is given by (vii), or to c(∆̂2) if ∆ is given by

(viii); and if d(v1) = d(v3) = 4 and l(v2) = bx−1λz−1y then add c(∆) = π
15

to c(∆̂1) as in
(ix).

This leaves the case when d(v1) = d(v3) = 4 and l(v2) = b5. If d(∆̂3) ≥ 6 and d(∆̂4) ≥ 6
then add 1

2
c(∆) = π

30
to each of c(∆̂3) and c(∆̂4) as shown in Figure 4.23(x); if d(∆̂3) ≥ 6

and d(∆̂4) = 4 then add π
15

to c(∆̂3) as in (xi); and if d(∆̂3) = 4 and d(∆̂4) ≥ 6 then

add π
15

to c(∆̂4) as in (xii). Assume from now on that d(∆̂3) = d(∆̂4) = 4 as shown in

Figure 4.24. If c(∆̂3) ≤ − π
15

then add c(∆) = π
15

to c(∆̂3), or if c(∆̂4) ≤ − π
15

then add

c(∆) = π
15

to c(∆̂4) as shown in Figure 4.24(i). Assume from now on that c(∆̂3) > − π
15

and c(∆̂4) > − π
15
. We proceed according to d(u2) ≥ 4, d(u1) ≥ 3 and d(u3) ≥ 3.

Let d(u2) = 4. If d(u1) ≥ 6 then add c(∆) + c(∆̂3) ≤
π
15

to c(∆̂6) as in Figure 4.24(ii); if

d(u1) = 5 then add c(∆) + c(∆̂3) = 2π
15

to c(∆̂6) if ∆̂3 is given by (iii), or add 1
2
(c(∆) +

16



c(∆̂3)) = π
15

to each of c(∆̂5) and c(∆̂6) if ∆̂3 is given by (iv); if d(u1) = 4 then add

c(∆) + c(∆̂3) =
7π
30

to c(∆̂6) as in (v); and if d(u1) = 3 then c(∆) + c(∆̂3) =
6π
15

so add 4π
15

to c(∆̂5) and
2π
15

to c(∆̂6) as in (vi).

Let d(u2) = 5 in which case l(u2) = a5. In this case add 1
2
c(∆) = π

30
to each of c(∆̂3)

and c(∆̂4). If d(u1) ≥ 5 then c(∆̂3) ≤ c(3, 4, 5, 5) = − π
30

and the π
30

from c(∆) remains

with c(∆̂3) as shown in Figure 4.25(i); if d(u1) = 4 then add π
30

+ c(∆̂3) = π
10

to c(∆̂6)

as in (ii); and if d(u1) = 3 then add π
30

+ c(∆̂3) = 4π
15

to c(∆̂5) as in (iii). If d(u3) ≥ 5

then c(∆̂4) ≤ − π
30

and the π
30

from c(∆) remains with c(∆̂4) as shown in Figure 4.25(i);

if d(u3) = 4 then add π
30

+ c(∆̂4) = π
10

to c(∆̂7) as in (iv); and if d(u3) = 3 then add
π
30

+ c(∆̂4) =
4π
15

to c(∆̂8) as in (v).

Finally let d(u2) ≥ 6. If d(u1) > 4 then add c(∆) = π
15

to c(∆̂3) ≤ − π
10
; or if d(u3) >

4 then add c(∆) = π
15

to c(∆̂4) ≤ − π
10

as in Figure 4.25(vi). If d(u1) = 3 then add

c(∆) + c(∆̂3) ≤ π
15

+ π
6
= 7π

30
to c(∆̂5); or if d(u3) = 3 then add c(∆) + c(∆̂4) ≤ 7π

30
to

c(∆̂8) as shown in Figure 4.25(vii). This leaves d(u1) = d(u3) = 4. If d(u2) ≥ 7 then add
1
2
c(∆) = π

30
to each of c(∆̂3) ≤ − π

21
and c(∆̂4) ≤ − π

21
as in Figure 4.25(viii), so assume

that d(u2) = 6. If d(∆̂6) > 4 then add c(∆) = π
15

to c(∆̂6), or if d(∆̂7) > 4 then add

c(∆) = π
15

to c(∆̂7) as in Figure 4.25(ix). It can be assumed that d(∆̂6) = d(∆̂7) = 4
which forces l(u2) = aaxy−1xy−1 as shown in Figure 4.26(i). If d(u4) > 3 and d(u5) > 3
in Figure 4.26(i) then add c(∆) + c(∆̂3) =

π
15

to c(∆̂6) ≤ −π
6
as shown; if d(u4) = 3 and

d(u5) > 3 then add c(∆)+ c(∆̂3)+ c(∆̂6) ≤
π
15

to c(∆̂9) as in (ii); if d(u4) = d(u5) = 3 then

c(∆)+ c(∆̂3)+ c(∆̂6) =
7π
30

and so add π
10

to c(∆̂9),
π
15

to c(∆̂10) and
π
15

to c(∆̂11) as in (iii);

and if d(u4) > 3 and d(u5) = 3 then add c(∆) + c(∆̂3) + c(∆̂6) =
π
15

to c(∆̂11) as in (iv).

This completes the description of distribution of curvature from ∆ when d(∆) = 4 except for
six exceptional configurations which we now describe and for which there is an amendment
to the rules given above.

Configurations A and B: These are shown in Figures 4.27(i) and 4.28(i) where c(∆1) =
7π
30

and c(∆3) = π
3
. The region ∆1 of Figure 4.27(i) corresponds to (the inverse of) the

region ∆ of Figure 4.15(vi); ∆1 of Figure 4.28(i) to the region ∆ of Figure 4.15(v); ∆3 of
Figure 4.27(i) to the region ∆ of Figure 4.6(i) and (iii); and ∆3 of Figure 4.28(i) to the
region ∆ of Figure 4.6(ii) and (v). The new rule is: add π

5
from c(∆1) to c(∆̂) and add

π
30

from c(∆1) to c(∆̂1) as shown except when the neighbouring regions of ∆3 are given by

Figure 4.27(ii)-(iv) and Figure 4.28(ii)-(iv). There it is assumed that ∆̂2 receives π
5
from

∆4. In these cases add all of c(∆1) =
7π
30

to c(∆̂) as usual, and the new rule is: add 3π
10

from

c(∆3) to c(∆̂) and add π
30

from c(∆3) to c(∆̂3) as shown in Figure 4.27(ii)-(iv) and Figure

4.28(ii)-(iv). If d(∆̂3) = 4 then add π
30

+ c(∆̂3) =
π
10

to c(∆̂4) as shown in Figure 4.27(ii)
and Figure 4.28(ii). Note that ∆4 of Figure 4.27(ii) and (iii) and ∆4 of Figure 4.28(ii) and
(iii) is given by ∆ of Figure 4.1(v); ∆4 of Figure 4.27(iv) is given by Figures 4.3(vi), (vii);
and ∆4 of Figure 4.28(iv) is given by Figure 4.2(iv). Note further that it is assumed that
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d(∆̂3) 6= 4 in Figure 4.27(iii) and Figure 4.28(iii), in which case ∆̂3 is not given by Figure
3.6(ii) or (iii) and so d(∆̂3) ≥ 8 which also holds for Figures 4.27(iv) and 4.28(iv).

Configurations C and D: These are shown in Figure 4.29 where c(∆) = π
3
. The region

∆ of Figure 4.29(i) corresponds to the region ∆ of Figure 4.6(i) and (iv); and ∆ of Figure
4.29(ii) to the region ∆ of Figure 4.6(ii) and (vi). In both cases the new rule is: add 3π

10

from c(∆) to c(∆̂) and add π
30

from c(∆) to c(∆̂1).

Configurations E and F: These are shown in Figure 4.30. For each configuration there
are two cases, namely when d(v) ≥ 4 and when d(v) = 3 for the vertex v indicated. If
d(v) = 3 then ∆1 of Configuration E, Figure 4.30(ii) corresponds to the region ∆ of Figure
4.3(v); and ∆1 of Configuration F, Figure 4.30(iv) corresponds to the region ∆ of Figure
4.3(iv). If d(v) > 3 then either we are in the case d(v3) = d(v4) = 3 only and ∆1 of
Configuration E, Figure 4.30(i) corresponds to the region ∆ of Figure 4.6(i); or we are in
the case d(v1) = d(v4) = 3 only and ∆1 of Configuration F, Figure 4.30(iii) corresponds
to ∆ of Figure 4.6(ii). In Figure 4.30(i) and (iii) c(∆̂) receives at most π

3
from c(∆1); and

in (ii) and (iv) the rules above (Figure 4.3(ii)-(iii)) state that c(∆̂) receives π
6
from c(∆1).

The new rules are: add min{c(∆1),
π
5
} from c(∆1) to c(∆̂1) via ∆̂ across the edge shown

in Figure 4.30(i) and (iii); add π
5
from c(∆1) to c(∆̂1) across the edge shown in Figure

4.30(ii) and (iv); and add (at most) 2π
15

from c(∆1) to c(∆̂) across the edge shown in Figure

4.30(i)–(iv). Observe that d(∆̂1) ≥ 8 in Figure 4.30.

Lemma 4.1 Let ∆̂ be a region of degree 4 that receives positive curvature across at least
one edge. Then one of the following occurs.

(i) c∗(∆̂) ≤ 0;

(ii) c∗(∆̂) > 0 is distributed to a region of degree > 4;

(iii) c∗(∆̂) > 0 is distributed to a region ∆′ of degree 4 and either c∗(∆′) ≤ 0 or c∗(∆′) > 0
is distributed to a region of degree > 4.

Proof. Let d(∆̂) = 4. If ∆̂ receives positive curvature across at least one edge then
inspection of Figures 4.1–4.30 shows that either d(v2) = d(v4) = 3 in ∆ and ∆̂ occurs in
Figures 4.8–4.14 in which case we say that ∆̂ is a T24 region; or d(v1) = d(v3) = 3 in ∆
and ∆̂ occurs in Figures 4.16–4.19 in which case ∆̂ is a T13 region; or ∆̂ occurs in Figures
4.24–4.26 and ∆̂ is a T4 region; or ∆̂ is the region ∆̂3 of Figure 4.27(ii) or 4.28(ii). In all
other cases, that is, Figures 4.1–4.7, 4.15, 4.20–4.23, 4.27(i), (iii) and (iv), 4.28(i), (iii) and
(iv), 4.29 and 4.30 there is no region ∆̂ of degree 4 that receives positive curvature. For
these cases the statements of the Lemma trivially hold and so they will not be considered
for the rest of the proof. Thus we have: every region that contributes positive curvature
to ∆̂ is exactly one of the types T24, T13, T4 or ∆̂3 of Figures 4.27(ii), 4.28(ii).
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We divide the proof of the lemma into two parts. The first (easy and short) deals with the
cases when ∆̂ receives positive curvature across exactly one edge and the second part deals
with the cases in which ∆̂ receives positive curvature across at least two edges.

If ∆̂ receives positive curvature across exactly one edge then we see by inspection of Figures
4.8-14, 4.16-19, 4.24-26, 4.27(ii) and 4.28(ii) that in all cases either c∗(∆̂) ≤ 0 or c∗(∆̂) is
distributed from ∆̂ to a neighbouring region of degree > 4 except when ∆̂ is given by
Figures 4.13, 4.14, 4.16, 4.17 and 4.26 where c∗(∆̂) is initially distributed further to a
region ∆′ of degree 4. But in each of these cases either c∗(∆′) ≤ 0 (under the assumption
that ∆′ receives positive curvature across exactly one edge – the case when ∆′ may receive
across more than one edge is considered below) or c∗(∆′) is again distributed to a region
of degree > 4.

Now suppose that ∆̂ receives positive curvature across at least two edges. If ∆̂ receives
from a T24 then an inspection of Figures 4.8-14 shows that there are six cases for ∆̂, namely
∆̂3 of Figure 4.8(i); ∆̂4 of Figure 4.9(i); ∆̂3 or ∆̂4 of Figure 4.10(i); ∆̂6 of Figure 4.13(i)
where we no longer assume, however, that d(u4) > 3 and d(u5) > 3; and ∆̂7 of Figure
4.14(i) where we no longer assume, however, that d(u6) > 3 and d(u7) > 3. If ∆̂ receives
from a T13 region then an inspection of Figures 4.16-19 shows that there are six cases for
∆̂, namely ∆̂1 of Figure 4.16(ii) but with d(v2) ≥ 5 to take Figure 4.18 into account; ∆̂4

of Figure 4.16(ii); ∆̂8 of Figure 4.16(x) under the assumption that d(∆̂8) = 4 and ∆̂8 is
not given by Figure 4.16(xi); ∆̂2 of Figure 4.17(i) but with d(v2) ≥ 5 to take Figure 4.19
into account; ∆̂3 of Figure 4.17(i); and ∆̂8 of Figure 4.17(ix) under the assumption that
d(∆̂8) = 4 and ∆̂8 is not given by Figure 4.17(x). If ∆̂ receives from a T4 region then an
inspection of Figures 4.24-26 shows that there are three cases, namely ∆̂3 or ∆̂4 of Figure
4.24(i); and ∆̂6 of Figure 4.26(i) where we no longer assume, however, that d(u4) > 3 and
d(u5) > 3.

An inspection of the labelling and degrees of the vertices in each of these 17 figures imme-
diately rules out the following combinations: a T24 region with a T24; a T24 with a T4; a
T4 with a T4; and either Figure 4.27(ii) or 4.28(ii) with any of the other 16 possibilities.

Suppose that ∆̂ receives positive curvature from at least two T13 regions. An inspection of
the six T13 regions shows that all combinations are immediately ruled out by the labelling
and degree of vertices except for two cases. The first case is when ∆̂ coincides with ∆̂8

of Figure 4.16(x) and ∆̂8 of Figure 4.17(ix). But this forces l(v2) = bx−1a−1ybw in Figure
4.16(x), and the fact that d(v2) = 6 then forces l(v2) = bx−1a−1ybb, a label whose t-
exponent sum is equal to 6, a contradiction. The second case is when ∆̂ coincides with
∆̂1 of Figure 4.16(ii) and with ∆̂2 of Figure 4.17(i). This is shown in Figure 4.31, and it
follows that a combination of more than two T13 regions cannot occur.

Consider Figure 4.31(i) in which ∆̂ receives positive curvature from the T13 regions each
contributing at most π

15
to c(∆̂). (Note that we use ∆1,∆2 and not ∆ as before to denote

regions from which positive curvature is distributed.) Let d(w1) > 5 and d(w2) > 5. If
d(u) > 3 then c∗(∆̂) ≤ c(3, 4, 6, 6) + 2

(

π
30

)

< 0; and if d(u) = 3 then c(∆̂) + 2
(

π
30

)

≤
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c(3, 3, 6, 6) + 2
(

π
30

)

= π
15

so add π
30

to each of c(
ˆ̂
∆1), c(

ˆ̂
∆2) as shown in Figure 4.31(ii).

Let d(w1) > 5 and d(w2) = 5. If d(u) > 3 then c∗(∆̂) ≤ c(3, 4, 5, 6) + π
30

+ π
15

= 0; and

if d(u) = 3 then c(∆̂) + π
30

+ π
15

≤ c(3, 3, 5, 6) + π
30

+ π
15

= π
6
so add 2π

15
to c(

ˆ̂
∆1) and π

30

to c(
ˆ̂
∆2) as shown in Figure 4.31(iii). Let d(w1) = 5 and d(w2) > 5. If d(u) > 3 then

c∗(∆̂) ≤ c(3, 4, 5, 6) + π
15

+ π
30

= 0; and if d(u) = 3 then c(∆̂) + π
15

+ π
30

≤ c(3, 3, 5, 6) +

π
15

+ π
30

= π
6
so add π

30
to c(

ˆ̂
∆1) and

2π
15

to c(
ˆ̂
∆2) as shown in Figure 4.31(iv). This leaves

d(w1) = d(w2) = 5. If d(u) > 4 then c∗(∆̂) ≤ c(3, 5, 5, 5) + 2
(

π
15

)

= 0; if d(u) = 4 then

c(∆̂) + 2
(

π
15

)

= c(3, 4, 5, 5) + 2
(

π
15

)

= π
10

so add π
15

to c(
ˆ̂
∆1) and

π
30

to c(
ˆ̂
∆2) as shown in

Figures 4.31(v), (vi); and if d(u) = 3 then c(∆̂) + 2
(

π
15

)

≤ c(3, 3, 5, 5) + 2π
15

= 4π
15

so add 2π
15

to c(
ˆ̂
∆1) and

2π
15

to c(
ˆ̂
∆2) as shown in Figure 4.31(vii).

Now suppose that ∆̂ receives positive curvature from a T4 region and a T13 region. Again
an inspection of the labelling and degrees of the vertices involved immediately rules out
all combinations except for three cases. The first case is ∆̂3 of Figure 4.24(i) with ∆̂8 of
Figure 4.16(x), but this forces ∆̂8 to be given by Figure 4.16(xi), a contradiction; and the
second case is ∆̂4 of Figure 4.24(i) with ∆̂8 of Figure 4.17(ix), but this forces ∆̂8 to be
given by Figure 4.17(x), a contradiction. The third case is when ∆̂ = ∆̂6 of Figure 4.26(i)
and ∆̂ = ∆̂8 of Figure 4.17(ix). But then c∗(∆̂) ≤ c(4, 4, 6, 6) + π

15
+ π

30
< 0.

Finally suppose that ∆̂ receives positive curvature from a T24 region and a T13 region.
An inspection of the 36 possible combinations immediately rules out all but the following
12 cases. If ∆̂ = ∆̂3 of Figure 4.8(i) or 4.10(i) and ∆̂ = ∆̂8 of Figure 4.16(x) then this
forces ∆̂8 to be given by Figure 4.16(xi), a contradiction; or if ∆̂ = ∆̂4 of Figure 4.9(i) or
4.10(i) and ∆̂ = ∆̂8 of Figure 4.17(ix) then this forces ∆̂8 to be given by Figure 4.17(x), a
contradiction. If ∆̂ = ∆̂6 of Figure 4.13(i) and ∆̂ = ∆̂8 of Figure 4.17(ix), or if ∆̂ = ∆̂7 of
Figure 4.14(i) and ∆̂ = ∆̂8 of Figure 4.16(x) then c∗(∆̂) ≤ c(4, 4, 6, 6) + π

15
+ π

30
< 0.

This leaves ∆̂ = ∆̂6 of Figure 4.13(i) and either ∆̂ = ∆̂1 of Figure 4.16(ii) or ∆̂ = ∆̂4

of Figure 4.16(ii) or ∆̂ = ∆̂2 of Figure 4.17(i) (see Figure 4.32(i)); or ∆̂ = ∆̂7 of Figure
4.14(i) and either ∆̂ = ∆̂1 of Figure 4.16(ii) or ∆̂ = ∆̂2 of Figure 4.17(ii) or ∆̂ = ∆̂3

of Figure 4.17(i) (see Figure 4.32(ii)). Consider Figure 4.32. Since l(v) ∈ {b−1y−1a2xw,
y−1a2xb−1w} forces d(v) ≥ 7 it follows that c(∆̂1) ≤ c(3, 4, 4, 7) = − π

21
and c(∆2) ≤

c(3, 3, 5, 7) = 2π
105

. In both configurations π
21

is added from c(∆1) = π
15

to c(∆̂1) and the

remaining π
15

− π
21

= 2π
105

to ∆̂ as shown. If ∆̂ does not receive positive curvature from

∆3 then c∗(∆̂) ≤ c(3, 4, 4, 7) + 2
(

2π
105

)

< 0 so it can be assumed without any loss that ∆̂

receives from ∆1 (via ∆̂1), ∆2 and ∆3. But then ∆̂ = ∆̂1 of Figure 4.16(ii) or ∆̂ = ∆̂2 of
Figure 4.17(i) forces d(u) ≥ 5 and c∗(∆̂ ≤ c(3, 4, 5, 7) + π

15
+ 2

(

2π
105

)

< 0. �

An immediate consequence of Lemma 4.1 is the following (where K0 and K1 have already
been defined in Section 3).

Proposition 4.2 If K = K0 then c(K) ≤
∑

d(∆̂)≥6 c
∗(∆̂); or if K = K1 then c(K) ≤
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∑

d(∆̂)≥6

∆̂ 6=∆0

c∗(∆̂) + c∗(∆0).

Note. In Figure 4.33(i) the maximum amount of curvature, denoted c(u, v), distributed
across an edge ei with endpoints u, v according to the description of curvature given in
Figures 4.1-4.32 above is shown for each choice of corner labels (the list excludes (b, a)-
edges and the (x, y)-edges of Figure 4.6); and in Figure 4.33(ii) c(u, v) is shown when at
least one of d(u), d(v) is greater than 4. The integers shown are multiples of π

30
with 7(5),

4(2) meaning that if c(u, v) < 7π
30
, 2π
15

then c(u, v) = π
6
, π
15

respectively. This will be used
throughout what follows often without explicit reference.

5 Regions of degree 6

We now study c∗(∆̂) for d(∆̂) = 6 and so ∆̂ is given by Figure 3.7. In Figures 5.1 and 5.2
we fix the labelling of the six neighbours ∆̂i (1 ≤ i ≤ 6) of ∆̂ as shown. First assume that ∆̂
is not ∆̂1 of Configuration A–D in Figures 4.27-4.29 (ex5.1). Checking the distribution of
curvature described in Figures 4.1-4.32 yields the following table in which vertex subscripts
are modulo 6; the entries under c(ui, ui+1) are multiples of π

30
and denote the maximum

amount of curvature that ∆̂ can receive across the edge with endpoints ui, ui+1 according
to Figure 4.33; and 5+, 6+ means ≥ 5, ≥ 6. Moreover the table applies to ∆̂ both of Figure
3.7(i) and of Figure 3.7(ii).

d(ui) d(ui+1) c(u1, u2) c(u2, u3) c(u3, u4) c(u4, u5) c(u5, u6) c(u6, u1)

3 3 0 0 0 6 0 0

3 4 0 3 0 0 0 2

4 3 0 0 0 0 7 0

3 5 0 2 2 0 0 0

5 3 0 2 2 2 2 0

3 6+ 0 2 2 2 0 0

6+ 3 0 2 2 2 2 0

4 4 7 0 0 0 0 0

4 5 2 0 0 2 0 0

5 4 2 2 0 0 4 0

4 6+ 4 0 1 0 2 0

6+ 4 2 0 0 0 1 4

5+ 5+ 1 0 0 1 1 0
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Notes.

1. (See Figures 5.1 and 5.2.) d(u1) = 3 (⇒ d(∆̂1) > 4, d(∆̂2) > 4) ⇒ c(u1, u2) =
c(u6, u1) = 0; d(u2) = 3 ⇒ c(u1, u2) = 0; d(u2) = 4 ⇒ c(u2, u3) = 0; d(u5) = 3 ⇒
c(u5, u6) = 0; and d(u5) = 4 ⇒ c(u4, u5) = 0.

2. c(u1, u2) > 0 and c(u2, u3) > 0 ⇒ (see above table) c(u1, u2)+ c(u2, u3) ≤
2π
15
+ π

15
and

since c(u1, u2) ≤
7π
30
, c(u2, u3) ≤

π
10

we have c(u1, u2) + c(u2, u3) ≤
7π
30
.

3. c(u4, u5) > 0 and c(u5, u6) > 0 ⇒ c(u4, u5) + c(u5, u6) ≤
π
15
+ 2π

15
and since c(u4, u5) ≤

π
5
, c(u5, u6) ≤

7π
30

we have c(u4, u5) + c(u5, u6) ≤
7π
30
.

4. Let d(u5) = 5, d(u6) = 4. If c(u5, u6) = 2π
15

then checking l(u5), l(u6) shows that
c(u4, u5) = 0 (see Figures 4.18(iv) and 4.19(iv)); moreover if c(u5, u6) 6= 2π

15
then

c(u5, u6) =
π
15
.

In what follows much use will be made of Lemma 3.3 when determining the vertex labels
and the above table when determining c(u, v).

Lemma 5.1 If ∆̂ is given by Figure 3.7 and ∆̂ receives positive curvature across at least
one edge then c∗(∆̂) ≤ 2π

15
and if c∗(∆̂) > 0 then ∆̂ is given by one of the regions of Figure

5.1 and Figure 5.2.

Proof. It follows from the table and notes above that c∗(∆̂) ≤ c(∆̂)+(c(u1, u2)+c(u2, u3))+
c(u3, u4)+(c(u4, u5)+c(u5, u6))+c(u6, u1) ≤ c(∆̂)+ 7π

30
+ π

15
+ 7π

30
+ 2π

15
= c(∆̂)+ 2π

3
. Therefore

if ∆̂ has at most two vertices of degree 3 then c∗(∆̂) ≤ c(3, 3, 4, 4, 4, 4) + 2π
3
= 0.

Let ∆̂ have exactly three vertices of degree 3 so that c(∆̂) ≤ −π
2
. If d(u1) = 3 then

c(u1, u2) = c(u6, u1) = 0 and c∗(∆̂) ≤ −π
2
+ π

10
+ π

15
+ 7π

30
< 0, so assume d(u1) ≥ 4. If

d(u2) = 3 then c(u1, u2) = 0 so if d(u6) ≥ 6 then c∗(∆̂) ≤ c(3, 3, 3, 4, 4, 6)+ π
10
+ π

15
+ 7π

30
+ 2π

15
<

0; otherwise c(u6, u1) =
π
15

and c∗(∆̂) ≤ −π
2
+ π

10
+ π

15
+ 7π

30
+ π

15
< 0; so assume d(u2) ≥ 4. This

leaves four subcases. First let d(u3) = d(u4) = d(u5) = 3. Then c(u3, u4) = c(u5, u6) = 0.
Moreover if d(u6) < 6 then c(u6, u1) = 0 and c∗(∆̂) ≤ −π

2
+ 7π

30
+ π

5
= 0; and if d(u6) ≥ 6

then c∗(∆̂) ≤ c(3, 3, 3, 4, 4, 6) + 7π
30

+ π
5
+ 2π

15
< 0. Let d(u3) = d(u4) = d(u6) = 3. Then

c(u2, u3) = π
15
, c(u3, u4) = 0, c(u4, u5) + c(u5, u6) ≤ 7π

30
and c(u6, u1) = π

15
. If either

d(u1) > 4 or d(u2) > 4 then c(u1, u2) ≤
2π
15

and c∗(∆̂) ≤ c(3, 3, 3, 4, 4, 5) + π
2
< 0; otherwise

d(u1) = d(u2) = 4 which implies c(u2, u3) = 0 and the labelling (of u1 and u2) either forces
c(u1, u2) = 0 and c∗(∆̂) ≤ −π

2
+ 3π

10
< 0 or forces c(u6, u1) = 0 and c∗(∆̂) ≤ −π

2
+ 7π

30
+ 7π

30
< 0.

Let d(u3) = d(u5) = d(u6) = 3. Then c(u4, u5) = π
15
, c(u5, u6) = 0 and c(u6, u1) = π

15
.

Therefore c∗(∆̂) ≤ −π
2
+ 7π

30
+ π

15
+ π

15
+ π

15
< 0. Finally let d(u4) = d(u5) = d(u6) = 3.

Then c(u5, u6) = 0 and c(u6, u1) = π
15
. If d(u1) > 4 or d(u2) > 4 then c(u1, u2) = 2π

15

and c∗(∆̂) ≤ −3π
5
+ 8π

15
< 0; otherwise d(u1) = d(u2) = 4 so c(u2, u3) = 0 and the

labelling either forces c(u1, u2) = 0 and c∗(∆̂) ≤ −π
2
+ π

3
< 0 or forces c(u6, u1) = 0 and

c∗(∆̂) ≤ −π
2
+ 7π

30
+ π

15
+ π

5
= 0.
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Now let ∆̂ have exactly four vertices of degree 3 so that c(∆̂) ≤ −π
3
. There are fifteen cases

to consider. In fact if (d(u1), d(u2), d(u3), d(u4), d(u5), d(u6)) ∈ {(3, 3, 3, 3, ∗, ∗), (3, 3, 3, ∗, 3, ∗),
(3, 3, 3, ∗, ∗, 3), (3, 3, ∗, ∗, 3, 3), (3, ∗, 3, 3, 3, ∗), (3, ∗, 3, 3, ∗, 3), (3, ∗, 3, ∗, 3, 3), (3, ∗, ∗, 3, 3, 3),
(∗, 3, 3, 3, 3, ∗), (∗, 3, 3, 3, ∗, 3), (∗, 3, 3, ∗, 3, 3)} then a straightforward check using the above
table and notes shows that c∗(∆̂) ≤ −π

3
+ π

3
= 0. Let d(u1) = d(u2) = d(u4) = d(u5) = 3.

Then c(u1, u2) = c(u5, u6) = c(u6, u1) = 0. If d(u3) > 4 then c∗(∆̂) ≤ −13π
30

+ 11π
30

< 0; other-

wise d(u3) = 4 forcing c(u3, u4) = 0 and c∗(∆̂) ≤ −π
3
+ 3π

10
< 0. Let d(u1) = d(u2) = d(u4) =

d(u6) = 3. Then c(u1, u2) = c(u6, u1) = 0. If d(u3) > 4 then c∗(∆̂) ≤ −13π
30

+ 2π
5
< 0; other-

wise d(u3) = 4 forcing c(u3, u4) = 0 and c∗(∆̂) ≤ −π
3
+ π

3
= 0. Let d(u2) = d(u4) = d(u5) =

d(u6) = 3. Then c(u1, u2) = c(u5, u6) = 0 and c(u6, u1) =
π
15
. If d(u1) > 4 or d(u3) > 4 then

c∗(∆̂) ≤ −13π
30

+ 13π
30

= 0, so assume d(u1) = d(u3) = 4. Then c(u3, u4) = 0 and l(u1) either

forces c(u6, u1) = 0 and c∗(∆̂) ≤ −π
3
+ 3π

10
< 0 or ∆̂ is given by Figure 5.1(i) or 5.2(i) in

which case c∗(∆̂) ≤ −π
3
+ 11π

30
= π

30
. (Note that if c∗(∆̂) > 0 then ∆̂ must receive π

15
from ∆̂6

and this forces ∆̂6 = ∆ where ∆ is given by Figure 4.7(xi)) This leaves the case d(uj) = 3
(3 ≤ j ≤ 6). Then c(u3, u4) = c(u5, u6) = 0 and c(u6, u1) =

π
15
. If d(u1) ≥ 5 and d(u2) ≥ 5

then c∗(∆̂) ≤ −8π
15

+ π
2
< 0. If d(u1) = 4 and d(u2) = 5 or d(u1) ≥ 5 and d(u2) = 4 then

c(u1, u2) =
π
15

and c∗(∆̂) ≤ c(3, 3, 3, 3, 4, 5) + π
15

+ π
10

+ π
5
+ π

15
= 0; and if d(u1) = 4 and

d(u2) ≥ 6 then c∗(∆̂) ≤ c(3, 3, 3, 3, 4, 6) + 2π
15

+ π
10

+ π
5
+ π

15
= 0. Let d(u1) = d(u2) = 4 so

c(u2, u3) = 0. Then l(u1) either forces c(u1, u2) = 0 and c∗(∆̂) ≤ −π
3
+ π

5
+ π

15
< 0 or ∆̂ is

given by Figure 5.1(ii) or 5.2(ii) where c∗(∆̂) ≤ −π
3
+ 7π

30
+ π

5
= π

10
.

Now suppose that ∆̂ has exactly five vertices of degree 3 so that c(∆̂) ≤ −π
6
. If d(u6) > 3

then c(u1, u2) = c(u2, u3) = c(u3, u4) = c(u5, u6) = c(u6, u1) = 0, c∗(∆̂) ≤ −π
6
+ π

5
= π

30

and ∆̂ is given by Figure 5.1(iii) or 5.2(iii). If d(u5) > 3 then c(ui, ui+1) = 0 except
for c(u4, u5) and c(u5, u6) so c∗(∆̂) ≤ −π

6
+ 7π

30
= π

15
and ∆̂ is given by Figure 5.1(iv)

or 5.2(iv). If d(u4) > 3 then c(ui, ui+1) = 0 except for c(u3, u4) = c(u4, u5) = π
15

and

c∗(∆̂) ≤ −π
6
+ 2π

15
< 0. Let d(u3) > 3. Then c(u1, u2) = c(u5, u6) = c(u6, u1) = 0.

If d(u3) ≥ 6 then c∗(∆̂) ≤ −π
3
+ 2

(

π
15

)

+ π
5
= 0; if d(u3) = 5 then l(u3) forces either

c(u2, u3) = 0 or c(u3, u4) = 0 so c∗(∆̂) ≤ −4π
15

+ π
15

+ π
5

= 0; and if d(u3) = 4 then

c(u3, u4) = 0, c∗(∆̂) ≤ π
6
+ π

10
+ π

5
= 2π

15
and ∆̂ is given by Figure 5.1(v) or 5.2(v). If

d(u2) > 3 then c(u1, u2) = c(u3, u4) = c(u5, u6) = c(u6, u1) = 0. If d(u2) ≥ 5 then
c∗(∆̂) ≤ −4π

15
+ π

15
+ π

5
= 0; and if d(u2) = 4 then c(u2, u3) = 0, c∗(∆̂) ≤ −π

6
+ π

5
= π

30

and ∆̂ is given by Figure 5.1(vi) or 5.2(vi). Finally if d(u1) > 3 then c(ui, ui+1) = 0 except
for c(u4, u5) =

π
5
and c(u6, u1) =

π
15
. So if d(u1) ≥ 5 then c∗(∆̂) ≤ −4π

15
+ 4π

15
= 0; and if

d(u1) = 4 then c(u6, u1) =
π
15

or c(u6, u1) = 0, c∗(∆̂) ≤ −π
6
+ 4π

15
= π

10
and the two cases for

∆̂ are shown in Figure 5.1(vii), (viii) or 5.2(vii), (viii).

This leaves the case d(ui) = 3 (1 ≤ i ≤ 6). Then c(ui, ui+1) = 0 except for c(u4, u5) =
π
5
,

c∗(∆̂) ≤ 0 + π
5
= π

5
and ∆̂ is given by Figure 5.1(ix) or 5.2(ix). �
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We now describe the distribution of curvature from each of the 18 regions ∆̂ of Figures 5.1
and 5.2.

Figure 5.1(i) and 5.2(i): c∗(∆̂) ≤ −π
3
+ 11π

30
; distribute π

30
from ∆̂ to ∆̂1 in each case.

Figure 5.1(ii) and 5.2(ii): c∗(∆̂) ≤ −π
3
+ 13π

30
; distribute π

10
from ∆̂ to ∆̂6 in each case.

Figure 5.1(iii) and 5.2(iii): c∗(∆̂) ≤ −π
6
+ π

5
; distribute π

30
from ∆̂ to ∆̂2 in each case.

Figure 5.1(iv) and 5.2(iv): c∗(∆̂) ≤ −π
6
+ 7π

30
; distribute π

15
from ∆̂ to ∆̂2 in each case.

Figure 5.1(v) and 5.2(v): c∗(∆̂) ≤ −π
6
+ 3π

10
; distribute 2π

15
from ∆̂ to ∆̂1 in each case. (5.1)

Figure 5.1(vi) and 5.2(vi): c∗(∆̂) ≤ −π
6
+ π

5
; distribute π

30
from ∆̂ to ∆̂3 in each case.

Figure 5.1(vii) and 5.2(vii): c∗(∆̂) ≤ −π
6
+ π

5
; distribute π

30
from ∆̂ to ∆̂2 in each case.

Figure 5.1(viii) and 5.2(viii): c∗(∆̂) ≤ −π
6
+ 4π

15
; distribute π

15
from ∆̂ to ∆̂2 and π

30
from ∆̂

to ∆̂3 in each case.

Figure 5.1(ix) and 5.2(ix): c∗(∆̂) ≤ 0 + π
5
; distribute π

10
from ∆̂ to ∆̂1,

π
15

from ∆̂ to ∆̂2

and π
30

from ∆̂ to ∆̂3 in each case.

Note: in all of the above cases d(∆̂i) > 6 for each region ∆̂i that receives positive curvature
from ∆̂ except possibly for ∆̂1 in Figures 5.1(i) and 5.2(i). Moreover the upper bounds
c(u, v) of Figure 4.33 remain unchanged.

Now consider Configurations A and B of Figure 4.27(i), 4.28(i) and assume that d(∆̂1) = 6
(en5.1a). Then ∆̂1 is given by Figure 5.3(i), 5.4(i). A key observation (ex5.2) is the
following. Since, by definition of distribution in Configuration A, ∆̂1 receives π

30
from ∆1

it follows that ∆̂2 of Figure 5.3(i), 5.4(i) cannot be the region ∆̂ of Figure 5.2(i), 5.1(i)
respectively. Otherwise the proof of Lemma 5.1 shows that ∆̂2 would have to receive π

5
from

a region ∆4, say, across its (v4, v5)-edge in Figure 5.2(i), 5.1(i) forcing ∆4 to be given by ∆ of
Figure 4.1(v) and we would obtain one of Figure 4.27(ii)–(iv), 4.28(ii)–(iv), a contradiction.
In particular ∆̂1 does not receive positive curvature from ∆̂2, that is, c(w2, u1) = 0.

We return now to ∆̂1 of Figure 5.3(i), 5.4(i) and first assume that d(u3) ≥ 5. Then
c(w1, u3) = π

15
and c(u3, u2) = 2π

15
by Figure 4.33(ii). Since c(u1, u2) = 2π

15
it follows that

c∗(∆̂1) ≤ c(∆̂) + 7π
15
. If d(u1) > 3 or d(u2) > 3 then c(∆̂1) ≤ c(3, 3, 3, 4, 4, 5) = −9π

15
;

on the other hand if d(u1) = d(u2) = 3 then (an inspection of Figures 5.1 and 5.2 shows
that) c(u1, u2) = 0 and c∗(∆̂1) ≤ c(3, 3, 3, 3, 4, 5) + π

3
< 0. Now let d(u3) = 4. Then

c(u1, u2) = 2π
15
, c(u2, u3) = 7π

30
and c(u3, w1) = 0 so c∗(∆̂1) ≤ c(∆̂1) +

π
2
. If d(u1) > 3

or d(u2) > 3 then c(∆̂1) ≤ −π
2
; on the other hand if d(u1) = d(u2) = 3 then c∗(∆̂1) ≤

c(3, 3, 3, 3, 4, 4)+ 11π
30

= π
30

which is added to c(∆̂2) as shown in Figure 5.3(ii), 5.4(ii). Finally
let d(u3) = 3. Then c(u3, w1) = π

5
, c(u2, u1) = 2π

15
and c(u2, u3) = 0. If d(u1) = 3 then

c(u1, u2) = 0 and so d(u2) ≥ 4 would imply c∗(∆̂1) ≤ c(3, 3, 3, 3, 4, 4) + π
3
= 0; whereas if
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also d(u2) = 3 then c∗(∆̂1) ≤
π
6
is distributed to ∆̂2 as shown in Figure 5.3(iii), 5.4(iii). Let

d(u1) = 4. If d(u2) ≥ 4 then c∗(∆̂1) ≤ c(3, 3, 3, 4, 4, 4) + 7π
15

< 0 so assume that d(u2) = 3.

Reading clockwise from the ∆̂1 corner label if l(u1) = bbx−1y, bx−1yb in Figure 5.3(i), 5.4(i)
respectively then c(u1, u2) = 0 and c∗(∆̂2) ≤ −π

3
+ π

3
= 0; otherwise c(u1, u2) =

π
15

and ∆̂1

is given by Figure 5.3(iv), 5.4(iv) and c∗(∆̂1) ≤ −π
3
+ 6π

15
= π

15
is distributed to ∆̂2 as shown.

This leaves d(u1) ≥ 5 in which case c(u1, u2) =
π
15

and c∗(∆̂1) ≤ c(3, 3, 3, 3, 4, 5) + 6π
15

< 0.

Consider Configurations C and D of Figure 4.29 and assume that d(∆̂1) = 6 (en5.1b).
Then ∆̂1 is given by Figure 5.5(i), (ii). Observe that c(u1, u2) = π

15
; c(u2, u3) = π

10
;

c(u3, u4) =
2π
15
, indeed c(u3, u4) cannot exceed

2π
15

due to l(u4) (see Figure 4.20(viii), 4.22(vi)

and 4.10(v), (ix)); and so c∗(∆̂1) ≤ c(∆̂1) +
8π
15
. If d(u2) ≥ 4 and d(u3) ≥ 5 or d(u2) ≥ 5

and d(u3) ≥ 4 then c(∆̂1) = c(3, 3, 3, 4, 4, 5) = −9π
15
; if d(u2) = d(u3) = 4 then c(u2, u3) =

0 and c∗(∆̂1) ≤ −π
2
+ 13π

30
< 0; if d(u2) = 3 then c(u1, u2) = 0 so if d(u3) ≥ 6 then

c∗(∆̂1) ≤ c(3, 3, 3, 3, 4, 6) + 7π
15

< 0; if d(u2) = 3 and d(u3) = 5 then c(u2, u3) = π
15

(see

Figure 4.33(ii)) and c∗(∆̂) ≤ c(3, 3, 3, 3, 4, 5)+ 13π
30

= 0; and if d(u2) = 3 and d(u3) = 4 then

c(u2, u3) = c(u3, u4) = 0 and c∗(∆̂1) ≤ −π
3
+ 7π

30
< 0. This leaves d(u3) = 3, d(u2) ≥ 3.

Let d(u3) = 3. We claim that this implies c(u3, u4) = 0. The only way this may fail is
if ∆̂1 of Figure 5.5(i), (ii) coincides with ∆̂1 in Figure 5.2(i), 5.1(i) or with ∆̂2 of Figure
5.4(iv), 5.3(iv) (respectively). But then d(u) = 4 in Figure 5.5(i), (ii) whereas d(u) = 3
for the corresponding vertex u of Figure 5.1(i), 5.2(i); and the fact that ∆̂1 of Figure
5.5(i), (ii) receives π

5
across the (w, u1) edge means that ∆̂1 cannot be ∆̂2 of Figure 5.3(iv),

5.4(iv) because we would obtain Figure 4.27(ii)–(iv), Figure 4.28(ii)–(iv) a contradiction.
If d(u2) = 3 then c(u2, u3) = c(u1, u2) = 0 and c∗(∆̂1) ≤ c(3, 3, 3, 3, 3, 4) + 7π

30
= π

15
is

added to c(∆̂) as shown in Figure 5.5(iii), (iv); if d(u2) = 4 then c(u1, u2) =
π
30

(which is

attained when ∆̂1 coincides with ∆̂1 of Figure 5.3(iv), 5.4(iv), the difference being that ∆̂1

of Figure 5.5(v), (vi) receives only π
30

across the (b−1, x−1)-edge, (b−1, y)-edge, respectively)

and c∗(∆̂1) ≤ −π
3
+ 11π

30
= π

30
is added to c(∆̂2) as shown in Figure 5.5(v), (vi); and if

d(u2) ≥ 5 then c(u1, u2) =
π
15

and c(u2, u3) =
2π
15

and c∗(∆̂) ≤ c(3, 3, 3, 3, 4, 5) + 13π
30

= 0.

Note 1: The upper bounds c(u, v) of Figure 4.33 remain unchanged as a result of the
distribution of curvature described in this section above.

Note 2: Before proceeding with Lemma 5.2 and its proof we note that an inspection of
all distribution of curvature thus far described yields the following. If positive curvature is
distributed across an (x, a−1)-edge e into a region of degree > 4 then e is given by: Figure
4.15(xvii) (two cases); Figure 4.16(i) (two cases); Figure 4.16(x); and Figure 4.28(i). In
particular if the x-corner vertex has degree 4 and the a−1-corner vertex has degree 3 then
e is given by Figure 4.28(i) (Configuration B). If positive curvature is distributed across
an (a−1, y−1)-edge e into a region of degree > 4 then e is given by: Figure 4.15(xvii) (two
cases); Figure 4.16(i) (two cases); Figure 4.17(ix); and Figure 4.27(i). In particular if the
a−1-corner has degree 3 and the y−1-corner has degree 4 then e is given by Figure 4.27(i)
(Configuration A).
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Lemma 5.2 Let ∆̂ be a region of degree 6 that receives positive curvature across at least
one edge. Then one of the following occurs.

(i) c∗(∆̂) ≤ 0;

(ii) c∗(∆̂) > 0 is distributed to a region of degree > 6;

(iii) c∗(∆̂) ∈
{

π
30
, π
15

}

is distributed to a region ∆′ of degree 6 and c∗(∆′) ≤ 0.

Proof. Using Lemma 5.1 and the analysis of Configurations A-F following the proof of
Lemma 5.1 it is clear that if (i) and (ii) do not hold then c∗(∆̂) ∈

{

π
30
, π
15

)

is distributed to

∆̂1 of Figure 5.1(i), 5.2(i) or ∆̂2 of Figure 5.3(iv), 5.4(iv) or ∆̂2 of Figure 5.5(v), (vi). It
follows that a region ∆′ of degree 6 receives positive curvature from at most one region of
degree 6. We treat each of these three cases in turn.

Consider ∆̂1 of Figure 5.1(i), 5.2(i). Then ∆̂1 is given by Figure 5.6(i), (ii). Since ∆̂
receives π

15
from ∆̂6 and since d(∆̂5) > 4, the region ∆̂6 coincides with ∆̂ of Figure 4.7(xi).

It follows that ∆̂1 does not receive any positive curvature from
ˆ̂
∆ in Figure 5.6(i), (ii). Note

also that d(w4) > 3; c(w3, w4) = π
15
; c(u2, w4) = π

10
; and c(w1, w2) + c(w2, w3) = 7π

30
(see

Note 3 following the table given earlier in this section). Therefore c∗(∆̂1) ≤ c(∆̂1) +
13π
30

.

If ∆̂1 has at least three vertices of degree > 3 then c(∆̂1) ≤ −π
2
; and if d(w4) ≥ 5 then

c(∆̂1) ≤ c(3, 3, 3, 3, 4, 5) = −13π
30

; this leaves d(wi) = 3 (1 ≤ i ≤ 3) and d(w4) = 4 in which

case c(w1, w2) = 0 and c(w2, w3) =
π
6
. If c(w3, w4) = 0 then c∗(∆̂1) ≤ −π

2
+ π

2
= 0. On the

other hand if c(w3, w4) > 0 then it follows from Note 2 above that ∆̂1 must coincide with
∆̂1 of Configuration A or B. But this contradicts the fact that ∆̂1 does not receive positive
curvature from ∆̂2 in Figures 5.3 and 5.4 as noted at the end of the key observation

(en5.2) made earlier, that is, ∆̂ of Figure 5.6(i), (ii) cannot coincide with ∆̂2 of Figure
5.4(i), 5.3(i) (respectively).

Consider ∆̂2 of Figure 5.3(iv), 5.4(iv) and assume that d(∆̂2) = 6. Then ∆̂2 is given by
Figure 5.7(i), (ii) in which the following hold: c(u2, w3) =

π
10
; c(w3, u6) =

π
30

if d(u6) = 6

and c(w3, u6) = 0 if d(u6) 6= 6 (indeed c(w3, u6) > 0 can only occur if ∆̂2 coincides with
region ∆̂8 of Figure 4.16(x), 4.17(xi)); c(u5, u6) =

2π
15

if d(u6) = 6 (see Figure 4.33(ii)) and

c(u5, u6) =
π
6
if d(u6) 6= 6 (indeed π

6
cannot be exceeded since ∆̂2 cannot be given by Figure

4.27(ii)-(iv), Figure 4.28(ii)-(iv) and to see this observe, for example, that ∆3 of Figure 5.7
contributes π

3
to ∆̂ as opposed to 3π

10
); c(u4, u5) = 7π

30
if d(u4) < 6 and c(u4, u5) = 2π

15
if

d(u4) ≥ 6; c(u1, u2) + c(u1, u4) =
π
10

if d(u4) < 6 and c(u1, u2) + c(u1, u4) =
π
6
if d(u4) ≥ 6.

(Indeed if ∆̂1 receives π
15

from ∆ then ∆ is given by Figure 4.7(xi) which implies d(u) = 3
and d(∆4) > 4 in Figure 5.7, and an inspection of Figures 5.1-5.6 shows that c(u1, u4) = 0,
so it can be assumed that ∆̂1 receives π

30
from ∆ and so ∆̂2 receives π

30
from ∆̂1. But now

d(u4) < 6 implies c(u1, u4) =
π
15

and d(u4) ≥ 6 implies c(u1, u4) =
2π
15

and this is given by

Figure 4.12(iii).) It follows that if d(u4) < 6 then c∗(∆̂2) = c(∆̂2) + c(u2, w3) + c(w3, u6) +
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c(u5, u6) + c(u4, u5) + (c(u1, u2) + c(u1, u4)) ≤ c(∆̂2) +
π
10
+ π

30
+ π

6
+ 7π

30
+ π

10
= c(∆̂2) +

19π
30

;

or if d(u4) ≥ 6 then c∗(∆̂2) ≤ c(∆̂2) +
π
10

+ π
30

+ π
6
+ 2π

15
+ π

6
= c(∆̂2) +

18π
30

.

Let d(u6) ≥ 4. If d(u4) ≥ 4 or d(u5) ≥ 4 then c∗(∆̂2) ≤ −2π
3
+ 19π

30
< 0; on the other hand

if d(u4) = d(u5) = 3 then c(u4, u5) = 0 and c∗(∆̂2) ≤ c(3, 3, 3, 4, 4, 4) +
(

19π
30

− 7π
30

)

< 0.
Let d(u6) = 3 so, in particular, c(w3, u6) = 0. If d(u4) ≥ 4 and d(u5) ≥ 4 or if d(u4) = 3
and d(u5) ≥ 5 or if d(u4) ≥ 5 and d(u5) = 3 then c(∆̂2) ≤ −3π

5
and it follows that

c∗(∆̂2) ≤ 0. If d(u4) = 4 and d(u5) = 3 then d(∆5) > 4, c(u4, u5) = 0 and c∗(∆̂2) ≤
−π

2
+ π

10
+0+ π

6
+0+ π

10
< 0; and if d(u4) = 3 and d(u5) = 4 then d(∆6) > 4, c(u5, u6) = 0

and c∗(∆̂) ≤ −π
2
+ π

10
+ 0 + 0 + 7π

30
+ π

10
< 0. This leaves d(u4) = d(u5) = 3 in which case

c(u4, u5) = 0. Moreover d(∆5) > 4 also means that if c(u1, u4) =
π
15

then ∆4 is given by ∆
of Figure 4.7(xi) forcing the region ∆ of Figure 5.7 to have degree > 4, a contradiction, so
c(u1, u4) = π

30
. Since, as noted above, c(u1, u2) =

π
15

implies c(u1, u4) = 0 it follows that

c(u1, u2) + c(u1, u4) =
π
15

and c∗(∆̂) ≤ c(3, 3, 3, 3, 4, 4) + π
10

+ 0 + π
6
+ 0 + π

15
= 0.

Finally consider ∆̂2 of Figure 5.5(v), (vi) and assume that d(∆̂2) = 6. The fact that ∆̂1

receives π
30

from ∆ means that ∆̂1 is given by the region ∆̂1 of Figures 5.3(iv), 5.4(iv) with

the difference being that in those figures ∆̂1 receives π
15

from ∆ as opposed to receiving π
30

from the corresponding region ∆ in Figure 5.5(v), (vi). This now implies that ∆̂2 is again
given by Figure 5.7(i), (ii) and we are in the previous case where ∆̂2 is given by Figure
5.3(iv), 5.4(iv). �

An immediate consequence of Lemma 5.2 is the following.

Proposition 5.3 If K = K0 then c(K) ≤
∑

d(∆̂)≥8 c
∗(∆̂); or if K = K1 then c(K) ≤

∑

d(∆̂)≥8

∆̂ 6=∆0

c∗(∆̂) + c∗(∆0).

Given this, it remains to consider regions ∆̂ of degree ≥ 8. To do this we partition such
∆̂ into regions of type A or type B. If ∆̂ is given by ∆̂3 or ∆̂4 of Figure 4.6 then ∆̂ is a
region of type B; otherwise we will say that ∆̂ is a region of type A.

There will be no further distribution of curvature in what follows and so we collect together
in the following lemma statements that can be verified by inspecting Figures 4.1–4.32 and
Figures 5.1–5.7. Further details will appear in the proof of Lemma 6.1.

Lemma 5.4 Let ei be an edge with endpoint u, v such that ei is neither a (b, a)-edge nor
is given by Figure 4.6.

(i) If c(ei) := c(u, v) > 2π
15

then c(ei) ∈ {π
6
, π
5
, 7π
30
}.

(ii) If c(ei) ∈ {π
6
, π
5
, 7π
30
} then ei is given by Figure 5.8.

(iii) If c(ei) >
2π
15

then either c(ei−1) = 0 or c(ei+1) = 0 except for ei of Figure 5.8(vii),
(xi), (xii) and (xvi).
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Now let ei be a (b, a)-edge.

(iv) If c(ei) >
2π
15

then c(ei) ∈ {π
6
, π
5
, 7π
30
, 4π
15
, 3π
10
}.

(v) If c(ei) ∈ {π
6
, π
5
, 7π
30
, 4π
15
, 3π
10
} then ci is given by Figure 5.9.

(vi) If c(ei) > 2π
15

then either c(ei−1) = 0 or c(ei+1) = 0 except for ei of Figure 5.9(vii)
and (x).

Remarks.

1. Statement (iii) is readily verified except perhaps for Figure 5.8(xix) and (xx). But
these correspond to the edges of Figure 4.30(i) and (iii), and so statement (iii) holds.

2. In Figure 5.8(vii) if c(u, v) = π
6
then ∆̂ = ∆̂4 of Figure 4.2(i)-(iii); if c(u, v) = π

5

then ∆̂ = ∆̂4 of Figure 4.2(iv); moreover the π
30

distributed across the ei+1 edge is

given by Figure 5.1(viii) and (ix). In Figure 5.8(xi), ∆̂ = ∆̂1 of Figure 4.23(vii). In
Figure 5.8(xii), ∆̂ = ∆̂2 of Figure 4.23(viii). In Figure 5.8(xiii), ∆̂ = ∆̂2 of Figure
5.3(iii). In Figure 5.8(xiv), ∆̂ = ∆̂2 of Figure 5.4(iii). In Figure 5.8(xvi), ∆̂ = ∆̂3

of Figure 4.3(vi)-(vii); moreover the π
30

distributed across the ei−1 edge is given by
Figure 5.2(viii) and (ix).

3. In Figure 5.9(vii) if c(u, v) = π
5
then ∆̂ is given by Figure 4.28(i); and in Figure 5.9(x)

if c(u, v) = π
5
then ∆̂ is given by Figure 4.27(i), in particular, ∆̂ in both cases is a

type B region.

The next result will be used throughout later sections.

Lemma 5.5 Let the regions ∆̂, ∆i and ∆i+1 be given by Figure 5.10(i) or 5.10(vii).

(i) If ci =
9π
30

then ci+1 = 0.

(ii) If ci =
8π
30

then ci+1 ≤
5π
30
.

(iii) If ci =
8π
30

and ci+1 =
3π
30

then ∆̂ of Figure 5.10(i) is given by Figure 5.10(ii) in which

∆i+1 = ∆̂3 of Figure 4.17(xii); and ∆̂ of Figure 5.10(vii) is given by ∆̂ of Figure
5.10(viii) in which ∆i+1 = ∆̂4 of Figure 4.16(xiii).

(iv) If ci =
8π
30

then ci+1 6=
4π
30
.

(v) If ci =
8π
30

and ci+1 =
5π
30

then ∆̂ of Figure 5.10(i) is given by Figure 5.10(iii) in which

∆i+1 = ∆ of Figure 4.20(viii); and ∆̂ of Figure 5.10(vii) is given by Figure 5.10(ix)
in which ∆i+1 = ∆ of Figure 4.22(vi).
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(vi) If ci =
7π
30

then ci+1 ≤
7π
30
.

(vii) If ci =
7π
30

and ci+1 =
5π
30

then ∆̂ of Figure 5.10(i) is given by Figures 5.10(iv) and (v)

in which ∆i+1 = ∆̂4 of Figure 4.9(iv) and ∆i+1 = ∆ of Figure 4.20(viii), respectively;
and ∆̂ of Figure 5.10(vii) is given by Figures 5.10(x) and (xi) in which ∆i+1 = ∆̂2 of
Figure 4.8(iv) and ∆i+1 = ∆ of Figure 4.22(vi), respectively.

(viii) If ci =
7π
30

then ci+1 6=
6π
30
.

(ix) If ci = ci+1 = 7π
30

then ∆̂ of Figure 5.10(i) is given by Figure 5.10(vi) in which

∆i+1 = ∆̂4 of Figure 4.10(ix); and ∆̂ of Figure 5.10(vii) is given by Figure 5.10(xii)
in which ∆i+1 = ∆̂2 of Figure 4.10(v) or of Figure 4.24(v).

Proof. Statements (i), (vi) and (viii) follow from an inspection of Figures 5.8 and 5.9.
Moreover if ∆̂ is given by Figure 5.10(i) and ci =

8π
30

then it can be assumed without any

loss that either ∆i = ∆̂2 of Figure 4.17(iv) or (xiii) or ∆i = ∆̂4 of Figure 4.25(v); and if
∆̂ is given by Figure 5.10(vii) and ci =

8π
30

then it can be assumed without any loss that

either ∆i = ∆̂4 of Figure 4.16(v) or (xiv) or ∆i = ∆̂2 of Figure 4.25(iii).

(ii) Let ∆̂ be given by Figure 5.10(i). If ci+1 > 5π
30

then the only possibility is given by

Figure 5.8(ix) in which case ci+1 = 7π
30

and ∆i+1 = ∆̂2 of Figure 4.10(ix) where we

note that d(v1) = 4 and d(v2) = 3. However if ∆i = ∆̂2 of Figure 4.17(iv) then
the vertex corresponding to v1 is u1 which has degree 3; or if ∆i = ∆̂4 of Figure
4.25(v) then the vertex corresponding to v1 is v2 which has degree 5, in each case a
contradiction. This leaves ∆i = ∆̂2 of Figure 4.17(xiii), where ∆i+1 = ∆̂7 and this is
shown in Figure 5.11(i). But observe that the vertex corresponding to v2 of Figure
4.10(ix) is w3 which has degree 4, again a contradiction.

Let ∆̂ be given by Figure 5.10(vii). If ci+1 > 5π
30

then the only possibiilty is given

by Figure 5.8(x) in which case ci+1 = 7π
30

and either ∆i+1 = ∆̂2 of Figure 4.10(v)

where d(v2) = 3 and d(v3) = 4 or ∆i+1 = ∆̂2 of Figure 4.24(v) where d(v2) = 5
and d(v3) = 4. However if ∆i = ∆̂4 of Figure 4.16(v) the vertex corresponding to
v3 (both cases) is u6 which has degree 3; or if ∆i = ∆̂2 of Figure 4.25(iii) the vertex
corresponding to v3 (both cases) is v2 which has degree 5, in all cases a contradiction.
This leaves ∆i = ∆̂4 of Figure 4.16(xiv) where ∆i+1 = ∆̂7 and this is shown in Figure
5.11(ii). But observe that the vertex corresponding to v2 of Figures 4.10(v), 4.24(v)
is w1 which has degree 4, again a contradiction.

(iii) Checking Figures 4.1–4.32 and 5.1–5.7 shows that if ci+1 =
3π
30

in Figure 5.10(i) then
∆i+1 must be one of Figures 4.4(vii), 4.4(viii), 4.17(iii), 4.17(xii), 4.15(iv) or 4.27(ii).
Given that ∆i = ∆̂2 of Figure 4.17(iv) or (xiii) or ∆i = ∆̂4 of Figure 4.25(v) there is
a vertex degree contradiction in each possible combination except when ∆i+1 is given
by Figure 4.17(xii) or 4.25(iv) and these each yield Figure 5.10(ii). If ci+1 = 3π

30
in
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Figure 5.10(ii) then ∆i+1 must be one of Figure 4.5(vii), 4.5(viii), 4.16(iv), 4.16(xiii),
4.25(ii) or 4.28(ii). Given that ∆i = ∆̂4 of Figure 4.16(v) or (xiv) or ∆i = ∆̂2 of
Figure 4.25(iii) again there is a vertex degree contradiction in each case except when
∆i+1 is given by Figure 4.16(xiii) or 4.25(ii) and these yield Figure 5.10(viii).

(iv) If ci+1 =
4π
30

in Figure 5.10(i) then ∆i+1 must be one of the Figures 4.7(viii), 4.11(vii),
4.12(iii) and 4.28(i), but in each case there is a vertex degree contradiction. If ci+1 =
4π
30

in Figure 5.10(vii) then ∆i+1 must be one of Figures 4.7(xii), 4.11(iii), 4.12(iii) or
4.27(i), and again in each case there is a vertex contradiction.

(v) The possibilities for ∆i+1 of Figure 5.10(i) are (see Figures 5.8(ix) and 5.9(v)) ∆̂4 of
Figure 4.9(iv) which yields a vertex degree contradiction (for each choice of ∆i) and ∆
of Figure 4.20(viii) which is given by Figure 5.10(iii); and for ∆i+1 of Figure 5.10(vii)
are (see Figures 5.8(x) and 5.9(iii)) ∆̂2 of Figure 4.8(iv) which yields a vertex degree
contradiction and ∆ of Figure 4.22(vi) which is given by Figure 5.10(ix).

Finally (vii) follows from the proof of (v) and (ix) follows from the proof of (ii). �

6 Type A regions

Throughout this section many assertions will be based on previous lemmas. Moreover
checking means checking Figures 4.1–4.32 and Figures 5.1–5.7. The reader is also referred
to Figures 4.33, 5.8, 5.9 and 5.10.

The surplus si of an edge ei is defined by si = ci−
2π
15

(1 ≤ i ≤ k) where ci is the maximum
amount of curvature that is transferred across ei. If we add si to ci+1, ci−1 we will say
that ei+1, ei−1 (respectively) absorbs si from ci. Checking Figures 5.8 and 5.9 shows, for
example, that if d(ui) = d(ui+1) = 3 in Figure 6.1 then si ≤

π
15
. The deficit δi of a vertex

ui of degree di is defined by δi = 2π( 1
di
− 1

3
) and so if di ≥ 4 then δi ≤ −π

6
. If we add si−1, si

(respectively) to δi we will say that ui absorbs si−1, si from ei−1, ei (respectively).

Lemma 6.1 Let ∆̂ be a type A region of degree k. Then the following hold. (i) c∗(∆̂) ≤
(2− k) + k.2π

3
+ k.2π

15
. (ii) If k ≥ 10 then c∗(∆̂) ≤ 0.

Proof. (i) Denote the vertices of ∆̂ by vi (1 ≤ i ≤ k), the edges by ei (1 ≤ i ≤ k) and
the degrees of the vi by di (1 ≤ i ≤ k). Let ci denote the amount of curvature ∆̂ receives
across the edge ei (1 ≤ i ≤ k). Consider the edge ei of ∆̂ as shown in Figure 6.1. If ci ≤

2π
15

there is nothing to consider, so let ci >
2π
15
. Then by Lemma 5.4, ci ∈ {π

6
, π
5
, 7π
30
, 4π
15
, 3π
10
} and

∆̂ is given by Figures 5.8 and 5.9. First assume that ei is not given by Figure 4.30(i) or
(iii) (ex6.1).

Let ∆̂ be given by Figure 5.8. If ∆̂ is given by Figure 5.8(i), (vii), (viii), (xiv) or (xv)
then the edge ei+1 absorbs si ≤ π

15
(from ci). Note that in these cases (di+1, ci+1) ∈
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{(3, 0), (3, π
30
)}. If ∆̂ is given by Figure 5.8(ii), (iii), (vi), (xiii), (xvi), (xix) or (xx) then

ei−1 absorbs si ≤
π
15
. Note that (di, ci−1) ∈ {(3, 0), (3, π

30
)}. If ∆̂ is given by Figure 5.8(iv),

(x) or (xviii) then the vertex vi absorbs si ≤
π
10
. Note that (di, ci−1) ∈ {(4, 0), (5, 0)}. If ∆̂

is given by Figure 5.8(v), (ix) or (xvii) then vi+1 absorbs si ≤
π
10
. Note that (di+1, ci+1) ∈

{(4, 0), (5, 0)}. This leaves Figure 5.8(xi) and (xii) to be considered. If ∆̂ is given by Figure
5.8(xi) or (xii) then vi absorbs si =

π
30
. Note that di = 4.

Now let ∆̂ be given by Figure 5.9. If ∆̂ is given by Figure 5.9(i) or (ix) then the edge ei+1

absorbs si =
π
30
. Note that (di+1, ci+1) = (3, 0). If ∆̂ is given by Figure 5.9(ii) or (viii)

restricted to the case ci =
5π
30

then ei−1 absorbs si =
π
30
. Note that (di, ci−1) = (3, 0). If ∆̂ is

given by Figure 5.9(iii), (vi) or (xi) then vi+1 absorbs si ≤
π
6
. Note that (di+1, ci+1) = (4, 0).

If ∆̂ is given by Figure 5.9(iv), (v) or (xii) then vi absorbs si ≤
π
6
. Note that (di, ci−1) =

(4, 0). This leaves the cases Figure 5.9(vii), (viii) with ci =
8π
30

and (x). If ∆̂ is given by

Figure 5.9(vii) then vi absorbs si ≤
2π
15
. Note that di = 4. If ∆̂ is given by Figure 5.9(viii)

or (x) then vi+1 absorbs si ≤
2π
15
. Note that di+1 = 4.

This completes absorption by edges or vertices when ei is not given by Figure 4.30(i) or (iii)
(and these correspond to cases of Figure 5.8(xix), (xx)). Observe that if an edge ej absorbs
positive curvature aj , say, then aj ≤ π

15
and either cj = 0 or cj = π

30
; moreover ej always

absorbs across a vertex of degree 3. If cj = 0 then cj+aj ≤
2π
15

so let cj =
π
30
. We claim that

in this case we also have cj+aj ≤
2π
15
. The only possible way this fails is if sj−1 = sj+1 =

π
15
,

that is, cj−1 = cj+1 = π
5
. Thus ej = ei+1 of Figure 5.8(vii) and ∆̂ = ∆̂4 of Figure 4.2(iv);

and also ej = ei−1 of Figure 5.8(xvi) and ∆̂ = ∆̂3 of Figure 4.3(vi), (vii). But any attempt
at labelling shows that this is impossible and so our claim follows. Observe further that
any pair of vertices each absorbing more than π

30
cannot coincide. This follows immediately

from the fact that either ci−1 = 0 or ci+1 = 0 or the vertex is given by vi of Figure 5.9(vii)
or vi+1 of Figure 5.9(x) and clearly these cannot coincide. Also observe that if a vertex
vi say absorbs more than 2π

15
from ei or ei−1 (respectively) then it absorbs 0 from ei−1 or

ei (respectively). Therefore any given vertex can absorb at most π
6
+ 0 = π

6
as in Figure

5.9(iv) and (vi), or at most 2π
15

+ π
30

= π
6
. But since any vertex that absorbs curvature has

degree at least 4 and so a deficit of at most −π
6
, statement (i) holds for these cases.

Finally let ei be given by Figure 4.30(i) or (iii) (en6.1). Since d(v) ≥ 4 in both figures it
follows that ei−1 does not absorb any surplus from ei−2. If si+1 >

π
15

then according to the
above it must be absorbed by vi+2, so let si+1 ≤

π
15
. In this case ei−1 absorbs si+ si+1 ≤

2π
15

and statement (i) follows.

(ii) This follows from (i) and the fact that (2− k) + k.2π
3
+ k.2π

15
≤ 0 if and only if k ≥ 10.

�

It follows from Lemma 6.1(ii) that we need only consider type A regions of degree at most
9.

Lemma 6.2 If 7 ≤ d(∆̂) ≤ 9 then (up to cycle-permutation and corner labelling) either
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d(∆̂) = 8 and ∆̂ is given by Figure 6.2(i)-(xi) or d(∆̂) = 9 and ∆̂ is given by Figure
6.2(xii).

Proof. If 7 ≤ d(∆̂) ≤ 9 then ∆̂ is given by Figure 3.6(iv)–(xi). It turns out that there
is (up to cyclic permutation and inversion) exactly one way to label ∆̂ of Figure 3.6(iv),
(v), (ix) and (xi); four ways to label ∆̂ of (vi); six ways to label ∆̂ of (vii); and two ways
to label ∆̂ of (viii) and (x). The resulting set of seventeen labelled regions contains some
repeats with respect to corner labelling and deleting these leaves the twelve ∆̂ of Figure
6.2(i)-(xii). �

Notation Let d(∆̂) = k and suppose that the vertices of ∆̂ are ui (1 ≤ i ≤ k). We
write cv(∆̂) = (a1, . . . , ak), where each ai is a non-negative integer, to denote the fact that
the total amount of curvature ∆̂ receives is bounded above by (a1 + . . . + ak)

π
30

with the

understanding that ai
π
30

is transferred to ∆̂ across the (ui, ui+1)-edge (subscripts mod k).

Notation In the proof of Proposition 6.3 we will use non-negative integers a1, a2, b1, b2,
c1, c2, d1, d2, e1, e2, h1, h2 where: a1 + a2 = 7; b1 + b2 = 8; c1 + c2 = 9; d1 + d2 = 10;
e1 + e2 = 11; and h1 + h2 = 14.

c(∆) = c(d1, . . . , dm) Let m = m1+m2+m3 = 8+k where k ≥ 0 and suppose that ∆
contains m1, m2, m3 vertices of degree 3, 4, 5 (respectively). Then we will use the formula
(here and in the next section)

c(∆) = c(3, . . . , 3, 4, . . . , 4, 5, . . . , 5) = −
(20 + 10k + 5m2 + 8m3)π

30
.

Proposition 6.3 If ∆̂ is a type A region and 7 ≤ d(∆̂) ≤ 9 then c∗(∆̂) ≤ 0.

Proof. It follows from Lemma 6.2 that we need only consider ∆̂ of Figure 6.2 in which the
label α(β) at the edge with endpoints u, v indicates c(u, v) = απ

30
and c(u, v) = βπ

30
when

d(u) = d(v) = 3. We treat each of the twelve cases of Figure 6.2 in turn. (We will make
extensive use of checking and Figures 5.8–5.10. Some details of this will be given, mainly
in Cases 1 and 4.)

Case 1 Let ∆̂ be given by Figure 6.2(i). If c(u1, u2) > 2π
15

then (see Figure 5.8(xvii))
c(u8, u1) = 0; and if π

15
< c(u1, u2) <

π
5
then c(u1, u2) ∈

{

2π
15
, π
10

}

and (see Figures 4.7(iii),
4.10(vii), 4.18(vii), (xi), 4.31(iv), (vii) and 5.2(v), (ix)) either c(u8, u1) = 0 or c(u2, u3) = 0.
(Note that Figure 5.8(xiv) does not apply to ∆̂.) Similar statements hold for each of
(u2, u3), (u3, u4), (u7, u8) and (u8, u1). In particular it follows that c(u7, u8) + c(u8, u1) +
c(u1, u2)+c(u2, u3)+c(u3, u4) ≤

2π
3
. If c(u4, u5) >

2π
15

then (see Figure 5.8(ix)) c(u3, u4) = 0;
if c(u6, u7) >

2π
15

then (see Figure 5.8(i), (vi)) either c(u5, u6) = 0 or c(u7, u8) = 0; and by
Lemma 5.5 (see Figure 5.10(vi)), c(u4, u5)+ c(u5, u6) ≤

7π
15
. Therefore if c(u4, u5) >

2π
15

then

cv(∆̂) = (0, 6, 0, 7, 7, 6, 0, 6); and if c(u4, u5) ≤ 2π
15

then cv(∆̂) = (4, 0, 6, e1, e2, 6, 0, 6) (see

Figure 5.10). So if ∆̂ has at least three vertices of degree > 3 then c∗(∆̂) ≤ −35π
30

+ 33π
30

< 0.

If d(u1) = d(u2) = 3 and c(u1, u2) > 0 then checking shows that ∆̂ is given by ∆̂1 of Figure
5.2(v) or (ix) and c(u1, u2) = 2π

15
. Again similar statements hold for (u2, u3), (u3, u4),
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(u7, u8) and (u8, u1). Suppose that ∆̂ has no vertices of degree > 3. Then c(u4, u5) = 0
and c(u5, u6) = π

15
(see Figure 5.1) so it follows that cv(∆̂) = (4, 0, 4, 0, 2, 4, 4, 0) and

c∗(∆̂) ≤ −2π
3
+ 3π

5
< 0. Suppose that ∆̂ has exactly one vertex of degree > 3. If d(u5) = 3

then c(u4, u5) = 0, c(u5, u6) = π
15

and it follows that cv(∆̂) = (0, 6, 4, 0, 2, 6, 0, 4); and if

d(u5) > 3 then c(u4, u5) = π
30

(see Figures 5.2 and 5.5) so cv(∆̂) = (4, 0, 4, c1, c2, 4, 4, 0).

Therefore c∗(∆̂) ≤ −5π
6
+ 5π

6
= 0. Finally suppose that ∆̂ has exactly two vertices ui, uj

of degree > 3. If d(u5) = 3 then c∗(∆̂) < 0 so it can be assumed without any loss that
i = 5. If j = 1 then c(u8, u1) = 0 and c(u4, u5) > π

30
forces c(u5, u6) = 0 so cv(∆̂) =

(6, 0, 4, c1, c2, 4, 4, 0); if j = 2 then c(u1, u2) = 0 and cv(∆̂) = (0, 6, 4, c1, c2, 6, 0, 4); if
j = 3 then c(u2, u3) = 0 and cv(∆̂) = (4, 0, 6, c1, c2, 4, 4, 0); if j = 4 then c(u3, u4) = 0
and cv(∆̂) = (0, 4, 0, 7, 7, 6, 0, 4); if j = 6 then c(u4, u5) = π

6
, c(u5, u6) = 0 and cv(∆̂) =

(4, 0, 4, 0, 5, 0, 4, 0); if j = 7 then cv(∆̂) = (4, 0, 4, c1, c2, 4, 4, 0); and if j = 8 then c(u7, u8) =
0 and cv(∆̂) = (4, 0, 4, c1, c2, 6, 0, 6). It follows that c

∗(∆̂) ≤ −π + 29π
30

< 0.

Case 2 Let ∆̂ be given by Figure 6.2(ii). If c(u3, u4) > 2π
15

then (d(u3), d(u4)) = (4, 4)
and c(u2, u3) = 0; and if c(u5, u6) > 2π

15
then (d(u5), d(u6)) = (3, 4) and c(u6, u7) = 0.

It follows that if at least three of ui have degree ≥ 4 then c∗(∆̂) ≤ −7π
6

+ 7π
6

= 0,

so assume otherwise. If ∆̂ has no vertices of degree > 3 then we see (from Figure
6.2(ii) and Figure 5.4(iii)) that cv(∆̂) = (0, 4, 0, 0, 0, 4, 6, 0) and c∗(∆̂) ≤ −2π

3
+ 7π

15
< 0.

Let ∆̂ have exactly one vertex ui of degree > 3. Then the following holds. If i = 1
then cv(∆̂) = (3, 5, 0, 0, 0, 4, 6, 2); if i = 2 then cv(∆̂) = (3, 6, 0, 0, 0, 4, 6, 0); if i = 3
then cv(∆̂) = (0, 0, 4, 0, 0, 4, 6, 0); if i = 4 then cv(∆̂) = (0, 4, 4, 0, 0, 4, 6, 0); if i = 5
then cv(∆̂) = (0, 4, 0, 4, 4, 4, 6, 0); if i = 6 then cv(∆̂) = (0, 4, 0, 0, d1, d2, 6, 0); if i = 7
then cv(∆̂) = (0, 4, 0, 0, 0, 6, 6, 0); and if i = 8 then cv(∆̂) = (0, 4, 0, 0, 0, 4, 6, 2). It
follows that c∗(∆̂) ≤ −5π

6
+ 11π

15
< 0. Let ∆̂ have exactly two vertices ui, uj of de-

gree > 3. If d(u3) = d(u4) = d(u5) = 3 or d(u4) = d(u5) = d(u6) = 3 then c∗(∆̂) ≤
−π+ π = 0. This leaves 14 out of 28 cases to be considered. If (i, j) = (1, 4) then cv(∆̂) =
(3, 5, 4, 4, 0, 4, 6, 2); if (i, j) = (1, 5) then cv(∆̂) = (3, 5, 0, 4, 4, 4, 6, 2); if (i, j) = (2, 4) then
cv(∆̂) = (3, 6, 4, 4, 0, 4, 6, 0); if (i, j) = (2, 5) then cv(∆̂) = (3, 6, 0, 4, 4, 4, 6, 0); if (i, j) =
(3, 4) then cv(∆̂) = (0, d1, d2, 4, 0, 4, 6, 0); if (i, j) = (3, 5) then cv(∆̂) = (0, 6, 4, 4, 4, 4, 6, 0);
if (i, j) = (3, 6) then cv(∆̂) = (0, 6, 4, 0, d1, d2, 6, 0); if (i, j) = (4, 5) then cv(∆̂) = (0, 4, 4, 4, 4, 4, 6, 0);
if (i, j) = (4, 6) then cv(∆̂) = (0, 4, 4, 4, d1, d2, 6, 0); if (i, j) = (4, 7) then cv(∆̂) = (0, 4, 4, 4, 0, 6, 6, 0);
if (i, j) = (4, 8) then cv(∆̂) = (0, 4, 4, 4, 0, 4, 6, 2); if (i, j) = (5, 6) then cv(∆̂) = (0, 4, 0, 4, 4, 6, 6, 0);
if (i, j) = (5, 7) then cv(∆̂) = (0, 4, 0, 4, 4, 6, 6, 0); and if (i, j) = (5, 8) then cv(∆̂) =
(0, 4, 0, 4, 4, 4, 6, 2). It follows that c∗(∆̂) ≤ −π + 14π

15
< 0.

Case 3 Let ∆̂ be given by Figure 6.2(iii). If c(u2, u3) >
2π
15

then (d(u2), d(u3)) = (4, 3) and
c(u1, u2) = 0; if c(u4, u5) >

2π
15

then (d(u4), d(u5)) = (4, 4) and c(u3, u4) = 0; if c(u5, u6) >
2π
15

then (d(u5), d(u6)) = (4, 4) and c(u6, u7) = 0; if c(u7, u8) >
2π
15

then (d(u7), d(u8)) = (3, 4)
and c(u8, u1) = 0. Moreover if c(u1, u2) > 2π

15
then d(u2) = 3 and c(u1, u2) = 0; and if

c(u8, u1) >
2π
15

then d(u8) = 3 and c(u7, u8) = 0. It follows that c(u1, u2) + c(u2, u3) ≤
4π
15
;

c(u3, u4)+c(u4, u5) ≤
7π
30
; c(u5, u6)+c(u6, u7) ≤

7π
30
; and c(u7, u8)+c(u8, u1) ≤

4π
15
. Therefore
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if ∆̂ has at least two vertices of degree > 3 then c∗(∆̂) ≤ −π + π = 0. Suppose that ∆̂
contains no vertices of degree > 3. Then we see (from Figure 6.2(iii)) that cv(∆̂) =
(6, 0, 0, 0, 0, 0, 0, 6) and c∗(∆̂) ≤ −2π

3
+ 2π

5
< 0. Let ∆̂ have exactly one vertex ui of degree

> 3. Then the following holds: if i = 1 then cv(∆̂) = (6, 0, 0, 0, 0, 0, 0, 6); if i = 2 then
cv(∆̂) = (b1, b2, 0, 0, 0, 0, 0, 6); if i = 3 then cv(∆̂) = (6, 0, 3, 0, 0, 0, 0, 6); if i = 4 then
cv(∆̂) = (6, 0, 3, 4, 0, 0, 0, 6); if i = 5 then cv(∆̂) = (6, 0, 0, 4, 4, 0, 0, 6); if i = 6 then
cv(∆̂) = (6, 0, 0, 0, 4, 3, 0, 6); if i = 7 then cv(∆̂) = (6, 0, 0, 0, 0, 3, 0, 6); and if i = 8 then
cv(∆̂) = (6, 0, 0, 0, 0, 0, b1, b2). Therefore c∗(∆̂) ≤ −5π

6
+ 2π

3
< 0.

Case 4 Let ∆̂ be given by Figure 6.2(iv). If c(u1, u2) >
2π
15

then c(u2, u3) = 0; if c(u2, u3) >
2π
15

then c(u1, u2) = 0; if c(u8, u1) >
2π
15

then c(u7, u8) = 0; if c(u7, u8) >
2π
15

then c(u8, u1) =
0; if c(u4, u5) =

3π
10

then c(u3, u4) = 0; if c(u4, u5) =
4π
15

then c(u3, u4) =
π
15

(see Figure 5.10);
if c(u5, u6) = 3π

10
then c(u6, u7) = 0; and if c(u5, u6) = 4π

15
then c(u6, u7) = π

15
(see Figure

5.10). It follows that c(u3, u4) + c(u4, u5) + c(u5, u6) + c(u6, u7) =
11π
15

. Therefore c∗(∆̂) ≤

c(∆) + 19π
15

so if ∆̂ has at least four vertices of degree > 3 then c∗(∆̂) < 0. Let ∆̂ have no

vertices of degree > 3. Then cv(∆̂) = (6, 0, 0, 2, 2, 0, 0, 6) and c∗(∆̂) ≤ −2π
3
+ 8π

15
< 0. Let ∆̂

have exactly one vertex ui of degree > 3. If d(u4) = 3 then c(u3, u4) = 0 and c(u4, u5) =
π
15
;

and if d(u6) = 3 then c(u5, u6) = π
15

and c(u6, u7) = 0. Thus if d(u4) = d(u6) = 3 then

c∗(∆̂) ≤ −5π
6
+ 2π

3
< 0; if d(u4) > 3 then cv(∆̂) = (6, 0, e1, e2, 2, 0, 0, 6); and if d(u6) > 3

then cv(∆̂) = (6, 0, 0, 2, e1, e2, 0, 6). Therefore c∗(∆̂) ≤ −5π
6
+ 5π

6
= 0. Let ∆̂ have exactly

two vertices of degree > 3. If d(u4) = 3 or d(u6) = 3 then c∗(∆̂) ≤ −π + 29π
30

< 0 so it
can be assumed that d(u4) > 3 and d(u6) > 3. Then d(u2) = 3 implies d(∆2) > 4 and
c(u2, u3) = 0; and d(u8) = 3 implies d(∆7) > 4 and c(u7, u8) = 0. This then prevents
c(u3, u4) =

2π
15

or c(u6, u7) =
2π
15

(see Figure 4.7(xii) and (xiii)) so c(u3, u4) = c(u7, u8) =
π
15
.

Since c(u1, u2) = c(u8, u1) = π
5
it follows that if c(u4, u5) 6= 4π

15
and c(u5, u6) 6= 4π

15
then

cv(∆̂) = (6, 0, 2, 7, 7, 2, 0, 6) and c∗(∆̂) ≤ −π + π = 0. Suppose that c(u4, u5) = 4π
15
, say.

Then we see from Figure 4.24(vi) and 4.25(iii) that d(v2) = 5 and so c(u3, u4) > 0 implies
that ∆3 = ∆ of Figure 4.23. But d(∆2) > 4 in fact forces ∆3 = ∆ of Figure 4.23(x)
and c(u3, u4) =

π
30
. Similarly if c(u5, u6) =

4π
15

then we see from Figure 4.25(v) and Figure
4.23(x), (xii) that c(u6, u7) = π

30
. It follows that if c(u4, u5) = 4π

15
or c(u5, u6) = 4π

15
then

c∗(∆̂) ≤ −π + π = 0. Finally let ∆̂ have exactly three vertices ui, uj, jk of degree > 3.

Then c(∆̂) ≤ −7π
6
. If d(u2) = d(u8) = 3 then c(u2, u3) = c(u7, u8) = 0 and cv(∆̂) =

(6, 0, e1, e2, e1, e2, 0, 6); if d(u4) = 3 then cv(∆̂) = (b1, b2, 0, 2, e1, e2, b1, b2); and if d(u6) = 3
then cv(∆̂) = (b1, b2, e1, e2, 2, 0, b1, b2). So it can be assumed that (i, j, k) = (2, 4, 6) or
(4, 6, 8) and in both cases c∗(∆̂) ≤ c(∆̂) + 36π

30
. If d(ui) or d(uj) or d(uk) is greater than 4

then c∗(∆̂) < 0 so assume otherwise. But now d(u2) = 4 forces c(u1, u2) = 0 and d(u8) = 4
forces c(u8, u1) = 0. It follows that cv(∆̂) = (0, 7, e1, e2, e1, e2, 0, 6) or (6, 0, e1, e2, e1, e2, 7, 0)
so c∗(∆̂) ≤ −7π

6
+ 7π

6
= 0.

Case 5 Let ∆̂ be given by Figure 6.2(v). If c(u1, u2) =
9π
30

then c(u8, u1) = 0; if c(u1, u2) =
4π
15

then c(u8, u1) =
π
10

(see Figure 5.10); if c(u8, u1) =
3π
10

then c(u1, u2) = 0; if c(u8, u1) =
4π
15

then c(u1, u2) = π
10
; if c(u4, u5) > 2π

15
then c(u3, u4) = 0; and if c(u5, u6) > 2π

15
then
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c(u6, u7) = 0. It follows that c(u8, u1) + c(u1, u2) = 7π
15
; c(u3, u4) + c(u4, u5) = 7π

30
; and

c(u5, u6) + c(u6, u7) =
7π
30

so c∗(∆̂) ≤ c(∆̂) + 16π
15

. Therefore if ∆̂ has at least three vertices

of degree > 3 then c∗(∆̂) < 0. If ∆̂ has no vertices of degree > 3 then we see (from Figure
6.2(v)) that c∗(∆̂) ≤ 2π

3
+ 2π

15
< 0. Observe that if d(u1) = 3 then c(u8, u1)+ c(u1, u2) =

2π
15
;

and if d(u5) = 3 then c(u4, u5) = c(u5, u6) = 0. It follows that if d(u1) = 3 or d(u5) = 3 then
c∗(∆̂) ≤ c(∆̂) + 11π

15
< 0 and so if ∆̂ has exactly one vertex of degree > 3 then c∗(∆̂) < 0.

If ∆̂ has exactly two vertices ui, uj of degree > 3 it can be assumed that (i, j) = (1, 5) in

which case cv(∆̂) = (h1, 0, 0, 7, 7, 0, 0, h2). Therefore c∗(∆̂) ≤ −π + 14π
15

< 0.

Case 6 Let ∆̂ be given by Figure 6.2(vi). If c(u4, u5) =
3π
10

then c(u3, u4) = 0; if c(u4, u5) =
4π
15

then c(u3, u4) =
π
15

(see Figure 5.10); if c(u5, u6) =
3π
10

then c(u6, u7) = 0; if c(u5, u6) =
4π
15

then c(u6, u7) =
π
15
; and as in Case 5, c(u8, u1) + c(u1, u2) =

7π
15
. It follows that c∗(∆̂) ≤

c(∆̂) + 4π
3

so if ∆̂ has at least four vertices of degree > 3 then c∗(∆̂) ≤ 0. Let ∆̂ have no

vertices of degree > 3. Then cv(∆̂) = (2, 0, 0, 2, 2, 0, 0, 2) and c∗(∆̂) ≤ −2π
3
+ 4π

15
< 0. Let

∆̂ have exactly one vertex ui of degree > 3. If i = 1 then cv(∆̂) = (h1, 0, 0, 2, 2, 0, 0, h2); if
i = 2 then cv(∆̂) = (0, 2, 0, 2, 2, 0, 0, 2); if i = 3 then cv(∆̂) = (2, 2, 4, 2, 2, 0, 0, 2); if i = 4
then cv(∆̂) = (2, 0, e1, e2, 2, 0, 0, 2); if i = 5 then cv(∆̂) = (2, 0, 0, 9, 9, 0, 0, 2); if i = 6 then
cv(∆̂) = (2, 0, 0, 2, e1, e2, 0, 2); if i = 7 then cv(∆̂) = (2, 0, 0, 2, 2, 4, 2, 2); and if i = 8 then
cv(∆̂) = (2, 0, 0, 2, 2, 0, 2, 0). Therefore c∗(∆̂) ≤ −5π

6
+ 11π

15
< 0. Let ∆̂ have exactly two

vertices ui, uj of degree > 3. Then c(∆̂) ≤ −π. If d(u1) = 3 then c(u8, u1) = c(u1, u2) =
π
15

and c∗(∆̂) ≤ 0 so it can be assumed that i = 1. If j = 2 then cv(∆̂) = (h1, 2, 0, 2, 2, 0, 0, h2);
if j = 3 then cv(∆̂) = (h1, 2, 4, 2, 2, 0, 0, h2); if j = 4 then cv(∆̂) = (h1, 0, e1, e2, 2, 0, 0, h2);
if j = 5 then cv(∆̂) = (h1, 0, 0, 2, 2, 0, 0, h2); if j = 6 then cv(∆̂) = (h1, 0, 0, 2, e1, e2, 0, h2); if
j = 7 then cv(∆̂) = (h1, 0, 0, 2, 2, 4, 2, h2); and if j = 8 then cv(∆̂) = (h1, 0, 0, 2, 2, 0, 2, h2).
Therefore c∗(∆̂) ≤ −π + 9π

10
< 0. Let ∆̂ have exactly three vertices of degree > 3 so that

c(∆̂) ≤ −7π
6
. If d(u1) = 3 then c∗(∆̂) ≤ −7π

6
+ π; if d(u4) = 3 then c∗(∆̂) ≤ −7π

6
+ 31π

30
;

and if d(u6) = 3 then c∗(∆̂) ≤ 7π
6
+ 31π

30
. So it can be assumed that d(u1) > 3, d(u4) > 3

and d(u6) > 3 in which case cv(∆̂) = (h1, 0, e1, e2, e1, e2, 0, h2). If d(u1) > 4 then c∗(∆̂) ≤
−19

15
π + 18

15
π < 0; whereas if d(u1) = 4 then the fact that d(u2) = d(u8) = 3 means that

l(u1) = bbx−1y forces either c(u1, u2) = 0 or c(u8, u1) = 0 and c∗(∆̂) ≤ −7π
6
+ 31π

30
< 0.

Case 7 Let ∆̂ be given by Figure 6.2(vii). If c(u1, u2) >
2π
15

then d(u1) = 3 and c(u8, u1) =
π
30
; if c(u4, u5) >

2π
15

then c(u5, u6) = 0; if c(u5, u6) >
2π
15

then d(u5) = 3 and c(u4, u5) =
π
30
;

and if c(u8, u1) > 2π
15

then c(u1, u2) = 0. It follows that c(u8, u1) + c(u1, u2) ≤ 4π
15

and

c(u4, u5) + c(u5, u6) ≤ 4π
15
. If ∆̂ has at least two vertices of degree > 3 then c∗(∆̂) ≤

−π + 14π
15

< 0. If ∆̂ has no vertices of degree > 3 then we see (from Figure 6.2(vii)) that

c∗(∆̂) ≤ −2π
3
+ 8π

15
< 0. Let ∆̂ have exactly one vertex of degree > 3. If d(u3) = d(u4) = 3

then c(u3, u4) = 0 and c∗(∆̂) ≤ −5π
6
+ 4π

5
< 0; if d(u3) > 3 then cv(∆̂) = (6, 2, 4, 0, 6, 0, 0, 0);

if d(u4) > 3 then cv(∆̂) = (6, 0, 4, b1, b2, 0, 0, 0); and it follows that c∗(∆̂) ≤ −5π
6
+ 18π

30
< 0.

Case 8 Let ∆̂ be given by Figure 6.2(viii). Then cv(∆̂) = (4, 4, 6, 2, 2, 4, 9, 2) so if ∆̂ has
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at least three vertices of degree 2 then c∗(∆̂) ≤ −7π
6
+ 11π

10
< 0. Note that if d(u2) = 3

then c(u1, u2) = c(u2, u3) = 0 and if d(u7) = 3 then c(u6, u7) = 0. If ∆̂ has no vertices
of degree > 3 then cv(∆̂) = (0, 0, 6, 0, 0, 0, 2, 0) and c∗(∆̂) ≤ −2π

3
+ 4π

15
< 0. Let ∆̂ have

exactly one vertex ui of degree > 3. If i = 1 then cv(∆̂) = (0, 0, 6, 0, 0, 0, 2, 2); if i = 2
then cv(∆̂) = (4, 4, 6, 0, 0, 0, 2, 0); if i = 3 then cv(∆̂) = (0, 0, 6, 0, 0, 0, 2, 0); if i = 4
then cv(∆̂) = (0, 0, 6, 2, 0, 0, 2, 0); if i = 5 then cv(∆̂) = (0, 0, 6, 2, 2, 0, 2, 0); if i = 6 then
cv(∆̂) = (0, 0, 6, 0, 2, 4, 2, 0); if i = 7 then cv(∆̂) = (0, 0, 0, 6, 0, 0, 4, 9, 0); and if i = 8 then
cv(∆̂) = (0, 0, 6, 0, 0, 0, 9, 2). Therefore c∗(∆̂) ≤ −5π

6
+ 19π

30
< 0. Let ∆̂ have exactly two

vertices of degree > 3. If d(u2) = 3 or d(u7) = 3 then c∗(∆̂) ≤ −π + 29π
30

< 0 so assume

that d(u2) > 3 and d(u7) > 3. Then cv(∆̂) = (4, 4, 6, 0, 0, 4, 9, 0) and c∗(∆̂) ≤ −π+ 9π
10

< 0.

Case 9 Let ∆̂ be given by Figure 6.2(ix). If c(u4, u5) > 2π
15

then d(u4) = 4 and
c(u3, u4) = 0; and if c(u6, u7) >

2π
15

then (d(u6), d(u7)) = (4, 4) and c(u7, u8) = 0. It follows

that if at least three of the ui have degree ≥ 4 then c∗(∆̂) ≤ −7π
6
+ 7π

6
= 0, so assume other-

wise. If ∆̂ has no vertices of degree > 3 then we see (from Figure 6.2(ix) and Figure 5.3(iii))
that cv(∆̂) = (0, 6, 4, 0, 0, 0, 4, 0) and c∗(∆̂) ≤ −2π

3
+ 7π

30
< 0. Let ∆̂ have exactly one vertex

ui of degree > 3. Then the following holds. If i = 1 then cv(∆̂) = (2, 6, 4, 0, 0, 0, 5, 3);
if i = 2 then cv(∆̂) = (2, 6, 4, 0, 0, 0, 4, 0); if i = 3 then cv(∆̂) = (0, 6, 6, 0, 0, 0, 4, 0); if
i = 4 then cv(∆̂) = (0, 6, d1, d2, 0, 0, 4, 0); if i = 5 then cv(∆̂) = (0, 6, 4, 4, 4, 0, 4, 0); if
i = 6 then cv(∆̂) = (0, 6, 4, 0, 4, 4, 4, 0); if i = 7 then cv(∆̂) = (0, 6, 4, 0, 0, 4, 6, 0); and
if i = 8 then cv(∆̂) = (0, 6, 4, 0, 0, 0, 6, 3). It follows that c∗(∆̂) ≤ −5π

6
+ 11π

15
< 0.

Let ∆̂ have exactly two vertices ui, uj of degree > 3. If d(u4) = d(u5) = d(u6) = 3 or

d(u5) = d(u6) = d(u7) = 3 then c∗(∆̂) ≤ −π + π = 0. This leaves 14 out of 28 cases to be
considered. If (i, j) = (1, 5) then cv(∆̂) = (2, 6, 4, 4, 4, 0, 5, 3); if (i, j) = (1, 6) then cv(∆̂) =
(2, 6, 4, 0, 4, 4, 5, 3); if (i, j) = (2, 5) then cv(∆̂) = (2, 6, 4, 4, 4, 0, 4, 0); if (i, j) = (2, 6) then
cv(∆̂) = (2, 6, 4, 0, 4, 4, 4, 0); if (i, j) = (3, 5) then cv(∆̂) = (0, 6, 4, 4, 4, 0, 4, 0); if (i, j) =
(3, 6) then cv(∆̂) = (0, 6, 6, 0, 4, 4, 4, 0); if (i, j) = (4, 5) then cv(∆̂) = (0, 6, 4, 4, 4, 0, 4, 0); if
(i, j) = (4, 6) then cv(∆̂) = (0, 6, d1, d2, 4, 4, 4, 0); if (i, j) = (4, 7) then cv(∆̂) = (0, 6, d1, d2, 0, 4, 4, 0);
if (i, j) = (5, 6) then cv(∆̂) = (0, 6, 4, 4, 4, 4, 4, 0); if (i, j) = (5, 7) then cv(∆̂) = (0, 6, 4, 4, 4, 4, 0, 0);
if (i, j) = (5, 8) then cv(∆̂) = (0, 6, 4, 4, 4, 0, 4, 3); if (i, j) = (6, 7) then cv(∆̂) = (0, 6, 4, 0, 4, d1, d2, 0);
and if (i, j) = (6, 8) then cv(∆̂) = (0, 6, 4, 0, 4, 4, 4, 3). It follows that c∗(∆̂) ≤= −π+ 14π

15
<

0.

Case 10 Let ∆̂ be given by Figure 6.2(x). If c(u1, u2) >
2π
15

then (d(u1), d(u2)) = (4, 4)
and c(u8, u1) = 0; if c(u7, u8) > 2π

15
then (d(u7), d(u8)) = (4, 3) and c(u6, u7) = 0; and if

c(u6, u7) >
2π
15

then d(u7) = 3 forcing c(u7, u8) = 0. It follows that c(u8, u1) + c(u1, u2) ≤
7π
30
; and c(u6, u7) + c(u7, u8) ≤ 4π

15
. If ∆̂ has at least three vertices of degree > 3 then

c∗(∆̂) ≤ −7π
6
+ 11π

10
< 0. If ∆̂ has no vertices of degree > 3 then we see (from Figure

6.2(x)) that cv(∆̂) = (0, 0, 6, 6, 0, 6, 0, 0) and c∗(∆̂) ≤ −2π
3
+ 18π

30
< 0. Let ∆̂ have exactly

one vertex ui of degree > 3. Then the following holds. If i = 1 then d(u2) = 3 and so
cv(∆̂) = (0, 0, 6, 6, 0, 6, 0, 3); if i = 2 then d(u1) = 3 and so cv(∆̂) = (0, 4, 6, 6, 0, 6, 0, 0); if
i = 3 then cv(∆̂) = (0, 4, 6, 6, 0, 6, 0, 0); if i = 4 then cv(∆̂) = (0, 0, 6, 6, 0, 6, 0, 0); if i = 5
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then cv(∆̂) = (0, 0, 6, 6, 2, 6, 0, 0); if i = 6 then cv(∆̂) = (0, 0, 6, 6, 2, 6, 0, 0); if i = 7 then
cv(∆̂) = (0, 0, 6, 6, 0, b1, b2, 0); and if i = 8 then d(u7) = 3 so cv(∆̂) = (0, 0, 6, 6, 0, 6, 0, 3).
Therefore c∗(∆̂) ≤ −5π

6
+ 11π

15
< 0. Let ∆̂ have exactly two vertices of degree > 3. If

d(u1) = 3 or d(u2) = 3 then cv(∆̂) = (0, 4, 6, 6, 2, b1, b2, 3) and c∗(∆̂) ≤ −π + 29π
30

< 0.

On the other hand if d(u1) > 3 and d(u2) > 3 then cv(∆̂) = (a1, 4, 6, 6, 0, 6, 0, a2) and
c∗(∆̂) ≤ −π + 29π

30
< 0.

Case 11 Let ∆̂ be given by Figure 6.2(xi). If c(u1, u2) >
2π
15

then d(u8) = 3 and c(u8, u1) =
0; if c(u8, u1) >

2π
15

then c(u1, u2) = 0; and if c(u6, u7) >
2π
15

then c(u7, u8) = 0. It follows that

c∗(∆̂) ≤ c(∆)+ 11π
10

and so if ∆̂ has at least three vertices of degree > 3 then c∗(∆̂) < 0. If ∆̂

has no vertices of degree > 3 then we see (from Figure 6.2(xi)) that c∗(∆̂) ≤ −2π
3
+ 3π

5
< 0.

Let ∆̂ have exactly one vertex ui of degree > 3. If d(u6) = d(u7) = d(u8) = 3 then
c(u5, u6) = c(u6, u7) = c(u7, u8) = 0; if i = 6 then cv(∆̂) = (6, 0, 6, 6, 4, 0, 0, 0); if i = 7
then cv(∆̂) = (6, 0, 6, 6, 0, 0, 3, 0); and if i = 8 then cv(∆̂) = (6, 0, 6, 6, 0, 0, 3, 0). It follows
that c∗(∆̂) ≤ −5π

6
+ 11π

15
< 0. Let ∆̂ have exactly two vertices of degree > 3. If d(u6) = 3

then c(u5, u6) = 0; if d(u7) = 3 then c(u6, u7) = 0; if d(u6) > 3 and d(u7) > 3 then
cv(∆̂) = (6, 0, 6, 6, 4, b1, b2, 0). It follows that c

∗(∆̂) ≤ −π + π = 0.

Case 12 Suppose that ∆̂ has at least one vertex of degree > 4. Using a similar analysis
as done for Case 1, it follows that c∗(∆̂) ≤ −38π

30
+ 36π

30
< 0. Indeed the maximum 36π

30
can

only be obtained when cv(∆̂) = (0, 6, 0, 7, 7, 6, 0, 6, 4, 0). Suppose that ∆̂ has no vertices of
degree > 4 and at least one vertex of degree 4. Then (see Figure 5.8(xvii)) c(ui, uj) =

2π
15

for (i, j) ∈ {(7, 8), (8, 1), (1, 2), (2, 3), (3, 4)}. It follows that c∗(∆̂) ≤ −35π
30

+ 32π
30

< 0,

the maximum 32π
30

being obtained when cv(∆̂) = (0, 4, 0, 7, 7, 6, 0, 4, 4). But if ∆̂ has no

vertices of degree > 3 then c(u4, u5) = 0, c(u5, u6) =
π
15
, cv(∆̂) = (4, 0, 4, 0, 2, 6, 0, 4, 0) and

c∗(∆̂) ≤ −π + 2π
3
< 0 and this completes the proof. �

7 Regions of Type B

Let ∆̂ be a type B region. Therefore ∆̂ is given by Figure 4.6 and in particular d(∆̂) ≥ 8.
A b-segment of ∆̂ of length k is a sequence of edges e1, . . . , ek of ∆̂ maximal with respect
to each vertex having degree 3 with vertex label a(aλ)(b−1µ) = axy−1 and which (up to
inversion) contribute one of four possible alternating sequences to the corner labelling of
∆̂, namely: x−1, y−1, . . . , x−1, y−1; x−1, y−1, . . . , y−1, x−1; y−1, x−1; y−1, x−1, . . . , y−1, x−1;
y−1, x−1, . . . , x−1, y−1. An example showing the first sequence is given in Figure 7.1(i) and
so maximal in this case means that either d(u0) > 3 or d(u0) = 3 but does not extend
the sequence to ȳ, x̄, ȳ, . . . , x̄, ȳ; and that either d(uk+1) > 3 or d(uk+1) = 3 but does not
extend the sequence to x̄, ȳ, . . . , x̄, ȳ, x̄. Since ∆̂ is of type B, it must contain at least one
b-segment in which at least one of the regions ∆i (1 ≤ i ≤ k) is given by the region ∆ in
Figure 4.6 and we will from now on call such a region ∆i a b-region. Therefore a b-region
contributes up to π

3
to ∆̂. (If ∆i is not a b-region then it contributes up to π

5
to ∆̂.)
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The absorption rules for edges and vertices described in §6 apply also to ∆̂. Since ∆̂ is
a type B region Figures 4.27–4.29 must also be considered. In Figures 4.27 and 4.28 ∆̂
receives π

5
, 2π
15

from ∆1,∆2 so the vertex of degree 4 with label b−1b−1y−1x is used to absorb
π
15
; and in Figure 4.29 ∆̂ receives π

5
across an edge, e say, but checking Figures 5.1-5.5

shows that ∆̂ receives no curvature from ∆̂1 across the neighbouring edge which is used to
absorb π

15
noting from Figure 4.29 that this is all the curvature that this edge will absorb

(relative to curvature transferred to ∆̂).

It follows from the above paragraph and the proof of Lemma 6.1 that if the b-segments
containing at least one b-region of ∆̂ contribute a total of n1 edges to ∆̂ then putting
n = n1 + n2,

c∗(∆̂) ≤ (2− (n1 + n2))π + 2(n1 + n2)
π

3
+ n1

π

3
+ n2

2π

15
= π

(

2−
n2

5

)

. (†)

Therefore if n2 ≥ 10 then c∗(∆̂) ≤ 0. The next result improves this bound slightly.

Lemma 7.1 If n2 ≥ 9 and ∆̂ is not given by Figure 7.2 (in which the b-segment contains
at least one b-region) then c∗(∆̂) ≤ 0.

Proof. We will show that the existence of a b-segment in which at least one ∆i (1 ≤ i ≤ k)
is a b-region allows us to decrease the upper bound (†) for c∗(∆̂) given above. First consider
the region ∆0 of Figure 7.1(i) or (ii).

In each case if ∆1 is not a b-region then ∆̂ receives at most π
5
from ∆1 and the upper bound

for c∗(∆̂) is reduced by at least π
3
− π

5
= 2π

15
, so assume the ∆1 is a b-region. In particular e0

absorbs no positive curvature from ∆1 (in the sense described in the proof of Lemma 6.1).
Let d(u0) ≥ 5 and so u0 can absorb at least 2π

3
− 2π

5
= 4π

15
. Since ∆̂ then receives at most

π
15

from ∆0 (see Figure 4.33(ii)) and since the maximum amount any vertex, in particular

u0 absorbs from ∆−1 is π
6
, u0 can absorb the π

15
crossing e0 and so c∗(∆̂) is reduced by at

least 2π
15
. Let d(u0) = 4 and so u0 can absorb 2π

3
− π

2
= π

6
. If the total curvature ∆̂ receives

across e0 and e−1 is at most 3π
10

then c∗(∆̂) is reduced by at least 2π
15
, so assume otherwise.

In particular ∆̂ must receive curvature from ∆0 which forces l(u0) to be as shown in Figure
7.1(iii) and (iv) and so (see Figure 4.33(i)) ∆̂ receives at most 2π

15
from ∆0. To exceed

a total of 3π
10
, therefore, it follows that ∆̂ must receive at least π

5
across e−1 and so (see

Figure 5.8) l(u−1) must be as shown in Figures 7.1(iii) and (iv) and in these figures the
maximum combination ∆̂ can receive across e−1, e0 is 7π

30
, 2π

15
(see Figure 5.10), therefore

c∗(∆̂) is reduced by at least π
15
. Let d(u0) = 3. Then labelling shows that d(∆0) ≥ 6 and

d(∆−1) ≥ 6 and checking Figures 5.1-5.5 shows that ∆̂ does not receive curvature across
e0 and at most 2π

15
across e−1 so c∗(∆̂) is reduced by at least 2π

15
. Note that we use the fact

that l(u0) 6= axy−1 in Figure 7.1(i) or (ii) for otherwise the b-segment would be extended,
a contradiction.

Now consider the region ∆̂k+1 of Figure 7.1(i) and (v). Again if ∆k is not a b-region
then c∗(∆̂) is reduced by 2π

15
so assume otherwise. In particular ek+1 absorbs no positive
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curvature from ∆k. Moreover, if ∆k is given by ∆1 of Figure 4.30(i) or (iii) (Configuration
E, F) then c∗(∆̂) is again reduced by π

5
, so assume otherwise, in particular uk+2 is not given

by Figure 4.30(i) or (iii). Let d(uk+2) ≥ 5 and so uk+2 can absorb 4π
15
. Since ∆̂ then receives

at most π
15

from ∆k+1 and since the maximum amount uk+1 absorbs from ∆k+2 is π
6
, uk+2

can absorb the π
15

crossing ek+1 and so c∗(∆̂) is reduced by at least 2π
15
. Let d(uk+2) = 4

and so uk+2 can absorb π
6
. If ∆̂ does not receive curvature from ∆k+1 then c∗(∆̂) is reduced

by 2π
15
; otherwise checking possible vertex labels for uk+2 shows that l(uk+2) = aazµ and

∆̂ receives at most 7π
30

in total across ek+1 and 0 across ek+2, so c∗(∆̂) is reduced by 2π
15
.

Let d(uk+2) = 3 and so using the maximality of the b-segment and the fact that uk+2 is
not given by Figure 4.30(i) or (iii) it follows that l(uk+2) must be as shown in Figures
7.1(vi) and (vii). Then d(∆k+1) ≥ 6 and checking Figures 5.1-5.5 shows that ∆̂ does not
receive curvature from ∆k+1. It follows that c∗(∆̂) is reduced by 2π

15
except possibly when

d(uk+3) = 3 and ∆̂ receives π
6
or π

5
from ∆k+2 (see Figure 5.8). There are four cases. Two

(see Figures 5.8(i), (ii), (vi) and (xv)) are given by Figure 7.1(vi) and (vii) where ∆̂ can
receive π

5
from ∆k+2 and c∗(∆̂) is reduced by π

15
; and two (see Figures 5.8(xiii) and (xiv))

are given by Figures 5.3(iii) and 5.4(iii) in which the region ∆̂2, ∆̂1, ∆2 (respectively)
plays the role of the region ∆̂1, ∆k+2, ∆k+3 (respectively) which implies, in particular, that
d(uk+4) = 4 in Figures 7.1(vi) and (vii). In each of these last two cases ∆̂ receives π

6
from

∆k+2 and π
10

from ∆k+3, and since d(uk+4) = 4 it follows that c∗(∆̂) is reduced by 2π
15
.

It follows from the above that if the b-segment of Figure 7.1(i) is not given by Figure 7.2
then there is a reduction of π

15
+ 2π

15
= 3π

15
to c∗(∆̂) (if ek+2 = e0 the reduction is also 3π

35
)

therefore c∗(∆̂) ≤ π
(

2− n2

5

)

− 3π
15

and so n2 ≥ 9 ⇒ c∗(∆̂) ≤ 0. �

Lemma 7.2 Let ∆̂ be a type B region such that d(∆̂) ≥ 10.

(i) If ∆̂ has exactly three b-segments that contain a b-region then n2 ≥ 8.

Assume now that ∆̂ has exactly two b-segments B1 and B2 that contain a b-region as shown
in Figure 7.3(i) and assume that (m,n) ∈ {(2, j) (2 ≤ j ≤ 6), (3, 3), (3, 4), (3, 5), (4, 4)}
where m,n are given by Figure 7.3(i).

(ii) ∆̂ must contain a shadow edge with an endpoint in B1 and the other endpoint in B2

except when ∆̂ is given by Figure 7.3(ii)-(v).

(iii) If v ∈ ∆̂ is a vertex of B1 or B2 and (m,n) 6= (2, 6) then i deg(v) = 1 where i deg(v)
denotes the number of shadow edges in ∆̂ incident at v.

(iv) If (m,n) ∈ {(3, 3), (3, 4), (3, 5), (4, 4)} and ∆̂ is not given by Figure 7.3(ii)-(v) there
must be a shadow edge in ∆̂ either from 1 to B2 or from 4 to B1; and there must be
a shadow edge in ∆̂ either from 2 to B2 or from 3 to B1.

Finally assume that ∆̂ has exactly one b-segment containing a b-region.
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(v) If n2 ≤ 8 then ∆̂ is given by Figure 7.4.

(vi) If n2 = 9 and ∆̂ is given by Figure 7.2 then ∆̂ is one of the regions of 7.5.

Proof. See Appendix. �

Notation Throughout the following proofs we will use non-negative integers
a1, a2, b1, b2, c1, c2, d1, d2, e1, e2, f1, f2 where: a1+a2 = 7; b1+b2 = 8; c1+c2 = 9; d1+d2 = 10;
e1 + e2 = 11; and f1 + f2 = 12.

Proposition 7.3 Let ∆̂ be a type B region. If d(∆̂) < 10 then c∗(∆̂) ≤ 0.

Proof. If d(∆̂) < 10 then ∆̂ is given by Figure 6.2(viii), (x) or (xi).

Case 1 Let ∆̂ be given by Figure 6.2(viii) in which it is now assumed that d(u3) =
d(u4) = 3. Then cv(∆̂) = (4, 4, 10, 2, 2, e1, e2, 2) so c∗(∆̂) ≤ c(∆̂) + 7π

6
and if ∆̂ has

at least three vertices of degree ≥ 4 then c∗(∆̂) ≤ 0. If ∆̂ has no vertices of degree
> 3 then cv(∆̂) = (0, 0, 10, 0, 0, 0, 2, 0) and c∗(∆̂) ≤ −2π

3
+ 2π

5
< 0. Let ∆̂ have exactly

one vertex ui of degree > 3. If i = 1 then cv(∆̂) = (4, 0, 10, 0, 0, 0, 2, 2); if i = 2 then
cv(∆̂) = (4, 4, 10, 0, 0, 0, 2, 0); if i = 5 then cv(∆̂) = (0, 0, 10, 2, 2, 0, 2, 0); if i = 6 then
cv(∆̂) = (0, 0, 10, 0, 2, 4, 2, 0); if i = 7 then cv(∆̂) = (0, 0, 10, 0, 0, e1, e2, 0); and if i = 8
then cv(∆̂) = (0, 0, 10, 0, 0, 0, 9, 2). It follows that c∗(∆̂) ≤ −5π

6
+ 21π

30
< 0. Let ∆̂ have

exactly two vertices ui, uj of degree > 3. If d(u7) = 3 then cv(∆̂) = (4, 4, 10, 2, 2, 4, 2, 2)

and c∗(∆̂) ≤ −π + π = 0 so assume i = 7. If j = 1 then cv(∆̂) = (4, 0, 10, 0, 0, e1, e2, 2); if
j = 2 then cv(∆̂) = (4, 4, 10, 0, 0, e1, e2, 0); if j = 5 then cv(∆̂) = (0, 0, 10, 2, 2, e1, e2, 0); if
j = 6 then cv(∆̂) = (0, 0, 10, 0, 2, e1, e2, 0); and if j = 8 then cv(∆̂) = (0, 0, 10, 0, 0, e1, e2, 2).
It follows that c∗(∆̂) ≤ −π + 29π

30
< 0.

Remark The next case will involve the first use of Configurations E and F in Figure
4.30. If d(u) > 4 in Figure 4.30(i), (iii) then c(∆1) ≤ c(3, 3, 4, 5) = 7π

30
is added to c(∆̂);

and if d(u) > 4 in Figure 4.30(ii), (iv) then (see Figure 5.8) at most π
5
is added to c(∆̂)

from c(∆1).

Case 2 Let ∆̂ be given by Figure 6.2(x) in which it is now assumed that d(u4) = 3
and at least one of d(u3), d(u5) equals 3. Then cv(∆̂) = (a2, 4, 10, 10, 2, b1, b2, a1), so
c∗(∆̂) ≤ c(∆̂) + 41π

30
and if ∆̂ has at least four vertices of degree > 3 then c∗(∆̂) ≤ 0.

Note also that if d(u5) = d(u6) = 3, d(u) = 4 and ∆̂ receives more than 2π
15

across the

(u4, u5)-edge then π
5
is distributed from ∆̂ according to Configuration E in Figure 4.30.

If ∆̂ has no vertices of degree > 3 then either d(u) = 4, cv(∆̂) = (0, 0, 10, 10, 0, 6, 0, 0)
and c∗(∆̂) ≤ −2π

3
+ 13π

15
− π

5
= 0 or d(u) > 4, cv(∆̂) = (0, 0, 7, 7, 0, 6, 0, 0) and c∗(∆̂) ≤

−2π
3
+ 2π

3
= 0. Let ∆̂ have exactly one vertex ui of degree > 3 and assume that d(u) = 4.

If i = 1 then cv(∆̂) = (0, 0, 10, 10, 0, 6, 0, 3); if i = 2 then cv(∆̂) = (x1, y1, 10, 10, 0, 6, 0, 0)
(x1 + y1 = 4, since l(u1) = bµz, l(u2) = bbx−1y and l(u3) = axy−1); if i = 3 then cv(∆̂) =
(0, 0, 6, 10, 0, 6, 0, 0); if i = 5 then cv(∆̂) = (0, 0, 10, 6, 2, 6, 0, 0); if i = 6 and d(u6) = 4 then
cv(∆̂) = (0, 0, 10, 10, 2, 0, 0, 0); if i = 6 and d(u6) > 4 then cv(∆̂) = (0, 0, 10, 10, 2, 2, 0, 0);
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if i = 7 then cv(∆̂) = (0, 0, 10, 10, 0, 6, 4); and if i = 8 then cv(∆̂) = (0, 0, 10, 10, 0, 6, 0, 3).
It follows that if d(u5) = d(u6) = 3 then c∗(∆̂) ≤ −5π

6
+ π − π

5
< 0; if d(u5) > 3 or

d(u6) = 4 then c∗(∆̂) ≤ −5π
6
+ 22π

30
< 0; and if d(u6) > 4 then c∗(∆̂) ≤ −14π

15
+ 24π

30
< 0.

If now d(u) > 4 then each cv(∆̂) is altered by replacing each 10 by 7 and it follows
that c∗(∆̂) ≤ −5π

6
+ 24π

30
< 0. Let ∆̂ have exactly two vertices ui, uj of degree > 3

and assume that d(u) = 4. If (i, j) = (1, 2) then cv(∆̂) = (a2, 4, 10, 10, 0, 6, 0, a1) and
so if d(u1) > 4 or d(u2) > 4 then c∗(∆̂) ≤ −11π

10
+ 37π

30
− π

5
< 0; and if d(u1) =

d(u2) = 4 then c(u8, u1) = 0 and, moreover, c(u1, u2) > 2π
15

implies c(u2, u3) = 0 so

cv(∆̂) = (b1, b2, 10, 10, 0, 6, 0, 0) and c∗(∆̂ ≤ −π + 17π
15

− π
5
< 0. If (i, j) = (1, 3) then

cv(∆̂) = (0, 0, 6, 10, 0, 6, 0, 3); if (i, j) = (1, 5) then cv(∆̂) = (0, 0, 10, 6, 2, 6, 0, 3); if (i, j) =
(1, 6) and d(u6) = 4 then cv(∆̂) = (0, 0, 10, 10, 2, 0, 0, 3); if (i, j) = (1, 6) and d(u6) > 4
then cv(∆̂) = (0, 0, 10, 10, 2, 2, 0, 3); if (i, j) = (1, 7) then cv(∆̂) = (0, 0, 10, 10, 0, b1, b2, 3);
if (i, j) = (1, 8) then cv(∆̂) = (0, 0, 10, 10, 0, 6, 0, 3); if (i, j) = (2, 3) then cv(∆̂) =
(x1, y1, 6, 10, 0, 6, 0, 0); if (i, j) = (2, 5) then cv(∆̂) = (x1, y1, 10, 6, 2, 6, 0, 0); if (i, j) = (2, 6)
and d(u6) = 4 then cv(∆̂) = (x1, y1, 10, 10, 2, 0, 0, 0); if (i, j) = (2, 6) and d(u6) > 4 then
cv(∆̂) = (x1, y1, 10, 10, 2, 2, 0, 3); if (i, j) = (2, 7) then cv(∆̂) = (x1, y1, 10, 10, 0, b1, b2, 0);
if (i, j) = (2, 8) then cv(∆̂) = (x1, y1, 10, 10, 0, 6, 0, 3); if (i, j) = (3, 6) then cv(∆̂) =
(0, 0, 6, 10, 2, 6, 0, 0); if (i, j) = (3, 7) then cv(∆̂) = (0, 0, 6, 10, 0, b1, b2, 0); if (i, j) = (3, 8)
then cv(∆̂) = (0, 0, 6, 10, 0, 6, 0, 3); if (i, j) = (5, 6) then cv(∆̂) = (0, 0, 10, 6, 2, 6, 0, 0);
if (i, j) = (5, 7) then cv(∆̂) = (0, 0, 10, 6, 2, b1, b2, 0); if (i, j) = (5, 8) then cv(∆̂) =
(0, 0, 10, 6, 2, 6, 0, 3); if (i, j) = (6, 7) then cv(∆̂) = (0, 0, 10, 10, 2, b1, b2, 0); if (i, j) = (6, 8)
and d(u6) = 4 then cv(∆̂) = (0, 0, 10, 10, 2, 0, 0, 3); if (i, j) = (6, 8) and d(u6) > 4 then
cv(∆̂) = (0, 0, 10, 10, 2, 2, 0, 3); and if (i, j) = (7, 8) then cv(∆̂) = (0, 0, 10, 10, 0, b1, b2, 3).
It follows that if (i, j) 6= (1, 2) and if d(u5) = d(u6) = 3 then c∗(∆̂) ≤ −π + 11π

10
− π

5
< 0;

if d(u5) > 3 or d(u6) = 4 then c∗(∆̂) ≤ −π + π = 0; and if d(u6) > 4 then c∗(∆̂) ≤
−11π

10
+ 31π

30
< 0. If now d(u) > 4 then, as before, replacing each 10 by 7 in the above

yields c∗(∆̂) ≤ −π + 28π
30

< 0 except when (i, j) = (1, 2) and either d(u1) > 4 or d(u2) > 4

and c∗(∆̂) ≤ −11π
10

+ 31π
30

< 0. Let ∆̂ have exactly three vertices ui, uj, uk of degree > 3.

If d(u2) = 3 then cv(∆̂) = (0, 0, 10, 10, 2, b1, b2, 3) and c∗(∆̂) ≤ −7π
6
+ 11π

10
< 0; and if

d(u5) = d(u6) = 3 then c∗(∆̂) ≤ −7π
6
+ 41π

30
− π

5
= 0, so assume otherwise. If d(u3) = 4 then

c(u3, u4) = 0 and if d(u3) ≥ 5 then c(u3, u4) =
π
15
, and in both cases c∗(∆̂ ≤ 0. Similarly if

d(u5) 6= 3 then c∗(∆̂) ≤ 0, so it can be assumed that d(u3) = d(u5) = 3. If (i, j, k) = (1, 2, 6)
and d(u6) = 4 then cv(∆̂) = (a2, 4, 10, 10, 2, 0, 0, a1) and c∗(∆̂) ≤ −7π

6
+ 11π

10
< 0; and

if d(u6) > 4 then cv(∆̂) = (a2, 4, 10, 10, 2, 2, 0, a1) and c∗(∆̂) ≤ −19π
15

+ 7π
6

< 0. If

(i, j, k) = (2, 6, 7) then cv(∆̂) = (0, 4, 10, 10, 2, b1, b2, 0); and if (i, j, k) = (2, 6, 8) then
cv(∆̂) = (0, 4, 10, 10, 2, 6, 0, 3). In both cases c∗(∆̂) ≤ 0. Finally let ∆̂ have exactly four
vertices of degree > 3. If d(u3) 6= 3 or d(u5) 6= 3 or if any vertex has degree > 4 or if any of
u1, u2, u6 or u7 has degree 3 then clearly c∗(∆̂) ≤ 0, so assume otherwise. But this forces
the assumption d(u1) = 4 which implies c(u8, u1) = 0 and c∗(∆̂) < 0.

Case 3 Let ∆̂ be given by Figure 6.2(xi). Then as noted in Case 11 of the proof of
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Lemma 6.3, c(u8, u1) + c(u1, u2) ≤
8π
30
, c(u8, u1) + c(u1, u2) + c(u2, u3) ≤

π
3
and c(u6, u7) +

c(u7, u8) ≤ 7π
30
; so c∗(∆̂) ≤ c(∆̂) + 41π

30
. Moreover if d(u2) = d(u3) = 3, d(u) = 4 and

∆̂ receives more than 2π
15

across the (u4, u5)-edge then π
5
is distributed from ∆̂ accord-

ing to Configuration F of Figure 4.30. If ∆̂ has no vertices of degree > 3 then either
d(u) = 4, cv(∆̂) = (6, 0, 10, 10, 0, 0, 0, 0) and c∗(∆̂) ≤ −2π

3
+ 13π

15
− π

5
= 0 or d(u) > 4,

cv(∆̂) = (6, 0, 7, 7, 0, 0, 0, 0) and c∗(∆̂) ≤ −2π
3
+ 2π

3
− 0. Let ∆̂ have exactly one vertex ui

of degree > 3 and assume that d(u) = 4. If i = 1 then cv(∆̂) = (b2, 0, 10, 10, 0, 0, 0, b1);
if i = 2 and d(u2) = 4 then c(u1, u2) = 0 and cv(∆̂) = (0, 2, 10, 10, 0, 0, 0, 0); if i = 2 and
d(u2) > 4 then cv(∆̂) = (2, 2, 10, 10, 0, 0, 0, 0); if i = 3 then cv(∆̂) = (6, 2, 6, 10, 0, 0, 0, 0);
if i = 5 then cv(∆̂) = (6, 0, 10, 6, 0, 0, 0, 0); if i = 6 then cv(∆̂) = (6, 0, 10, 10, x1, y1, 0, 0)
(x1 + y1 = 4, since l(u5) = axy−1, l(u6) = bbx−1y and l(u7) = bµz); if i = 7 then
cv(∆̂) = (6, 0, 10, 10, 0, 0, 3, 0); if i = 8 and d(u8) = 4 then cv(∆̂) = (6, 0, 10, 10, 0, 0, 3, 0);
and if i = 8 and d(u8) > 4 then cv(∆̂) = (6, 0, 10, 10, 0, 0, 2, 2). In each case c∗(∆̂) ≤
0 when (d(u2), d(u3)) 6= (3, 3); and if d(u2) = d(u3) = 3 then c∗(∆̂) ≤ −5π

6
+ π −

π
5

< 0. If now d(u) > 4 then replacing each 10 by 7 in the above yields c∗(∆̂) ≤

−5π
6
+ 24π

30
< 0. Let ∆̂ have exactly two vertices ui, uj of degree > 3 and assume that

d(u) = 4. If (i, j) = (1, 2) then cv(∆̂) = (b2, 2, 10, 10, 0, 0, 0, b1); if (i, j) = (1, 3) then
cv(∆̂) = (b2, 2, 6, 10, 0, 0, 0, b1); if (i, j) = (1, 5) then cv(∆̂) = (b2, 0, 10, 6, 0, 0, 0, b1); if
(i, j) = (1, 6) then cv(∆̂) = (b2, 0, 10, 10, x1, y1, 0, b1); if (i, j) = (1, 7) then cv(∆̂) =
(b2, 0, 10, 10, 0, a1, a2, b1); if (i, j) = (1, 8) then cv(∆̂) = (b2, 0, 10, 10, 0, 0, 3, b1); if (i, j) =
(2, 3) then cv(∆̂) = (6, 2, 6, 10, 0, 0, 0, 0); if (i, j) = (2, 5) then cv(∆̂) = (6, 2, 10, 6, 0, 0, 0, 0);
if (i, j) = (2, 6) and d(u2) = 4 then cv(∆̂) = (0, 2, 10, 10, x1, y1, 0, 0); if (i, j) = (2, 6)
and d(u2) > 4 then cv(∆̂) = (2, 2, 10, 10, x1, y1, 0, 0); if (i, j) = (2, 7) and d(u2) = 4
then cv(∆̂) = c(0, 2, 10, 10, 0, 0, 3, 0); if (i, j) = (2, 7) and d(u2) > 4 then cv(∆̂) =
c(2, 2, 10, 10, 0, 0, 3, 0); if (i, j) = (2, 8) and d(u2) = 4 then cv(∆̂) = (0, 2, 10, 10, 0, 0, 3, 0);
if (i, j) = (2, 8) and d(u2) > 4 then cv(∆̂) = (2, 2, 10, 10, 0, 0, 3, 0); if (i, j) = (3, 6) then
cv(∆̂) = (6, 2, 6, 10, x1, y1, 0, 0); if (i, j) = (3, 7) then cv(∆̂) = (6, 2, 6, 10, 0, 0, 3, 0); if (i, j) =
(3, 8) then cv(∆̂) = (6, 2, 6, 10, 0, 0, 3, 0); if (i, j) = (5, 6) then cv(∆̂) = (6, 0, 10, 6, x1, y1, 0, 0);
if (i, j) = (5, 7) then cv(∆̂) = (6, 0, 10, 6, 0, 0, 3, 0); if (i, j) = (5, 8) then cv(∆̂) = (6, 0, 10, 6, 0, 0, 3, 0);
if (i, j) = (6, 7) and d(u6) 6= 4 or d(u7) 6= 4 then cv(∆̂) = (6, 0, 10, 10, z1, z2, z3, 0)
(z1 + z2 + z3 = 10, see Figure 4.33(ii)); if (i, j) = (6, 7) and d(u6) = d(u7) = 4 then
cv(∆̂) = (6, 0, 10, 10, a1, a2, 0, 0); if (i, j) = (6, 8) then cv(∆̂) = (6, 0, 10, 10, x1, y1, 3, 0);
and if (i, j) = (7, 8) then cv(∆̂) = (6, 0, 10, 10, 0, 0, 3, 0). In each case either c∗(∆̂) ≤
c(∆) + π ≤ 0 or c∗(∆̂) ≤ c(∆) + 6π

5
− π

5
≤ 0. If now d(u) > 4 then replacing each

10 by 7 in the above yields c∗(∆̂) ≤ −π + π = 0. Let ∆̂ have exactly three vertices
ui, uj, uk of degree > 3. If d(u6) = 3 then cv(∆̂) = (b2, 2, 10, 10, 0, 0, 3, b1); if d(u3) = 4
then c(u3, u4) = 0 or if d(u3) > 4 then c(u3, u4) = π

15
; if d(u5) = 4 then c(u4, u5) = 0

or if d(u5) > 4 then c(u4, u5) = π
15
; and if d(u2) = d(u3) = 3, d(u) = 4 and ∆̂ receives

more than 2π
15

across the (u2, u3)-edge then π
5
is distributed from ∆̂. If d(u2) = d(u3) = 3

and d(u4) > 4 then cv(∆̂) = (z1, z2, 7, 7, 4, a1, a2, z3) = 35π
30

(where z1 + z2 + z3 = 10).

It follows that c∗(∆̂) ≤ 0 in each case, so assume otherwise. If (i, j, k) = (6, 2, 7) and
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d(u2) = 4 then cv(∆̂) = (0, 2, 10, 10, 4, a1, a2, 0); if (i, j, k) = (6, 2, 7) and d(u2) > 4 then
cv(∆̂) = (2, 2, 10, 10, 4, a1, a2, 0); if (i, j, k) = (6, 2, 8) then cv(∆̂) = (6, 2, 10, 10, 4, 0, 3, 0);
and if (i, j, k) = (6, 2, 1) then cv(∆̂) = (b2, 2, 10, 10, 4, 0, 0, b1). In each case c∗(∆̂) ≤ 0
so assume that ∆̂ has exactly four vertices of degree > 3. It is clear that if d(u3) 6= 3
or d(u5) 6= 3 or any of u1, u2, u6, u7 has degree 3 or at least 5 then c∗(∆̂) ≤ 0; otherwise
d(u1) = 4 which implies c(u1, u2) = 0 and c∗(∆̂) ≤ 0. �

Proposition 7.4 Let ∆̂ be a type B region. If ∆̂ is given by Figure 7.3(ii)-(v), 7.4 or 7.5
then c∗(∆̂) ≤ 0.

Proof. Let ∆̂ be given by Figure 7.3(ii)-(v). Then (up to cyclic permutation and inversion)
there are two ways to label each of (ii) and (iii); and one way to label each of (iv) and (v)
and so ∆̂ is given by Figure 7.6. There are six cases.

Case 1 (7.6) Let ∆̂ be given by Figure 7.6(i) in which (it can be seen from Figure 7.3(ii)
that) d(u1) = d(u2) = d(u3) = d(u7) = d(u8) = 3 and d(u6) > 3. Then cv(∆̂) =
(10, 10, 2, d1, d2, 6, 10, 4, a1, a2) so c∗(∆̂) ≤ c(∆̂) + 59π

30
. Let ∆̂ have exactly one vertex u6

of degree > 3. Then cv(∆̂) = (10, 10, 0, 6, 0, 6, 10, 0, 0, 0) and c∗(∆̂) ≤ −45π
30

+ 42π
30

< 0. Let ∆̂

have exactly two vertices u6, ui of degree> 3. If i = 4 then cv(∆̂) = (10, 10, 2, 6, 0, 6, 10, 0, 0, 0);
if i = 5 then cv(∆̂) = (10, 10, 0, d1, d2, 6, 10, 0, 0, 0); if i = 9 then cv(∆̂) =
(10, 10, 0, 6, 0, 6, 10, 4, 2, 0); and if i = 10 then cv(∆̂) = (10, 10, 0, 6, 0, 6, 10, 0, a1, a2). It
follows that c∗(∆̂) ≤ −50π

30
+ 49π

30
< 0. Let ∆̂ have exactly three vertices u6, ui, uj of degree

> 3. If d(u5) = 3 then cv(∆̂) = (10, 10, 2, 6, 0, 6, 10, 4, a1, a2); if d(u10) = 3 then cv(∆̂) =
(10, 10, 2, d1, d2, 6, 10, 4, 2, 0); and if (i, j) = (5, 10) then cv(∆̂) = (10, 10, 0, d1, d2, 6, 10, 0, a1, a2).
It follows that c∗(∆̂) ≤ −55π

30
+ 55π

30
= 0. If ∆̂ has more than three vertices of degree > 3

then c∗(∆̂) ≤ −60π
30

+ 59π
30

< 0.

Case 2 (7.6) Let ∆̂ be given by Figure 7.6(ii) in which d(u1) = d(u2) = d(u3) = d(u7) =
d(u8) = 3 and d(u6) > 3. Then cv(∆̂) =
(10, 10, 4, a1, a2, 6, 10, 2, d1, d2) so c∗(∆̂) ≤ c(∆̂) + 59π

30
. Let ∆̂ have exactly one vertex u6 of

degree > 3. Then cv(∆̂) = (10, 10, 0, 0, 3, 6, 10, 0, 6, 0) and c∗(∆̂) ≤ −45π
30

+ 45π
30

= 0. Let ∆̂

have exactly two vertices u6, ui of degree > 3. If i = 4 and d(u6) = 4 then cv(∆̂) =
(10, 10, 4, 2, 3, 0, 10, 0, 6, 0); if i = 4 and d(u6) > 4 then cv(∆̂) =
(10, 10, 4, 2, 2, 2, 10, 0, 6, 0); if i = 5 then cv(∆̂) = (10, 10, 0, a1, a2, 6, 10, 0, 6, 0); if i = 9 then
cv(∆̂) = (10, 10, 0, 0, 3, 6, 10, 2, 6, 0); and if i = 10 then cv(∆̂) =
(10, 10, 0, 0, 3, 6, 10, 0, d1, d2). It follows that either c∗(∆̂) ≤ −50π

30
+ 49π

30
< 0 or c∗(∆̂) ≤

−53π
30

+ 46π
30

< 0. Let ∆̂ have exactly three vertices u6, ui, uj of degree > 3. If d(u10) = 3

then cv(∆̂) = (10, 10, 4, a1, a2, 6, 10, 2, 6, 0) and c∗(∆̂) ≤ −55π
30

+ 55π
30

= 0, so assume i = 10

and j ∈ {4, 5, 9}. If j = 4 then cv(∆̂) = (10, 10, 4, 2, 3, 6, 10, 0, d1, d2); if j = 5 then cv(∆̂) =
(10, 10, 0, a1, a2, 6, 10, 0, d1, d2); and if j = 9 then cv(∆̂) = (10, 10, 0, 0, 3, 6, 10, 2, d1, d2). It
follows that c∗(∆̂) ≤ −55π

30
+ 55π

30
= 0. If ∆̂ has more than three vertices of degree > 3 then

c∗(∆̂) ≤ −60π
30

+ 59π
30

= 0.

Case 3 (7.6) Let ∆̂ be given by Figure 7.6(iii) in which (see Figure 7.3(iii)) d(u1) =
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d(u2) = d(u7) = d(u8) = 3, d(u3) > 3 and d(u6) > 3. Then cv(∆̂) = (10, 6, a1, a2, 4, 6, 10, d1, d2, 2)
and c∗(∆̂) ≤ c(∆̂) + 55π

30
. If ∆̂ has at least three vertices of degree > 3 then c∗(∆̂) ≤

−55π
30

+ 55π
30

= 0. This leaves the case d(u3) > 3 and d(u6) > 3 only. Then cv(∆̂) =

(10, 6, 3, 0, 0, 6, 10, 0, 6, 0) and c∗(∆̂) ≤ −50π
30

+ 41π
30

< 0.

Case 4 (7.6) Let ∆̂ be given by Figure 7.6(iv) in which d(u1) = d(u2) = d(u7) = d(u8) =
3, d(u3) > 3 and d(u6) > 3. Then cv(∆̂) = (10, 6, d1, d2, 2, 6, 10, a1, a2, 4) and c∗(∆̂) ≤
c(∆̂) + 55π

30
. If ∆̂ has at least three vertices of degree > 3 then c∗(∆̂) ≤ −55π

30
+ 55π

30
= 0.

This leaves the case d(u3) > 3 and d(u6) > 3 only. Then cv(∆̂) = (10, 6, 0, 6, 2, 6, 10, 0, 0, 0)
and c∗(∆̂) ≤ −50π

30
+ 40π

30
< 0.

Case 5 (7.6) Let ∆̂ be given by Figure 7.6(v) in which (see Figure 7.3(iv)) d(u1) =
d(u2) = d(u3) = d(u7) = d(u8) = d(u9) = 3. Then cv(∆̂) = (10, 10, d1, d2, 6, 2, 10, 10, 3, d1, d2, 4)
so c∗(∆̂) ≤ c(∆̂) + 75π

30
. If ∆̂ has no vertices of degree > 3 then cv(∆̂) =

(10, 10, 0, 0, 6, 0, 10, 10, 0, 0, 0, 0) and c∗(∆̂) ≤ −60π
30

+ 46π
30

< 0. Let ∆̂ have exactly one ver-

tex ui of degree > 3. If i = 4 then cv(∆̂) = (10, 10, d1, d2, 6, 0, 10, 10, 0, 0, 0, 0); if i = 5 then
cv(∆̂) = (10, 10, 0, 6, 6, 0, 10, 10, 0, 0, 0, 0); if i = 6 then cv(∆̂) = (10, 10, 0, 0, 6, 2, 10, 10, 0, 0, 0, 0);
if i = 10 then cv(∆̂) = (10, 10, 0, 0, 6, 0, 10, 10, 3, 6, 0, 0); if i = 11 then
cv(∆̂) = (10, 10, 0, 0, 6, 0, 10, 10, 0, d1, d2, 0); and if i = 12 then
cv(∆̂) = (10, 10, 0, 0, 6, 0, 10, 10, 0, 0, 7, 4). It follows that c∗(∆̂) ≤ −65π

30
+ 57π

30
< 0. Let

∆̂ have exactly two vertices ui, uj of degree > 3. If d(u4) = d(u5) = 3 then cv(∆̂) =
(10, 10, 0, 0, 6, 2, 10, 10, 3, d1, d2, 4); if d(u10) = d(u11) = 3 then
cv(∆̂) = (10, 10, d1, d2, 6, 2, 10, 10, 3, 0, 2, 4); and if d(u12) = 3 then cv(∆̂) =
(10, 10, d1, d2, 6, 2, 10, 10, 3, 6, 0, 0). It follows that c∗(∆̂) ≤ −70π

30
+ 67π

30
. If ∆̂ has at least

three vertices of degree > 3 then c∗(∆̂) ≤ −75π
30

+ 75π
30

= 0.

Case 6 (7.6) Let ∆̂ be given by Figure 7.6(vi) in which (see Figure 7.3(v)) d(u1) =
d(u2) = d(u6) = d(u7) = 3, d(u3) > 3 and d(u8) > 3. Then cv(∆̂) = (10, 6, d1, d2, 2, 10, 6, a1, a2, 4)
and c∗(∆) ≤ c(∆̂) + 55π

30
. If ∆̂ has at least three vertices of degree > 3 then c∗(∆̂) ≤

−55π
30

+ 55π
30

= 0. This leaves the case d(u3) > 3 and d(u8) > 3 only. Then cv(∆̂) =

(10, 6, 0, 6, 0, 10, 6, 3, 0, 0) and c∗(∆̂) ≤ −50π
30

+ 41π
30

< 0.

Now let ∆̂ be one of the regions of Figure 7.4. It turns out that (up to cyclic permutation
and inversion) there are two ways to label each of Figure 7.4(i), (ii), (iii) and (iv); four
ways to label (v); two ways to label each of (vi) and (vii); and four ways to label (viii).
However the labelled regions produced by (vii) already appear in those produced by (vi);
and two of the labelled regions produced by (viii) already appear in those produced by (ii),
leaving a total of 16 regions and ∆̂ is given by Figure 7.7. The table below gives c(ui, ui+1)
(1 ≤ i ≤ 8) in multiples of π

30
for each of the sixteen regions of Figure 7.7 with the total
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plus the contribution made via the b-segment in the final column.

(i) 2 d1 d2 6 6 a1 a2 4 35 + 40 = 75

(ii) 4 a1 a2 6 6 d1 d2 2 35 + 40 = 75

(iii) 4 d1 d2 3 d1 d2 d1 d2 37 + 20 = 57

(iv) 2 6 d1 d2 e1 e2 e1 e2 40 + 20 = 60

(v) 4 d1 d2 3 d1 d2 6 2 35 + 40 = 75

(vi) 2 6 d1 d2 3 d1 d2 4 35 + 40 = 75

(vii) d1 d2 2 6 6 a1 a2 4 35 + 20 = 55

(viii) 2 d1 d2 6 6 4 a1 a2 35 + 20 = 55

(ix) e1 e2 e1 e2 d1 d2 6 2 40 + 20 = 60

(x) a1 a2 a1 a2 b1 b2 6 2 30 + 20 = 50

(xi) a1 a2 a1 a2 3 c1 c2 4 36 + 20 = 56

(xii) d1 d2 d1 d2 3 c1 c2 4 36 + 20 = 56

(xiii) a1 a2 4 6 6 d1 d2 2 35 + 20 = 55

(xiv) d1 d2 2 6 6 a1 a2 4 35 + 20 = 55

(xv) 4 d1 d2 3 d1 d2 d1 d2 37 + 20 = 57

(xvi) 2 6 d1 d2 a1 a2 a1 a2 32 + 20 = 52

The regions in Figure 7.7(i), (ii), (v) and (vi) each have degree 12 and so c(∆̂) ≤ (2−12)π+
24π
3

= −2π; whereas the rest have degree 10 and in these cases c(∆̂) ≤ −4π
3
. It follows from

the table above that if ∆̂ has at least two vertices of degree > 3 then c∗(∆̂) ≤ 0 for (x); if
at least three then c∗(∆̂) ≤ 0 for (i), (ii), (v), (vi), (vii), (viii), (xiii), (xiv) and (xvi); and
if at least four then c∗(∆̂) ≤ −40π

30
+ 40π

30
= 0.

If ∆̂ has no vertices of degree > 3 then we see from Figure 7.7 that c∗(∆̂) ≤ −20π
30

+ 18π
30

< 0.

We consider each of the sixteen cases in turn.

Case 1 (7.7) Let ∆̂ be given by Figure 7.7(i). Suppose that ∆̂ has exactly one vertex
ui of degree > 3. If d(u3) = d(u8) = 3 then cv(∆̂) = (10, 10, 10, 10, 2, 6, 0, 6, 6, 3, 0, 0); if
i = 3 then cv(∆̂) = (10, 10, 10, 10, 0, d1, d2, 6, 6, 0, 0, 0); and if i = 8 then
cv(∆̂) = (10, 10, 10, 10, 0, 6, 0, 6, 6, 0, 2, 4). It follows that c∗(∆̂) ≤ −65π

30
+ 64π

30
< 0. Let

∆̂ have exactly two vertices ui, uj of degree > 3. If d(u3) = d(u7) = 3 then cv(∆̂) =
(10, 10, 10, 10, 2, 6, 0, 6, 6, 3, 2, 4); if d(u8) = 3 then
cv(∆̂) = (10, 10, 10, 10, 2, d1, d2, 6, 6, 3, 0, 0); if (i, j) = (3, 8) then
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c∗(∆̂) = (10, 10, 10, 10, 0, d1, d2, 6, 6, 0, 2, 4); and if (i, j) = (7, 8) then
cv(∆̂) = (10, 10, 10, 10, 0, 6, 0, 6, 6, a1, a2, 4). It follows that c

∗(∆̂) ≤ −70π
30

+ 69π
30

< 0.

Case 2 (7.7) Let ∆̂ be given by Figure 7.7(ii). Suppose that ∆̂ has exactly one vertex
ui of degree > 3. If d(u2) = d(u7) = 3 then cv(∆̂) = (10, 10, 10, 10, 0, 0, 3, 6, 6, 0, 6, 2); if
i = 2 then cv(∆̂) = (10, 10, 10, 10, 4, 2, 0, 6, 6, 0, 6, 0); and if i = 7 then
cv(∆̂) = (10, 10, 10, 10, 0, 0, 0, 6, 6, d1, d2, 2). It follows that c

∗(∆̂) ≤ −65π
30

+ 64π
30

< 0. Let ∆̂
have exactly two vertices ui, uj of degree > 3. If d(u2) = 3 then

cv(∆̂) = (10, 10, 10, 10, 0, 0, 3, 6, 6, d1, d2, 2); if d(u3) = d(u7) = 3 then
cv(∆̂) = (10, 10, 10, 10, 4, 2, 3, 6, 6, 0, 6, 2); if (i, j) = (2, 3) then
cv(∆̂) = (10, 10, 10, 10, 4, a1, a2, 6, 6, 0, 6, 0); and if (i, j) = (2, 7) then
cv(∆̂) = (10, 10, 10, 10, 4, 2, 0, 6, 6, d1, d2, 0). It follows that c

∗(∆̂) ≤ −70π
30

+ 69π
30

< 0.

Case 3 (7.7) Let ∆̂ be given by Figure 7.7(iii). Suppose that ∆̂ has exactly one vertex
ui of degree > 3. If d(u7) = 3 then cv(∆̂) = (10, 10, 4, d1, d2, 3, 2, 2, 2, 2); if i = 7 then
cv(∆̂) = (10, 10, 0, 0, 5, 0, 0, 9, 9, 0). It follows that c∗(∆̂) ≤ −45π

30
+ 43π

30
. Let ∆̂ have exactly

two vertices ui, uj of degree > 3. If d(u7) = 3 then c∗(∆̂) < 0; if d(u2) = d(u8) = 3 then

cv(∆̂) = (10, 10, 0, 0, 6, 3, d1, d2, 9, 0); if (i, j) = (7, 2) then
cv(∆̂) = (10, 10, 4, 2, 5, 0, 0, 9, 9, 0); and if (i, j) = (7, 8) then
cv(∆̂) = (10, 10, 0, 0, 5, 0, 0, 9, d1, d2). It follows that c∗(∆̂) ≤ −50π

30
+ 48π

30
< 0. Let ∆̂

have exactly three vertices ui, uj, jk of degree > 3. If d(u2) = 3 or d(u7) = 3 then

c∗(∆̂) < 0; if d(u3) = d(u8) = 3 then cv(∆̂) = (10, 10, 4, 2, 6, 3, d1, d2, 9, 0); if (i, j, k) =
(2, 7, 3) then cv(∆̂) = (10, 10, 4, d1, d2, 0, 0, 9, 9, 0); and if (i, j, k) = (2, 7, 8) then cv(∆̂) =
(10, 10, 4, 2, 5, 0, 0, 9, d1, d2). It follows that c

∗(∆̂) ≤ −55π
30

+ 54π
30

< 0.

Case 4 (7.7) Let ∆̂ be given by Figure 7.7(iv). Suppose that ∆̂ has exactly one vertex ui

of degree > 3. If d(u4) = d(u6) = d(u8) = 3 then cv(∆̂) = c(10, 10, 2, 6, 6, 0, 0, 2, 2, 0); if i =
4 then cv(∆̂) = (10, 10, 0, 6, 0, 7, 0, 2, 2, 0); if i = 6 then cv(∆̂) = (10, 10, 0, 6, 5, 0, e1, e2, 2, 0);
and if i = 8 then cv(∆̂) = (10, 10, 0, 6, 5, 0, 0, 2, e1, e2). Therefore c∗(∆̂) ≤ −45π

30
+ 44π

30
.

Let ∆̂ have exactly two vertices ui, uj of degree > 3. If d(u2) = d(u6) = 3 then cv(∆̂) =

(10, 10, 0, 6, d1, d2, 0, 2, e1, e2); if d(u4) = d(u8) = 3 then cv(∆̂) = (10, 10, 2, 6, 5, 0, e1, e2, 2, 0);
if (i, j) = (2, 4) then cv(∆̂) = (10, 10, 2, 6, 0, 7, 0, 2, 2, 0); if (i, j) = (2, 8) then cv(∆̂) =
(10, 10, 2, 6, 5, 0, 0, 2, e1, e2); if (i, j) = (6, 4) then cv(∆̂) = (10, 10, 0, 6, 0, 7, e1, e2, 2, 0);
and if (i, j) = (6, 8) then cv(∆̂) = (10, 10, 0, 6, 5, 0, e1, e2, e1, e2). It follows that either
c∗(∆̂) ≤ −50π

30
+ 49π

30
< 0 or (i, j) = (6, 8), but here either d(u) = 4 and π

5
is dis-

tributed from ∆̂ across the (u1, u2) edge according to Configuration E of Figure 4.30 and
so c∗(∆̂) ≤ −50π

30
+ 53π

30
− π

5
< 0 or d(u) > 4, cv(∆̂) = (7, 7, 0, 6, 5, 0, e1, e2, e1, e2) and so

c∗(∆̂) ≤ −50π
30

+ 47π
30

< 0. Let ∆̂ have exactly three vertices u1, uj, uk of degree > 3. If

d(u4) = 3 or d(u6) = 3 or d(u8) = 3 then c∗(∆̂) ≤ −55π
30

+ 53π
30

< 0; and if (i, j, k) = (4, 6, 8)

then cv(∆̂) = (10, 10, 0, 6, 0, 7, e1, e2, e1, e2) and c∗(∆̂) ≤ −55π
30

+ 55π
30

= 0.

Case 5 (7.7) Let ∆̂ be given by Figure 7.7(v). Suppose that ∆̂ has exactly one vertex
ui of degree > 3. If d(u2) = d(u6) = 3 then cv(∆̂) = (10, 10, 10, 10, 0, 0, 6, 3, 0, 4, 6, 2);
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if i = 2 then cv(∆̂) = (10, 10, 10, 10, 4, 2, 5, 0, 0, 4, 6, 0); and if i = 6 then cv(∆̂) =
(10, 10, 10, 10, 0, 0, 5, 0, 7, 0, 6, 0). It follows that c∗(∆̂) ≤ −65π

30
+ 61π

30
< 0. Let ∆̂ have exactly

two vertices ui, uj of degree > 3. If d(u2) = 3 or d(u6) = 3 then c∗(∆̂) ≤ −70π
30

+ 69π
30

< 0;

and if (i, j) = (2, 6) then cv(∆̂) = (10, 10, 10, 10, 4, 2, 5, 0, 7, 0, 6, 0) and c∗(∆̂) < 0.

Case 6 (7.7) Let ∆̂ be given by Figure 7.7(vi). Suppose that ∆̂ has exactly one vertex
ui of degree > 3. If d(u4) = d(u8) = 3 then cv(∆̂) = (10, 10, 10, 10, 2, 6, 6, 0, 3, 6, 0, 0);
if i = 4 then cv(∆̂) = (10, 10, 10, 10, 0, 6, d1, d2, 0, 5, 0, 0); and if i = 8 then cv(∆̂) =
(10, 10, 10, 10, 0, 6, 5, 0, 0, 5, 2, 4). It follows that c∗(∆̂) ≤ −65π

30
+ 63π

30
< 0. Let ∆̂ have

exactly two vertices ui, uj of degree > 3. If d(u8) = 3 then

cv(∆̂) = (10, 10, 10, 10, 2, 6, d1, d2, 3, 6, 0, 0); if d(u2) = d(u4) = 3 then
cv(∆̂) = (10, 10, 10, 10, 0, 6, 6, 0, 3, d1, d2, 4); if (i, j) = (8, 2) then
cv(∆̂) = (10, 10, 10, 10, 2, 6, 5, 0, 0, 5, 2, 4); and if (i, j) = (8, 4) then
cv(∆̂) = (10, 10, 10, 10, 0, 6, d1, d2, 0, 5, 2, 4). It follows that c

∗(∆̂) ≤ −70π
30

+ 69π
30

< 0.

Case 7 (7.7) Let ∆̂ be given by Figure 7.7(vii). Suppose that ∆̂ has exactly one vertex
ui of degree > 3. If d(u2) = d(u8) = 3 then cv(∆̂) = (10, 10, 0, 6, 2, 6, 6, 3, 0, 0); if i = 2 then
cv(∆̂) = (10, 10, d1, d2, 0, 6, 6, 0, 0, 0); and if i = 8 then cv(∆̂) = (10, 10, 0, 6, 0, 6, 6, 0, 2, 4).
It follows that c∗(∆̂) ≤ −45π

30
+ 44π

30
< 0. Let ∆̂ have exactly two vertices ui, uj of degree > 3.

If d(u8) = 3 then cv(∆̂) = (10, 10, d1, d2, 2, 6, 6, 3, 0, 0); if d(u2) = d(u7) = 3 then cv(∆̂) =
(10, 10, 0, 6, 2, 6, 6, 3, 2, 4); if (i, j) = (8, 2) then cv(∆̂) = (10, 10, d1, d2, 0, 6, 6, 0, 2, 4); and if
(i, j) = (8, 7) then cv(∆̂) =
(10, 10, 0, 6, 0, 6, 6, a1, a2, 4). It follows that c

∗(∆̂) ≤ −50π
30

+ 49π
30

< 0.

Case 8 (7.7) Let ∆̂ be given by Figure 7.7(viii). Suppose that ∆̂ has exactly one vertex
ui of degree > 3. If d(u3) = d(u7) = 3 then cv(∆̂) = (10, 10, 2, 6, 0, 6, 6, 0, 0, 3); if i = 3 then
cv(∆̂) = (10, 10, 0, d1, d2, 6, 6, 0, 0, 0); and if i = 7 then cv(∆̂) = (10, 10, 0, 6, 0, 6, 6, 4, 2, 0).
It follows that c∗(∆̂) ≤ −45π

30
+ 44π

30
< 0. Let ∆̂ have exactly two vertices ui, uj of degree > 3.

If d(u7) = 3 then cv(∆̂) = (10, 10, 2, d1, d2, 6, 6, 0, 0, 3); if d(u2) = d(u3) = 3 then cv(∆̂) =
(10, 10, 0, 6, 0, 6, 6, 4, a1, a2); if (i, j) = (7, 2) then cv(∆̂) = (10, 10, 2, 6, 0, 6, 6, 4, 2, 0); and if
(i, j) = (7, 3) then cv(∆̂) =
(10, 10, 0, d1, d2, 6, 6, 4, 2, 0). It follows that c

∗(∆̂) ≤ −50π
30

+ 49π
30

< 0.

Case 9 (7.7) Let ∆̂ be given by Figure 7.7(ix). Suppose that ∆̂ has exactly one vertex
ui of degree > 3. If d(u2) = d(u4) = 3 then cv(∆̂) = (10, 10, 0, 2, 2, 0, d1, d2, 6, 2); if i = 2
then cv(∆̂) = (10, 10, e1, e2, 2, 0, 0, 4, 6, 0); and if i = 4 then
cv(∆̂) = (10, 10, 0, 2, e1, e2, 0, 4, 6, 0). It follows that c

∗(∆̂) ≤ −45π
30

+ 43π
30

< 0.

Let ∆̂ have exactly two vertices ui, uj of degree > 3. If d(u2) = d(u4) = 3 then c∗(∆̂) < 0;

if d(u2) = d(u8) = 3 then cv(∆̂) = (10, 10, 0, 2, e1, e2, d1, d2, 6, 0); if d(u4) = d(u8) = 3 then
cv(∆̂) = (10, 10, e1, e2, 2, 0, d1, d2, 6, 0); if (i, j) = (2, 4) then cv(∆̂) = (10, 10, e1, e2, e1, e2, 0, 4, 6, 0);
if (i, j) = (2, 8) then cv(∆̂) = (10, 10, e1, e2, 2, 0, 0, 4, 6, 2); and if (i, j) = (4, 8) then
cv(∆̂) = (10, 10, 0, 2, e1, e2, 0, 4, 6, 2). It follows that c∗(∆̂) ≤ −50π

30
+ 49π

30
< 0 except

for (i, j) = (2, 4), in which case either d(u) = 4 and π
5
is distributed from ∆̂ across the
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(u8, u9) edge according to Configuration F of Figure 4.30 and c∗(∆̂) ≤ −50π
30

+ 52π
30

− π
5
< 0

or d(u) > 4, cv(∆̂) = (7, 7, e1, e2, e1, e2, 0, 4, 6, 0) and c∗(∆̂) ≤ −50π
30

+ 46π
30

< 0. Let ∆̂
have exactly three vertices ui, uj, uk of degree > 3. If d(u2) = 3 or d(u4) = 3 then

c∗(∆̂) < 0; if d(u6) = d(u8) = 3 then cv(∆̂) = (10, 10, e1, e2, e1, e2, 0, 6, 6, 0); if (i, j, k) =
(2, 4, 6) then cv(∆̂) = (10, 10, e1, e2, e1, e2, 7, 0, 6, 0); and if (i, j, k) = (2, 4, 8) then cv(∆̂) =
(10, 10, e1, e2, e1, e2, 0, 4, 6, 2). It follows that c

∗(∆̂) ≤ −55π
30

+ 55π
30

= 0.

Case 10 (7.7) Let ∆̂ be given by Figure 7.7(x). Let ∆̂ have exactly one vertex ui of
degree > 3. If d(u3) = d(u6) = 3 then cv(∆̂) = c(10, 10, 3, 0, 0, 3, 0, 6, 6, 2); if i = 3 then
cv(∆̂) = (10, 10, 0, 2, 2, 0, 0, 4, 6, 0); and if i = 6 then cv(∆̂) = (10, 10, 0, 0, 0, 0, 7, 0, 6, 0). It
follows that c∗(∆̂) ≤ −45π

30
+ 40π

30
< 0.

Case 11 (7.7) Let ∆̂ be given by Figure 7.7(xi). Let ∆̂ have exactly one vertex ui of de-
gree> 3. If d(u2) = d(u4) = d(u8) = 3 then cv(∆̂) = (10, 10, 0, 6, 6, 0, 3, 6, 2, 0); if i = 2 then
cv(∆̂) = (10, 10, d1, d2, 6, 0, 0, 5, 0, 0); if i = 4 then cv(∆̂) = (10, 10, 0, 6, d1, d2, 0, 5, 0, 0); and
if i = 8 then cv(∆̂) = (10, 10, 0, 6, 6, 0, 0, 5, 2, 4). It follows that c∗(∆̂) ≤ −45π

30
+ 43π

30
< 0.

Let ∆̂ have exactly two vertices ui, uj of degree > 3. If d(u2) = d(u4) = 3 then cv(∆̂) =

(10, 10, 0, 6, 6, 0, 3, c1, c2, 4); if d(u2) = d(u8) = 3 then cv(∆̂) = (10, 10, 0, 6, d1, d2, 3, 6, 0, 0);
if d(u4) = d(u8) = 3 then cv(∆̂) = (10, 10, d1, d2, 6, 0, 3, 6, 0, 0); if (i, j) = (2, 4) then
cv(∆̂) = (10, 10, d1, d2, d1, d2, 0, 5, 0, 0); if (i, j) = (2, 8) then cv(∆̂) = (10, 10, d1, d2, 6, 0, 0, 5, 2, 4);
and if (i, j) = (4, 8) then cv(∆̂) =
(10, 10, 0, 6, d1, d2, 0, 5, 2, 4). It follows that
c∗(∆̂) ≤ −50π

30
+ 48π

30
< 0. Let ∆̂ have exactly three vertices ui, uj, uk of degree > 3. If

d(u2) = 3 or d(u4) = 3 or d(u7) = 3 or d(u8) = 3 then c∗(∆̂) ≤ −55π
30

+ 55π
30

= 0.

Case 12 (7.7) Let ∆̂ be given by Figure 7.7(xii). Suppose that ∆̂ has exactly one
vertex ui of degree > 3. If d(u3) = 3 then cv(∆̂) = (10, 10, 2, 2, 2, 2, 3, c1, c2, 4); and if
i = 3 then cv(∆̂) = (10, 10, 0, 9, 9, 0, 0, 5, 0, 0). It follows that c∗(∆̂) ≤ −45π

30
+ 44π

30
< 0.

Let ∆̂ have exactly two vertices u3, uj of degree > 3. If d(u7) = d(u8) = 3 then cv(∆̂) =

(10, 10, d1, d2, d1, d2, 3, 6, 0, 0); if j = 7 then cv(∆̂) = (10, 10, 0, 9, 9, 0, 0, 6, 0, 0); and if j = 8
then cv(∆̂) = (10, 10, 0, 9, 9, 0, 0, 5, 2, 4). It follows that c∗(∆̂) ≤ −50π

30
+ 49π

30
< 0. Let ∆̂

have exactly three vertices u3, uj, uk of degree > 3. If d(u8) = 3 then c∗(∆̂) < 0; if d(u5) =

d(u6) = 3 then cv(∆̂) = (10, 10, d1, d2, d1, d2, 0, c1, c2, 4); if (j, k) = (8, 5) then cv(∆̂) =
(10, 10, 0, 9, d1, d2, 3, 5, 2, 4); and if (j, k) = (8, 6) then cv(∆̂) = (10, 10, 0, 9, 9, 0, 3, 6, 2, 4).
It follows that c∗(∆̂) ≤ −55π

30
+ 53π

30
< 0.

Case 13 (7.7) Let ∆̂ be given by Figure 7.7(xiii). Suppose that ∆̂ has exactly one vertex
ui of degree > 3. If d(u2) = d(u3) = d(u8) = 3 then cv(∆̂) = (10, 10, 0, 0, 0, 6, 6, d1, d2, 0); if
i = 2 then cv(∆̂) = (10, 10, 3, 0, 0, 6, 6, 0, 6, 0); if i = 3 then cv(∆̂) = (10, 10, 0, 2, 4, 6, 6, 0, 6, 0);
and if i = 8 then cv(∆̂) = (10, 10, 0, 0, 0, 6, 6, 0, 6, 2). It follows that c∗(∆̂) ≤ −45π

30
+

44π
30

< 0. Let ∆̂ have exactly two vertices ui, uj of degree > 3. If d(u2) = 3 then

cv(∆̂) = (10, 10, 0, 2, 4, 6, 6, d1, d2, 2); if d(u3) = 3 then cv(∆̂) = (10, 10, 3, 0, 0, 6, 6, d1, d2, 2);
and if (i, j) = (2, 3) then cv(∆̂) = (10, 10, a1, a2, 4, 6, 6, 0, 6, 0). It follows that c∗(∆̂) ≤
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−50π
30

+ 50π
30

< 0.

Case 14 (7.7) Let ∆̂ be given by Figure 7.7(xiv). Suppose that ∆̂ has exactly one vertex
ui of degree > 3. If d(u2) = d(u8) = 3 then cv(∆̂) = (10, 10, 0, 6, 2, 6, 6, 3, 0, 0); if i = 2 then
cv(∆̂) = (10, 10, d1, d2, 0, 6, 6, 0, 0, 0); and if i = 8 then cv(∆̂) = (10, 10, 0, 6, 0, 6, 6, 0, 2, 4).
It follows that c∗(∆̂) ≤ −45π

30
+ 44π

30
< 0. Let ∆̂ have exactly two vertices ui, uj of degree > 3.

If d(u8) = 3 then cv(∆̂) = (10, 10, d1, d2, 2, 6, 6, 3, 0, 0); if d(u6) = d(u7) = 3 then cv(∆̂) =
(10, 10, d1, d2, 2, 6, 6, 0, 2, 4); if (i, j) = (8, 6) then cv(∆̂) = (10, 10, 0, 6, 0, 6, 6, 3, 2, 4); and if
(i, j) = (8, 7) then
cv(∆̂) = (10, 10, 0, 6, 0, 6, 6, a1, a2, 4). It follows that cv(∆̂) ≤ −50π

30
+ 50π

30
= 0.

Case 15 (7.7) Let ∆̂ be given by Figure 7.7(xv). Suppose that ∆̂ has exactly one ver-
tex ui of degree > 3. If d(u2) = d(u6) = 3 then cv(∆̂) = (10, 10, 0, 0, 6, 3, 0, 6, d1, d2); if i = 2
then cv(∆̂) = (10, 10, 4, 2, 5, 0, 0, 6, 6, 0); and if i = 6 then cv(∆̂) = (10, 10, 0, 0, 5, 0, d1, d2, 6, 0).
It follows that c∗(∆̂) ≤ −45π

30
+ 45π

30
= 0. Let ∆̂ have exactly two vertices ui, uj of degree > 3.

If d(u2) = 3 then cv(∆̂) = (10, 10, 0, 0, 6, 3, d1, d2, d1, d2); if d(u6) = d(u8) = 3 then cv(∆̂) =
(10, 10, 4, d1, d2, 3, 0, 6, 6, 0), if (i, j) = (2, 6) then cv(∆̂) = (10, 10, 4, 2, 5, 0, d1, d2, 6, 0);
and if (i, j) = (2, 8) then cv(∆̂) = (10, 10, 4, 2, 5, 0, 0, 6, d1, d2). It follows that c∗(∆̂) ≤
−50π

30
+ 49π

30
< 0. Let ∆̂ have exactly three vertices of degree > 3. If d(u2) = 3 or d(u6) = 3 or

d(u8) = 3 then c∗(∆̂) < 0; and if (i, j, k) = (2, 6, 8) then cv(∆̂) = (10, 10, 4, 2, 5, 0, d1, d2, d1, d2)
and c∗(∆̂) ≤ −55π

30
+ 51π

30
< 0.

Case 16 (7.7) Let ∆̂ be given by Figure 7.7(xvi). Suppose ∆̂ has exactly one vertex ui

of degree 3. If d(u4) = d(u8) = 3 then c∗(∆̂) = (10, 10, 2, 6, 6, 0, a1, a2, 2, 0); if i = 4 then
cv(∆̂) = (10, 10, 0, 6, d1, d2, 0, 0, 0, 0); and if i = 8 then cv(∆̂) = (10, 10, 0, 6, 5, 0, 0, 0, 2, 3).
It follows that c∗(∆̂) ≤ −45π

30
+ 43π

30
< 0. Let ∆̂ have exactly three vertices ui, uj, uk of

degree > 3. If d(u4) = 3 or d(u6) = 3 or d(u8) = 3 then c∗(∆̂) ≤ −50π
30

+ 50π
30

= 0; and if

(i, j, k) = (4, 6, 8) then cv(∆̂) = (10, 10, 0, 6, d1, d2, a1, a2, a1, a2) and c∗(∆̂) ≤ 0.

Finally let ∆̂ be given by one of the regions of Figure 7.5. It turns out that (up to cyclic
permutations and inversion) there is one way to label each of Figure 7.5(i), (ii), (iii), (v)
and (vi); two ways to label (iv); five ways to label (vii) or (viii); three ways to label (ix)
or (x); seven ways to label (xi) or (xii) or (xiii); and seven ways to label (xiv) or (xv)
or (xvi) or (xvii). This yields a total of twenty-nine regions. There are however several
coincidences amongst these regions resulting in ∆̂ being one of the eight regions given by
Figure 7.8. The table below gives c(ui, ui+1) (1 ≤ i ≤ 9) in multiples of π/30 for each of
the eight regions of Figure 7.8 with the total plus the contribution via the b-segment in the
final column.

We claim that, in the table below, x1 + y1 + z1 = 15. To see this let ∆̂ be given by
Figure 7.8(i). If c(u5, u6) = 0 then x1 + y1 + z1 = 14, so assume otherwise, in which case
c(u4, u5) = 2π

15
(Figure 5.8(ix)). If now c(u5, u6) = 2π

15
then x1 + y1 + z1 = 15. On the

other hand if c(u5, u6) > 4 then d(u5) = 3 (see Figure 5.8) forcing c(u4, u5) = π
30

and

x1+y1+z1 = 15. Note that we use here and below the fact that labelling prevents ∆̂ = ∆̂2
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of Figure 5.4(iv). The arguments for ∆̂ of figures (iii), (iv), (v), (vii) and (viii) are similar
although for (v), (vii) and (viii) we use the fact, again both here and below, that ∆̂ = ∆̂2

of Figure 5.3(iv).

(i) d1 d2 x1 y1 z1 6 6 e1 e2 48 + 10 = 58

(ii) e1 e2 6 d1 d2 d1 d2 d1 d2 47 + 30 = 77

(iii) d1 d2 x1 y1 z1 e1 e2 e1 e2 47 + 30 = 77

(iv) d1 d2 f1 f2 x1 y1 z1 e1 e2 48 + 30 = 78

(v) d1 d2 f1 f2 x1 y1 z1 e1 e2 48 + 50 = 98

(vi) e1 e2 d1 d2 d1 d2 6 d1 d2 47 + 50 = 97

(vii) d1 d2 x1 y1 z1 f1 f2 e1 e2 48 + 50 = 98

(viii) d1 d2 6 6 x1 y1 z1 e1 e2 48 + 70 = 118

Observe that d(∆̂) = 10 in (i); d(∆̂) = 12 in (ii)-(iv); d(∆̂) = 14 in (v)-(vii); and d(∆̂) = 16
in (viii). It follows that if ∆̂ has at least four vertices of degree > 3 then c∗(∆̂) ≤ 0. If ∆̂
has no vertices of degree > 3 then we see from Figure 7.8 that c∗(∆̂) ≤ −7π+ 18π

3
+ 26π

30
< 0.

We deal with each of the eight cases in turn.

Case 1 (7.8) Let ∆̂ be given by Figure 7.8(i). Suppose ∆̂ has exactly one vertex ui of
degree > 3. If d(u4) = d(u9) = 3 then cv(∆̂) = (10, d1, d2, 2, 0, 6, 6, 6, 2, 0); if i = 4 then
cv(∆̂) = (10, 0, 6, c1, c2, 4, 4, 6, 2, 0) (Note: the c1, c2 here follows from the fact that d(u4) >
3, d(u5) = 3 implies ∆̂ receives at most π

30
across the (u4, u5)-edge (see Figures 5.1 and 5.5));

and if i = 9 then cv(∆̂) = (10, 0, 6, 2, 0, 4, 4, 6, e1, e2). It follows that c
∗(∆̂) ≤ −45π

30
+ 43π

30
< 0.

Let ∆̂ have exactly two vertices ui, uj of degree > 3. If d(u2) = d(u4) = 3 then cv(∆̂) =

(10, 0, 6, 2, 0, 6, 6, 6, e1, e2); if d(u2) = d(u9) = 3 then cv(∆̂) = (10, 0, 6, x1, y1, z1, 6, 6, 2, 0);
if d(u4) = d(u9) = 3 then c∗(∆̂) ≤ −50π

30
+ 42π

30
< 0; if (i, j) = (2, 4) then cv(∆̂) =

(10, d1, d2, c1, c2, 4, 4, 6, 2, 0); if (i, j) = (2, 9) then cv(∆̂) = (10, d1, d2, 2, 0, 4, 4, 6, e1, e2); if
(i, j) = (4, 9) then cv(∆̂) = (10, 0, 6, c1, c2, 4, 4, 6, e1, e2). It follows that c∗(∆̂) ≤ −50π

30
+

50π
30

= 0. Let ∆̂ have exactly three vertices ui, uj, uk of degree > 3. If d(u4) = 3 or

d(u9) = 3 then c∗(∆̂) < 0; if d(u2) = d(u7) = 3 then cv(∆̂) = (10, 0, 6, x1, y1, z1, 4, 6, e1, e2);
if (i, j, k) = (4, 9, 2) then cv(∆̂) = (10, d1, d2, c1, c2, 4, 4, 6, e1, e2); and if (i, j, k) = (4, 9, 7)
then cv(∆̂) = (10, 0, 6, c1, c2, 4, 4, 6, e1, e2). It follows that c

∗(∆̂) ≤ −55π
30

+ 54π
30

< 0.

Case 2 (7.8) Let ∆̂ be given by Figure 7.8(ii). Suppose that ∆̂ has exactly one vertex
ui of degree > 3. If d(u2) = d(u9) = 3 then cv(∆̂) = (10, 10, 10, 0, 2, 6, d1, d2, d1, d2, 6, 0);
if i = 2 then cv(∆̂) = (10, 10, 10, e1, e2, 6, 4, 0, 0, 6, 6, 0); and if i = 9 then cv(∆̂) =
(10, 10, 10, 0, 2, 6, 4, 0, 0, 6, d1, d2). It follows that c∗(∆̂) ≤ −65π

30
+ 64π

30
< 0. Let ∆̂ have

exactly two vertices ui, uj of degree > 3. If d(u2) = 3 then

cv(∆̂) = (10, 10, 10, 0, 2, 6, d1, d2, d1, d2, d1, d2); if d(u6) = 3 then
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cv(∆̂) = (10, 10, 10, e1, e2, 6, 6, 0, 0, 6, d1, d2); and if (i, j) = (2, 6) then
cv(∆̂) = (10, 10, 10, e1, e2, 6, 4, 2, 2, 6, 6, 0). It follows that c

∗(∆̂) ≤ −70π
30

+ 69π
30

. Let ∆̂ have
exactly three vertices ui, uj, uk of degree > 3. If d(u2) = 3 or d(u6) = 3 or d(u9) = 3 then

c∗(∆̂) ≤ −75π
30

+ 73π
30

< 0; and if (i, j, k) = (2, 6, 9) then cv(∆̂) =

(10, 10, 10, e1, e2, 6, 4, 2, 2, 6, d1, d2) and c∗(∆̂) ≤ −75π
30

+ 71π
30

< 0.

Case 3 (7.8) Let ∆̂ be given by Figure 7.8(iii). Suppose that ∆̂ has exactly one vertex
ui of degree > 3. If d(u7) = d(u9) = 3 then cv(∆̂) = (10, 10, 10, d1, d2, x1, y1, z1, 2, 2, 2, 0);
if i = 7 then cv(∆̂) = (10, 10, 10, 0, 6, 2, 0, 6, e1, e2, 2, 0); and if i = 9 then cv(∆̂) =
(10, 10, 10, 0, 6, 2, 0, 6, 2, 2, e1, e2). It follows that c∗(∆̂) ≤ −65π

30
+ 61π

30
< 0. Let ∆̂ have

exactly two vertices ui, uj of degree > 3. If d(u2) = d(u7) = 3 then

cv(∆̂) = (10, 10, 10, 0, 6, x1, y1, z1, 2, 2, e1, e2); if d(u9) = 3 then
cv(∆̂) = (10, 10, 10, d1, d2, x1, y1, z1, e1, e2, 2, 0);
if (i, j) = (9, 2) then cv(∆̂) = (10, 10, 10, d1, d2, 2, 0, 6, 2, 2, e1, e2); and if (i, j) = (9, 7) then
cv(∆̂) = (10, 10, 10, 0, 6, 2, 0, 6, e1, e2, e1, e2). It follows that c

∗(∆̂) ≤ −70π
30

+ 68π
30

= 0. Let ∆̂
have exactly three vertices ui, uj, uk of degree > 3. If d(u2) = 3 or d(u7) = 3 or d(u9) = 3

then c∗(∆̂) ≤ 0; and if (i, j, k) = (2, 7, 9) then cv(∆̂) = (10, 10, 10, d1, d2, 2, 0, 6, e1, e2, e1, e2)
and c∗(∆̂) ≤ −75π

30
+ 70π

30
< 0.

Case 4 (7.8) Let ∆̂ be given by Figure 7.8(iv). Suppose that ∆̂ has exactly one vertex
ui of degree > 3. If d(u4) = d(u9) = 3 then c∗(∆̂) = (10, 10, 10, d1, d2, 2, 2, x1, y1, z1, 2, 0);
if i = 4 then cv(∆̂) = (10, 10, 10, 0, 6, f1, f2, 2, 0, 6, 2, 0); and if i = 9 then c∗(∆̂) =
(10, 10, 10, 0, 6, 2, 2, 2, 0, 6, e1, e2). It follows that c∗(∆̂) ≤ −65π

30
+ 61π

30
< 0. Let ∆̂ have

exactly two vertices ui, uj of degree > 3. If d(u9) = 3 then

cv(∆̂) = (10, 10, 10, d1, d2, f1, f2, x1, y1, z1, 2, 0); if d(u2) = d(u4) = 3 then
cv(∆̂) = (10, 10, 10, 0, 6, 2, 2, x1, y1, z1, e1, e2);
if (i, j) = (9, 2) then cv(∆̂) = (10, 10, 10, d1, d2, 2, 2, 2, 0, 6, e1, e2); and if (i, j) = (9, 4) then
cv(∆̂) = (10, 10, 10, 0, 6, f1, f2, 2, 0, 6, e1, e2). It follows that c

∗(∆̂) ≤ −70π
30

+ 69π
30

= 0. Let ∆̂
have exactly three vertices ui, uj, uk of degree > 3. If d(u2) = 3 or d(u4) = 3 or d(u9) = 3

then c∗(∆̂) ≤ 0; and if (i, j, k) = (2, 4, 9) then cv(∆̂) = (10, 10, 10, d1, d2, f1, f2, 2, 0, 6, e1, e2)
and c∗(∆̂) ≤ −75π

30
+ 71π

30
< 0.

Case 5 (7.8) Let ∆̂ be given by Figure 7.8(v). Suppose that ∆̂ has exactly one vertex ui

of degree> 3. If d(u4) = d(u9) = 3 then cv(∆̂) = (10, 10, 10, 10, 10, d1, d2, 2, 2, x1, y1, z1, 2, 0);
if i = 4 then cv(∆̂) = (10, 10, 10, 10, 10, 0, 6, f1, f2, 6, 0, 2, 2, 0); and if i = 9 then cv(∆̂) =
(10, 10, 10, 10, 10, 0, 6, 2, 2, 6, 0, 2, e1, e2). It follows that c∗(∆̂) ≤ −85π

30
+ 81π

30
< 0. Let ∆̂

have exactly two vertices ui, uj of degree > 3. If d(u9) = 3 then

cv(∆̂) = (10, 10, 10, 10, 10, d1, d2, f1, f2, x1, y1, z1, 2, 0); if d(u2) = d(u4) = 3 then cv(∆̂) =
(10, 10, 10, 10, 10, 0, 6, 2, 2, x1, y1, z1, e1, e2); if (i, j) = (9, 2) then
cv(∆̂) = (10, 10, 10, 10, 10, d1, d2, 2, 2, 6, 0, 2, e1, e2); and if (i, j) = (9, 4) then cv(∆̂) =
(10, 10, 10, 10, 10, 0, 6, f1, f2, 6, 0, 2, e1, e2). It follows that c∗(∆̂) ≤ −90π

30
+ 89π

30
= 0. Let

∆̂ have exactly three vertices ui, uj, uk of degree > 3. If d(u2) = 3 or d(u4) = 3 or d(u9) = 3

then c∗(∆̂) ≤ 0; and if (i, j, k) = (2, 4, 9) then cv(∆̂) = (10, 10, 10, 10, 10, d1, d2, f1, f2, 6, 0, 2, e1, e2)
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and c∗(∆̂) ≤ −95π
30

+ 91π
30

< 0.

Case 6 (7.8) Let ∆̂ be given by Figure 7.8(vi). Suppose that ∆̂ has exactly one vertex ui

of degree > 3. If d(u2) = d(u9) = 3 then cv(∆̂) = (10, 10, 10, 10, 10, 0, 2, d1, d2, d1, d2, 6, 6, 0);
if i = 2 then cv(∆̂) = (10, 10, 10, 10, 10, e1, e2, 6, 0, 0, 4, 6, 6, 0); and if i = 9 then cv(∆̂) =
(10, 10, 10, 10, 10, 0, 2, 6, 0, 0, 4, 6, d1, d2). It follows that c∗(∆̂) ≤ −85π

30
+ 84π

30
< 0. Let ∆̂

have exactly two vertices ui, uj of degree > 3. If d(u2) = 3 then

cv(∆̂) = (10, 10, 10, 10, 10, 0, 2, d1, d2, d1, d2, 6, d1, d2); if d(u5) = 3 then
cv(∆̂) = (10, 10, 10, 10, 10, e1, e2, 6, 0, 0, 6, 6, d1, d2); and if (i, j) = (2, 5) then cv(∆̂) =
(10, 10, 10, 10, 10, e1, e2, 6, 2, 2, 4, 6, 6, 0). It follows that c∗(∆̂) ≤ −90π

30
+ 89π

30
. Let ∆̂ have

exactly three vertices ui, uj, uk of degree > 3. If d(u2) = 3 or d(u5) = 3 or d(u9) = 3 then

c∗(∆̂) ≤ 0; and if (i, j, k) = (2, 5, 9) then cv(∆̂) =
(10, 10, 10, 10, 10, e1, e2, 6, 2, 2, 4, 6, d1, d2) and c∗(∆̂) ≤ −95π

30
+ 91π

30
< 0.

Case 7 (7.8) Let ∆̂ be given by Figure 7.8(vii). Suppose that ∆̂ has exactly one vertex ui

of degree> 3. If d(u7) = d(u9) = 3 then cv(∆̂) = (10, 10, 10, 10, 10, d1, d2, x1, y1, z1, 2, 2, 2, 0);
if i = 7 then cv(∆̂) = (10, 10, 10, 10, 10, 0, 6, 6, 0, 2, f1, f2, 2, 0); and if i = 9 then cv(∆̂) =
(10, 10, 10, 10, 10, 0, 6, 6, 0, 2, 2, 2, e1, e2). It follows that c∗(∆̂) ≤ −85π

30
+ 81π

30
< 0. Let ∆̂

have exactly two vertices ui, uj of degree > 3. If d(u9) = 3 then

cv(∆̂) = (10, 10, 10, 10, 10, d1, d2, x1, y1, z1, f1, f2, 2, 0); if d(u2) = d(u7) = 3 then cv(∆̂) =
(10, 10, 10, 10, 10, 0, 6, x1, y1, z1, 2, 2, e1, e2); if (i, j) = (9, 2) then
cv(∆̂) = (10, 10, 10, 10, 10, d1, d2, 6, 0, 2, 2, 2, e1, e2); and if (i, j) = (9, 7) then cv(∆̂) =
(10, 10, 10, 10, 10, 0, 6, 6, 0, 2, f1, f2, e1, e2). It follows that c∗(∆̂) ≤ −90π

30
+ 89π

30
= 0. Let

∆̂ have exactly three vertices ui, uj, uk of degree > 3. If d(u2) = 3 or d(u8) = 3 or d(u9) = 3

then c∗(∆̂) ≤ 0; if (i, j, k) = (2, 8, 9) then cv(∆̂) = (10, 10, 10, 10, 10, d1, d2, 6, 0, 2, f1, f2, e1, e2)
and c∗(∆̂) ≤ −95π

30
+ 91π

30
< 0.

Case 8 (7.8) Let ∆̂ be given by Figure 7.8(viii). Suppose that ∆̂ has exactly one vertex
ui of degree> 3. If d(u7) = d(u9) = 3 then cv(∆̂) = (10, 10, 10, 10, 10, 10, 10, d1, d2, 6, 6, 6, 0, 2, 2, 0);
if i = 7 then cv(∆̂) = (10, 10, 10, 10, 10, 10, 10, 0, 6, 6, 4, 4, c1, c2, 2, 0) (for the c1, c2 see the
note in Case 1); and if i = 9 then cv(∆̂) = (10, 10, 10, 10, 10, 10, 10, 0, 6, 6, 4, 4, 0, 2, e1, e2).
It follows that c∗(∆̂) ≤ −105π

30
+ 103π

30
= 0. Let ∆̂ have exactly two vertices, ui, uj of degree

> 3. If d(u2) = d(u7) = 3 then cv(∆̂) = (10, 10, 10, 10, 10, 10, 10, 0, 6, 6, 6, 6, 0, 2, e1, e2);
if d(u2) = d(u9) = 3 then cv(∆̂) = (10, 10, 10, 10, 10, 10, 10, 0, 6, 6, 6, x1, y1, z1, 2, 0); if
d(u7) = d(u9) = 3 then c∗(∆̂) ≤ −110π

30
+ 100π

30
; if (i, j) = (2, 7) then

cv(∆̂) = (10, 10, 10, 10, 10, 10, 10, d1, d2, 6, 4, 4, c1, c2, 2, 0); if (i, j) = (2, 9) then cv(∆̂) =
(10, 10, 10, 10, 10, 10, 10, d1, d2, 6, 4, 4, 0, 2, e1, e2); and if (i, j) = (7, 9) then
cv(∆̂) = (10, 10, 10, 10, 10, 10, 10, 0, 6, 6, 4, 4, c1, c2, e1, e2). It follows that c∗(∆̂) ≤ −110π

30
+

110π
30

= 0. Let ∆̂ have exactly three vertices ui, uj, uk of degree > 3. If d(u7) = 3 or

d(u9) = 3 then c∗(∆̂) < 0; if d(u2) = d(u4) = 3 then
cv(∆̂) = (10, 10, 10, 10, 10, 10, 10, 0, 6, 6, 4, x1, y1, z1, e1, e2); if (i, j, k) = (7, 9, 2) then cv(∆̂) =
(10, 10, 10, 10, 10, 10, 10, d1, d2, 6, 4, 4, c1, c2, e1, e2); and if (i, j, k) = (7, 9, 4) then cv(∆̂) =
(10, 10, 10, 10, 10, 10, 10, 0, 6, 6, 6, 4, c1, c2, e1, e2). It follows that cv(∆̂) ≤ −115π

30
+ 114π

30
< 0.
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Proposition 7.5 If ∆̂ is a type B region and d(∆̂) ≥ 10 then c∗(∆̂) ≤ 0.

Proof. It can be assumed that d(∆̂) ≥ 10 and that ∆̂ is not one of the regions of Figures
7.3(ii)-(v), 7.4 or 7.5, otherwise Proposition 7.4 applies. Moreover if n2 ≥ 10 then c∗(∆̂) ≤ 0
so assume that n2 ≤ 9. It follows from the proof of Lemma 7.1 that the upper bound (†) is
reduced by at least 2π

15
for each gap between two b-segments that contain b-regions so if there

are at least three such b-segments then c∗(∆̂) ≤ π(2− n2

5
)− 3

(

2π
15

)

implying c∗(∆̂) ≤ 0 for

n2 ≥ 8. Since there are at least two edges between b-segments it follows that if ∆̂ contains
more than three such b-segments then c∗(∆̂) ≤ 0 or if exactly three then n2 ≥ 8 by Lemma
7.2(i) and again c∗(∆̂) ≤ 0. If ∆̂ has exactly one b-segment that contains a b-region then
c∗(∆̂) ≤ 0 by Proposition 7.3 together with Lemma 7.2(v), (vi) so suppose from now on
that ∆̂ contains exactly two such segments. Then c∗(∆̂) ≤ π

(

2− n2

5

)

−2
(

2π
15

)

which implies

c∗(∆̂) ≤ 0 for n2 ≥ 9, so assume n2 ≤ 8 in which case ∆̂ is given by Figure 7.3(i) where
(m,n) ∈ {(2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (4, 4)}. Applying Proposition
7.3 and Lemma 7.2(ii) shows it can be assumed that there is at least one shadow edge in
∆̂ between the two b-segments.

Let m = 2. It follows from the statement at the end of the above paragraph that ∆̂
contains the shadow edge (14) and ∆̂ is given by Figure 7.9(i)-(ii). If (m,n) 6= (2, 6)
then i deg(1) = i deg(4) = 1 by Lemma 7.2(iii) and there is a length contradiction so let
(m,n) = (2, 6). We claim that there is a reduction to (†) of 4π

15
between vertices 1 and

4. Given this and the fact that there is a reduction of 2π
15

between 2 and 3 we obtain

c∗(∆̂) ≤ π
(

2− n2

5

)

− 6π
15

and c∗(∆̂) ≤ 0 for n2 ≥ 8, in particular when (m,n) = (2, 6).
To prove the claim observe that if d(a1) = 3 in Figure 7.9(i) or (ii) then c1 = c2 = 0;
and if d(a1) ≥ 4 then c1 + c2 ≤ 2π

15
(see Figure 4.33). In the first instance there is a

deficit of at least
(

2π
3
+ 2

(

2π
15

))

− 2π
3

= 4π
15
; and in the second case the deficit is at least

(

2π
3
+ 2

(

2π
15

))

−
(

2π
4
+ 2π

15

)

= 3π
10
.

Let m = 3 or 4. Applying Lemma 7.2(ii)-(iv) and Proposition 7.3 it can be assumed that
∆̂ is given by Figure 7.10 with the understanding that the segment of ∆̂ between vertices
2 and 3 is also one of these nine possibilities. (Note that in Figure 7.10 the length of
the shadow edge incident at vertex 1 is shown.) We claim that if m = 3 then the edges
between 1 and 4 produce a deficit of at least 2π

5
; and if m = 4 then the reduction is at least

π
5
. Given this, if (m,n) = (3, 3) then c∗(∆̂) ≤ π

(

2− 6
5

)

− 4π
5

= 0; if (m,n) = (3, 4) then

c∗(∆̂) ≤ π
(

2− 7
5

)

− 3π
5
= 0; if (m,n) = (3, 5) then c∗(∆̂) ≤ π

(

2− 8
5

)

−
(

2π
5
+ 2π

15

)

< 0; and

if (m,n) = (4, 4) then c∗(∆̂) ≤ π
(

2− 8
5

)

− 2
(

π
5

)

= 0, so it remains to prove the claim for
the possible labellings of the regions of Figure 7.10 and these are shown in Figure 7.11(i)-
(xx). Indeed there are four ways to label each of Figure 7.10(iv) and (vi); and two ways
to label each of the others. However the labelling obtained from Figure 7.10(vii) already
appears in Figure 7.10(vi).

Let m = 3. Then the tables below (in which κ1, κ2, κ3 and deficit are given as multiples of
π
30
) show that the deficit in each case is 2π

5
, as required, except for d(v1) = d(v2) = 3 in (i)
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and we consider this below. Note that in (i) and (iii) when d(u) = 4 and either d(v1) =
d(v2) = 3 or d(v1) = 3, d(v2) = 4, π

5
is distributed from ∆̂ according to Configuration E, F

of Figure 4.30(i), (iii). Note that in (ii) when d(v1) = 3 and d(v2) = 4 the region ∆̂ cannot
be ∆̂2 of Figure 5.4(iv) because d(w) = 3 in Figure 7.11 but the corresponding vertex in
Figure 5.4(ii) has degree 4. Similarly in (iv) when d(v1) = 4 and d(v2) = (3) the region ∆̂
cannot be ∆̂2 of Figure 5.3(iv).

Suppose that d(u) > 4 in Figure 7.11(i) in which the vertex v corresponds to the vertex
4 of Figure 7.10(i). If there are at least two regions in the b-segment between vertices 4
and 3 then 2

(

10π
30

− 7π
30

)

= π
5
is contributed to the deficit and so the totals 12π

30
, 16π

30
remain

the same. If however there is exactly one region in the b-segment then only 10π
30

− 7π
30

= π
10

is contributed to the deficit and so the total is 9π
30

when d(v1) = d(v2) = 3 and 13π
30

when

d(v1) = 3, d(v2) = 4. If (m,n) = (3, 5) then c∗(∆̂) ≤ π(2− 8
5
)−

(

9π
30

+ 2π
15

)

< 0 so it can be
assumed that n ∈ {3, 4}. But given that there are no vertices between 4 and 3, it follows
immediately from length considerations that (i) of Figure 7.10 can only be combined with
(iv) or (viii), and so, in particular, n = 4. Any attempt at labelling shows that (i) with (viii)
is impossible and the unique region ∆̂ obtained from (i) with (iv) is given by Figure 7.12
in which the segment of vertices from 2 to 3 corresponds to Figure 7.11(x). We show below
that for Figure 7.11(x), the deficit is at least 9π

30
and so c∗(∆̂) ≤ π

(

2− 7
5

)

− 2
(

9π
30

)

= 0.
If d(u) > 4 in Figure 7.11(iii) in which the vertex v corresponds to the vertex 4 of Figure
7.10(iv), then since there are at least two regions in the b-segment between 4 and 3 it
follows that, as in the above case, the total deficit remains unchanged.
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(i) d(v1) d(v2) κ1 κ2 κ3 deficit
3 3 0 6 0 12 (9) (Note)
4 3 2 0 0 15
3 4 0 0 7 16 (13) (Note)
5+ 3 2 2 0 16
3 5+ 0 2 2 16
4 4 2 0 7 13
4 5+ 2 4 2 17
5+ 4 2 4 7 12
5+ 5+ 2 2 2 22

(ii) d(v1) d(v2) κ1 κ2 κ3 deficit
3 3 0 0 0 12
4 3 0 0 0 17
3 4 0 1 4 12 (Note)
5+ 3 2 2 0 16
3 5+ 0 2 2 16
4 4 0 7 0 15
4 4 0 0 4 18
4 5+ 0 4 2 19
5+ 4 2 4 4 15
5+ 5+ 2 2 2 22

(iii) d(v1) d(v2) κ1 κ2 κ3 deficit
3 3 0 6 0 12 (Note)
4 3 2 0 0 15
3 4 0 0 7 16 (Note)
5+ 3 2 2 0 16
3 5+ 0 2 2 16
4 4 2 0 7 13
4 5+ 2 4 2 17
5+ 4 2 4 7 12
5+ 5+ 2 2 2 22
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(iv) d(v1) d(v2) κ1 κ2 κ3 deficit
3 3 0 0 0 12
4 3 4 1 0 12 (Note)
3 4 0 0 0 17
5+ 3 2 2 0 16
3 5+ 0 2 2 16
4 4 4 0 0 18
4 4 0 7 0 15
4 5+ 4 4 2 15
5+ 4 2 4 0 15
5+ 5+ 2 4 2 20

Now let m = 4 and consider Figure 7.11. Checking Figures 4.33, 5.1–5.5, 5.8 and 5.9 and
Lemma 5.4 shows that κ1 + κ2 + κ3 + κ4 ≤

11π
15

for (xiv); and κ1 + κ2 + κ3 + κ4 ≤
9π
15

in all
other cases. Indeed the upper bounds are shown in the following table.

κ1 κ2 κ3 κ4 κ1 κ2 κ3 κ4

(v) b1 b2 6 2 16 (xiii) x1 x2 x3 x4 18

(vi) 3 d1 d2 4 17 (xiv) e1 e2 e1 e2 22

(vii) 2 6 7 2 17 (xv) y1 y2 y3 y4 17

(viii) 3 7 4 2 16 (xvi) a1 a2 a1 a2 14

(ix) 7 6 2 2 17 (xvii) 4 7 3 2 16

(x) 4 7 3 2 16 (xviii) 2 6 7 2 17

(xi) 2 2 6 7 17 (xix) 2 6 d1 d2 18

(xii) 2 4 7 3 16 (xx) 4 d1 d2 3 17

Note that κ4 ≤ 2 in (vii)–(x), (xvii) and (xviii) follows from the fact that d(v3) ≥ 4; κ1 ≤ 2
in (xi) and (xii) follows from the fact that d(v1) ≥ 4; that x1 + x2 + x3 + x4 ≤ 18 in (xiii)
follows from the fact that d(v1) = 3 implies κ1 = 0, d(v1) > 3 implies κ2 = 5, d(v3) = 3
implies κ4 = 0 and d(v3) > 3 implies κ3 = 5; in (xv) the fact that κ1 > 4 implies κ2 = 0,
κ2 > 4 implies κ1 = 0 or κ3 = 0, κ3 > 4 implies κ2 = 0 or κ4 = 0 and κ4 > 4 implies κ3 = 0
forces y1 + y2 + y3 + y4 ≤ 17.

In the cases other than (x) where κ1 + κ2 + κ3 + κ4 ≤ 9π
15

if at least one of v1, v2, v3 has
degree ≥ 5 then there is a deficit of at least

(

2π
3
+ 8π

15

)

−
(

2π
5
+ 9π

15

)

= π
5
; and if at least

two have degree ≥ 4 then the deficit is at least
(

4π
3
+ 8π

15

)

−
(

π + 9π
15

)

= 4π
15
, so it can be

assumed that (d(v1), d(v2), d(v3)) ∈ {(3, 3, 3), (4, 3, 3), (3, 4, 3), (3, 3, 4)}. For cases (vii)–(ix)
and (xvii)–(xviii), d(v3) = 4 and checking shows that κ1 + κ2 + κ3 + κ4 ≤

4π
15

which gives a
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deficit of at least 13π
30

. For (xi) and (xii), d(v1) = 4 and κ1 + κ2 + κ3 + κ4 ≤
4π
15

which gives
a deficit of at least 13π

30
.

Tables for (v), (vi), (xiii), (xv), (xvi), (xix) and (xx) are as follows.

(v) d(v1) d(v2) d(v3) κ1 κ2 κ3 κ4 def
3 3 3 0 4 6 0 6
4 3 3 7 0 6 0 8
3 4 3 0 0 0 0 21
3 3 4 0 4 0 2 15

(vi) 3 3 3 0 5 0 0 11
4 3 3 0 0 0 0 21
3 4 3 0 0 0 0 21
3 3 4 0 5 2 4 10

(xiii) 3 3 3 0 2 2 0 12
4 3 3 2 0 2 0 17
3 4 3 0 9 0 0 12
3 4 3 0 0 9 0 12
3 3 4 0 2 0 2 17

(xv) 3 3 3 0 6 6 0 6 (Note)
4 3 3 7 0 6 0 8
3 4 3 0 0 0 0 21
3 3 4 0 6 0 7 8

(xvi) 3 3 3 0 0 0 0 16
4 3 3 0 0 0 0 21
3 4 3 0 2 2 0 17
3 3 4 0 0 0 0 21

(xix) 3 3 3 0 6 4 0 6
4 3 3 2 0 4 0 15
3 4 3 0 0 0 0 21
3 3 4 0 6 0 7 8
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(xx) 3 3 3 0 0 5 0 11
4 3 3 4 2 5 0 10
3 4 3 0 0 0 0 21
3 3 4 0 0 0 0 21

For these cases it remains to explain the first row for (xv).

Consider (xv) with d(v1) = d(v2) = d(v3) = 3. Then κ1 = κ4 = 0, κ2 ≤ π
5
and κ3 ≤ π

5
. If

κ1 + κ2 ≤ π
3
then the deficit is at least π

5
so assume otherwise. If ∆̂ receives less than π

5

from each of ∆2 and ∆3 then deficit ≥ π
5
, so assume otherwise. If ∆̂ receives π

5
from ∆2

then ∆2 is given by ∆ of Figure 4.1(v) or Figure 4.2(iv). But if ∆2 is ∆ of Figure 4.2(iv)
then ∆̂ does not receive any curvature from ∆3 and we are done; and if ∆2 is ∆ of Figure
4.1(v) then according to Configuration D, ∆̂ receives 3π

10
from ∆0. If ∆̂ receives π

5
from ∆3

then ∆3 is given by Figure 4.1(v) or Figure 4.3(vi), (vii). But if ∆3 is ∆ of Figure 4.3(vi),
(vii) then ∆̂ does not receive any curvature from ∆2 and we are done; and if ∆3 is ∆ of
Figure 4.1(v) then according to Configuration C, ∆̂ receives 3π

10
from ∆5. It now follows

that deficit ≥ π
5
as required.

For case (x), d(v3) ≥ 4. If at least one of v1 or v2 has degree ≥ 4 then the deficit is at
least π

3
; if d(v1) = d(v2) = 3 and d(v3) ≥ 5 then κ3 = 2 and the deficit is at least 3π

10
; and if

d(v1) = d(v2) = 3 and d(v3) = 4 then κ1 = κ2 = 0 and the deficit is 8π
15
.

Finally the table for (xiv) is given below.

(xiv) 3 3 3 0 2 2 0 12
4 3 3 e1 e2 2 0 8
3 4 3 0 0 0 0 21
3 3 4 0 2 e1 e2 8
5+ 3 3 2 2 2 0 18
3 5+ 3 0 2 2 0 20
3 3 5+ 0 2 2 2 18
4 4 3 c1 c2 0 0 17
4 3 4 e1 e2 e1 e2 6 (Note)
3 4 4 0 0 c1 c2 17

Since, as mentioned earlier, κ1 + κ2 + κ3 + κ4 ≤ 11π
15

, if there is a vertex of degree ≥ 4
and one of degree ≥ 5 it follows that the deficit is at least 7π

30
; and if there are at least

three vertices of degree ≥ 4 then the deficit ≥ 3π
10

and so to complete the proof it remains
to explain the penultimate row for (xiv), that is, case (xiv) with d(v1) = d(v3) = 4 and
d(v2) = 3. If κ1 + κ2 = π

3
and κ3 + κ4 = π

3
then deficit ≥ π

5
, so assume otherwise. If
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κ1 + κ2 > π
3
then the only way this can occur (see Figure 5.10) is if κ1 = 2π

15
and κ2 = 7π

30

forcing ∆1 to be given by ∆ of Figure 4.15(v) and ∆2 to be given by ∆ of Figure 4.7(xiii).
But either this gives Configuration B of Figure 4.28, a contradiction or d(u) > 4 in Figure
4.28 and π

3
− 7π

30
= 3π

30
is added to the deficit. If κ3 + κ4 > π

3
then the only way this can

occur is if κ3 =
7π
30

and κ4 =
2π
15

forcing ∆3 to be given by ∆ of Figure 4.15(vi) and ∆4 to
be given by ∆ of Figure 4.7(xii). But either this gives Configuration A of Figure 4.27 or
d(u) > 4 in Figure 4.27 and 3π

30
is added to the deficit. It now follows that deficit ≥ π

5
, as

required. �

8 Proof of Theorem 1.2

In section 3 it was assumed by way of contradiction that there is a reduced spherical picture
P over Pn. The dual D of P was amended to produce K and the map K0 is a connected
component of K.

LetK0 = K. Using the same curvature method as in [8] we obtain c(K0) =
∑

∆∈K0
c(∆) =

4π. If c(∆) ≤ 0 for each ∆ ∈ K0 this immediately yields a contradiction. If c(∆) > 0 then
d(∆) = 4 and c(∆) is distributed to a near region ∆̂ as described in Section 4. If d(∆̂) = 4
then, by Lemma 4.1, either c∗(∆̂) ≤ 0 or c∗(∆̂) is distributed to a region of degree > 4
or c∗(∆̂) is distributed to a region ∆′ of degree 4 where c∗(∆′) ≤ 0 or c∗(∆′) > 0 and is
distributed to a region of degree > 4. An immediate consequence (see Proposition 4.2)
is that c(K0) ≤

∑

∆̂∈K0
c∗(∆̂) where the sum is taken over regions of ∆̂ of degree ≥ 6.

If d(∆̂) = 6 then, by Lemma 5.2, either c∗(∆̂) ≤ 0 or c∗(∆̂) is distributed to a region of
degree ≥ 8 or c∗(∆̂) is distributed to a region ∆′ of degree 6 and c∗(∆′) ≤ 0. An immediate
consequence (see Proposition 5.3) is that c(K0) ≤

∑

∆̂∈K0
c∗(∆̂) where each ∆̂ has degree

≥ 8 and has received positive curvature possibly from regions of degree 4 or 6. Finally in
Sections 6 and 7 it is shown that if d(∆̂) ≥ 8 then c∗(∆̂) ≤ 0, a contradiction to c(K0) = 4π
that yields the result.

Now suppose that K0 6= K. In this case (as described at the end of Section 3) delete all
vertices and edges in K\K0 to produce a tessellation K1 of S2 consisting of the union of
K0 and a single distinguished region ∆0, say. Then c(K0) + c(∆0) = 4π. Apply the same
distribution of curvature as in the above to ∆ 6= ∆0 with the difference being that if at any
stage positive curvature is transferred to ∆0 then it remains with ∆0. It follows in exactly
the same way (see Propositions 4.2 and 5.3) that 4π = c(K1) = c(K0) + c(∆0) ≤ c∗(∆0).
But if d(∆0) = k then, since π

3
is the maximum amount of curvature transferred across any

edge, c(∆0) ≤ (2− k)π+ k
(

2π
3

)

+ k
(

π
3

)

= 2π. This final contradiction proves the theorem.
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10 Appendix

In what follows we use LEC to denote a length contradiction as defined in Section 3;
and we use LAC to denote labelling contradiction, which will often be a basic labelling
contradiction corresponding to Figure 3.4.

Proof of Lemma 3.4 The proof is immediate for n = 3, 4 and has been given for n = 6
in Section 3 so let n = 5 and ∆̂ be given by Figure A.1(i). If ∆̂ contains no shadow edges
then LEC. If ∆̂ contains exactly one shadow edge up to symmetry it is (13) and this yields
LEC. Up to symmetry this leaves the case (13), (14) forcing LEC.

Let n = 7 and ∆̂ be given by Figure A.1(ii). If only (13) or only (14) or only (14), (15) occurs
this forces LEC so it can be assumed without any loss that (13), (14) occurs. If there are no
more shadow edges then LEC; if exactly one more then it is one of (15), (16), (46), (47), (57)
and each forces LEC; and if two more then they are one of the pairs (15), (16); (15), (57);
(16), (46); (46), (47); or (47), (57). But (15) yields LAC; (16), (46) yields LAC; (46), (47)
yields LAC; and (47), (57) yields LEC.

Let n = 8 and ∆̂ be given by Figure A.1(iii). If there are no shadow edges then ∆̂ is given
by Figure 3.6(iv). If (15) occurs only then ∆̂ is given by Figure 3.6(v). If there are now no
shadow edges (i i+ 2) (subscripts modulo 8) then up to symmetry one of (14); (14), (15);
(14), (16); (14), (58); (14), (15), (16); or (14), (15), (58) occurs. But (14), (15), (16) yields
LAC; (14), (15), (58) is given by Figure 3.6(vi); and the other cases each yield LEC. It
can be assumed without loss that (13), (14) occurs. The remaining possible shadow edges
are: (15), (16), (17), (46), (47), (48), (57), (58) and (68). If (15) then LAC so assume
otherwise. No more shadow edges yields LEC. Exactly one more shadow edge yields
LEC except for (47) given by Figure 3.6(vii) or (16) given by Figure 3.6(viii) or (58)
given by Figure 3.6(x). If there are exactly two more shadow edges then it is one of the
pairs (16), (17); (16), (46); (16), (68); (17), (46); (17), (47); (17), (57); (46), (47); (46), (48);
(46), (68); (47), (48); (47), (57); (48), (58); (48), (68); (57), (58); or (58), (68). But each case
forces LEC.

If there are exactly three more shadow edges then it is one of the triples (16), (17), (46);
(16), (46), (68); (17), (46), (47); (17), (47), (57); (46), (47), (48); (46), (48), (68); (47), (48), (57);
(48), (57), (58); or (48), (58), (68). Each of these forces LAC except for (13), (14), (47), (48),
(57) which is given by Figure 3.6(ix).

Finally let n = 9 and ∆̂ be given by Figure A.1(iv). If there are no shadow edges then ∆̂
is given by Figure 3.6(xi). If there is exactly one shadow edge then (up to symmetry) it is
one of (13), (14) or (15) and each forces LEC. If the girth of ∆̂ together with shadow edges
is five then either (15) only or (15), (16) only occurs and each forces LEC. Suppose (14)
occurs (the girth four case). If at most one more shadow edge occurs then it is one of (15),
(16), (17), (58), (59), (69) and each case forces LEC. If there are exactly two more shadow
edges then LAC or one of (15), (17); (15), (58); (15), (59), (15), (69); (16), (17); (16), (69);
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(17), (47); (47), (48); (47), (49); (48), (49); (48), (58); or (59), (69) occur forcing LEC. If
there are three more then this forces LAC or (14), (15), (59), (69) which yields LEC.

It can now be assumed without any loss that (13), (14) occurs. If there are no more shadow
edges then LEC. If there is exactly one more then it is (15) and LAC or one of (16),
(17), (18), (46), (47), (48), (49), (57), (58), (59), (68), (69) or (79) and LEC. If exactly
two more then LAC or one of (16), (17); (16), (18); (16), (46); (16), (68); (16), (69); (16, (79);
(17), (18); (17), (46); (17), (47); (17), (57); (17), (79); (18), (46); (18), (47); (18), (48); (18), (57);
(18), (58); (18), (68); (46), (47); (46), (48); (46), (49); (46), (68); (46), (69); (46), (79); (47), (48);
(47), (49); (47), (57); (47), (79); (48), (57); (48), (58); (48), (68); (49), (57); (49), (58); (49), (59);
(49), (68); (49), (69); (49), (79); (57), (58); (57), (59); (57), (79); (58), (59); (58), (68); (59), (68);
(59), (69); (59), (79); (68), (69); or (69), (79) occur and forcing LEC.

If there are three or four more shadow edges this forces either LAC or one of (16), (17), (79);
(16), (69), (79); (17), (18), (46); (17), (18), (57); (17), (46), (79); (17), (57), (79); (18), (46), (47);
(18), (46), (68); (18), (47), (57); (18), (57), (58); (18), (58), (68); (46), (47), (49); (46), (47), (79);
(46), (49), (68); (46), (49), (79); (46), (68), (69); (46), (69), (79); (47), (48), (57); (47), (49), (57);
(47), (57), (79); (48), (57), (58); (49), (78), (58); (49), (78), (59); (49), (57), (79); (49), (58), (59);
(49), (58), (68); (49), (45), (68); (49), (59), (79); (49), (68), (69); (49), (69), (79); (57), (58), (59);
(58), (59), (68); (59), (68), (69); or (49), (58), (59), (68) occurs each forcing LEC. �

Remark 1 If the corner label at the vertex v of the region ∆̂ is x or y then it follows
from equations (3.1) in Section 3 that there must be an odd number of shadow edges in ∆̂
incident at v.

Remark 2 Let v1, v2 be vertices of the same b-segment of the region ∆̂. It follows from
Remark 1 that there are no shadow edges in ∆̂ from v1 to v2.

Proof of Lemma 7.2

(i) Consider the regions ∆̂ of Figure A.2(i)-(ii) in which 2, 6, 10 refer to the (possibly
empty) set of vertices between vertices 1 and 3, 5 and 7, 9 and 11.

We write (ab) to indicate that there was a 2-segment between vertices a and b in
D with the understanding that if a = 2, for example, we mean a vertex belonging
to a. By remark 1 above the number of (ab) involving each of 1, 3, 5, 7, 9 and 11
must be odd and at least one. First consider Figure A.2(i). It follows from remark
2 above that if {a, b} ⊆ {12, 1, 2, 3, 4} or {4, 5, 6, 7, 8} or {8, 9, 10, 11, 12} then (ab)
does not occur. Moreover (18) forces (19), (1 11) and this yields LAC. It follows that
the only pairs involving 4, 8 or 12 are (4 10), (28) and (6 12). First assume that none
of (35), (79) or (1 11) occur. Then since (15), (16) and (17) each forces (35), and
(19), (1 10) each forces (1 11), we get a contradiction. Assume exactly one of (35),
(79), (1 11) occurs – without any loss (79). Then again (15), (16) and (17) each force
(35), and (19) and (1 10) each force (1 11), a contradiction. Assume exactly two of
(35), (75), (1 11) occur – without any loss (35) and (79). Then (19) and (1 10) each
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forces (1 11), a contradiction; and (16) and (17) each forces LEC at (35) or forces
either (52), (52) or (52), (51) or (36), (36) or (36), (37) yielding LAC. This leaves
(15). Since the number of (ab) involving 5 must be odd at least one of (59), (5 10)
or (5 11) occurs. But (59) forces (11 5) and (5 10); (5 10) forces (11 5) and another
(5 10); and (5 11) forces either a length contradiction at (79) or forces (95), (96) or
(96), (96) or (7 10), (7 10) or (7 10), (7 11) yielding LAC in all cases. Finally assume
that (1 11), (35) and (79) occur. Since the length of each is n− 1 we must have more
pairs otherwise there is a length contradiction. Assume without any loss that 1 is
involved in further pairs. Since (16) and (19) each forces either (36), (36) or (36)(37)
or (52), (52) or (52)(51) yielding LAC it follows that at least two of (15), (19) and
(1 10) occur. However (19), (1 10) and (1 10), (1 10) yield LAC and (15), (19) forces
(59) and LAC. This leaves (15), (1 10) together with at least one of (25), (59), (5 10).
But (25) yields LAC; (59) forces (19) or (69) and LAC; and finally (5 10) forces either
a length contradiction or one of (7 10), (7 10) or (59)(69) or (69)(69) and LAC.

Now consider Figure A.2(ii). Here if {a, b} ⊆ {3, 4, 5, 6, 7} or {7, 8, 9, 10, 11} or
{11, 12, 13, 1, 2} then (ab) does not occur. First assume that (68) and (10 12) do
not occur. Then (69), (6 10) and (6 11) force (68); (6 12) forces (68) or (10 12); (6 13)
and (61) each force (68) or (10 12); and (62) forces one of (12 6), (12 7), (12 8) or
(12 9) and each forces (68) or (10 12) – in all cases a contradiction.

Now assume that exactly one of (68) and (10 12) occurs – without any loss (68). Since
this segment has length n − 1 this forces at least one of (69), (6 10), (58), (48) to
occur. If (68) and (69) occur then at least one (69), (6 10), (6 11), (6 12), (6 13), (61)
or (62) occurs. But (69) and (6 10) yields LAC; and each of (6 11), (6 12), (6 13), (61)
and (62) forces (6 10) or (10 12) a contradiction. If (68) and (6 10) occurs then at
least one of (6 11), (6 12), (6 13), (61) and (62) occurs. But (6 11) yields LAC and
the rest force (10 12) or (6 12) and LAC. If (68) and (58) occur then at least one of
(85), (84), (83), (82), (81), (8 13) and (8 12) occurs. But (85) and (84) yield LAC;
(83) forces (84); and each of the rest forces (10 12). If (68) and (48) occur then at
least one of (83), (82), (81), (8 13) or (8 12) occurs. But (83) yields LAC and the rest
force (10 12).

Finally assume that (68) and (10 12) occur. Then length implies that at least one of
(69), (6 10), (85), (84) occurs and at least one of (10 13), (10 1), (12 9), (12 8) occurs.
Let (69) and (10 13) occur. Then at least one of (10 13), (10 1), (10 2), (10 3), (10 4),
(10 5) and (10 6) also occurs. But (10 13) and (10 1) yield LAC; (10 2) forces (10 1);
and each of (10 3), (10 4) and (10 5) forces another (69) or (6 10) and LAC. Let (69)
and (10 1) occur. Then at least one of (10 2), (10 3), (10 4) and (10 5) occurs. But
(10 2) yields LAC; and each of (10 3), (10 4) and (10 5) forces (69) and LAC. Let (69)
and (12 9) occur. Then at least one of (6 12), (6 13), (61) and (62) occurs. But (6 12)
yields LAC; and (6 13), (61) and (62) each forces either (6 12) or (12 9) and LAC.
The segments (69) and (12 8) cannot both occur. Let (6 10) and (10 13) occur. Then
at least one of (10 13), (10 1), (10 2), (10 3), (10 4) and (10 5) must also occur. But
(10 13) and (10 1) each force LAC; (10 2) forces (10 1); and each of (10 3), (10 4) and
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(10 5) forces (69), and LAC. Let (6 10) and (10 1) occur. Then at least one of (10 2),
(10 3), (10 4) and (10 5) occurs and there is a contradiction as in the subcase above.
The segment (6 10) cannot occur with (12 9) or (12 8). The subcases (84), (12 9);
(84), (12 8); (85), (12 9); and (85), (12 8) follow by symmetry. Let (84) and (10 13)
occur. Then at least one of (85), (83), (82), (81) and (8 13) occurs. But (85) and
(83) yield LAC; and the others force either (10 13) or (10 1) and LAC. Let (84) and
(10 1) occur. Then at least one of (85), (83), (82) and (81) occurs and similarly there
is a labelling contradiction. Let (85) and (10 13) occur. Then at least one of (85),
(84), (83), (82), (81) and (8 13) also occurs. But (85), (84) and (83) yield LAC; and
the rest forces either (10 13) or (10 1) and LAC. Finally if (85) and (10 1) occur then
at least one of (85), (84), (83), (82) and (81) occurs and similarly there is a labelling
contradiction.

(ii) Let m = 2. Then ∆̂ is given by Figure A.3(i). If n = 2 as in Figure A.3(ii) then (1b)
is forced yielding (2?); and if n = 3 as in Figure A.3(iii) then (1b) forces (2?) and (1c)
forces (3a) and (4?). Let n = 4 as in Figure A.3(iv). Then (1b) forces (2?) and (1d)
forces (3a), (4?) so (1c) must occur. This forces (2c) and no vertices between 1 and
2 otherwise LAC. If (3a) then (4?) so must have (3c) and (4c). Thus there are no
vertices between 3 and 4, otherwise LAC, and so d(∆̂) = 8, a contradiction. Let n = 5
as in Figure A.3(v). If (1b) then (2?) and if (1e) then (3a) and (4?) so must have
(1c) or (1d). Suppose (1c) occurs. This forces (2c) and no vertices between 1 and 2.
If (4d) then (3d) must occur and no vertices between 3 and 4. But then d(∆̂) = 9, a
contradiction, so must have (4c) since (4e) forces (3?). If now (3c) then d(∆̂) = 9 as
before so (3d) must occur. If (ac) occurs or there are at least three vertices between
3 and 4 then LAC, so assume otherwise. If 5 is the only vertex between 3 and 4 then
(5c) yields LEC and (5d) yields LAC; and if 5 and 6 are between 3 and 4 then must
have (5d) and (6c) otherwise LAC. There are no more shadow edges and the resulting
region yields LEC. Now suppose (1d) occurs. This forces (3d), (4d) and no vertices
between 3 and 4. If (2d) then d(∆̂) = 9 so (2c) occurs. By symmetry we can now
argue as in the above to obtain a contradiction.

Finally let n = 6 as in Figure A.3(vi). Note that if v /∈ {a, b, c, d, e, f} then i deg(v) =
1 otherwise LAC. If (1b) then (2?); if (1f) then (3a) and (4?); if (4f) then (3?); and
if (4b) then (2a) and (1?). Thus there are six cases: (1c), (4c); (1c), (4d); (1c), (4e);
(1d), (4d); (1d), (4e); and (1e), (4e).

Consider (1c), (4c). This forces (2c) and no vertices between 1 and 2. If (ac) then
LAC. If (3c) then there are no vertices between 3 and 4 and LAC so must have (3d)
or (3e). Suppose (3d). If there are at least three vertices between 3 and 4 then LAC;
and if there are less than three this forces LEC in each case. Suppose (3e). Then (5e)
must occur for some vertex 5 between 3 and 4 otherwise LEC. If there are no other
vertices between 3 and 4 then LEC; and if there is at least one more vertex between
3 and 4 then LAC.

Consider (1c), (4d). This forces (2c) and no vertices between 1 and 2. Observe that
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(ac) forces LAC. There must be (3d) or (3e). Suppose (3d) occurs. Then there are no
vertices between 3 and 4. If (da) or (df) then LAC so ∆̂ has no more vertices and this
yields LEC. Suppose (3e) occurs. Then must have (5e) where 5 is a vertex between
3 and 4, otherwise LAC. If there are no other vertices between 3 and 4 then either
(da) occurs or does not occur, but in both cases there is LEC; if there is exactly one
more, 6 say, then (6e) yields LAC and if (6d) then (da) yields LAC and if not (da)
then LEC.

Consider (1c), (4e). This forces (2c), (3e), no vertices between 1 and 2 and no vertices
between 3 and 4. If there are no other shadow edges then LEC so at least one of (ac),
(ad), (ae) or (ce) occurs. But (ac), (ad) or (ae) forces LAC; and (ce) yields LEC.

Consider (1d), (4d). If (ad) then LAC. By symmetry there are three cases: (2c), (3e);
(2d), (3d); and (2c), (3d). If (2c), (3e) then length forces at least one vertex between
1, 2 and 3, 4 and labelling implies at most two. If there is exactly one vertex 5, say,
between 1 and 2 and one vertex 6, say, between 3 and 4 then must have (5c), (6e)
yielding LEC; and if exactly two vertices, between 1 and 2 and either one or two
vertices between 3 and 4 then LAC. If (2d), (3d) then there are no vertices between 1
and 2 or 3 and 4 yielding LAC. If (2c), (3d) then there are no vertices between 3 and
4; (df) yields LAC; and there is at least one vertex 5 say between 1 and 2 with (5c),
otherwise LEC. If only 5 occurs between 1 and 2 then this forces LEC; and if there
are any more vertices between 1 and 2 this forces LAC.

Case (1d), (4e) is the same as (1c), (4d) by symmetry; and case (1e), (4e) is the same
as (1c), (4c) by symmetry.

Let m = 3. Then ∆̂ is given by Figure A.4(i). If n = 3 as in Figure A.4(ii) then
(1c) forces (2?) and (3b) forces (4?). So must have either (1d) or (1b). Suppose (1d)
occurs. This forces (2d), (3a), (4a) and no vertices between 1 and 2 or between 3
and 4 otherwise LAC. But then d(∆̂) = 8, a contradiction. Suppose (1b) occurs.
This forces (3c), (4c), (2b), no vertices between 1 and 2 or between 3 and 4 and again
d(∆̂) = 8.

Let n = 4 as in Figure A.4(iii). If (1c) then (2?) and if (4e) then (3?). The possible
cases up to symmetry are (1b), (4c); (1b), (4d); and (1d), (4d).

Consider (1b), (4c). This forces (2b), (3d) and no vertices between 1 and 2. If (bc)
then LAC. If there are no vertices between 3 and 4 then d(∆̂) = 9, a contradiction;
if there is exactly one vertex, 5 say, between 3 and 4 then must have (5d) otherwise
LEC, there are no more shadow edges and ∆̂ is given by Figure 7.3(iv); and if there
are at least two vertices between 3 and 4 then LAC.

Consider (1b), (4d). This forces (3d) and no vertices between 3 and 4. If now (2b)
then there are no vertices between 1 and 2 so d(∆̂) = 9, a contradiction. This leaves
(2d) and either LEC or there are two vertices, 5 and 6 say, between 1 and 2 with
(5b) and (6d). Any other shadow edges yields LAC and no more shadow edges yields
LAC.
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Consider (1d), (4d). This forces (2d), (3d), no vertices between 1 and 2 or between 3
and 4 and so d(∆̂) = 9, a contradiction.

Let n = 5 as in Figure A.4(iv). As before (1c), (2a), (3b) and (4f) yield contradictions.
Up to symmetry the cases are (2b), (3c); (2b), (3d); (2b), (3e); (2d), (3d); and (2d), (3e).

Consider (2b), (3c). This forces (1b), (4c) and no vertices between 1 and 2 or between
3 and 4. If (bc) occurs then LAC otherwise there is still a labelling contradiction.

Consider (2b), (3d). This forces (1b) and no vertices between 1 and 2. The subcases
are (4c) and (4d). Consider first (4d). Then there are no vertices between 3 and 4,
(bc) yields LAC, (bd) yields LAC and (df) yields LAC. Therefore there are no more
shadow edges and this yields LEC. Now suppose (4c) occurs. If (bc) then LAC and
any other shadow edge incident at vertex c forces LAC. Suppose that there are no
vertices between 3 and 4. If (df) does not occur then LEC and if (df) occurs then ∆̂
is given by Figure 7.3(v). If there is more than one vertex between 3 and 4 then LAC
and if there is exactly one, 5 say, then must have (5d) yielding LEC with or without
(df).

Consider (2b), (3e). This forces (1b) and no vertices between 1 and 2. The subcases
are (4c), (4d) and (4e). Consider first (4c). If (bc) then LAC; or if there any further
shadow edges at c then LAC. If i deg(3) > 1 then LAC so there must be a vertex, 5
say, between 3 and 4 and (5e) otherwise LEC. If there are no more shadow edges then
LEC; if (ce) occurs then LEC; and if there is either one more vertex, 6 say between
4 and 5 with (6d) or two more, 6 and 7 say, between 4 and 5 with (6d), (7d) then
this forces LEC in both cases. Now suppose (4d) occurs. If (bc) then LAC or if (4c)
and (4e) then LAC. If there is exactly one vertex, 5 say, between 3 and 4 then (5e)
occurs, otherwise LEC. If there are no more shadow edges then LEC and the only
other possibility is (db) and again LEC; and if there are exactly two vertices, 5 and
6, say between 3 and 4 then must have (5e) and (6d). Any further shadow edges
yields LAC and no more yield LEC. Now suppose (4e) occurs. This forces (3e) and
no vertices between 3 and 4. Now (bc) and (be) each yield LAC and if (ce) then LEC.
If there are no more shadow edges then LEC or if (bd) then LAC.

Consider (2d), (3d). The subcases are (1d), (4d); (1d), (4a); and (1b), (4d). Suppose
(1d), (4d) occurs. Then there are no vertices between 1 and 2 or between 3 and 4,
and each of (df), (da) and (db) forces LAC. Thus there are no more shadow edges
and this forces LEC. Suppose (1d), (4a) occurs. Then there are no vertices between 1
and 2. If there are no vertices between 3 and 4 then LEC or if there are at least three
vertices between 3 and 4 then LAC. If there is exactly one vertex, 5 say, between 3
and 4 then must have (5a) otherwise LEC, and if (da) then LAC or if not (da) then
LAC. If there are two vertices, 5 and 6 say, between then must have (5a) and (6d).
Again if (da) then LAC and if not (da) then LAC. Suppose (1b), (4d) occurs. There
are no vertices between 3 and 4 and either LEC or there are vertices 5 and 6 between
1 and 2 with (5b) and (6d). If now (bd) then LAC or if not (bd) then LAC.

Consider (2d), (3e). Up to symmetry the subcases are (1b), (4d); (1b), (4e); (1d), (4d);
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and (1d), (4e). Suppose (1b), (4d) occurs. Then either LEC or there are vertices 5
and 6 between 1 and 2 with (5b), (6d). If now (bd) then LAC. There must be a vertex
7 between 3 and 4 with (7e) otherwise LEC. If there are no more shadow edges then
LEC; otherwise (d8) occurs where 8 is between 7 and 4, and this yields LEC. Suppose
(1b), (4e) occurs. Then there are no vertices between 3 and 4, and either LEC or there
are variances 5 and 6 between 1 and 2 with (5b) and (6d). If now (bd) then LAC.
If there are no more shadow edges then LEC; if there is one more shadow edge (e7)
where 7 lies between 5 and 6 then LAC; and if there is a further shadow edge (e8)
where 8 lies between 7 and 6 then again LAC. Suppose (1d), (4d) occurs. Then there
are no vertices between 1 and 2. If (ad) then LAC. There must be (5e) where vertex
5 is between 3 and 4 otherwise LEC. If (bd) then LAC; if no other shadow edges then
LEC; and if (d6) where 6 lies between 5 and 4 then LEC.

Finally let m = n = 4 as shown in Figure A.4(v). Up to symmetry the subcases are
(1b), (4b), (2e), (3e); (1b), (4b), (2b), (3d); (1b), (4b), (2b), (3c); (1b), (4b), (2b), (3b);
(1b), (3e), (4e), (2b); (1b), (3e), (4d), (2c); (1b), (3e), (4e), (2c); (1c), (3d), (2c), (4d);
(1b), (3d), (4d), (2b); (1b), (3d), (4d), (2c). Note that (1d), (2a), (3c) and (4f) each
yield a contradiction.

Suppose that i deg(1) > 1. Then i deg(1) = 3 and the three cases are (1b), (1c), (1e);
(1b), (1e), (1f); and (1c), (1e), (1f). Let (1b), (1c), (1e) occur. This forces (2e), (3e), (4e)
and no vertices between 1 and 2 or between 3 and 4. If (ce) then LAC and if not (ce)
then LEC. Let (1b), (1e), (1f) occur. This forces (3b), (4b) and LEC. If (1c), (1e), (1f)
occurs this forces (3c) and (4?). Now suppose that i deg(5) > 1 where 5 is a vertex be-
tween 1 and 2. Up to symmetry this forces (5b), (5e), (5f) and then (2e), (1b), (3b), (4b)
with no more vertices between 1 and 2 and no vertices between 3 and 4. If (bf) then
LAC and not (bf) yields LEC.

By symmetry it can be assumed from now on that i deg(P ) = 1 where P ∈ {1, 2, 3, 4}
or P is a vertex between 1 and 2 or between 3 and 4.

Consider (1b), (4b), (2e), (3e). This forces (5e), (6b), (7e), (8b) where 5, 6 lie between 1
and 2 and 7, 8 lie between 3 and 4. If now (be) then LAC and if not (be) then again
LAC.

Consider (1b), (4b), (2b), (3d). This forces (5b) where 5 lies between 3 and 4 and there
are no vertices between 1 and 2. If (bd) then LAC so assume not (bd). If there are
no more shadow edges then LEC. The remaining possibilities are: (d6) only where 6
lies between 5 and 3, yielding LAC; (df) only, yielding LAC; and (d6), (df) yielding
LAC.

Consider (1b), (4b), (2b), (3e). This forces (5e), (6b) where 5, 6 lie between 3 and 4;
and there are no vertices between 1 and 2. If (bd) then LAC; if (be) then LAC; if (7d)
then LAC or if (7d), (8d) then LAC, where 7, 8 lie between 5 and 6.

Consider (1b), (4b), (2b), (3b). If there are no more shadow edges then LEC; if (bd) or
(bf) then LAC; if (df) then LEC; and if (be) then LAC.
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Consider (1b), (3e), (4e), (2b). If there are no more shadow edges then LEC; if (bd) or
(ce) then LAC; if (be) then LAC; and if (cd) only then this is ∆̂ of Figure 7.3(vi).

Consider (1b), (3e), (4d), (2c). If there are no more shadow edges then LAC; if (c7) or
(d8) only then LEC; if (c7), (d8) only then LAC; if (c7), (cd) or (d8), (cd) only then
LAC; if (c7), (d8), (cd) then LAC; and if (cd) only then we obtain ∆̂ of Figure 7.3(vii).

Consider (1b), (3e), (4e), (2c). This forces (5b) where 5 lies between 1 and 2 and there
are no vertices between 3 and 4. If (ec) then LAC; if (c6) only then LEC, where 6
lies between 5 and 2; if (cd) only then LEC; and if (c6), (cd) then LAC.

Consider (1c), (3d), (2c), (4d). Then there are no vertices between 1 and 2 or between
3 and 4. If (df) or (dc) or (ca) then LAC. If there are no more shadow edges then
LAC.

Consider (1b), (3d), (4d), (2b). Then there are no vertices between 1 and 2 or between
3 and 4. If (df) or (dc) or (bd) then LAC. If there are no more shadow edges then
LEC.

Finally consider (1b), (3d), (4d), (2c). Then there are no vertices between 3 and 4.
There must be (5b) where 5 lies between 1 and 2. If (df) or (cd) then LAC; and if
there are no more shadow edges then LEC.

(iii) Let m = 2 and so ∆̂ is given by Figure A.3(i). It follows from (ii) that (14) must
occur. It can be assumed therefore that i deg(1) > 1 otherwise LEC. If n = 2 or 3
then this forces LAC. Let n = 4 and so ∆̂ is given by Figure A.3(i), (iv). If (1c) does
not occur then this forces (1d), (13) and LAC. Let (1c) occur. If (1d) occurs then (13)
and LAC is forced so assume (1d) does not occur. Since (2c) is forced there are no
vertices between 1 and 2 and this forces LAC. Let n = 5 and so ∆̂ is given by Figure
A.3(i), (v). Suppose that (13) does not occur. Then must have (1c), (1d), (3d), (2c),
no vertices between 1 and 2 and either LEC or (5d) where 5 lies between 3 and 4
which yields LAC. Let (13) occur so that there are no vertices between 3 and 4. If
(1c) then d(∆̂) = 9, a contradiction, if (1e) then LAC, so assume (1d) occurs. Then
(2d) forces d(∆̂) = 9 so assume (2c) occurs. This forces LEC or (5c) where 5 lies
between 1 and 2. If there are no more shadow edges then LAC; and if (6d) occurs
where 6 lies between 1 and 5 then LEC.

Let m = n = 3 and so ∆̂ is given by Figure A.4(i), (ii). Up to symmetry there are
two cases, namely i deg(3) > 1 and i deg(5) > 1 where 5 lies between 3 and 4. But
any triple from (5a), (51), (56), (57), (52), (5c) or from (3a), (31), (36), (37), (32), (3c)
yields LAC.

Let m = 3 and n = 4 and so ∆̂ is given by Figure A.4(i), (iii). It can be assumed
without any loss that i deg(5) > 1 or i deg(4) > 1 or i deg(3) > 1 where 5 lies
between 3 and 4. Suppose i deg(5) > 1. Let 6 lie between 1 and 2. Then each of
the pairs (5a), (56); (5a), (52); (5a), (5c); (51), (5c); (56), (5c); and (52), (5c) forces
LAC. If i deg(5) > 3 then LAC. This leaves the cases (5a), (51), (5d); (51), (56), (52);
(51), (56), (5d); (51), (52), (5d); (56), (52), (5d); and (56), (57) where 7 lies between 6
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and 2. If (5a), (51), (5d) occurs then LEC or (2d) and (26), and LAC. If (51), (56), (52)
occurs then LAC. If (51), (56), (5d) occurs this forces (2d), (27) and LAC.

If (51), (52), (5d) occurs this forces (3d). If now i deg(1) > 3 then LAC so (4a), (a8)
must occur where 8 lies between 4 and 5. Any further shadow edges yields LAC, and
no more yields LEC. If (56), (52), (5d) occurs this forces (3d). But now i deg(6) > 1
yields LAC and i deg(6) = 1 yields LAC. If (56), (57) occurs then this immediately
forces LAC except for (5d). But this forces (2d), (8d) and LAC where 8 lies between
7 and 2.

Now suppose i deg(4) > 1. Similarly to the above the cases are (4a), (41), (4d);
(41), (46), (42) yielding LAC; (41), (46), (4d); (41), (42), (4d); (46), (42), (4d); and (46), (47)
where 6 lies between 1 and 2 and 7 lies between 2 and 6. If (4a), (41), (4d) occurs this
forces (2d), (6d) and LAC. If (41), (46), (4d) occurs this forces (2d), (7d) and LAC. If
(41), (42), (4d) occurs this forces (3d) and no vertices between 1 and 2 or between 3
and 4. Any other shadow edges yields LAC and no more yields LEC. If (46), (44), (4d)
occurs this forces (3d), no vertices between 3 and 4 and LAC. If (46), (47) occurs this
forces LAC except possibly for (4d). But (2d) is then forced yielding LEC or (8d),
where 8 lies between 7 and 2, yielding LAC.

Suppose i deg(3) > 1. Similarly to the above the cases are (3a), (31), (3d); (31), (36), (3c)
yielding LAC; (31), (36), (3d); (31), (32), (3d); (36), (32), (3d); and (36), (37). If (3a), (31), (3d)
occurs this forces (4a) and LAC. If (31), (36), (3d) occurs this forces (2d) and LAC.
If any of the remaining cases occur they immediately force LEC or LAC.

Let m = 3, n = 5 and so ∆̂ is given by Figure A.4(i), (iv). Again up to symmetry
the cases are i deg(5) > 1 or i deg(4) > 1 or i deg(3) > 1 where 5 has between 3 and
4.

Suppose i deg(5) > 1. The pairs (5a), (56); (5a), (52); (5a), (5c); (51), (5c); (56), (5c)
where 6 has between 1 and 2 each force LAC. If (51), (52) or (51), (56) occurs this
forces (4a) then LEC or (4a), (a8), where 8 has between 4 and 5, then LAC. If
(5a), (5e) occurs this forces (3d), (4a) and LAC. This leaves the triples (56), (57), (5d);
(56), (57), (5e); (5a), (51), (5d); (51), (5d), (5e); (56), (52), (5d); (56), (52), (5e); (56), (5d), (5e);
(52), (5c), (5d) and LAC; (52), (5c), (5e); (52), (5d), (53); (5c), (5d), (5e) and LAC,
where 6 lies between 1 and 2 and 7 lies between 1 and 6. If (56), (57), (5d) or
(5a), (51), (5d) occurs this forces (2d) and LEC or (2d), (d8), where 8 lies between
6 and 2, and LAC. If (56), (57), (5e) or (56), (52), (5e) or (52), (5c), (5e) occurs this
forces (3e) and LAC. If (51), (5d), (5e) occurs this forces (4a) and LEC or (4a), (a8),
where 8 lies between 4 and 5, and LAC. If (56), (5d), (5e) occurs this forces (2d), (d8),
where 8 lies between 6 and 2, and LAC. If (52), (5d), (5e) occurs this forces (3e) and
LEC. Finally suppose that (56), (52), (5d) occurs. This forces (3d) or (3e). If (3e)
then LEC or (e8), where 8 lies between 5 and 3. If there are no further shadow edges
at d then LAC; if (2d) then LAC; or if (d8) where 8 lies between 5 and 3, then LAC.
If (3d) occurs then there are no vertices between 3 and 5 and LAC.

Now suppose i deg(4) > 1. The pairs (4a), (46); (4a), (42); (4a), (4c); (41), (4c)

69



and (46), (4c) where 6 lies between 1 and 2 each yield LAC, and (4a), (4e) forces
(3e) and either LEC or (41), yielding LAC. This leaves the triples (4a), (41), (4d);
(41), (42), (4d); (41), (42), (4e); (41), (4d), (4e); (46), (47), (4d) where 6 lies between
1 and 2, and 7 between 6 and 2; (46), (47), (43); (46), (4d), (4e); (42), (4c), (4d) and
LAC; (42), (4c), (4e); (42), (4d), (4e); and (4c), (4d), (4e) yielding LAC. If (4a), (41), (4d)
or (41), (4d), (4e) occurs this forces (2d) and either LEC or (6d), where 6 lies between
1 and 2, and LAC. If (41), (42), (4d) occurs this forces (3d) or (3e). If (3d) then there
are no vertices between 1 and 2 or between 3 and 4, any further shadow edges yields
LAC and no more yields LEC. If (3e) then either LEC or (5e) where 5 lies between
3 and 4 and if there are no more shadow edges at d then LEC otherwise (6d) occurs
where 6 lies between 5 and 4, and again LEC or there are further shadow edges and
LAC. If (41), (42), (4e) occurs this forces (3e) and there are no vertices between 1, 2 or
3, 4. If now (2e) then LAC or if either (2d) or (ec) then either LEC or (2e). So there
are no more shadow edges and LEC. If (46), (47), (4d) occurs this forces (2d) and
either LEC or (8d) where 8 lies between 7 and 2 yielding LAC. If (46), (47), (4e) or
(46), (4d), (4e) or (42), (4c), (4e) or (42), (4d), (4e) occurs this forces no more vertices
between 3 and 4, (1b) and either LEC or (68) where 8 lies between 1 and 6, yielding
LAC.

Suppose that i deg(3) > 1. The pairs (3a), (36); (3a), (32); (3a), (3c); (31), (3c);
(36), (3c) where 6 lies between 1 and 2 each yield LAC; and the pair (3a), (3e)
forces (4a), no vertices between 3 and 4, and either LEC or (3d) which yields
LAC. This leaves the triples (3a), (31), (3d); (31), (36), (32) and LAC; (31), (36), (3d);
(31), (36), (3e); (31), (32), (3d); (31), (32), (3e) and LEC; (31), (3d), (3e); (36), (37), (3d);
(36), (37), (3e) and LEC; (36), (32), (3d); (36), (32), (3e) and LEC; (36), (3d), (3e);
(32), (3c), (3d) and LAC; (32), (3c), (3e) and LEC; (32), (3d), (3e) and LAC; (3c), (3d), (3e)
and LAC, where 6 lies between 1 and 2 and 7 between 6 and 2. If (3a), (31), (3d) or
(31), (36), (3d) or (31), (3d), (3e) or (36), (37), (3d) or (36), (3d), (3e) occurs this forces
(2d) and either LEC or (d8) where 8 lies between 6 and 2 and LAC. If (31), (36), (3e)
occurs this forces LEC or (3d) which forces LEC or LAC as in the previous cases.
If (31), (32), (3d) occurs this yields LEC, if (df) also occurs then again LEC or (2d)
which yields LAC. If (36), (32), (3d) occurs then either (df) occurs and LAC, otherwise
LEC.

Finally let m = n = 4 and so ∆̂ is given by Figure A.4(v). Up to symmetry
there are the two cases i deg(5) > 1 and i deg(4) > 1. Let i deg(5) > 1. The
pairs (5a), (56); (5a), (52); (5a), (5d); (51), (5d); (56), (5d), where 6 lies between 1
and 2 each yield LAC. Up to symmetry this leaves the triples (5b), (5a), (51) and
LAC; (5b), (5a), (5e); (5b), (51), (56); (5b), (51), (52); (5b), (51), (5e); (5b), (56), (52);
(5b), (56), (5e); (5b), (52), (5d); (56), (57), (5b); (51), (56), (52) and LAC; where 6 lies
between 1 and 2 and 7 between 6 and 2. If (5b), (5a), (5e) occurs this forces (2e), (1e)
and LAC. If (5b), (51), (56) occurs this forces (4b) and LAC when i deg(6) = 1 or
i deg(6) = 3. If (5b), (51), (52) occurs this forces (32) or (3d) or (3e): if (32) then
LAC; if (3d) then LAC; and if (3e) then LEC. If (5b), (51), (5e) occurs this forces (2e)
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and LEC or (2e), (6e) and LAC, where 6 lies between 1 and 2. If (5b), (56), (52) or
(5b), (56), (5e) or (5b), (52), (5d) occurs this forces (4b), (1b) and LEC or (4b), (1b), (7b)
and LAC, where 7 lies between 1 and 6.

Let i deg(4) > 1. The pairs (4c), (46); (4a), (42), (4a), (4d); (41), (4d); (46), (4d) where
6 lies between 1 and 2 each forces LAC. The pair (4b), (41) force LEC or LAC and
the pairs (4b), (46); (4b), (42); (4b), (4d); and (4b), (4e) each force LEC. This leaves
the triples (4b), (4a), (41) and LAC; (4b), (4a), (4e); (4a), (41), (4e); (41), (46), (42)
and LAC; (41), (46), (4e); (41), (42), (4e); (46), (42), (4e); and (42), (4d), (4e) which
yields LAC. If (4b), (4a), (4e) or (4a), (41), (4e) or (41), (46), (4e) occurs this forces
(1e) and LAC. If (41), (42), (4e) occurs with no more shadows then LEC; and any
further shadow edge forces LAC or LEC. If (46), (42), (4e) occurs this forces (3e) and
no vertices between 3 and 4; and either (1b) or (1c). If (1b) occurs then LEC or (b7)
where 7 lies between 1 and 6 again forcing LEC. If (1c) or (1c), (c7) occurs then LAC.

(iv) By (iii) it can be assumed that i deg(v) = 1 for v ∈ B1∪B2; and by (iii) the statement
clearly holds when (m,n) = (3, 3). Let (m,n) = (3, 4) and so ∆̂ is given by Figure
A.4(i), (iii). Clearly the statement holds for 1 and 4. Up to symmetry there are
two cases: (14), (2d), (3d); and (1b), (2d), (3d). Suppose (14), (2d), (3d) occurs. This
forces LEC or (5d), (6d) where 5 lies between 3 and 4 and 6 lies between 1 and 2
and this forces LAC. Suppose (1b), (2d), (3d) occurs. This forces LEC or (5d), (6d) as
before and (47), (b8) where 7, 8 lie between 1 and 6, and then LAC.

Let (m,n) = (3, 5) and so ∆̂ is given by Figure A.4(i), (iv). Up to symmetry the cases
are (2d), (3d), (1b); (2d), (3d), (14); (2d), (3d), (4a); (2d), (3e), (1b); and (2d), (3e), (14).
Suppose (2d), (3d), (1b) occurs. This forces (b8), (47), (6d) where 6, 7, 8 lie between
1 and 2, otherwise LEC. Other possible shadow edges are (df) and those between
additional vertices between 6, 7 and 3, 4; but in all cases this forces LEC. A sim-
ilar argument forces LEC when (2d), (3d), (14) or (2d), (3d), (4a) occurs. Suppose
(2d), (3e), (1b) occurs. This forces (b8), (47), (6d), (5e) where 6, 7, 8 lie between 1 and
2 and 5 lies between 3 and 4, otherwise LEC.

If there are no more shadow edges from d this forces LEC; if (d9) occurs only, where
9 lies between 4 and 5, this forces LAC; if (d9), (d10) occurs where 10 lies between 4
and 9 this forces LEC; and if there are more than two further shadow edges at d this
forces LAC. The argument is the same when (2d), (3e), (14) occurs.

Let (m,n) = (4, 4) and so ∆̂ is given by Figure A.4(v). Up to symmetry it can be
assumed that (1b), (4b) occurs. This forces (6b), (5b) where 6 lies between 1 and 2,
and 5 lies between 3 and 4, otherwise LEC. If any of (23), (27) or (38) now occurs
where 7 lies between 5 and 3, and 8 lies between 6 and 2 this forces LAC. This leaves
(2e), (3e) forcing LEC or (7e), (8e) which again forces LAC.

(v) The region ∆̂ is given by Figure A.5 in which ∆̂ has been partitioned into three
regions ∆̂i (1 ≤ i ≤ 3); l1 ≥ 2 denotes the number of edges between u1 and v1; l2 ≥ 2
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denotes the number between uk+1 and vl+1; l the number between v1 and vl+1; and k
the number between u1 and uk+1. Moreover, as shown, there is a shadow edge in ∆̂
between u1 and v1 and between uk+1 and vl+1; and, further to this, all shadow edges
from ui (1 ≤ i ≤ k+1) within ∆̂ are connected to some vj where 1 ≤ j ≤ l+1. Thus
n2 = l1 + l + l2 ≥ l + 4 and so 4 ≤ n2 ≤ 9.

Using LAC and LEC we list in Figure A.6 all the possibilities for ∆̂j (1 ≤ j ≤ 2) for

2 ≤ lj ≤ 5; listed in Figure A.7 are the possibilities for ∆̂3 when 0 ≤ l ≤ 3; and when

l = 4 ∆̂3 is given by Figure A.8 under the assumption that at least one ∆̂1, ∆̂2 has
degree 2.

In what follows we use the labelling of Figures A.6-8 and work up to the symmetry
of ∆̂3.

Let n2 ≤ 7. If l = 0 then, using the fact that i deg(ui) ≥ 1, k > 1 forces LAC and
k = 1 forces d(∆̂) = n2 + 1 ≤ 8; if l = 1 then k > 3 forces LAC and if k ≤ 3 then
n2 ≤ 6 implies d(∆̂) ≤ 9; if l = 2 then k ≤ 5 and n2 ≥ 6. Thus we are left with the
cases l = 1, n2 = 7; l = 2, n2 = 6; l = 2, n2 = 7; and l = 3, n2 = 7.

Let l = 1 and n2 = 7. Then k ≤ 3 and since k ≤ 2 implies d(∆̂) < 10 it can be
assumed that ∆̂3 = C13. Since each of R3B,R4B,R4C yields LAC it follows that
(∆̂1, ∆̂2) ∈ {(R3A,R3A), (R2, R4A)} and LEC.

Let l = 2 and n2 = 6. Then k ≤ 5 and since k ≤ 3 implies d(∆̂) < 10 it can be
assumed that ∆̂3 ∈ {C24, C25}. But l1 = l2 = 2 implies ∆̂1 = ∆̂2 = R2 and this
forces LEC.

Let l = 2 and n2 = 7. This forces k ≤ 5, and since k ≤ 2 implies d(∆̂) < 10 it can
be assumed that 3 ≤ k ≤ 5. Therefore ∆̂3 ∈ {C23A,C23B,C23C,C24, C25}; and
(∆̂1, ∆̂2) ∈ {(R2, R3A), (R2, R3B), (R3A,R2), (R3B,R2)}. Each case either yields
LAC or yields LEC.

Let l = 3 and n2 = 7. Then k ≤ 7 and since k ≤ 2 implies d(∆̂) < 10 it can be
assumed that 3 ≤ k ≤ 7. Therefore ∆̂1 = ∆̂2 = R2 and this yields LAC except when
∆̂3 ∈ {C33C,C35A,C35B,C37} and each of these four cases yields LEC.

Now let n2 = 8. Then d(∆̂) ≥ 10 forces k ≥ 2. Since l = 0 implies d(∆̂) < 10 it
follows that 1 ≤ l ≤ 4.

Let l = 4. Then ∆̂1 = ∆̂2 = R2 and so ∆̂3 is one of C43B,C,D,E or C45A,B,C,D
or C47B,C,D or C49 and each case forces LEC.

Let l = 3. Then (l1, l2) ∈ {(2, 3), (3, 2)}. Checking each C3 for ∆̂3 yields LEC except
for ∆̂3 = C34D and the region ∆̂ is given by Figure 7.4(i).

Let l = 2. Then (l1, l2) ∈ {(2, 4), (3, 3), (4, 2)}. Checking each C2 case for ∆̂3 yields
LEC except when
(∆̂1, ∆̂3, ∆̂2) ∈ {(R2, C22A,R4A), (R2, C24, R4A), (R3A,C22B,R3A), (R3B,C22B,R3B)}.
Now (R2, C22A,R4A), (R2, C24, R4A) yields the region ∆̂ of Figure 7.4(ii)–(iii);
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(R3A,C22B,R3A) yields the region ∆̂ of Figure 7.4(iv); and (R3B,C22B,R3B)
forces LAC.

Let l = 1. Then (l1, l2) ∈ {(2, 5), (3, 4), (4, 3), (5, 2)} and ∆̂3 ∈ {C12, C13}. Each
case forces LAC or LEC except for
(∆̂1, ∆̂3, ∆̂2) ∈ {(R2, C12, R5E), (R2, C12, R5F ), (R2, C12, R59), (R3A,C12, R4)} and
the four resulting regions ∆̂ are given by Figure 7.4(v)-(viii).

(vi) As in (v) the region ∆̂ is given by Figure A.5. In this case however Lemma 7.1 and
Figure 7.2 can be applied. Therefore if lj ≤ 5 (j = 1, 2) then

∆̂j ∈ {R2, R3A,R4A,R4C,R5A,R5E,R5F,R5G}. A further simple check now

shows that if lj = 6 then ∆̂j is given by Figure A.9; and if l1 = 7, say, then l2 = 2,

∆̂3 = CO1 and this forces ∆̂1 = R7 of Figure A.9.

Let l = 0 so that ∆̂3 = C01. Then (l1, l2) ∈ {(2, 7), (3, 6), (4, 5)}. If (l1, l2) = (2, 7) we
see from the previous paragraph that ∆̂ is given by Figure 7.5(i). If (l1, l2) = (3, 6)
then ∆̂1 = R3A and this forces ∆̂3 = R6J and ∆̂ to be given by Figure 7.5(ii). If
(l1, l2) = (4, 5) then there is no choice for ∆̂3 when ∆̂1 = R4C but if ∆̂1 = R4A then
∆̂3 = R5A and ∆̂ is given by Figure 7.5(iii).

Let l = 1 and so (l1, l2) ∈ {(2, 6), (3, 5), (5, 3), (6, 2), (4, 4)}. If (l1, l2) ∈ {(2, 6), (6, 2)}
then ∆̂3 = C12 or C13 and up to symmetry ∆̂1 = R2. But now checking the
C6 case yields LEC for each choice of ∆̂2. If (l1, l2) = (3, 5) then ∆̂1 = R3A and
now any pairing of ∆̂3, ∆̂2 forces LEC except for (∆̂3, ∆̂2) = (C13, R5A) and ∆̂ is
given by Figure 7.5(iv). If (l1, l2) = (5, 3) then it can be assumed that ∆̂3 = C12
and each choice of ∆̂1 forces LEC. If (l1, l2) = (4, 4) this forces LEC except for
(∆̂1, ∆̂3, ∆̂2) = (R4A,C13, R4A) and ∆̂ is given by Figure 7.5(v).

Let l = 2 and so (l1, l2) ∈ {(2, 5), (3, 4), (4, 3), (5, 2)}. If (l1, l2) ∈ {(2, 5), (5, 2)} then it
can be assumed that ∆̂1 = R2 and now each choice of ∆̂2 forces LEC except for when
∆̂3 = C23A, ∆̂2 = R5A and ∆̂ is given by Figure 7.5(vi). If (l1, l2) ∈ {(3, 4), (4, 3)}
then each case forces LEC except when ∆̂3 = C23A or C25 and up to symmetry ∆̂
is given by Figure 7.5(vii), (viii).

Let l = 3 and so (l1, l2) ∈ {(2, 4), (3, 3), (4, 2)}. If (l1, l2) ∈ {(2, 4), (4, 2)} it can
be assumed that ∆̂1 = R2 except when ∆̂3 = C35B. When ∆̂1 = R2 each case
yields LEC except for (∆̂3, ∆̂2) = C33C,R4A) and ∆̂ is given by Figure 7.5(ix); and
(∆̂3, ∆̂2) = (C35B,R4A) or (C37, R4A) each forcing LAC. When ∆̂2 = R2 then
LEC except when ∆̂1 = R4A and ∆̂ is given by Figure 7.5(x). If (l1, l2) = (3, 3)
then ∆̂1 = ∆̂2 = R3A forcing ∆̂3 ∈ {C33C,C35B,C37} and ∆̂ is given by Figure
7.5(xi)-(xiii).

Let l = 4 so that (l1, l2) = (2, 3) or (3, 2). Then length forces
∆̂3 ∈ {C43E,C45A,C45B,C47B,C47C,C49}. But C47C and C49 each forces LAC;
C45B forces LAC when (l1, l2) = (3, 3); and C47B forces LAC when (l1, l2) = (2, 3).
It follows that up to symmetry ∆̂ is given by Figure 7.5(xiv)-(xvii).
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Finally let l = 5. This forces (l1, l2) = (2, 2) and Figure 7.2 immediately yields LAC.
�
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